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Abstract

A selection of electrodes was analysed using cyclic-voltammetry (CV) and electrochemical impedance spectroscopy (EIS),

and a large apparent resistance was observed with CV that was absent with EIS. The explanation for this resistance

anomaly was traced to the constant phase element (CPE) behaviour which is exhibited by the electrode double-layer

capacitance. Computer simulations of the transient-response of an RQ network (where Q represents a CPE) to a voltage

ramp revealed bi-exponential behaviour, with two separate time-constants. One is equal to the product of R and Q,

but the other is fixed at about 0.3 seconds. This finding is supported by observation, by mathematical derivation, and

by a novel mixed-domain five-component equivalent circuit model. In addition, example code is provided as a basis for

transient simulations of constant phase elements with arbitrary voltage waveforms. This explanation assists in the correct

interpretation of potentially misleading cyclic voltammetry results.

Keywords: cyclic voltammetry, electrochemical impedance spectroscopy, constant phase element, equivalent circuit

model

1. Introduction

At a time of unprecedented change in the Earth’s cli-

mate [1–3], there is an unparalleled level of research into

more sustainable and less damaging sources of energy, and

our ability to harness them. Solar and wind energy are

particularly promising, but both are intermittent, which

is driving research in a wide variety of fields, including

electrolysis [4–6], hydrogen production [7–9], and energy

storage [10–12]. At present, the energy storage technol-

ogy receiving the most attention is the battery [13–16],

although it is clear there are questions regarding its lifecy-

cle and sustainability [17–19]. Despite this, and regardless

of how such issues are ultimately addressed, electrochemi-

cal devices continue to constitute a key part of the solution

to the world’s energy and climate problems, and a key part

of all electrochemical devices is the electrode.

The characterisation of the physical connection be-

tween a solid electrode and a liquid electrolyte has been

the subject of decades of research within the electro-

chemistry community. A well-designed electrode is able to
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present an effective surface area that is many thousands of

times larger than its geometric area, a measurement that

is known as its Roughness Factor (RF) [20, 21]. Such a

high level of porosity is key to the performance of many

commonplace electrochemical devices, such as electroly-

sers [22, 23], fuel-cells [24] and batteries.

However, questions can arise about whether high sur-

face area can only be achieved at the expense of reduced

mass transport, due to reduced mobility within pores, with

transmission lines being employed to model the behaviour

of individual pores [25], and fractals to model the be-

haviour of whole electrodes [26]. Wherever there is reduced

mobility, the effect of normal liquid viscosity is ampli-

fied significantly, such that convection and diffusion are

greatly reduced. This can be used to advantage, for ex-

ample in thermally insulating materials and clothing, but

is very much an undesired phenomenon in electrochemical

devices.

The RF of an electrode can be determined using Cyclic-

Voltammetry (CV), wherein the current is measured whilst

the electrode voltage is cycled through a small range (typ-

ically 100 mV) around open-circuit potential (OCP) [27].

This measurement is based on the accepted principle that
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the RF is proportional to the Electrochemical Surface Area

(ECSA) of the electrode, which in turn is proportional to

the double-layer capacitance (CDL), such that:

RF =
CDL
CSA

(1)

where CS = 40µF cm−2 (2)

and A is the exposed area of the electrode in cm2. CS is the

specific capacitance of a perfectly uniform electrode, which

is accepted to have the above value in alkaline media [28].

The assumption that all current is used to charge and

discharge CDL permits a value for it to be calculated.

In practice, the waveforms measured vary significantly in

shape, making the calculation less straightforward. For

example, a single Raney Nickel electrode (with coating

‘Raney 1’ as previously described [29]) was successively

characterised using CV before and after various proce-

dures, with the results as presented in Figure 1. Inspection

of the waveforms reveals that not only has usage signifi-

cantly altered the capacitance, but also the shape of the

waveforms.
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Figure 1: Cyclic Voltammetry waveforms measured for a single Raney
Nickel electrode before and after various procedures connected with
characterisation and ageing.

It is also clear that the waveforms feature ionisation

peaks and troughs, and their presence would appear to

preclude any calculation of equivalent circuit parameters

at all. After all, it cannot be argued that all of the current

is charging and discharging CDL if some of it is being used

to alter the ionisation state of the electrode/electrolyte. In

fact, the avoidance of such peaks is one of the primary ob-

jectives of performing measurements around OCP in the

first place. However, because the voltammetry is cyclic, for

every anodic peak there must be a (displaced) cathodic

peak, and vice versa. Therefore, to at least a first order of

approximation, an average may be taken of the anodic and

cathodic best-fit parameters to generate values which can-

cel out their effect. In any case, the noise-rejection of the

best-fit algorithm is such that convincing results are pro-

duced regardless, and highlights the fact that the method

here presented is a shape-fitting algorithm, not a charge-

integration technique.

Electrochemical Impedance Spectroscopy (EIS) is a

technique wherein the current is measured whilst a small

oscillation of the electrode voltage around an a.c. oper-

ating point is swept through a range of frequencies. It is

therefore an analogous technique to CV, except that it is

based in the frequency domain. It is typical to interpret the

results of EIS by performing a best-fit against a Randles

equivalent electrical circuit, as shown in Figure 2a [28, 30–

32]. Component RS represents the series resistance of the

electrolyte between the working and reference electrodes

and CDL represents the double-layer capacitance.

RT is normally taken to represent the transfer-

resistance of any Faradaic chemical reaction that occurs

between the electrode and the electrolyte. However, since

the CV and EIS measurements are conducted around

OCP, such reactions should either be absent or occur-

ring at very low levels. In practice, RT can represent any

process that involves discharge of the double-layer capaci-

tance, and some value for it has been consistently observed

in all experiments, therefore it is included. Note that if the

value of RT is taken to infinity, then the response simplifies

to that of an RC circuit, so this single equivalent circuit

is able to emulate both RC and RCR networks. In Figure

2b the equivalent circuit has been extended to an RCRCR

network with the inclusion of two components labelled R2

and C2.

To improve the accuracy of the fit, the double-layer

capacitance CDL can be replaced with a constant phase

element (CPE). However, this raises the inverse problem

of determining to how much capacitance a particular CPE

corresponds. In the literature several different methods

have been proposed, each based on specific assumptions,

and each leading to different values [30, 33, 34]. This high-

lights the fundamental quandary at the heart of the CPE

model, which is that although it is able to convincingly

fit the frequency-domain response of many electrochemi-
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Figure 2: Simplified Randles electrical equivalent circuit as observed
experimentally, and as extended to five components.

cal systems, its physical interpretation remains a matter

for debate.

2. Method

This study is based on the results from 18 differ-

ent working electrodes, as shown in Figure 5. The elec-

trode coatings were TiN, Raney nickel and uncoated 316-

grade stainless-steel. All electrodes were mounted in a 3-

electrode cell constructed in a laminar fashion from laser-

cut acrylic [35, 36]. The exposed area was 3 cm× 3 cm for

the working electrode, and 6 cm× 6 cm for the 316-grade

stainless-steel counter electrode. Electrodes described as

‘smooth’ were used as delivered from sheet metal suppli-

ers, and had not been polished in any way. The reference

electrode was a commercial Ag/AgCl design, which was

routinely calibrated against a standard Calomel electrode.

The electrolyte was 0.5m NaOH at normal laboratory tem-

perature, which was 20 ±1 ◦C.

Potentiostat. All electrochemical experiments were per-

formed on an Ivium n-Stat potentiostat. All EIS results

were analysed within the IviumSoft software package,

wherein RCR and RQR equivalent circuits were fitted to

the results (where Q is the symbol that represents a CPE).

Cyclic Voltammetry. CV was performed within a 100 mV

range around OCP at rates of 10 mV s−1 or less. The

potential was held for 10 seconds between changes of

direction to allow diffusion gradients within the elec-

trolyte to disperse. The results were imported into a be-

spoke website (https://fitting.gannon.me.uk) written in

the PHP/MySQL languages, wherein a time-domain RCR

equivalent circuit was fitted to the waveforms using stan-

dard parametric gradient descent. All interested parties

are hereby invited to register with the website, and there-

after to make use of it in the analysis of their own results.

Electrochemical Impedance Spectroscopy. EIS was per-

formed between 0.1 Hz and 10 kHz around OCP, starting at

low frequency. Method: impedance; Technique: Constant

E; Amplitude: 10 mV. The electrode was pretreated for

120 seconds at OCP to reduce initial transient currents.

CPE Transient Simulation. Calculation of the transient

response of a CPE involves solving the inverse Laplace

transform of the driving voltage waveform [37–40]. Al-

ternatively, it is possible to use a convolution integral [41].

The procedure followed in this paper was as laid out in Sec-

tion S6 of the SI, which uses a convolution integral together

with numerical methods based on the Euler method. To-

gether, these can simulate the transient response of a CPE

to any arbitrary voltage waveform. The results for a volt-

age ramp were cross-checked using Mittag-Leffler func-

tions, using the method laid out by C. Montella [38].

RCR Transient Best-fit. To perform a best-fit of the RCR

Randles equivalent electrical circuit shown in Figure 2a

to any given CV data, the time-domain response of the

circuit to a voltage ramp must be understood. This can be

calculated using Laplace transforms, with the analytical

solution as presented in Equation 3.

i(t) =

[
Et+ F +G exp

(
−t
T

)]
u(t) (3)

where E =
β

RS +RT

F = βCDL

(
RT

RS +RT

)2

G = −F

T = (RS ‖ RT )CDL

where β is the slope of the voltage ramp in V s−1, and u(t)

is a unit step function at time t = 0. It can thus be seen

to be the sum of a ramp of magnitude E, a step of size

F , and an exponential decay with time constant T . The

derivation of the above analytical solution is as presented

in Section S1 of the Supplementary Information (SI).
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If the values E, F and T are taken to be the axes of a

three-dimensional solution space, then standard gradient

descent techniques can be employed to find the position

of the best-fit, i.e. the position that minimises a suitable

cost-function, for example one defined as the square of the

difference between the measured and analytical waveforms.

Note that a fourth dimension is not required for parameter

G, since it is equal to −F . From these parameters and the

voltage ramp-rate β, the values of RS , RT and CDL can

be calculated using Equations 4 to 6, with the derivation

available in Section S2 of the SI.

CDL =
(ET + F )2

βF
(4)

RS =
T

F

√
βF

CDL
(5)

RT =
1

E

√
βF

CDL
(6)

A best-fit between the analytical solution presented in

Equation 3 and the time-domain current waveform mea-

sured during CV produces optimal derived values for RS ,

RT and CDL. This is based on the assumption that the

electrode/electrolyte interface can indeed be modelled by

the simplified Randles electrical equivalent circuit pre-

sented in Figure 2a, which is generally accepted [28, 30–

32, 42–44]. There is at present no analytical solution for

the fitting of an RQR network to CV results.

RCRCR Transient Best-fit. To perform a best-fit of the

5-component equivalent electrical circuit shown in Fig-

ure 2b, measurements from both the CV and EIS results

were combined in order to generate enough accurate in-

formation. It should be noted that there are always two

best-fit solutions, since the two RC networks can be inter-

changed without affecting the circuit’s externally observed

behaviour. The time-domain response of the circuit can be

calculated using Laplace transforms, with the full analyt-

ical solution as presented in Equation 7.

i(t) = [Et+ F +G exp(−α1t) +H exp(−α2t)]u(t) (7)

where E =
βω2ω3

α1α2

F =
β(ω2 + ω3)− E(α1 + α2)

α1α2

G =
β − E − Fα2

α2 − α1

H = −(F +G)

α1 =
b−
√
b2 − 4ac

2a

α2 =
b+
√
b2 − 4ac

2a

where a = RS

b = (RS +RT )ω2 + (RS +R2)ω3

c = (RS +RT +R2)ω2ω3

and ω2 =
1

RTCDL
and ω3 =

1

R2C2

where β is the slope of the voltage ramp in V s−1, and u(t)

is a unit step function at time t = 0. It can thus be seen to

be the sum of a ramp of magnitude E, a step of size F , and

two exponential decays. The full derivation of the above

analytical solution is as presented in Section S3 of the SI.

The value of RS can be determined directly from EIS, as

can α2, and the values of E, F and T (where T = 1/α1)

can be accurately measured from CV curve-fitting. This

provides 5 measurable quantities, which together provide

sufficient degrees of freedom to determine all 5-components

of the equivalent circuit. Parameter H can be visually es-

timated to further guide the descent if applicable.

Unfortunately, no reverse functions have been derived

to generate the 5-component values directly from the mea-

surable values. Nevertheless, it is still possible (given that

RS is already known) to perform gradient descent within

the four-dimensional solution space defined by the other

components. Also, if the assumption is made that RS is

much less than both RT and R2, the above equations sim-

plify greatly, and the solution space reduces to just two-

dimensions (see Section S4 of the SI).

Therefore, the method employed was to scan the two-

dimensional simplified solution space in order to generate

a starting point for subsequent four-dimensional gradient

descent. In this way, convergence onto one of the two best-

fit solutions was reliably achieved. The method is outlined

with an example in Section S5 of the SI.
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3. Results

The CV results for a smooth, TiN-coated 316-grade

stainless steel electrode are as presented in Figure 3. Upon

each change of direction, the current waveform is observed

to consist of a curved RC-type response which decays to

a ramp after several seconds. For this waveform, the RCR

Transient Best-fit procedure was performed within a 5-

second window, as highlighted by the dashed grey rect-

angles. This ensured that approximately half the window

contained a curved response, and half a linear response,

a situation which was found to give the best trade-off be-

tween competing best-fit parameters. For other waveforms

the window was chosen as appropriate.
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Figure 3: Cyclic Voltammetry results for a smooth, TiN-coated 316-
grade stainless-steel electrode at 10 mV s−1 showing (a) the unpro-
cessed measurements and (b) the detail overlaid view of the dashed
rectangles, where the current has been normalised to begin at 0 A,
together with the responses of the best-fit RCR and RQR networks.

The result of the RCR transient best-fit procedure for

both rectangles in Figure 3a is as presented as the dashed

orange line in Figure 3b. Note that the current has been

normalised to begin at 0 A, and that the cathodic wave-

form has been inverted so that it can be overlaid. The cor-

responding parametric values for each sweep are as pre-

sented in Table 1. The match between the observed re-

sponse and that of an RCR network is quite close, which

suggests that it is an appropriate equivalent circuit. How-

ever, the inferred series resistance (RS) of 320 Ω is mis-

leading, since no such resistance exists.

Parameter β E F T RS RT CDL

Units mV s−1
µA s−1

µA ms Ω Ω µF
Anodic 1 10.0 1.57 8.76 275 299 6070 964
Cathodic 1 10.0 1.57 9.95 325 311 6060 1100
Anodic 2 10.0 1.54 8.48 295 330 6160 941
Cathodic 2 10.0 1.50 9.84 352 340 6330 1090
Average 1.55 9.26 312 320 6150 1020

Table 1: Best-fit values of an RCR network to the observed waveforms
in Figure 3.

The EIS measurements for the same electrode are as

presented in Figure 4, with the best-fit RQR network pa-

rameters to these measurements (generated by IviumSoft)

as presented in Table 2. Since the measurements were con-

ducted around OCP, the resulting value of the transfer

resistance RT is very high at 13 kΩ. This is so high that

it can be ignored, with the equivalent circuit thereby re-

ducing to just an RQ network. Significantly, the RS value

obtained from EIS is just 0.89 Ω, which is more than 350

times smaller than that obtained from CV curve-fitting.

Parameter RS QDL α RT

Units Ω Ssα kΩ
Value 0.83 0.0022 0.89 13

Table 2: Best-fit values of an RQR network to the observed wave-
forms in Figure 4.

The solid line on the Nyquist plot (Figure 4a) shows

‘constant phase element’ (CPE) behaviour, where at pro-

gressively lower frequencies the trace maintains a con-

stant phase angle relative to the origin. At other values

of bias voltage (away from OCP) this produces the classic

‘flattened-semicircle’ that is characteristic of many elec-

trochemical systems [32, 45–50]. The response of the RQ

network is shown as the dotted green lines in Figure 4, and

produces a very close match to the observed data.

By contrast, when the RQ network was simulated in

the time domain to produce its transient response, the re-

sult is as shown as the dotted green line in Figure 3b. This

produced a poor match, particularly within the first few
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Figure 4: EIS measurements for the electrode presented in Figure 3,
together with the responses of the best-fit RCR and RQR models.

milliseconds, where the response of the RQ network is al-

most vertical. This is not surprising, since the pseudo-time-

constant of the RQ network (R times Q) is just 1.8 ms.

However, thereafter the RQ network produced a much

slower exponential decay that is very similar to the CV

measurement.

By performing an RCR Transient best-fit on the seg-

ment of this waveform from 20 ms onwards, so as to ex-

clude the vertical section, a time-constant of 299 ms was

measured by curve-fitting. This is very similar to the value

of 312 ms presented in Table 1. This curve-fitting also pro-

duced an apparent series resistance of 369 Ω, which is very

similar to the value of 320 Ω from Table 1. It thus ap-

pears that a single RQ network is able to match the EIS

and CV results, but it does so by presenting two different

time-constants.

This size of the apparent resistance mismatch is more

clearly illustrated by the frequency response of the CV

RCR best-fit, which is presented as the dashed orange

lines in Figure 4. The Nyquist plot shows that the RCR

network is constrained to produce a semicircle, since it is

comprised of ideal resistors and capacitors. The resistance

mismatch appears at high frequencies on the Bode magni-

tude plot in Figure 5b (hereafter referred to as the ‘Resis-

tance Anomaly’ or RA), which amounts to more than two

orders of magnitude.

The Resistance Anomaly has been consistently ob-

served across a wide variety of electrodes, whether coated

or uncoated, used or unused, smooth or high surface area

and porous. Furthermore, its magnitude has been observed

to vary in inverse proportion to the roughness factor, as

presented in Figure 5.
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(b) Detail view of dotted rectangle on lin-log plot

Figure 5: Plot of Resistance Anomaly (RA) versus roughness factor
(RF) for various coated and uncoated electrodes.

The results show a direct relationship between RA and

RF on a log-log plot that extends over 4 orders of magni-

tude. Figure 5b presents a detail view of the dotted box

with one linear axis, to highlight how RA tends to zero as
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RF increases. The slope of the line in Figure 5a is -0.964,

which is close to -1. This implies an inverse relationship,

specifically:

RA =
759 mΩ m2

A ·RF
(8)

where 759 mΩ m2 is an average figure generated across the

complete set of electrodes. This figure will be independent

of electrode area and the distance between working and

reference electrodes.

Although the RQ network is able to match some of the

electrode behaviour observed using CV in Figure 3b, it is

hereby proposed that a better match could be achieved us-

ing a 5-component model. Inspection of the analytical so-

lution of the 5-component RCRCR network, as presented

in Equation 7, predicts that the time-domain response will

be the sum of a ramp, a step, and two exponential decays.

It may therefore be able to match the bi-exponential be-

haviour exhibited by the RQ network, whereby a rapid

exponential decay is followed by a slower one.

Whilst Figure 3b shows some evidence of this, it is

much clearer in later waveforms recorded for the same elec-

trode after a small amount of active gas evolution, as pre-

sented in Figures 6a and 6b. Note in the detail view that

the current jumps quickly from 0 to 15 µA, and thereafter

climbs more slowly, thereby indicating the presence of two

time-constants.

Together with the EIS data presented in Figures 7a

and 7b, the measurable parameters presented in Table 3

were extracted, where R1 is the high frequency intercept

from the Nyquist plot, α2 is the breakpoint from the Bode

magnitude plot, and E, F and T are the current ramp-

rate, step-size and time-constant from the CV. The value

of H is an estimate and is included to assist descent.

Parameter R1 α2 β E H F T
Units Ω rad s−1 mV s−1

µA s−1
µA µA ms

Anodic 1 13.3 2.11 -15.0 7.45−H 493
Cathodic 1 13.3 1.52 -15.5 10.4−H 561
Anodic 2 13.3 2.11 -15.2 7.54−H 483
Cathodic 2 13.3 1.49 -15.7 10.4−H 548
Average 0.778 1494 13.3 1.81 -15.3 24.3 521

Table 3: Measurable parameters determined from the data presented
in Figures 6 and 7.

From these measurable parameters, four-dimensional

gradient descent was performed to determine all of the

values for the 5-component RCRCR network equivalent

circuit, which are as presented in column ‘Electrode 1’ of
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(b) CV Detail View

Figure 6: CV measurements obtained for the TiN-coated 316SS elec-
trode in Figure 3 after active gas evolution. Figure (a) presents the
CV data as recorded, and Figure (b) presents overlaid voltammo-
grams of the dashed grey boxes. EIS bias voltage: 0 V; CV sweep
rate: 13.3 mV s−1; Electrolyte: 0.5 M NaOH at laboratory tempera-
ture.

Table 4. The time-domain response of this network is in-

cluded as the dashed orange line in Figure 6, and the fre-

quency domain response in Figure 7. From these it can

be seen that the equivalent circuit is now accurately mod-

elling the measured behaviour of the electrode.

The table also includes the RCRCR best-fit parame-

ters for two other electrodes with widely varying Rough-

ness Factors. A progression can be seen across the table,

which can be more easily visualised in Figure 8a. From

this figure it can be seen that the values of RT , CDL, R2

and C2 are linearly related, which implies that they are

not independent phenomena. To investigate this, a CV ex-

periment was repeated with and without vigorous pumped
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Figure 7: EIS measurements obtained for the TiN-coated 316SS elec-
trode in Figure 3 as (a) a Nyquist plot and (b) a Bode magnitude
plot, from which the breakpoint frequency can be determined. The
response of the best-fit RCRCR network to these data is included as
a dashed orange line.

Parameter Electrode 1 Electrode 2 Electrode 3
RF 2.8 472 7556
RS 0.778 Ω 0.913 Ω 0.946 Ω
RT 5610 Ω 101 Ω 4.53 Ω
CDL 2420 µF 185 mF 2.96 F
R2 118 Ω 0.803 Ω 0.134 Ω
C2 2100 µF 232 mF 4.56 F

Table 4: Best-fit values obtained for the 5-element equivalent circuit
model matching the measurement data presented in Figures 6 and
7 (Electrode 1), as well as two other electrodes with much larger
roughness factors.

circulation of the electrolyte, with the results as presented

in Figure 8b. The results confirm that the measurements

are unaffected by pumped circulation, and therefore do not

arise as a result of bulk movements of the electrolyte, such

as diffusion.
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Figure 8: a) Trends in the RCRCR best-fit parameters as a function
of roughness factor for the three electrodes presented in Table 4.
b) Cyclic voltammograms of the TiN electrode with and without
vigorous pumped circulation of the electrolyte. The pumping has no
discernible effect.

3.1. Computer Simulations

Simulations were conducted to determine how the re-

sponse of an RQ network to a voltage ramp varies with

component values. The value of the apparent time-constant

as a function of the resistance R was measured using RCR

Transient Best-fit, with the results presented in Figure 9a.

The results show that the apparent time-constant of

the RQ network remains invariant until the pseudo-time-

constant of the RQ network (i.e. R times Q) approaches

about 0.1 s. A brief reduction is observed in the apparent

time-constant, which is an artefact of the curve-fitting pro-

cedure as the difference between the two time-constants

reduces. Thereafter, the RQ network exhibits just a sin-

gle time-constant, which is dominated by the conven-

tional product of resistance times capacitance, which is

to be expected of an RC network. Since the shape of the

transient response of the RQ network is governed by the

pseudo-time-constant, the results for holding R constant
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Figure 9: Apparent observed time constant of the RQ network versus
component values. Segment start = 0.03 s, finish = 5 s a) Q = 0.001,
α = 0.9 b) R = 1, Q = 0.01

and sweeping Q are identical.

The results for sweeping the value of α are as presented

in Figure 9b. These show that the time-constant is low for a

perfect capacitor (α = 1), but increases rapidly and is then

relatively constant over a wide region. This region covers

the typical values of α that occur in many electrochemical

experiments, and certainly all of the results published in

this paper. This means that if the first time-constant is

short enough that a cyclicvoltammetry experiment fails

to reveal it (for example as in Figure 3b), then only the

second, longer time-constant will be observed. The shape

of this curve is not determined by resistance at all, but

entirely by the constant phase element.

4. Conclusions

This paper presents an accurate and reliable method

for the fitting of a three-component RCR network to

the measured response of an electrode during cyclic-

voltammetry (CV). This method employs the analytical

derivation of the time-domain response of an RCR net-

work to a voltage ramp, calculated using Laplace trans-

forms. Three-dimensional gradient descent is then used to

obtain the best-fit solution.

The frequency response of the same electrode,

measured using electrochemical impedance spectroscopy

(EIS), was fitted to an RQR network using conventional

electrochemistry software, where Q represents a constant

phase element (CPE). Since all measurements were con-

ducted around OCP, the value of the transfer resistance

was large and could be discounted, thereby simplifying to

an RQ network.

Comparison of the best-fit RCR and RQ networks

revealed an apparent resistance anomaly, which could

amount to several hundred ohms (Figure 4b). It was ob-

served across a wide variety of electrodes that the resis-

tance anomaly was inversely proportional to the roughness

factor (RF) of the electrode, where the RF was propor-

tional to the double-layer capacitance.

A simplified method was developed to simulate the

transient-response of an RQ network to a voltage ramp,

with example code presented in the PHP programming

language. Inspection of this response reveals that a single

RQ network is able to exhibit bi-exponential behaviour,

with two separate time-constants (Figures 3b and 6b).

Such behaviour was also observed experimentally (Figure

6a), although not consistently.

This observation is therefore able to explain the appar-

ent existence of the resistance anomaly, which arises be-

cause in practice the RCR gradient descent method mea-

sures the second time-constant of the RQ network. As

shown by computer simulation (Figure 9a) this second

time-constant is invariant for low values of the pseudo-

time-constant (those below 0.1 s), which is typical in elec-

trochemical cells containing normal high-conductivity elec-

trolyte. Since C is known to vary, but the time-constant

(R times C) is fixed, the illusion is thus created that R is

inversely proportional to C (Figure 5b).

A five-component RCRCR model was then proposed,

with a fitting procedure based on measurable quantities

derived from both the time-domain and frequency-domain

measurements. This method employs the analytical deriva-

tion of the time-domain response of an RCRCR network

9



to a voltage ramp, calculated using Laplace transforms.

The method then makes uses of four-dimensional gradient

descent to obtain the best-fit solution, with a mathemati-

cal simplification and a two-dimensional plot providing the

starting point.

This five-component network produces the most accu-

rate fit to the observed results, even though it does not

contain a constant phase element. One of the component

values is fixed and equal to the solution resistance, and the

values of the other four are observed to vary linearly with

electrode roughness factor (Figure 8a). This suggests that

the fitting procedure is not revealing any new information

about the electrode/electrolyte interface. This is because

any constant phase element (such as the double-layer ca-

pacitance) can be expanded into an infinite series of paral-

lel RC networks, where the component values of each RC

network are a fixed percentage of the previous [51]. The

RCRCR network can thus be regarded as the first expan-

sion of an RQ network into an infinite R(CR) network.

It would be interesting to extend the RCR transient

curve-fitting technique to equivalent circuits containing

more complex elements. These would include not just con-

stant phase elements, but also inductors, finite and infi-

nite Warburg impedances, and Gerischer. It would also be

interesting to extend the technique to perform transient

curve-fitting at voltages well away from OCP.

The most surprising and unexpected finding is that a

single RQ network is able to exhibit bi-exponential be-

haviour, based on two time-constants. One of these is pro-

portional to the product of R and Q (the pseudo-time-

constant), but the other is fixed at approximately 0.3 s.

Within limits, this time-constant is not a function of any

of the three component values of the network i.e. R, Q or

α, but emerges directly from the mathematical derivation

(Figure S7 in the SI). It therefore appears to be an invari-

ant property of the constant phase element itself, and one

that has been consistently verified by experimental obser-

vation.
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S1. RCR Network: Derivation of response to a voltage ramp.

The time-domain response can be calculated using Laplace transforms, wherein active components such as capacitors

are replaced by their s-domain equivalent circuit, as shown in Figures S1a and S1b.
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(a) The simplified Randles electrical equivalent cir-
cuit
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(b) As redrawn for mesh current analysis in s-domain

Figure S1: Equivalent circuit for the electrode/electrolyte interface extended to include transfer resistance RT

The result of performing mesh-current analysis on the rearranged circuit is the following two equations:

R1i1 +R2(i1 − i2) = V (t) (S1)

i2
sC

+R2(i2 − i1) =
V0
s

(S2)

From Table S1 and since the function of the driving voltage V (t) is a ramp, this can be expressed in the s-domain as:

V (s) =
β

s2
(S3)

where β is the ramp-rate expressed in volts per second. Assuming that the charge on the capacitor at time t = 0 is 0 V,

which means that V0 = 0, Equation S2 can be rewritten as:

i2

(
1

sC
+R2

)
−R2i1 = 0 (S4)

therefore i2 =

(
s

s+ 1
R2C

)
i1 (S5)

S1



Substituting Equation S5 in Equation S1 produces:

(R1 +R2)i1 −R2

(
s

s+ 1
R2C

)
i1 =

β

s2
(S6) (R1 +R2)

(
s+ 1

R2C

)
− sR2(

s+ 1
R2C

)
 i1 =

β

s2
(S7)

(S8)

Dividing both sides by R1 and rearranging produces:

(
s+

1

R2C
+

1

R1C

)
i1 =

β

R1

(
s+ 1

R2C

s2

)
(S9)

therefore i1(s) =
β

R1

 s+ 1
R2C

s2
(
s+ 1

R12C

)
 (S10)

where R12 = R1 ‖ R2. The inverse Laplace transform of Equation S10 will produce the analytical time-domain solution

i1(t). To do this, the denominator must be expanded into its individual terms, such that:

β

R1

 s+ 1
R2C

s2
(
s+ 1

R12C

)
 =

E + Fs

s2
+

G(
s+ 1

R12C

) (S11)

=
E

s2
+
F

s
+

G(
s+ 1

R12C

) (S12)

where E,F and G are hypothetical constants that will, by the rules of partial fractions, produce the original numerator,

i.e. such that:

(E + Fs)

(
s+

1

R12C

)
+Gs2 =

β

R1

(
s+

1

R2C

)
(S13)

By reference to the table of selected Laplace functions presented in Table S1, it can be seen that the right hand side of

Equation S12 corresponds to the summation of a ramp, a step and an exponential decay.

Function in
s-domain

Description
Function in
time-domain

1/s2 Ramp tu(t)
1/s Step u(t)

1/(s+ α) Exponential Decay exp (−αt)u(t)

Table S1: Table of selected Laplace functions and their time-domain equivalents

If E,F and G can successfully combine to produce the numerator, then the terms in units, s and s2 must agree,

which produces three simultaneous solutions:

terms in units
E

R12C
=

β

R1R2C
(S14)

terms in s E +
F

R12C
=

β

R1
(S15)

terms in s2 F +G = 0 (S16)

S2



Rearranging Equation S14 produces:

E =
βR12C

R1R2C
=

β

R1 +R2
(S17)

which, on substituting into Equation S15 produces:

β

R1 +R2
+

F

R12C
=

β

R1
(S18)

F = βR12C

(
1

R1
− 1

R1 +R2

)
(S19)

= βC

(
R2

R1 +R2

)2

(S20)

Therefore the full analytical solution of the transient response of the RCR-network shown in Figure S1a to a ramp input

of slope β in V s−1 is:

i1(t) =

[
Et+ F +G exp

(
−t
T

)]
u(t) (S21)

where E =
β

R1 +R2
(S22)

F = βC

(
R2

R1 +R2

)2

(S23)

G = −F (S24)

T = (R1 ‖ R2)C (S25)

and u(t) is a unit step function at time t = 0.

S2. RCR Network: reverse derivation

In order to calculate the values of C, R1 and R2 to which any given set of the parameters E, F , T and β correspond,

Equations S22, S23 and S25 can be rewritten as, for example:

R1 +R2 = β/E (S26)

R2

R1 +R2
=

√
F

βC
(S27)

(R1 ‖ R2)C =
R1R2C

R1 +R2
= T (S28)

Substituting Equations S27 into S28, and S26 into S27 produces:

R1C

√
F

βC
= T therefore R1 =

T

F

√
βF

C
(S29)

R2
E

β
=

√
F

βC
therefore R2 =

1

E

√
βF

C
(S30)
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which can be substituted into Equation S26 to produce:

β

E
=
T

F

√
βF

C
+

1

E

√
βF

C
(S31)

√
C =

E

β

√
βF

[
T

F
+

1

E

]
(S32)

therefore C =
(ET + F )2

βF
(S33)

Once a value for C has been calculated using Equation S33, values for R1 and R2 can be calculated directly using

Equations S29 and S30.

S3. RCRCR Network: Derivation of response to a voltage ramp.

The addition of an extra RC-network to the Randles equivalent circuit produces the circuit shown in Figure S2a, and

for the s-domain as shown in Figure S2b.
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(a) Extended Randles electrical equivalent circuit
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(b) As redrawn in s-domain

Figure S2: Equivalent circuit for the electrode/electrolyte interface extended to include an additional RC network

The result of performing mesh-current analysis on the rearranged circuit is the following three equations:

R1i1 +R2(i1 − i2) +R3(i1 − i3) = V (t) (S34)

i2
sC2

+R2(i2 − i1) =
V2
s

(S35)

i3
sC3

+R3(i3 − i1) =
V3
s

(S36)

Assuming that the charge on the capacitors at time t = 0 is 0 V, which means that V2 = V3 = 0, equations S35 and

S36 can be rewritten as:

i2 =

(
s

s+ ω2

)
i1 (S37)

i3 =

(
s

s+ ω3

)
i1 (S38)
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where ω2 = 1
R2C2

and ω3 = 1
R3C3

. Substituting equations S37 and S38 into equation S34 produces:

(R1 +R2 +R3)i1 −R2

(
s

s+ ω2

)
i1 −R3

(
s

s+ ω3

)
i1 =

β

s2[
(R1 +R2 +R3) (s+ ω2) (s+ ω3)−R2s (s+ ω3)−R3s (s+ ω2)

(s+ ω2) (s+ ω3)

]
i1 =

β

s2[
R1s

2 + [(R1 +R2)ω2 + (R1 +R3)ω3] s+ (R1 +R2 +R3)ω2ω3

]
i1 = β

(s+ ω2)(s+ ω3)

s2

where β/s2 is the Laplace transform of the driving voltage waveform, which is defined as a ramp starting at time t = 0

with slope β measured in V s−1. If it is assumed that the left side can be factored, this can be rewritten as:

i1 = β
(s+ ω2)(s+ ω3)

s2(s+ α1)(s+ α2)
(S39)

where −α1 and −α2 are the roots of the quadratic equation as2 + bs+ c, such that:

α1 =
b−
√
b2 − 4ac

2a
(S40)

α2 =
b+
√
b2 − 4ac

2a
(S41)

where a = R1 (S42)

b = (R1 +R2)ω2 + (R1 +R3)ω3 (S43)

and c = (R1 +R2 +R3)ω2ω3 (S44)

The condition for the existence of (real) solutions to the quadratic (b2 >= 4ac) has been investigated numerically and

found to be generally true, but efforts to demonstrate this mathematically have not proved successful. It is expected to be

true, since any arbitrary network of resistors and capacitors cannot produce oscillatory behaviour. As before, the inverse

Laplace transform of Equation S39 will produce the analytical time-domain solution i1(t). To do this, the denominator

must be expanded into its individual terms, such that:

β
(s+ ω2)(s+ ω3)

s2(s+ α1)(s+ α2)
=
E + Fs

s2
+

G

s+ α1
+

H

s+ α2

where E, F , G and H are constants. With reference to Table S1 it is informative to note that the solution is equal to

the sum of a ramp, a step, and two exponential decays, and will therefore be of the form:

i1(t) = Et+ F +G exp(−α1t) +H exp(−α2t) (S45)

The constants E through H must be chosen such that, by the rules of partial fractions, they produce the original

numerator, specifically:

(E + Fs)(s+ α1)(s+ α2) +Gs2(s+ α2) +Hs2(s+ α1) = β(s+ ω2)(s+ ω3)

(F +G+H)s3 + (E + F (α1 + α2) +Gα2 +Hα1)s2+

(E(α1 + α2) + Fα1α2)s+ Eα1α2 = β
[
s2 + (ω2 + ω3)s+ ω2ω3

]
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which produces four simultaneous equations for the matching terms in s3, s2, s and units:

F +G+H = 0 (S46)

E + F (α1 + α2) +Gα2 +Hα1 = β (S47)

E(α1 + α2) + Fα1α2 = β(ω2 + ω3)

Eα1α2 = βω2ω3

multiplying equation S46 by α1 and subtracting from equation S47 produces:

E + Fα2 +G(α2 − α1) = β

therefore E, F , G and H can be calculated in the sequence:

E =
βω2ω3

α1α2
(S48)

F =
β(ω2 + ω3)− E(α1 + α2)

α1α2
(S49)

G =
β − E − Fα2

α2 − α1

H = −(F +G)

Example. Let the component values of the equivalent circuit be assigned as follows: R1 = 1 Ω, R2 = 237 Ω, C2 = 1830µF,

R3 = 4180 Ω, C3 = 1830µF. The calculation of the response will therefore proceed as follows:

ω2 = 2.306 Hz ω3 = 0.1307 Hz

a = 1 b = 1095

c = 1332 b2 − 4ac = 1194427

α1 = 1.217 Hz α2 = 1094 Hz

E = 2.263 µA s−1 F = 16.43 µA

G = −7.304 µA H = −9.130 µA

With reference to Equation S45, the analytical response of the 5-component circuit to a voltage ramp of 10 mV s−1

can therefore be plotted, as presented in Figure S3a. The figure includes the results of a Spice simulation, which serve

to verify that the two methods are in agreement. The detail view of the first 10 ms in Figure S3b confirms the presence

of an initial rapid exponential decay, which is followed by the a slower decay that takes several seconds. The plot is

therefore exhibiting the bi-exponential behaviour predicted from the analytical solution.

S4. Simplification if solution resistance is small

If R1 is small compared to both R2 and R3, then the definitions of b and c can be simplified to:

b ≈ R2ω2 +R3ω3 = 1/C2 + 1/C3 = 1/C23

c ≈ (R2 +R3)ω2ω3 =
R2 +R3

R2R3C2C3
=

1

R23C2C3

S6



0 1 2 3 4 5 6 7

0

10

20

30

40

Analytical
Spice simulation

Time (seconds)

C
u

rr
e

n
t 

(u
A

)

(a) Full view

0 2 4 6 8 10

0

2

4

6

8

10

Analytical
Spice simulation

Time (milliseconds)

C
u

rr
e

n
t 

(u
A

)

(b) Detail view of the first 10 ms

Figure S3: Transient response of the 5-component extended Randles equivalent circuit to a 10 mV s−1 voltage ramp.

where C23 = C2 ‖ C3 and R23 = R2 ‖ R3. This means that b2 − 4ac becomes:

b2 − 4ac =

(
1

C23

)2

− 4R1

R23C2C3
(S50)

which, if R1 is small, becomes just b2, which in turn means that Equation S40 becomes:

α2 ≈
b+
√
b2

2a
=
b

a
=

1

R1C23
(S51)

This means that the time-constant of the fast exponential decay is ≈ R1C23, or the combination of the solution resistance

RS and the two capacitances in series. This is understandable, since initially both capacitors are discharged (or at

equilibrium) and their resistance is low. However, they quickly adopt voltages which resist further current conduction,

and a slower charging process ensues. To calculate the second time-constant, it is helpful to rewrite the square root as a

binomial expansion:

(1 + x)n = 1 +
n

1!
x+

n(n− 1)

2!
x2 + . . .

therefore Equation S41 becomes:

α1 =
b− b

[
1− 4ac

b2

]1/2
2a

=
b− b

[
1− 1

2
4ac
b2 −

1
4

(
4ac
b2

)2 − . . .]
2a

Ignoring all but the first and second terms of the expansion, this simplifies to:

α1 ≈
c

b
=

1

R23(C2 + C3)
(S52)

This means that the time-constant of the slow exponential decay is ≈ R23(C2 + C3). This makes sense, since it is a

time-constant derived from the two RC-networks combined. The ratio of the two time-constants is therefore equal to:

α2

α1
=
R23(C2 + C3)

R1C23
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For any given values of C3, R1, R2 and R3, this reaches a minimum where C2 = C3 of:

α2

α1
=

4R23

R1

therefore, regardless of the relative values of capacitance, the ratio of the two time-constants will always be large if R1

is small compared with both R2 and R3.

S5. RCRCR Network: Measurable quantities

Given that one of the time-constants for the two exponential decays is so rapid, it is unlikely that it can be accurately

measured using CV. Similarly, given that the other time-constant is so slow, it is unlikely that it can be accurately

measured using EIS. However, if it is possible to accurately measure the fast time-constant using EIS, and the slow one

using CV, information gained from both the time and frequency domains could be combined to obtain a solution.

Accurate measurements can also be obtained for E (the current ramp rate), R1 (the solution resistance) and the sum

of G and H (the magnitude of the two exponential decays added together). From Equation S46 it is seen that:

G+H = −F

therefore the sum of G and H actually provides the value of F . Hence the measurable parameters are:

α1, α2, E,R1 and F

Given that there are five components in the RCRCR network, this means that it should be possible to determine the

values of all five. This is assuming that the five measurable parameters are sufficiently independent, and that the solution

space is suitably shaped and unambiguous.

From inspection of Equations S40 and S41, it can be seen that:

α1α2 =
c

a
and α1 + α2 =

b

a

Therefore the definition of E from Equation S48 may be rewritten as:

E = βω2ω3
a

c

E = βω2ω3

[
R1

(R1 +R2 +R3)ω2ω3

]
therefore R2 +R3 = k1 (S53)

where k1 =
β

E
R1 −R1 = R1 (β/E − 1) (S54)

where the definitions of a and c from Equations S42 and S44 have been used. Since all of the quantities on the right hand

side are measurable, this means that if R2 is known, then R3 can be calculated, which immediately reduces the size of

the solution space by one dimension. Assuming R1 is small, and given that C23 = C2 ‖ C3, the simplified definition of

α2 from Equation S51 can be rewritten as:

C2C3R1α2 = C2 + C3

therefore C3 =
C2

k2C2 − 1

where k2 = α2R1
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which means that if C2 is known, then C3 can be calculated. Given that R1 is measurable, this means that the potentially

five-dimensional solution space has been reduced to just two dimensions. The definition of F from Equation S49 describes

another of the measurable quantities, and can be rewritten as:

1

R2C2
+

1

R3C3
=
Fα1α2 + E(α1 + α2)

β

therefore R2C2 +R3C3 = k3R2C2R3C3

where k3 = [Fα1α2 + E(α1 + α2)]/β

The final measurable quantity, α1, can be incorporated by rewriting Equation S52 as:

R23(C2 + C3) = 1/α1

therefore R2R3(C2 + C3) = k4

where k4 = k1/α1

This produces four simultaneous equations with four unknowns:

R2 +R3 = k1 (S55)

C3 = C2/(k2C2 − 1) (S56)

R2C2 +R3C3 = k3R2C2R3C3 (S57)

R2R3(C2 + C3) = k4 (S58)

where k1 = R1 (β/E − 1)

k2 = α2R1

k3 = [Fα1α2 + E(α1 + α2)]/β

k4 = k1/α1

and where two of the pairs of unknowns are directly related. All parameters kn are defined solely in terms of measurable

parameters. It therefore looks feasible to solve the above equations and (in combination with R1) to determine all of

the component values in the electrical equivalent circuit. However, attempts to solve the above equations analytically

produced a quartic equation, therefore numerical and graphical methods were employed.

Example. Experiments on a smooth TiN-coated electrode produced the CV and EIS results presented in Figure 6 of the

main manuscript. Note that the CV response does indeed show evidence of bi-exponential behaviour, and with widely

varying time-constants. Although this is not always so clear, it is useful confirmation that the electrochemical system

exhibits behaviour which directly supports the proposed 5-element equivalent circuit. In any case, it is not possible for

a simple 3-element model to match the observed EIS and CV behaviour of any of the electrodes.

From the EIS results the value of R1 is determined by measuring the point of closest approach to the origin at high

frequency, and the value of α2 is determined by measuring the position of the main breakpoint. This is defined as the

frequency (in radians per second) at which the impedance magnitude reaches
√

2R1, and is highlighted by the vertical

dashed line in Figure 7b. The values of E, F and T were determined using best-fit RCR-network transient curve fitting,

as performed at https://fitting.gannon.me.uk. For curves exhibiting a bi-exponential decay, more accurate values of E, F

and T were measured by offsetting the measurement window by two sample points (100 ms), with the values measured

as presented in Table 3 of the main manuscript. An estimate of the value of H (taken from the second sample point)

was added to the fitted value of F to generate an overall target value of F , as shown in the bottom row of the table.

Using the measured values, and employing the simplification that R1 � R2 and R3, it is possible to explore the
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resulting two-dimensional solution space using a suitable cost function, as presented in Figure S4. In this case the

cost-function chosen was:

err1 = R2C2 +R3C3 − k3R2C2R3C3

err2 = R2R3(C2 + C3)− k4
cost = log(err21 × err22)

which is derived directly from Equations S57 and S58. This technique identifies the values of R2 and C2 which constitute

the best-fit to the EIS and CV data, as highlighted by the black circle. Since R1 is already known, and (in the simplified

solution space) R3 can be calculated from R2, and C3 from C2, this therefore identifies the full best-fit 5-element RCRCR

network, as presented in Table S2 in the column headed ‘2D Values’.
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Figure S4: Plot of cost function for the simplified two-dimensional solution space, based on the assumption that R1 � R2 and R3. The above
point of best match is then used as the starting point for conventional four-dimensional gradient descent.

Cross-checking the values of E and F produced by the 2D best-fit 5-element network using Equations S48 and S49

reveals that this procedure produces a value of F that is too small. Its transient response is therefore a poor match to the
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measured CV waveform, and this can be attributed to the over-simplification of the solution space to two-dimensions.

Nevertheless, the 2D best-fit can be used as a starting point from which to employ conventional gradient descent within

the full four-dimensional solution space. It should be noted that because the curvature the solution space is not conducive

to gradient descent, it is observed that the use of a random starting point does not succeed in finding a solution.

Parameter 2D Values 4D Values
R1 0.778 Ω 0.778 Ω
R2 237 Ω 118 Ω
C2 800 µF 2100 µF
R3 5490 Ω 5610 Ω
C3 1500 µF 2420 µF

Table S2: Best-fit values obtained for the 5-element equivalent circuit model matching the measurement data presented in Figure 6. Column
2 presents the values obtained within the simplified two-dimensional solution space, and column 3 those obtained after using column 2 as a
starting point for full four-dimensional gradient descent.

The values produced for the 5-element equivalent electrical circuit as a result of four-dimensional gradient descent are

as presented in Table S2 in column ‘4D Values’. The descent algorithm used was Barzilai-Borwein, and the cost function

was defined as:

cost = log
(
[log(E/ET )]2 + [log(F/FT )]2 + [log(α1/α1T )]2 + [log(α2/α2T )]2

)
where ET , FT , α1T (which equals 1/TT ) and α2T are the target measured values from Table 3. These gradient-descent

values constitute the best-known fit to the data.

S6. Constant Phase Element: Transient Simulation

The general equation for the impedance of a constant phase element (CPE) is:

Z(ω) =
1

Q

[
1

(jω)α

]
(S59)

where Q is the magnitude of the CPE, and α is its argument, such that 0 ≤ α ≤ 1. A Warburg element is simply a CPE

where the argument is equal to 0.5.

Z(ω) =
1

Q

[
1√
jω

]
(S60)

As a function of time, the voltage across the CPE is given by a convolution integral:

VCPE(t) =
1

QΓ(α)

∫ t

0

(t− u)α−1I(u)du (S61)

where Γ(α) is the gamma function [41]. It can thus be seen for an ideal capacitor (where α = 1) that (t−u)α−1 = Γ(α) = 1,

and the equation simplifies to:

VC(t) =
1

C

∫
Idt (S62)

which can be recognised as the standard formula for a capacitor. However, Equation S61 provides the voltage as a

function of the current, which is inconvenient in voltammetry where it is the voltage that is controlled and the current

that is to be measured. Solving this involves expressing the electrical network as a differential equation.

For example, for the basic RC network shown in Figure S5 the equation can be expressed as:

VTotal =
dq

dt
R+

q

C
(S63)
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R C          

Figure S5: RC Network

where q is electrical charge, such that i = dq/dt. Since q/C is equal to the voltage on the capacitor, VC , this can be

expressed more generally as:

VTotal =
dq

dt
R+ VC (S64)

The Euler method can be used to approximate a solution to this equation, based on the first-order simplification that:

qn+1 = qn + h
dq

dt
(S65)

where h is the step size in time. Replacing the capacitor by a CPE, and therefore VC by VCPE , produces:

qn+1 = qn + h

(
VTotal − VCPE

R

)
(S66)

This iterative scheme can be converted into a computer program, as shown in Listing 1, where the language chosen was

PHP. When executed, this produced the simulation results presented in Figure S6a.
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Figure S6: Transient simulation of an RQ network for 4 different values of α. R = 1 Ω, Q = 0.01.

The results show that as the argument of the CPE decreases, its leakage increases, and so too does the total amount

of current. The asymptotic response of the circuit towards a fixed current also changes, and is instead replaced by a

more curved response. The RQ network is thus able to emulate the behaviour of a much higher resistance, even though

no such resistance is present.

The detailed view of the dashed gray box in Figure S6b shows that when α = 1, the current reaches the asymptotic

value of 100µA rapidly in less than 100 ms. For α = 0.9, the response appears to be bi-exponential, so the RQ network

is therefore exhibiting two separate time-constants. Irrespective of value, all traces converge after about 0.6 s. However,

the current does not asymptote towards a slope, which is the typical behaviour of an RCR network.
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For an RQR network (R1 in series, R2 in parallel) the iterative scheme can be altered to become:

qn+1 = qn +
h

R1

(
VTotal −

R1 +R2

R2
VCPE

)
(S67)

where q is the charge on the CPE. The total current is then:

i(t) =
dq

dt
+
VCPE
R2

(S68)

Since the function presented in Equation S61 is a convolution integral, it is possible to plot the convolution function,

as presented in Figure S7. This shows that the function is flat if α = 1, which means that none of the charge placed

onto the capacitor is lost. For other values of α losses occur, but all of the functions converge at a time value of about

0.5 s. It would thus appear that the CPE has a characteristic time-constant of its own, and one that is unrelated to its

magnitude or any other circuit components.
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Figure S7: Convolution function used in the simulation of a constant phase element.
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Listing 1: PHP code to simulate the transient response of an RQ

network to a voltage ramp.

1 #!/usr/bin/php

2 <?php

3 $fp = fopen(’cpe-euler.csv’, ’w’);

4 fwrite($fp, "t,vTotal,vCpe,i\n");

5 fwrite($fp, "sec,V,V,A\n");

6

7 $qmag = 0.001; // The magnitude of the CPE, in pseudo-Farads

8 $alpha = 0.7; // The argument of the CPE, between 0 and 1

9 $r = 10; // Series resistance value, in ohms

10 $step = 0.001; // The basic time step, in seconds

11 $writeEvery = 10; // How often to write to file

12 $ramp = 0.01; // Voltage ramp rate, in volts per second

13 $tend = 10; // The simulation end time

14 $gamma = gamma($alpha);

15 $convu = array(); // The convolution array

16 $qstepu = array();

17

18 $q = 0; // The amount of electrical charge that has flowed

19 $write = 0;

20 for ($tloop = 0; $tloop <= $tend / $step; $tloop++) {

21 $t = $tloop * $step;

22 $convu[$tloop] = ($tloop > 0) ? pow($t, $alpha - 1) : 0;

23 $vTotal = $t * $ramp;

24 $vCpe = cpe($alpha, $tloop, $t);

25 $i = ($vTotal - $vCpe) / $r;

26 $qstepu[$tloop] = $i * $step;

27 if ($write <= 1) {

28 fwrite($fp, "$t,$vTotal,$vCpe,$i\n");

29 $write = $writeEvery;

30 } else {

31 $write--;

32 }

33 $q = $q + $i * $step;

34 }

35 fclose($fp);

36

37 function cpe($alpha, $tloop, $t) {

38 global $gamma, $step, $qmag, $qstepu, $convu;

39 $total = 0;

40 for($uloop = 0; $uloop < $tloop; $uloop++) {

41 $total += $convu[$tloop - $uloop] * $qstepu[$uloop];

42 }

43 return $total / $qmag / $gamma;

44 }

45

46 function gamma($x) {

47 // https://rosettacode.org/wiki/Gamma_function#Procedural

48 $a = array(1.0, 0.5772156649015329, -0.6558780715202539,

49 -0.04200263503409524, 0.16653861138229148,

50 -0.04219773455554433, -0.009621971527876973,

51 0.0072189432466631, -0.0011651675918590652,

52 -0.00021524167411495098, 0.0001280502823881162,

53 -2.013485478078824e-05, -1.25049348214267e-06,

54 1.1330272319817e-06, -2.0563384169776e-07,

55 6.11609510448e-09, 5.00200764447e-09,

56 -1.18127457049e-09, 1.0434267117e-10,

57 7.78226344e-12, -3.69680562e-12, 5.1003703e-13,

58 -2.058326e-14, -5.34812e-15, 1.22678e-15,

59 -1.1813e-16, 1.19e-18, 1.41e-18, -2.3e-19, 2e-20);

60 $y = $x - 1.0;

61 $counta = count($a);

62 $sum = $a[$counta - 1];

63 for ($n = $counta - 2; $n >= 0; $n--) {

64 $sum = $sum * $y + $a[$n];

65 }

66 return 1.0 / $sum;

67 }
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