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Abstract

This paper characterizes the stochastic dynamic response of periodic structures by accounting for manufacturing 

variabilities. Manufacturing variabilities are simulated through a probabilistic description of the structural material 

and geometric properties. The underlying uncertainty propagation problem has been efficiently carried out by 

functional decomposition in the stochastic space with the help of Gaussian Process (GP) meta-modelling. The 

decomposition is performed by projected the response onto the eigenspace and involves a nominal number of actual 

physics-based function evaluations (the eigenvalue analysis). This allows the stochastic dynamic response evaluation 

to be solved with low computational cost. Two numerical examples, namely an analytical model of a damped 

mechanical chain and a finite-element model of multiple beam-mass systems, are undertaken. Two key findings from 

the results are that the proposed GP based approximation scheme is capable of (i) capturing the stochastic dynamic 

response in systems with well-separated modes in the presence of high levels of uncertainties (up to 20%), and (ii) 

adequately capturing the stochastic dynamic response in systems with multiple sets of identical modes in the 

presence of 5-10% uncertainty. The results are validated by Monte Carlo simulations.
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1. Introduction

There has been considerable attention towards analyzing periodic structures in an attempt to explore and

engineer their structural properties which could be tailored for enhanced performance in engineering applications

such as vibration attenuation and energy harvesting [1, 2, 3]. However, the need for ideal periodic architectures

introduces multiple challenges in the fabrication precision of these periodic structures, which often suffer from

anomalies related to the manufacturing process [4, 5]. Consequently, realizing a series of perfectly identical unit

cells become unrealistic in the presence of inevitable manufacturing uncertainties that eventually lead to undesirable

performance variations. Also, it has been shown [6] that randomness may be harnessed to enhance the performance

of periodic structures.
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Driven by the above motivating reasons, the primary goal of this work is to develop a computational framework

for the stochastic dynamic analysis of meta-structures to study the effect of uncertainties on the targeted perfor-

mance. The present study is timely as the underlying assumption in most existing studies is that the dynamic

response of the model is obtained for a particular set of physical parameters which are precisely known. This

assumption is not necessarily valid, especially for an industrially manufactured product with multiple sources of

uncertainties. Thus, for the deterministic model to accurately simulate the system physics, the quantification of

the variation in the response is equally important, if not more so [7]. Babaa et al. [8] recently illustrated that

perturbations in the input parameters of elastic meta-materials can cause significantly variation in the output

response, emphasizing the need for stochastic response analysis.

Uncertainty Quantification (UQ) aims to characterize the relevant uncertainties in physical models from the

available measurement data and efficiently propagate these uncertainties for the quantitative validation of the model

[9]. UQ has received considerable attention over the last two decades, however, it remains a gruelling challenge to

efficiently propagate uncertainties through systems characterized by a large number of uncertain sources where the

curse-of-dimensionality is an unresolved problem [10]. Additionally, the development of non-intrusive uncertainty

propagation techniques is vital as the analysis of multi-disciplinary systems often requires the use of sophisticated

deterministic solvers which cannot be readily modified to incorporate the necessary propagation tools [11].

Monte Carlo Simulation (MCS) has been employed as the primary modus operandi for uncertainty quantifi-

cation [12]. However, it is well established that MCS leads to computational inefficiency for large-scale systems

due to the slow rate of convergence. Several improvements to conventional MCS, such as importance sampling,

directional simulation and subset simulation, have been proposed [13, 14]. There has been increasing recent interest

in developing alternative numerical methods that are more efficient than these sampling techniques.

In this context, surrogate-based UQ has gained tremendous popularity due to their computational efficiency

compared to sampling-based approaches [15]. Surrogate-based approaches are most suitable when the response

function has an implicit form and evaluation is required by numerical approaches such as the finite element (FE)

method. Surrogate modelling generates an algebraic approximation to the input-response map of the system. These

techniques approximate the underlying computational model in a sample space and thereby reduce the simulation

time significantly. For an overview of the various types of surrogates, readers are referred to [16, 17, 18, 19]. The

Gaussian process (GP) [20, 21] is one surrogate modelling technique which has been widely acclaimed for emulating

black-box functions successfully in complex computationally intensive tasks such as reliability analysis, optimization

under uncertainty, sensitivity analysis, moment estimation and so on. The GP has been implemented in this present

work to capture the stochastic dynamic response in a cost-effective manner by replacing high-fidelity physics-based

computations. In doing so, the focus has been to accurately capture the input-response behaviour trend with

minimum computational effort. Some recent applications of GP in stochastic structural dynamic analysis can be

found in [22, 23, 24, 25, 26, 27].
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One of the earliest notable contributions that analyzed structural models as periodic structures, was by Mead 

and co-workers [28]. The main emphasis in the early works was wave propagation applied to one-dimensional 

[29, 30, 31] and two-dimensional periodic structures [32], consisting of beam and plate models. Moreover, it was 

shown that in a heterogeneous structured medium, such as beams and plates, dispersion occurs due to the presence 

of physical boundaries. It was further demonstrated that band-gaps existed as frequency intervals within which 

waves decay exponentially. In the present work, a model consisting of multiple coupled beam is used, which 

represents a model of periodically distributed beams connected by an elastic medium as a mechanical chain, in 

which the free vibration and damped frequency responses are analyzed.

The problem of mechanical chain and multiple connected structural elements have a long history and wide 

applications in mechanical, civil and aerospace engineering. One of the first problems and application of mechanical 

chains in mechanical engineering goes back to the 1950s in the papers of Rašković [33, 34]. In the same decade, Dublin 

and Friedrich [35] investigated the dynamical behaviour of two beams connected by a spring-damper system. Most of 

their following studies were based on the free and forced vibration of the two coupled beam system with elastic and 

viscoelastic properties, where the authors analyzed the natural frequencies and amplitude ratios [36, 37, 38, 39, 40]. In 

the last decade, the problem of multiple-beam systems connected with elastic layers has received great attention from 

the research community. Kelly et al. [41, 42] analyzed the free vibration of multiple connected beam systems using 

analytical and Rayleigh-Ritz approximation methods. Mao [43] proposed the application of the Adomian modified 

decomposition method to analyze the free vibration of multiple connected beams with elastic boundary conditions. 

Stojanović and Kozić [44] applied higher-order beam theories, such as Timoshenko and Reddy, to model a multiple 

connected thick beam system to determine the natural frequencies. In papers of Karličić et al. [45, 3], the influence of 

nonlocal parameters on the free vibration of multiple connected nanobeam systems was analyzed with the help of 

analytical and approximate methods. Recently, Paunović et al.[2] analyzed the damped vibration of a multiple 

fractional viscoelastic beam system by Galerkin approximation. Pavlović et al. [46] studied the stochastic stability of 

a nonlocal multiple nanobeam system subjected to time-varying axial load.

In the above papers investigating applications of mechanical chain and coupled beam mass systems, the material 

and geometrical characteristics of the system were assumed to be known (constants) and hence there was no account 

of any resulting variation in the dynamic response. Therefore, in this paper, we present a rigorous analysis of the 

response variation in mechanical chain and coupled beam mass systems due to manufacturing anomalies. Hence, 

the following issues are addressed,

• Methodology: To capture the response fluctuation, a functional decomposition in stochastic space is performed 

using a GP based meta-modelling technique. The non-intrusive framework results in a substantial reduction in 

the computational effort by replacing the high-fidelity stochastic analysis.
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• Application: The robustness of the proposed approach is investigated by assessing its ability to capture 

the variation in modal space. This is illustrated by critical and commonly encountered scenarios, such 

as high levels of input uncertainty in chain systems having well-separated modes and a moderate level of 

input uncertainty in coupled beam mass systems having multiple sets of identical modes (featuring mode 

degeneration).

2. Stochastic analysis

2.1. General problem statement

Considering a mechanical system whose behaviour can be modelled by a set of governing equations, for in-

stance partial differential equations, and utilizing some suitable solution scheme, the computational model can be

represented as

y = M(x) (1)

where x ∈ RM is a vector of input parameters of the model. These parameters may be related to the system

geometry, material constitutive behaviour or the applied loading conditions. y ∈ RQ is the vector of response

quantities which generally consist of the following,

• The displacement response or its associated components,

• The strain and stress component tensor at specified locations,

• The plastic strain and other internal damage indicators,

• Spatial and temporal variations of one or a combination of the above response parameters.

In this work, the focus is a non-intrusive approach for uncertainty quantification, in which the computational 

model, M, is considered as a black box, i.e. it cannot be modified by the analyst but only run for a set of input 

parameters. Also, if a set of input parameters is fed into the model, a unique response vector of interest is obtained. 

Thus, the model M is purely deterministic, i.e. simulating the model twice utilizing the same input vector will 

yield the same output results. Moreover, the uncertainties in the model input parameters can be modelled by a 

random vector x ∈ RM and the associated probability density function fx(x). The classical approach utilizes 

statistical inference techniques, for example the maximum likelihood principle [21], to fit the best distribution such as 

Gaussian, lognormal, Gumbel, Beta, etc. Finally, the best distribution is selected by utilizing criteria such as the 

Akaike or Bayesian information criteria [47]. In cases where little data is available, a prior expert judgement can be 

combined with measurements through the Bayesian statistics framework [48]. When no data is available, the 

principle of maximum entropy can be utilized [49].
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2.2. Dynamic analysis of finite element models in the frequency domain

In the stochastic finite element literature, the procedures to obtain the discretized random configuration of the 

governing partial differential equations are well established. The multi degrees of freedom structural vibration 

problem can be expressed, using the FE method, as,

M(θ)ü(t) + C(θ)u̇(t) + K(θ)u(t) = f(t) (2)

The system matrices, mass M(θ), stiffness K(θ) and damping C(θ), are random in nature, expressed as a function of 

the stochastic parameters θ. It is to be noted that uncertainty in the above system matrices is propagated from the 

random material and geometrical parameters (denoted as θ) at the finite element level. f denotes the applied force 

which may be deterministic or random and t represents the time. The displacement is represented by u(t) and the 

first and second derivatives of the displacement with respect to time are denoted as u̇ (t) and ü(t), respectively. In this 

paper, the damping is assumed to be proportional, although the proposed approximation scheme is generalized and 

can be used for non-proportional and other complex damping models.

The Fourier transform of Eq. (2) is used to evaluate the dynamic response in the frequency domain, which 

yields, [
−ω2M(θ) + C(θ) + K(θ)

]
ũ(ω, θ) = f̃(ω) (3)

where ũ and f̃  are the dynamic displacement response and forcing in the frequency domain. The coefficient matrix in 

Eq. (3), also known as the dynamic stiffness matrix D, is a function of the random parameters θ. D has to be 

computed for each forcing frequency and every random realization. This makes the direct mapping of stochastic input 

parameters to the frequency response directly in the physical space computationally cumbersome.

3. Proposed projection-based approximation of the dynamic response

3.1. Projection methods

The solution by direct Monte Carlo simulation (dMCS) can be considered as the benchmark to obtain the 

stochastic dynamic response as,

ũdMCS(ω, θ) = [−ω2M(θ) + C(θ) + K(θ)]−1f̃(ω) (4)

for each forcing frequency and random realization. The dynamic response can be represented as the projection

onto a stochastic basis with stochastic coefficients given by

ũ(ω, θ) =
N∑
j=1

αj(ω, θ)bj(θ) (5)

where αj (ω, θ) ∈ C represents the random scalars and bj (θ) ∈ CN denotes the stochastic basis. The random scalars 

and stochastic basis can be obtained by various numerical techniques [50]. However, the method can be numerically
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unstable due to the non-uniqueness of the solution. Thus, to avoid this instability, the residual can be computed 

in terms of the L2 relative error, and hence the expression for the approximate error is obtained as

ε̂(ω, θ) = ũ(ω, θ)− ũdMCS(ω, θ) (6)

Since a closed form expression of the error can be derived in the domain space of D(ω, θ), the residual can be

re-written as,

r(ω, θ) = D(ω, θ)ũ(ω, θ)− f̃(ω) = D(ω, θ)[ũ(ω, θ)− ũ∗(ω, θ)] (7)

where ũ∗(ω, θ) represents the true solution which cannot be evaluated exactly. In this case, we can treat the solution 

ũdMCS (ω, θ) obtained by dMCS as the benchmark. By denoting e(ω, θ) = ũ(ω, θ) − ũ∗(ω, θ) as the true error, this 

error can be written as

e(ω, θ) = D−1(ω, θ)r(ω, θ) (8)

However, e(ω, θ) cannot be computed exactly therefore an approximate error indicator is required. Thus, a bilinear

form is defined as D̄(c,d) = 〈D(ω, θ)c(ω, θ),d(ω, θ)〉, where 〈·, ·〉 represents an inner product in L2 × RN . Then,

from Eq. (8),

D̄(e, ε̂) = Rε̂ where Rε̂ = 〈r(ω, θ), ε̂(ω, θ)〉 (9)

Using the Cauchy-Schwarz inequality, one obtains

|D̄(e, ε̂)|2≤ D̄(e, e)D̄(ε̂, ε̂) = ||e||E ||ε̂||E (10)

where ||·||E represents the norm consistent with the bilinear form D̄(·, ·) on L2 × RN (analogous to the elastic

potential energy norm for structural dynamic systems). From Eqs. (9) and (10), one can obtain

|Rε̂|2/||ε̂||E< ||e||E (11)

Eq. (11) corresponds to the lower bound of the true error e(ω, θ) in terms of the approximate error indicator

ε̂(ω, θ). The equality holds only under special circumstances detailed in [51]. However, the computational effort for

the above approach is significantly higher than that required to obtain the benchmark solution. Therefore, a more

computationally efficient strategy is proposed in the following sections.

3.2. Approximating the stochastic eigensolution

To implement an efficient approach, the generalized eigensolutions are obtained using a meta-model for the

undamped case as follows

K(θ)φ̂k(θ) = λ̂k(θ)M(θ)φ̂k(θ) for k = 1, 2, . . . , N (12)
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where λ̂k(θ) and φ̂k(θ) are the kth undamped eigenvalue and eigenvector predicted by the meta-model, respectively.

For concise representation, they can be defined as,

Ω̂2(θ) = diag[λ̂1(θ), λ̂2(θ), . . . , λ̂n(θ)] ∈ RN×N

Φ̂(θ) = [φ̂1(θ), φ̂2(θ), . . . , φ̂n(θ)] ∈ RN×N
(13)

The estimated eigenvalues are arranged in ascending order so that λ̂1(θ) < λ̂2(θ) < . . . < λ̂n(θ) and the correspond-

ing eigenvectors are mass normalised and arranged in the same order. The following relations can be established

Φ̂T (θ)M(θ)Φ̂(θ) = I

Φ̂T (θ)K(θ)Φ̂(θ) = Ω̂2(θ)

(14)

The system response can be obtained by projecting on the undamped eigenvectors as the undamped eigenvectors 

form a complete basis.

The approximate dynamic response in the frequency domain can be obtained as

ũ(ω, θ) = Φ̂(θ)[−ω2I(θ) + 2iωξΩ̂(θ) + Ω̂2(θ)]−1Φ̂T (θ)f̃(ω) (15)

where ξ is the diagonal matrix of modal damping ratios for the assumed proportional damping model. Here we 

assume that these damping ratios are fixed. The above expression can be rewritten as a summation of contributions 

from each of the estimated N vibration modes of the dynamic system as

ũ(ω, θ) =
N∑
j=1

αj(ω, θ)bj(θ) =
N∑
j=1

 φ̂Tj (θ)f̃(ω)

λ̂j(θ)− ω2 + 2i
√
λ̂j(θ)ωξj

 φ̂j(θ) (16)

(
λ̂

)
ˆT

In Eq. (16), the random scalars αj (ω, θ) = φj

2 

(θ)f̃√(ω) are projected onto the space spanned by φ̂j (θ)
j (θ)−ω +2i λ̂j (θ)ωξj

to obtain the approximate dynamic response.

Figure 1 shows a schematic of the proposed approximation framework, illustrating the input uncertainty propa-

gation and quantification of the dynamic response. The schematic highlights that the need to compute the dynamic

response using the high-fidelity FE model for every forcing frequency ω is eliminated. Instead, the material and 

geometrical uncertainties at the FE level are mapped onto the undamped eigensolutions using a small number of

high-fidelity physics-based computations and then the low-fidelity meta-model based approximation of frequency 

responses is performed. The Gaussian Process has been used as the meta-modelling technique in this work, which 

is presented briefly in the next section.

3.3. Gaussian Process modelling

The Gaussian Process (GP) is a stochastic process which stipulates probability distributions over functions. 

Originally the GP was developed as a spatial interpolation technique in the field of geostatistics [52]. GP is also

known as Kriging in several disciplines [53, 54, 55, 56]. Considering an independent variable x ∈ Rd and function
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Figure 1: A schematic representation of the computational framework of the approximation strategy to evaluate the stochastic dynamic
behaviour.

g(x) such that g : Rd → R, a GP over g(x) with mean µ(x) and covariance function κ(x, x′; θ) can be defined as

g(x) ∼ GP (µ(x), κ(x,x′; Θ)),

µ(x) = E[g(x)]

κ(x,x′; Θ) = E[(g(x)− µ(x))(g(x′)− µ(x′))]

(17)

where Θ denotes the hyperparameters of the covariance function κ. The choice of the covariance function κ allows the 

incorporation of any prior knowledge about g(x) (for instance, periodicity, linearity, smoothness) [57]. The following 

squared exponential (Gaussian) covariance function has been used in this study.

κ(x,x′) = σ2
g exp

[
−

d∑
i=1

(x(i)− x′(i))2

2r2i

]
(18)

where {σg, r1, . . . , rd} = Θ are the hyperparameters of the covariance function, and x(i) denotes the ith element of x.

The most general form of GP, which is called Universal Kriging, has been used in this study [58]. Universal 

Kriging can be represented by second-order polynomial trend functions and GP as

Y(x) =

p∑
j=1

βjfj(x) + Z(x) (19)

where β = {βj , j = 1, . . . , p} is the vector of unknown coefficients and F = {fj , j = 1, . . . , p} are the polynomial 

basis functions. Z(x) is the GP with zero mean and autovariance cov[Z(x), Z(x′)] = σ2R(x, x′), where σ2 is the
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process variance and R(x, x′) is the autocorrelation function.

The parameters β and σ2 can be estimated by the maximum likelihood estimate (MLE) [21]. Now the prediction 

response for a test point requires three conditions to be satisfied, which are linearity in terms of the observed data, 

unbiasedness and minimal variance. The prediction mean and variance by GP can be obtained as

µŶ (x) = f(x)T β̂ + rTR−1(y − Fβ̂) (20)

σ2
Ŷ

(x) = σ̂2[1− rTR−1r + uT (FTR−1F)−1u] (21)

where u = FT R−1r − R and r is the autocorrelation between the unknown point x and each point of the observed 

data set. It is possible to derive confidence bounds on the prediction by GP. The variance information is often used as 

an error measure of the epistemic uncertainty of the meta-model due to the sparsity of data [59, 60]. This feature has 

led to the development of adaptive error based sampling schemes for improving the accuracy of the meta-model [61, 

62].

Figure 2 gives a flow chart of the overall computational framework of the proposed approximation strategy using 

GP. It is observed that a nominal number of eigenvalue analyses of the actual system have to be performed to train 

the GP. Once this is done, the modal solutions predicted by GP can be utilized to compute the dynamic response in 

the frequency domain. Thus, the variation in the frequency response can be quantified using limited computational 

effort depending upon the level of approximation accuracy desired. The computational cost of the proposed 

approximation scheme is proportional to (nsamp × N2), where nsamp is the number of training points for the GP, the 

cost of a single eigenvalue analysis performed using the built-in function eig() in MATLAB scales with N2 and N 

represents the number of DOFs. The details of eigenvalue algorithms (generalized Schur decomposition and Cholesky 

factorization) and the handling of sparse matrices for eigenvalue analysis in MATLAB can be found in [63, 64].

The above computational cost is significantly more efficient than computing the stochastic dynamic response (N 

× N matrix) for every forcing frequency and random realization, directly in physical space. Also, compared to dMCS, 

the proposed approximation methodology utilises nsamp/nMCS computational effort in evaluating the dynamic 

response, where nMCS denotes the number of dMCS. This computational efficiency may prove to be substantial for 

large-scale FE models as a single simulation may require significant CPU time and it must be repeated for every 

stochastic realization to simulate the uncertainties present within the element (local) level. In most structural 

applications, it is found that the dynamics can be captured by a relatively small number of linear modes. Thus, 

further computational efficiency can be achieved by model-order reduction of the FE model, however, this is not 

within the scope of the present work.
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Figure 2: Flowchart of the proposed computational framework.

4. Dynamic analysis of near-periodic structures

The performance of the proposed approach is assessed by solving two problems in this section. The stochastic 

dynamic behaviour of systems having a repetitive geometrical configuration is studied. This is relevant as inves-

tigating the vibration characteristics of these periodic structures in the presence of uncertainties is critical due to 

their industrial applications in vibration attenuation and energy harvesting. In doing so, our main focus has been to 

accurately capture the stochastic variation in the dynamic response in a cost-effective manner due to material and 

geometric uncertainties (simulating the manufacturing variability). Complex scenarios, such as high levels of input 

uncertainties and approximation of closely spaced modes, have been undertaken individually.

4.1. Mechanical models

In this section, we have analyzed two common mechanical models, namely an elastically connected mass-spring-

damper chain system and a multiple beam system with attached masses connected by an elastic medium. The mass-

spring-damper chain system, as shown in Fig. 3, consists of a finite number of masses with elastic connections. The 

elastic connection model is composed of a linear spring of stiffness ki and damper with coefficient bi. In this study, we 

adopt the chain model with free boundary conditions, i.e. the first, M1, and last,Mm, masses in the system are not 

connected to fixed boundaries. In the following section, we present the mathematical model corresponding to the 

specified boundary conditions analytically.

The second example consists of a multiple beam system (MBS) embedded in an elastic medium with attached 

point masses, as shown in Fig. 4. The mechanical model is composed of a set of m isotropic elastic beams 

with elastic medium placed in between the beams. It is assumed that all beams have the same material and
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Figure 3: Mechanical model of the Damped Chain System (Example 1).

geometrical parameters, such as uniform cross-section area A, thickness h, length L, width b, elastic modulus E, 

Poisson’s ratio ν, mass density ρ. Moreover, we consider that the material of the elastic matrix, which is located 

between beams, is described by continuously distributed linear elastic springs and dampers with the elastic medium 

coefficients (ki, bi), i = 1, 2, 3, ..., m − 1. In general, we may consider different types of medium between the beams, 

such as viscoelastic or Pasternak models. Each beam has the same boundary conditions, and the same number of 

attached point masses, as shown in Fig. 4. The transverse displacement of the i -th beam is denoted by wi(x, t), (i = 1, 

2, 3, ..., m). This analysis is limited to the case of Euler-Bernoulli beam theory, where the shear coefficient is 

neglected. We consider the case where the MBS is coupled in the "Free-Chain" configuration, i.e. the first and last 

beams in the system are not coupled to a fixed base, so that k0 = b0 = 0 and km = bm = 0.

Figure 4: Mechanical model of the Multiple Beam System (Example 2).

4.2. Analytical model - Example 1

Introducing D’Alembert’s principle, the following equations of motion of the mass-spring-damper systems can

be formulated for the i -th mass of the system:

Miẅi + ki (wi − wi+1) + ki−1 (wi − wi−1) (22)

+bi (ẇi − ẇi+1) + bi−1 (ẇi − ẇi−1) = 0,

where wi(t) is the displacement of the i -th mass of the system mi, and ki and bi are the stiffness and damping

parameters of the i -th spring and damper.

For the adopted "Free-Chain" system configuration of the elastically connected mass, the differential equations

of motion in Eq.(22) can be reduced to

M1ẅ1 + k1 (w1 − w2) + b1 (ẇ1 − ẇ2) = 0, (23)
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Miẅi + ki (wi − wi+1) + ki−1 (wi − wi−1) (24)

+bi (ẇi − ẇi+1) + bi−1 (ẇi − ẇi−1) = 0,

Mmẅm + km−1 (wm − wm−1) + bm−1 (ẇm − ẇm−1) = 0, (25)

The corresponding boundary conditions for the system in Fig. 3 give,

i = 0 : k0 = b0 = 0, and i = m : km = bm = 0. (26)

To determine an analytical solution for the damping ratio and damped natural frequency for multiple connected

mass-spring-damper systems, the first step is to reduce the system of differential equations Eq.(22) to a system of

algebraic equations by assuming a solution of the form of wi(t) = Wie
iωt, where i =

√
−1 is the unit imaginary.

The resulting system of algebraic equations then determine the characteristic equation, and the solution is obtained

by assuming the i -th algebraic equation has the form Wi = N cos(iφs)+P sin(iφs), as shown in [3]. The parameter

φs depends on the boundary conditions of the chain system, and for the "Free-Chain" system is determined as

φs = sπ
m , where s = 0, 1, 2, . . . ,m − 1 represents the mode number. The general form of the complex natural

frequency is

ωs = i
b

m
(1− cosφs)±

√
2
k

m
(1− cosφs)−

b2

m2
(1− cosφs)

2
, (27)

The real part of the complex natural frequency corresponds to the damped natural frequency, and the imaginary

part is related to the damping ratio. The natural frequency and damping ratio are then

Ωs =

√
2
k

m
(1− cosφs)−

b2

m2
(1− cosφs)

2
, (28)

ζs =
b

m
(1− cosφs) . (29)

4.3. Analytical model - Example 2

In order to derive the governing equations of motion of the multiple beam system (MBS) with added mass,

Hamilton’s principle and Euler-Bernoulli beam theory are used to give the following equation of motion for the i -th

beam

EIw′′′′i +

(
ρA+

N∑
p=1

mpiδ(x− ap(i))

)
ẅi + ki (wi − wi+1) (30)

+ki−1 (wi − wi−1) + bi (ẇi − ẇi+1) + bi−1 (ẇi − ẇi−1) = qi(x, t),

for i = 1, 2, . . . ,m− 1,m

where wi = wi(x, t) is the transverse displacement of the i -th beam, and I, ρ and A are the cross-sectional moment

of inertia, the material mass density and the cross-sectional area of the i -th beam, respectively. x ∈ [0, L] is the

axial coordinate, qi(x, t) is an arbitrary transverse load acting on the i -th beam, mpi is the p-th mass attached to

the i -th beam at ap(i), and δ is the Dirac function. (•)′ denotes ∂(•)/∂x, and ˙(•) denotes ∂(•)/∂t.
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The corresponding boundary conditions are

x = 0 : wi(0, t) = 0, w′i(0, t) = 0, (31)

x = L : EIw′′i (L, t) = 0, EIw′′′i (L, t) = 0,

From Eq. (30), the "Free-Chain" system configuration of the MBS, as shown in Fig. 4, can be obtained as

EIw′′′′1 +

(
ρA+

N∑
p=1

mp1δ(x− ap(1))

)
ẅ1 + k1 (w1 − w2) (32)

+b1 (ẇ1 − ẇ2) = q1(x, t), i = 1

EIw′′′′i +

(
ρA+

N∑
p=1

mpiδ(x− ap(i))

)
ẅi + ki (wi − wi+1) (33)

+ki−1 (wi − wi−1) + bi (ẇi − ẇi+1) + bi−1 (ẇi − ẇi−1) = qi(x, t),

for i = 2, . . . ,m− 1

EIw′′′′m +

(
ρA+

N∑
p=1

mpmδ(x− ap(m))

)
ẅm + km−1 (wm − wm−1) (34)

+bm−1 (ẇ m − ẇ m−1) = qm(x, t), i = m

In the following, we have used FE modelling to discretize the system [65] and the free vibration problem is solved 

as (
K− ω2M

)
∆ = 0, (35)

where K and M are the global stiffness and mass matrices of the MBS, respectively. The resulting matrices from the 

FE formulation are provided in Appendix 1.

4.4. Stochastic modelling

After describing the deterministic models of the near-periodic structures, the stochastic modelling is briefly 

highlighted in this section to illustrate how the proposed computational framework (Section 3) is employed to solve 

the examples (Section 4.1-4.3) in the next section (Section 5). The mass and stiffness terms of each DOF in the 

analytical model of the damped chain system (example 1) have been considered to be random. The material and 

geometric parameters at the finite element level of the multiple beam mass system considered in example 2 have been 

assumed as random. Thus, in both examples, the input uncertainty is propagated to the global mass and stiffness 

matrices, and a stochastic eigenvalue problem is posed taking into account the global random system matrices for the 

undamped case. Specifically, each of the modal solutions is represented by an individual GP model and they are 

estimated using Eq. (20). Corresponding to a random realization of the modal solutions, Eq.(16) is used to obtain the 

dynamic response in the frequency domain. Consequently, the propagation of the input uncertainty to the dynamic 

response using the GP only requires a nominal number of analytical or FE simulations
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of the actual system (Fig. 2). The variation of the natural frequencies and frequency response functions are studied 

in Section 5. The results are validated by dMCS.

Note that instead of GP, any meta-modelling technique can be used in the above non-intrusive stochastic 

framework, provided it is capable of capturing the non-linear response variation due to the high level of uncertainty 

and the presence of repeated or close modes.

5. Numerical study

5.1. Results and discussion: Example 1

Ten DOFs have been considered to undertake the numerical investigation of example 1. The nominal parameter 

values used are Mi = 1, ki = 10 and bi = 0.01. For incorporating randomness in the system, the mass and stiffness of 

each DOF are assumed to be lognormally distributed with 5% uncertainty. As the damping matrix C is assumed to be 

proportional and thus derived from the stochastic mass and stiffness matrices, in a sense C is also random in the 

analysis. In total, there are thirty stochastic variables considered in the analysis. Thirty samples were generated by a 

Latin hypercube sampling (LHS) scheme [66] to train the GP meta-model. This was implemented using the 

"lhsdesign" built-in MATLAB toolbox and the "maximin" option which maximises the minimum distance between 

points. The DACE platform was employed to implement the GP model in this work [58]. A Gaussian correlation 

function was assumed to construct the GP. The GP meta-model was constructed using thirty actual function 

evaluations corresponding to the input sample points. For validation of the GP predicted frequency responses, 104 

samples of dMCS were generated.

Since only thirty samples for the GP were adequate to approximate the stochastic dynamic response, an error 

convergence study to vary the number of samples has not been performed for this example. The variation in each 

of the natural frequencies is shown in Fig. 5. The variation in the natural frequencies from the actual discrete 

chain model (Fig. 5a) and the GP based prediction (Fig. 5b) are compared. The similarity of Figs. 5a and 5b 

demonstrates that good approximation accuracy has been obtained by the GP. An interesting point in terms of 

the input uncertainty propagation to the eigensolution space, shown by Fig. 5, is that the higher frequencies are 

characterized with higher variation compared to the lower frequencies. This is a positive indication as it is evident 

that lower natural frequencies play a more dominant role in frequency responses than the higher frequencies. Thus, 

it can be expected that the frequency response in the low-frequency region will have lower stochastic variation. 

Similar observations can be seen from the FRF band plots in Fig. 6 where the band in the low-frequency region 

up to 2 rad/s is narrower compared to that in the higher frequency region.

The complete FRF matrix obtained by GP is observed to be superimposed with that of MCS, illustrating 

satisfactory approximation accuracy. A sample FRF band plot is presented in Fig. 6. To further substantiate the 

accuracy achieved by the GP meta-model in Fig. 6, the relative L2 error in the coefficient of variation (C.O.V. = 

Standard deviation/Mean) of FRF H(2,2) is presented in Fig. 7. It can be observed that the error is well below 10−5 

for all values of forcing frequency. The variation in the natural frequencies in Fig. 5 and the frequency response
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Figure 5: Box plots to illustrate variation of the natural frequencies by using (a) MCS (104 samples) and (b) Gaussian Process (30
samples). The ten natural frequencies of the system are given along the x-axis and the y-axis gives the corresponding estimated natural
frequencies. The central mark (horizontal red line) in each box indicates the median, and the top and bottom edges of the box indicate
the 75th and 25th percentiles, respectively. The whiskers (in black) are the most extreme data points and the outliers are denoted
using the ’+’ symbol in red.
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Figure 6: Transverse displacement frequency response function (FRF) band plots (dB) by using (a) MCS (104 samples) and (b) Gaussian
Process (30 samples). The FRF H(2,2) is shown along the y-axis with varying forcing frequency values on the x-axis. The deterministic
FRF plot (in blue) was evaluated at the nominal (mean) values of the random input parameters. The mean FRF plot (in red) is the
average of the FRF corresponding to the random realizations over each forcing frequency.
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in Fig. 6 illustrate the effect of 5% variation in the input parameters and highlight the necessity of performing

stochastic response analysis.
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Figure 7: Relative L2 error in the coefficient of variation (C.O.V) of the response FRF H(2,2). C.O.V is obtained as the ratio of the
standard deviation to the mean of the FRF. The relative L2 error obtained by GP (30 samples) has been computed w.r.t MCS (104
samples). The error is reported for every value of forcing frequency to show the performance of the GP and its approximation potential
to estimate the complete dynamic behaviour.

To further access the accuracy of the GP model, the level of uncertainty in the input parameters is increased.

Figure 8 shows the relative L2 error in estimating the natural frequencies by using GP (30 samples) in the presence

of 10 % and 20 % variations in the input parameters. It can be observed from both the cases (Figs. 8a and 8b)

that acceptable error values in the range of 10−4 - 10−8 are obtained for all of the natural frequencies, illustrating

the robust potential of the GP meta-model in dealing with high levels of uncertainty. This is an advantage of the

GP meta-model compared to perturbation based approaches which often fail to capture the response variation due

to high input fluctuations.

5.2. Results and discussion: Example 2

The stochastic frequency response of the multiple beam system with added masses (Example 2) is presented in

this sub-section. Three beams with three attached masses were considered in the numerical study. The description

of all of the random input parameters is provided in Table 1. The length of the beams was 0.8 m and all of the

damping ratios were ξi = 0.01. Table 1 shows that six material and geometric parameters are considered as random

in each finite element. Each of the beams is discretized into twenty finite elements.

The results of the stochastic response analysis are now discussed. To calculate the results, the sampling scheme

and the correlation function in the GP are the same as Example 1. To determine the optimal number of samples

required to build the meta-model, the convergence of the relative L2 error in approximating the mean of the

natural frequencies is studied. Figure 9 shows the error convergence of the mean of the first six natural frequencies
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Figure 8: Relative L2 error in approximating the natural frequencies by GP (30 samples) w.r.t. MCS (104 samples) in the presence
of (a) 10 % (b) 20 % uncertainty in the input parameters. The low range of error values obtained (10−4 − 10−8) illustrate the robust
approximation capability of the GP for high levels of uncertainty. The central mark (horizontal red line) in each box indicates the
median, the top and bottom edges of the box indicate the 75th and 25th percentiles, respectively. The whiskers (in black) are the most
extreme data points and the outliers are denoted using the ’+’ symbol in red.

Table 1: Description of the random input parameters in Example 2

Variables Unit Distribution Mean C.O.V.
Elastic modulus N/m2 Lognormal 3.2×109 0.1
Density kg/m3 Lognormal 1190 0.1
Poisson’s ratio / Lognormal 0.25 0.05
C/S height m Lognormal 0.003 0.05
C/S width m Lognormal 0.02 0.05
Layer stiffness N/m2 Lognormal 100 0.1

estimated by the GP with varying numbers of sample points. Based on Fig. 9, forty-five samples were used to train 

the GP model as the error is below or close to 10−4 for all of the frequencies. Thus, the GP is built using forty-five 

actual function evaluations corresponding to the input sample points. The variation in the first fifteen natural 

frequencies are given in Fig. 10. The variation in the natural frequencies from the actual FE model (Fig. 10a) and the 

GP based prediction (Fig. 10b) are compared. The similarity of Figs. 10a and 10b demonstrate that good 

approximation accuracy has been obtained by the GP.

Figure 10 shows that the system is characterized by sets of close modes. The robust approximation capability 

demonstrated by the GP with a nominal number of samples is of special interest here, as capturing the variation in 

the modal space in systems having close modes is difficult due to mode degeneration phenomena (including mode 

veering, mode crossing and coalescence) [67]. This is one of the key highlights of the work as (i) it is difficult to 

distinguish between neighbouring modes based on their eigenvalues due to mode crossing and (ii) for mode veering,
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Figure 9: Convergence of relative L2 error of the first six mean natural frequencies of the multiple beam mass system estimated by
the Gaussian Process model w.r.t MCS (104 samples) for varying number of sample (training) points. The optimal number of sample
points required to train the GP model is determined to achieve satisfactory accuracy level.
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Figure 10: Box plots to illustrate variation of the first fifteen natural frequencies of the multiple beam mass system by using (a) MCS (104 

samples) and (b) Gaussian Pprocess (45 samples). The first fifteen natural frequencies of the system are shown along the y-axis and the x-
axis gives the estimated natural frequencies. The central mark (horizontal red line) in each box indicates the median, the top and bottom 
edges of the box indicate the 75th and 25th percentiles, respectively. The whiskers (in black) are the most extreme data points and the 
outliers are denoted using the ’+’ symbol in red.

even small input perturbations may lead in a relatively large variation of the eigenvectors. Thus, tracking the

non-linear evolution of the modal solutions in the above cases may prove to be difficult and can easily lead to

inaccurate predictions by the meta-model [25]. As observed in the previous example, the higher natural frequencies
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in the MBS are characterized with higher variation compared to the lower frequencies (Fig. 10). This is a positive

indication as the lower natural frequencies play a more dominant role in the frequency responses than the higher

frequencies.
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Figure 11: Transverse displacement frequency response function band plots (dB) by using (a) MCS (104 samples) and (b) Gaussian
Process (45 samples). The direct displacement FRF term at the free end of the top beam is shown for varying forcing frequencies. The
deterministic FRF plot (in blue) was evaluated at the nominal (mean) values of the random input parameters. The mean FRF plot (in
red) is the average of the FRF corresponding to the random realizations for each forcing frequency.

The complete FRF matrix obtained by the GP is observed to be superimposed with that of MCS, illustrating

satisfactory approximation accuracy. A sample FRF band plot showing the variation of the transverse displacement

at the free end of the top beam is presented in Fig. 11. The similarity of the results obtained by the GP (Fig.

11b) with those of MCS (Fig. 11a) show that the former achieves a satisfactory level of accuracy in estimating

the response of the multiple beam mass system with limited computational effort. The deterministic response

(i.e. the response obtained corresponding to the mean values of input random parameters) is also presented to

highlight its difference to the mean response and hence illustrating the need to consider uncertainties during dynamic

analysis. To further substantiate the accuracy achieved by the GP meta-model in Fig. 11, the relative L2 error

in the coefficient of variation (C.O.V. = Standard deviation/Mean) of the FRF at the free end of the top beam is

presented in Fig. 12. The error is approximately 10−5 for most values of forcing frequency. The error is slightly

higher (in the range 10−2 - 10−3) at frequencies close to zero due to rigid body modes. The variation in the natural

frequencies in Fig. 10 and the frequency response in Fig. 11 illustrate the effect of variation in the input parameters

(shown in Table 1) and highlight the necessity of performing stochastic response analysis.

An important point to note is that to ensure reasonable approximation accuracy by the meta-model, the sign
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Figure 12: Relative L2 error in the coefficient of variation (C.O.V) of the response direct displacement FRF term at the free end of the
top beam. C.O.V is obtained as the ratio of the standard deviation to the mean of the FRF. The relative L2 error obtained by th eGP
(45 samples) has been computed w.r.t MCS (104 samples). The error is reported for every forcing frequency to show the performance
of the GP and its approximation potential to estimate the complete dynamic behaviour.

of the modes was kept consistent with a reference mode shape.

6. Conclusions

The contribution of the study lies in the fact that a rigorous investigation of the stochastic dynamics of near

periodic meta-structures has been presented. It has been observed that the natural frequencies and the dynamic

response have significant variation due to manufacturing anomalies (simulated by perturbing the material and

geometric parameters of the structural models). This highlights the importance of accounting for uncertainties while

analyzing periodic structures prone to inevitable manufacturing fluctuations and eventually to prevent deterioration

of their performance.

To address large-scale FE models of these repetitive systems in the presence of uncertainties, we propose a

GP based framework to significantly reduce the computational effort and at the same time estimate the dynamic

response with satisfactory accuracy. In doing so, the input uncertainties are mapped onto the eigenspace instead of

directly computing the frequency response. By approximating the eigensolutions, the need to perform high-fidelity

simulations for every forcing frequency can be avoided. Moreover, as eigenvalue analysis is essentially a linear

problem, the input-output relation can be easily mapped with a conventional meta-model with a nominal number

of sample points. This has been illustrated by the successful implementation of the plain vanilla version of GP

while solving the undertaken examples in this study.

It is worth noting that the trained GP model, which is essentially a physics informed data-driven model, is

inherently capable of predicting the dynamic behaviour corresponding to a new set of system parameters within

their pre-defined bound. Therefore, the same methodology can be used as a type of transfer learning model to
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obtain the dynamics of similar systems having insufficient information or missing data sets, without having to 

re-train the complete model from scratch.

The results of the first example demonstrated that the GP proved to be robust enough to capture the natural 

frequencies (well separated) even for a high level of input uncertainty. A key highlight based on the results of the 

second example was the excellent performance of the GP in tracking the non-linear evolution of the dynamic response 

in the presence of close modes. This is of special interest as it is well known that capturing the variation of the modal 

space in systems having close modes is difficult due to mode degeneration phenomena (including mode veering, mode 

crossing and coalescence). Therefore, the work illustrates a generalized meta-modelling scheme for systems having 

close or repeated modes. Both of the above cases are commonly encountered in periodic structures and therefore, the 

results achieved will be useful for further investigation because very few works exist on meta-modelling of systems 

with close modes.

The proposed framework is simple and general in the sense that any FE model and meta-modelling technique can 

be seamlessly incorporated. The study is one of the first to develop a stochastic computational framework to explore 

the dynamic behaviour of meta-structures. The study is expected to attract attention to efficiently investigate the 

stochastic dynamic behaviour of periodic structures, which are popular for their vibration attenuation and energy 

harvesting capabilities. Another potential application of the proposed approach is for computationally expensive 

reliability-based and/or robust design optimization frameworks for stochastic dynamic systems, where UQ is coupled 

within the optimization loop and involves a significantly high number of high-fidelity simulations. The proposed 

approximation strategy can be utilized to reduce the computational effort.

We are currently looking at a similar type of model which is representative of periodic structures and study the 

effect of uncertainties on the efficiency of vibration mitigation. To further improve the computational effort of the 

present framework, concepts of model-order reduction are being investigated.
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Appendix 1: System matrices in Example 2

When the multi-beam-mass system consists of three beams and three attached masses, i.e. m = 3, the system 

matrices take the form:

K =


Kb 0 0

0 Kb 0

0 0 Kb

+


Cel −Cel 0

−Cel 2Cel −Cel

0 −Cel Cel

 , (36)

26



M =


Mb 0 0

0 Mb 0

0 0 Mb

+


Rm 0 0

0 Rm 0

0 0 Rm

 , (37)

The sub-matrices Kb and Mb correspond to the global stiffness and mass matrices for a single beam, and the sub-

matrices Cel and Rm are related to the additional stiffness and mass in the MBS due to the additional masses and 

coupling stiffnesses. Thus

Kb =
nele

A
e=1

Ke, Mb =
nele

A
e=1

Me, Cel =
nele

A
e=1

Ce, Rm =
nele

A
e=1

Re (38)

where nele is number elements per beam in the MBS system, and Ke, Me and Ke are given by

Ke
ij =

∫ xe+1

xe

EIφ′′i φ
′′
j dx, Me

ij =

∫ xe+1

xe

ρAφiφjdx, (39)

Ceij =

∫ xe+1

xe

kφiφjdx, Reij =

∫ xe+1

xe

N∑
p=1

mpδ(x− ap)φiφjdx.
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