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Abstract

We initiate a study of the definable topological dynamics of groups definable in

metastable theories. In stable theories, it is known that the quotient of a group G

by its type-definable connected component G00 is isomorphic to the Ellis Group of

the flow (G(M), SG(M)); we consider whether these results could be extended to

the broader metastable setting. Further, the definable topological dynamics of com-

pactly dominated groups in the o-minimal setting is well understood. We investigate

to what extent stable domination is a suitable analogue of compact domination in

regards to describing the Ellis Group of metastable definable groups.

We first prove that when G = SL2(C((t))), the Ellis Group of (G(M), SG(M))

is not isomorphic to G/G00. This counterexample provides a negative answer as

to whether metastability is a suitable weakening of the Ellis Group conjecture of

Newelski. We demonstrate that the Ellis Group is infact isomorphic to B/B0, where

B is the Borel subgroup of G of upper-triangular matrices. This is analogous to the

definable topological dynamics of SL2(Qp) [22] in which they also found the Ellis

Group was dependent on the Borel subgroup B(Qp).

We see later in the thesis that SL2(C[[t]]) is definably extremely amenable; it ad-

mits a unique global left invariant type whose restriction to SL2(C) via the residue

map is generic in SL2(C). This also provides positive evidence towards a further gen-

eralisation of a maximum modulus principal in K � ACV F , which proves SL2(OK)

admits a unique global left-invariant type.

We suspect that these results could be generalised to larger classes of metastable

iv



definable groups, and the description of Ellis Groups for groups which admit a

stably-dominated / definably amenable group decomposition is a key focus of the

final sections of the thesis. We suggest that for groups G with decompositions

G = HN , where H is definably amenable and N is maximally stably dominated,

with H ∩N possibly infinite, we can provide complete descriptions for the minimal

flows and Ellis Groups. We demonstrate that this is the case when we restrict

H further to definable (extreme) amenability, and provide some preliminary work

towards an explicit description of the Ellis Group for definable affine algebraic groups

in a metastable theory.
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Chapter 1

Introduction

1.1 Assumptions and Notation

We assume familiarity with the basics of model theory, topology and valued fields,

though we recall key definitions and results where appropriate.

Notation will mostly be standard. We will use T to denote a complete theory

in a language L. We will use M , N to denote models of a theory T , and will often

make no distinction between M as a model and its universe. We denote by M̄ an

elementary, but not necessarily saturated, extension of a model M . We often use U

to denote some global model which is homogeneous and sufficiently saturated.

We will use a, b, x, y, ... for variables and parameters, making no distinction

between points and tuples unless necessary. Our formulas will be denoted by

φ(x), ψ(x), .... Types will be denoted by p, q, ..., using p(x) to specify when p is

a type in a variable x. We assume all types are complete.

In general when we say definable we mean with parameters unless otherwise

stated.

Definable groups are denoted G, H, ... ; that is sets definable by some formula

together with a definable group operation. We will denote by S(M) the space of

complete types with parameters from M . Further, SG(M) will denote the subset of
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CHAPTER 1

S(M) consisting of types which contain the formula defining G. We say these types

concentrate on G.

We will often simplify notation where the meaning is clear. For example, we

make no distinction between a definable set X and the formula that defines it;

similarly for definable groups (G, ·). Further, we will often use concatenation or a

comma rather than union; for example, we write A, b to mean A ∪ {b}.

1.2 Motivations

Topological Dynamics is a pure abstraction of dynamical systems in the classical

sense; systems used to describe the behaviour of points over time. In classical dy-

namical systems, one may apply the rectification theorem to describe the dynamics

of a point in a small region. This region can be extended by combining similar

small regions, and when this is possible for the entire space we say that the space

is integrable. However, the study of these systems becomes difficult when dealing

with periodic or near periodic behaviour as - in general - the rectification theorem

cannot be used in the neighbourhood of a periodic orbit. Topological Dynamics can

be used to study periodic or near periodic (see Definition 1.3.2) behaviour since

such points are contained in (and indeed generate) minimal flows of the system, and

such objects are well understood.

The focus of this thesis is to expand upon recent work in topological dynamics

in the context of model theory. Early aims in the field have been focused upon

demonstrating relationships between type definability and topological spaces.

Take some R � R a sufficiently saturated real closed field. Then we recall that

the standard part map st associates, for every finite r ∈ R, the unique real number

r0 which is infinitely close to r. That is, st(r) = r0. The standard part map induces

a definable group homomorphism from a definably compact semialgebraic group

G(R) into G(R). The kernel of this map is in fact a type-definable normal subgroup
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CHAPTER 1

of bounded index (< κ where R is κ-saturated), and hence G(R)/ker(st) is a group.

In this example, ker(st) is what we now call G00.

Studying this quotient becomes interesting once we consider topologies on G;

namely, the standard Euclidean topology and the Logic Topology (Definition 1.4.5).

Pillay conjectured that in the o-minimal context, a definable group G has a minimal

type-definable normal subgroup of bounded index in G, denoted G00, and that the

quotient of G by G00 should be isomorphic as a topological group to some definably

compact real Lie group. Pillay shows [27] that a subset of G/G00 is closed in the

Euclidean topology precisely when it is closed in the Logic topology. The implication

of this result is that every closed set in the Euclidean topology is type-definable.

The motivation for definable topological dynamics is to study analogues of this

conjecture (now theorem) in the broader NIP setting. It is shown by Shelah [30]

that G00 exists for all groups G definable in a NIP structure.

In [11] Pillay, Peterzil and Hrushovski introduce a notion of compact domination;

definable subsets of a type-definable compactly dominated set X can be determined

entirely via some surjective map into a compact space C. They relate this concept

to both the existence of and uniqueness of Keisler measures and demonstrate that

definably compact groups in o-minimal structures are compactly dominated (via

G/G00). The analogue of this notion for metastable structures is the notion of

stable domination.

This leads us to the key motivation of this thesis. We investigate the relation-

ship between the quotient G/G00 and the minimal objects of the dynamical system

(G(M), SG(M)), where G is definable in some metastable structure. The intentions

are twofold. First, to investigate whether the Ellis Group conjecture of Newelski

for the topological dynamics of stable groups could be generalised to the metastable

setting. Secondly, in [9], they consider the definable topological dynamics of a

non-compactly dominated group definable in an o-minimal structure. We wish to
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investigate to what extent the results of [9] would extend to a non-stably dominated

group definable in a metastable structure.

1.3 Topological Dynamics

Our aim in this section is to outline the basics of topological dynamics and describe

the construction of the Ellis Semigroup. We will eventually provide model theoretic

context to this construction by considering the action of a definable group G on

the space of complete types SG(M). However, we first recall the key notions of

topological dynamics and Ellis Groups. We assume full familiarity with the basic

notions of topological spaces and their properties. References for general topology

and topological dynamics are [1] and [7].

A topological group is a topological space (G, τ) such that G is itself a group

where the group operation · : G × G → G is a continuous function with respect to

the topology τ on G and the product topology on G×G. When discussing actions

of groups on topological spaces, we will say an action · : G×X → X is continuous

if, for all g ∈ G, the induced action πg : X → X is continuous.

Definition 1.3.1. Let G be a topological group and X be a topological space. Then

a flow is the pair (G,X) together with a continuous action G×X → X such that;

(i) ex = x for all x ∈ X,

(ii) g1(g2x) = (g1g2)x,

where e is the identity of G, g1, g2 ∈ G and x ∈ X.

When discussing compact topological spaces we will also assume those spaces

are Hausdorff. In general this is not the case; there are topological spaces which are

compact but not Hausdorff. However, in this thesis, we discuss no such topological
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spaces which have this property. Hence, we assume X is a Compact Hausdorff

topological space unless otherwise stated.

We mention for later the notion of a compactification (H, f) of a topological

group G, where f : G→ H is continuous and H a compact (Hausdorff) topological

group, with G dense in H.

Throughout the thesis we will be assuming that (G, τ) is a topological group

with the discrete topology unless otherwise stated, and as such we will just denote

(G, τ) = G for simplicity. The reason for this restriction is to ensure that the

definable Bohr Compactification of G coincides with G00.

If (G,X) is a flow with Y a closed subspace of X such that Y is closed under

the action of G, then we say (G, Y ) is a subflow of (G,X). If Y is a subset of X

with GY = Y , we say that Y is invariant. A set is invariant if and only if it is the

union of orbits.

If (G,X) is a flow, then a subset W of X is a minimal set if W is a closed,

non-empty invariant set such that for any V ⊆ W that is also closed and invariant,

either V = ∅ or V = W . The flow (G,W ) is called a minimal subflow. A subset W

of X is minimal if and only if it is the orbit-closure of each of its points. As such

we can consider a set minimal if every point of W can generate W via G-orbit.

Further, for any minimal flows W1, W2, either W1 = W2 or W1 ∩ W2 = ∅.

Minimal sets will be the key object of study for this thesis, namely finding them

and explicitly describing them in various model theoretic contexts. We now state

several definitions and results that have previously been used in the description of

minimal sets.

Definition 1.3.2. Let (G,X) be a flow.

• A point x ∈ X is said to be a fixed point if gx = x for all g ∈ G. In this case,

the singleton {x} is a minimal set of (G,X).

• A point x ∈ X is said to be a periodic point if gnx = x for some g 6= e ∈ G
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and some n ∈ N.

• A point x ∈ X is said to be an almost periodic point if, for every neighbourhood

U of x, there is a subset H of G such that Hx ⊂ U , where H is such that

there exists a compact subset K of G with G = HK.

For some topological spaces, the almost periodic points precisely describe the

minimal sets.

Definition 1.3.3. Let (G,X) be a flow. Then the orbit-closure of x, denoted cl(Gx)

or Ḡx, is the closure of the set gx : g ∈ G in X.

Let (G,X) be a flow with X a locally compact Hausdorff space. Then x ∈ X

is almost periodic if and only if the orbit closure Gx is a compact minimal set.

Further, if X is compact, there exists an almost periodic point x ∈ X and again Gx

is a compact minimal set.

Since minimal sets are our objects of study, we wish to restrict to cases where

we know such sets exist. Namely, if X is a compact Hausdorff topological space

and (G,X) a flow, then there exists a minimal set A of X. The proof of this result

follows from Zorn’s Lemma.

We now move to discuss semigroups in the context of topological spaces.

For a flow (G,X), it can be beneficial to instead consider the set of functions

πg : X → X induced from the action of G on X. These functions are then homeo-

morphisms on X , and so can be considered as a subset of the set XX of functions

from X to itself.

By Tychonoff’s Theorem, we observe that if X is a compact topological space,

then XX is a compact space with respect to the product topology. We can consider

the closure of the set {πg : g ∈ G} in XX and obtain a semigroup as follows.

Fact 1.3.4. [1] Let (G,X) be a flow with X a compact topological space. Then

the closure of the set {πg : g ∈ G} in the space XX forms a semigroup, called the
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Enveloping Semigroup and denoted E(X), where the semigroup operation is given

by composition of mappings.

Definition 1.3.5. [6] A semigroup (S, ·) is an Ellis Semigroup if it satisfies the

following:

1. The set S is a compact Hausdorff topological space.

2. The mappings given by left translation by an element of S are continuous.

By considering semigroups in place of flows, the question of invariant points

or minimal subflows instead becomes a question of idempotents and ideals. For a

semigroup (S, ·), we define a closed left ideal I to be a closed subset of S such that,

for all s ∈ S, s · I ⊆ I.

However, minimal subflows are not necessarily unique even up to isomorphism.

This becomes a problem in this particular area of study when we wish to provide

explicit descriptions of these ideals. We instead work with the following theorem of

Ellis which allows us to obtain a unique (up to isomorphism) object from a given

Ellis Semigroup.

Theorem 1.3.6. [7] Let (S, ◦) be an Ellis Semigroup and let J be the set of idem-

potents of S. Then;

(i) There exists a minimal closed left ideal I of S.

(ii) If I is such a closed left ideal, then I ∩J 6= ∅ and moreover, for any u ∈ I ∩J ,

the left translate (u ◦ I, ◦) forms a group, which we called the Ellis Group

(iii) Every such Ellis Group obtained by varying the choice of I and u are isomor-

phic.

Given a flow (G,X) we can construct the Enveloping (Ellis) Semigroup (E(X), ◦).

We now wish to find the Ellis Group, which is unique up to isomorphism, and con-

tained within (E(X), ◦). We can simplify this by instead considering a new G-flow

7
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on E(X), denoted (G,E(X)), with action of g ∈ G on a function f ∈ E(X) given

by πg ◦ f .

This flow and the Ellis Semigroup (E(X), ◦) are very closely related, as shown

in the following fact.

Fact 1.3.7. Let (X,G) be a flow with (E(X), ◦) and (G,E(X)) constructed as above.

Then the minimal closed left ideals of (E(X), ◦) coincide (set-wise) with the minimal

subflows of (G,E(X)).

The above fact is most useful when E(X) is homeomorphic to X. In which case,

we can ignore the E(X) construction and instead focus on finding minimal subflows

of (G,X). Applying Fact 1.3.7 in this case means we can find the minimal closed

left ideals of (E(X), ◦) by considering the minimal subflows of (G,X).

1.4 Model Theoretic Context

We now recall some model theoretic notions which will provide context for interpret-

ing the topological dynamics in a definable way. The majority of the results here

are well known, but form the cornerstone of interpreting topological dynamics in a

meaningful and definable way. We refer to [32] for the majority of these definitions

and for a general overview of NIP theories.

Fix a structure M . Recall a formula φ(x, y) has the independence property (IP) if

and only if there is some indiscernible sequence (ai)i<ω and a tuple b, with ai, b ∈M ,

such that

� φ(ai, b) ⇐⇒ i is even.

Otherwise, we say a formula has NIP. We say a theory T has NIP if every formula

φ(x, y) ∈ L has NIP.

A type p(x) over a set B is said to be definable if for every formula φ(x, y)

without parameters, there is a formula dφ(y) with parameters from B such that

8
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p ` φ(x, b) ⇐⇒ b � dφ(y) for all b ∈ B.

Let L be language with M and L-structure and M̄ some elementary extension

of M . A set X ⊆Mn is said to be externally definable if there is a definable subset

Y ⊆ M̄n such that X = Y ∩Mn. By augmenting the language with a predicate for

each externally definable subset, denoted Lext, we can consider the Lext-structure

M ext. We call this the Shelah Expansion of M .

Fact 1.4.1. [31] Suppose T is a complete NIP theory and let M be a model of T .

Let M ext be the Shelah Expansion of M . Then;

1. Th(M ext) is a complete NIP theory.

2. Th(M ext) has quantifier elimination.

3. Complete types over M ext are definable.

The following is a well known definition, and we refer to [26] for details and

surrounding results.

Definition 1.4.2. [26] Let p be a type over some model M of a theory T , and

q ∈ S(B) an extension of p to B ⊃M .

• We call q an heir of p if for every L(M)-formula φ(x, y) such that φ(x, b) ∈ q

for some b ∈ B there is some m ∈M with φ(x,m) ∈ p.

• We call q a coheir of p if q is finitely satisfiable in M .

We recall a well known result for complete types in NIP theories.

Fact 1.4.3. [26] Let T have NIP and suppose that all complete types over M are

definable. Then every complete type p over M has a unique heir and unique coheir

in S(M̄).

We now define one of the main objects of consideration in this thesis. Recall

that by bounded index, we mean of cardinality less than (or equal to) 2|M |+|L|.

9
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Definition 1.4.4. Let G be a definable group.

• The Connected Component (over A), denoted G0
A, is the intersection of all

definable subgroups of G of finite index (using parameters from A).

• The Type-Definable Connected Component (over A), denoted G00
A is the inter-

section of all type-definable subgroups of G of bounded index (using parameters

from A).

If this subgroup is independent of the choice of parameters A, we drop the subscript

and say G0 (equivalently G00) exists.

It is well known ([30]) that if G is definable in some model of a NIP theory T ,

then G0 and G00 exist. We say a definable group G is connected if G = G0. Further,

if T is stable, then G0 = G00.

We remark that G0 and G00 are both normal subgroups and so the quotient

G/G00 is well-defined. This quotient is model invariant, in the sense that the number

of cosets obtained by considering the M -points of G/G00 is consistent regardless of

choice of M . In fact, even when taking a Shelah expansion, the description of G00

in LM is equivalent to G00 in LM,ext ([2]).

Before we discuss topological dynamics in this context, we first recall some con-

nections between model theory and classical topology.

The space of complete types S(M) can be equipped with the Stone topology on

definable sets, where the open sets are given by [φ] = {p ∈ S(M) : φ ∈ p}. It is easy

to see that this space is a Hausdorff, compact and totally disconnected topological

space. We also define another topology, though this is more specific to our purposes

and especially G00.

Definition 1.4.5. [8] Let M be a model and let X be an M-definable set in some

saturated elementary extension M̄ of M . Suppose E is some type-definable (over

M) equivalence relation with π : X → X/E the canonical projection.

10
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Then we define the logic topology on X/E via closed sets; where Z ⊆ X/E is

closed if π−1(Z) ⊆ X is type-definable (over M).

For more details on the logic topology we refer to [11]. Namely, X/E is known

to be a compact topological space and moreover the projection π is definable (as

a function over M). In connection with the above, we can easily replace E with

a type-definable normal subgroup N , and see that G/N is a compact topological

group under the logic topology.

Definition 1.4.6. [8] Let G be a group definable in M . By a definable compact-

ification of G we mean a compactification (C, f) where f : G → C is a definable

homomorphism, C is a compact group, and G is dense in C.

When considering the G(M̄) points, the identity embedding of G(M) into G(M̄)

induces a homomorphism from G(M) into G(M̄)/N with dense image. Further, this

mapping is continuous in the topological sense, and hence by way of replacing N

with G00 we obtain a universal (Bohr) compactification of G ([8]).

1.5 Definable Topological Dynamics

We now consider the dynamical system of a definable group G acting on its space of

types SG(M). We assume from here on that T is a NIP theory and G is a definable

group. The key references for this construction are [18] and [19].

Recall that by G(M), we mean the interpretation of G in M , sometimes called

the M -points of G. The construction here uses several different actions, and though

we are initially explicit for the sake of clarity, we will eventually return to denoting

these actions via juxtaposition when the meaning is clear.

Consider the space of complete types SG(M) concentrating on G, with the in-

duced Stone topology from S(M).

11
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We can obtain an action of (G(M), ·) on SG(M) as follows;

G× SG(M)→ SG(M)

(g, p) 7→ tp(g · a/M)

where a � p|M .

We note that this action is well defined since we insist p contains the formula

defining G, and hence in particular a ∈ G(M̄). Further, this action is independent

from the choice of realisation of p. That is, if a � p|M and b � p|M , then tp(g ·a/M) =

tp(g · b/M).

Since we have a flow (G(M), SG(M)) with SG(M) a compact Hausdorff topolog-

ical space, we can construct the Enveloping Semigroup (E(SG(M)), ◦).

The application of the results of Ellis to the space SG(M) was developed by

Newelski [18] in which he demonstrates a relationship between (E(SG(M)), ◦) and

SG(M ext). Namely, that the compact spaces E(SG(M)) and SG(M ext) are homeo-

morphic. This homeomorphism extends to an action ∗ on SG(M ext).

Again let (G, ·) be a definable group, and define a semigroup action ∗ on SG(M)

as follows;

∗ : SG(M)× SG(M)→ SG(M)

(p, q) 7→ tp(a · b/M)

where a � p|M and b � q|Ma.

To be explicit here, as this action is the key focus of the thesis, q|Ma is the heir

of q over M ∪ {a} where a is any realisation of p|M . We will call this action “type

multiplication”.

The choice of heirs here is just preference, and the action can instead be defined

in terms of coheirs by choosing b � q|M and a the realisation of a coheir of p (over

Mb). We note that this action is only well-defined when the extension of a type to

an heir (or coheir) is unique.

12
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To summarise then, since complete types over M ext are definable, we have that

for any definable group G, the Enveloping (Ellis) Semigroup (E(SG(M)), ◦) is home-

omorphic to the semigroup (SG(M ext), ∗).

Of course, if types over M are already definable, SG(M ext) is homeomorphic

to SG(M), and similarly the type multiplicaton ∗ behaves identically on SG(M).

Hence in the study of minimal subflows of (G,SG(M)) and of the properties of

the Enveloping Semigroup (E(SG(M)), ◦), it suffices instead to consider the much

easier question of closed left ideals of (SG(M), ∗). We will often talk about min-

imal subflows of the system and minimal ideals of the semigroup interchangeably,

and it should be understood that there is no meaningful difference between either

representation aside from preference or ease of understanding.

Work on groups and measures in the NIP setting was already being considered

(see [11], [4]). Their work was initially independent of topological dynamics, though

the notions and results they developed were eventually found to have implications

for the description of minimal subflows for the groups they studied. We now discuss

special cases of these systems for which these groups have additional properties, and

recall results that explicitly describe the minimal subflows.

Fact 1.5.1. Let G be a definable group, let p be a type in SG(M̄), and let G(M̄) be

the interpretation of G in M̄ . Then;

• [1] cl(G(M̄) ∗ p) is G(M̄)-invariant.

• [1] Let X ⊂ SG(M̄). X is minimal if and only if cl(G(M̄) ∗ p) = X for all

p ∈ X. That is, a set is minimal exactly when it is the orbit closure of each

of its points.

• cl(G(M̄) ∗ p) = SG(M̄) ∗ p.

• [29] If p is a global f -generic type, then p is almost periodic and further

cl(G(M̄) ∗ p) = G(M̄) ∗ p.
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An important class of types in SG(M) which appear frequently in the study of

(E(SG(M)), ◦)are the generic types. A formula φ (in G) is left (right) generic if

finitely many left (right) translates of φ cover G. A type p ∈ SG(M) is left (right)

generic if every formula in p is left (right) generic. We say a type (formula) is generic

if it is both left and right generic.

A definable group G has finitely satisfiable generics (fsg) if there is some global

type p(x) in G and some (small) model M such that every G-translate of p(x) is

finitely satisfiable in M .

To see that these types are indeed generic, we refer Proposition 4.2 in [11] though

summarise here. Fix some (small) M and let p be as in the above definition. A defin-

able set X is generic if and only if every left translate of X meet M (meaning every

left translate of X contains some element of G(M)). Since any formula (definable

set) in p has this property due to fsg, we see that every formula in p is generic.

Fact 1.5.2. [11] Let G be a definable group with fsg and let M be any (small)

model. Then there exists a generic global type p ∈ SG(U). Further, for such a type;

(1) Every left and right translate of p is generic, and is also finitely satisfiable in

M ,

(2) G00 exists and is both the left and right stabilizer of p.

It is logical then to ask whether this property on the global generic types that

concentrate on an fsg group is retained when restricting to smaller models. Given

a global type p, we write pM = {φ(M) : φ ∈ p}, where φ(M) = φ(U) ∩Mn. This

is a complete type in SG(M ext). Under this restriction, for G a definable group

with fsg, it is shown in [11] that if p is a global generic type, then pM is generic

in any (small) model M . This fact allows us to identify the set of generic types in

SG(M ext) with the set of global generics. We will denote the set of (left) generic

types concentrating on G, with parameters from a model M , by GenG(M). When
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SG(M) contains generic types, we can quickly use the following result of Newelski

to find the minimal flows.

Fact 1.5.3. [18] Let G be a definable group and assume there exists some generic

type p ∈ SG(M ext). Then the set of generic types GenG(M ext) is the unique minimal

subflow of (G(M), SG(M ext)).

We remark that this result assumes the existence of a generic type, rather than

claims one always exists. In fact, there are many examples of groups which do

not admit any generic types ( (R,+) for example). However, this result becomes

especially powerful if we assume that translates of p are finitely satisfiable in M ext.

Explicitly, this is assuming G to have fsg.

We say that a generic type p is the principal generic (of G) if any realisation of p

is contained in G00. For G an M -definable fsg group in a NIP theory, the minimal

flow of

(G(M), GenG(M ext)) decomposes into Ellis Groups of the form q ∗ GenG(M ext),

where q is a principal generic ([18], [14]). We can consider this in the context of the

Ellis Semigroup (SG(M ext), ∗), where the ∗ action is given by the type multiplication

defined earlier. Firstly, for any type p ∈ SG(M ext), the translate of a type q ∈

GenG(M ext) is itself generic. Moreover, q ∗ p belongs to the same Ellis semigroup as

q. From this, the following important fact can be seen;

Fact 1.5.4. [14] Let G be a definable group in some NIP theory with G admit-

ting finitely satisfiable generics. Then the minimal subflow (G(M), GenG(M ext)) of

(G(M), SG(M ext)) is two-sided and corresponds to a two-sided ideal GenG(M ext) of

the semigroup (SG(M ext), ∗).

Later, work surrounding fsg groups, particularly in the o-minimal setting, was

generalised further to an even larger class of groups. We now provide definitions and

recall the preliminary results of the dynamical systems. We assume familiarity with

the basics of measures, though refresh some simple definitions where appropriate.
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A measure µ on a set X is said to be finitely additive if, for any disjoint subsets

A, B of X, µ(A ∪B) = µ(A) + µ(B). Further, µ is said to be a probability measure

if µ(X) = 1 (and hence takes all values in the interval [0, 1]).

In general, for X a topological space, we can consider a Borel (probability)

measure, where the measure is defined on the smallest σ-algebra containing the

open sets of X as given by the topology. We say a topological group G is amenable

if every flow (G,X) admits a G-invariant probability measure on the Borel sets of

X. By a left invariant measure, we mean a measure µ such that µ(φ(gx)) = µ(φ(x))

for all g ∈ G.

We wish to provide amenability with some model theoretic restrictions to ensure

that discussing such measures is well defined. We say a definable group G is definably

amenable if every definable G-flow (G,X) there is a G-invariant Borel probability

measure on X. In much of the literature, such a measure is called a Keisler measure,

due to work in [16] which generalises the theory of forking from stability theory to

using measures rather than complete types. Hence when we say a group is definably

amenable, we mean there exists a Keisler measure on the boolean algebra of definable

sets. These definitions extend to groups we call definably extremely amenable, with

the added condition that the measure maps into {0, 1} rather than the interval

[0, 1]. Equivalently, a group G is definably extremely amenable if it admits a Keisler

measure and there exists a type p ∈ SG(M ext) with p invariant under the action of

G.

Several observations regarding definably amenable groups can be found in [32].

When G is definably amenable, there exists some global left invariant Keisler

measure µ. This measure is somewhat special as it also implies the existence of a

right invariant measure; namely v(φ(x)) = µ(φ(x−1)). Note that this is not true

in general for an arbitrary measure. It’s easy to see that v will be right-invariant

if µ is left invariant. Further, for any model M , if a Keisler measure µ0 exists on
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M -definable sets, then this extends to a measure µ on the M̄ -definable sets where

M̄ is a saturated elementary extension of M .

The existence of a Keisler measure has many implications for the minimal flows

of the system (G(M), SG(M ext)) where G is definably amenable. The dynamical

systems of these groups are well understood, though the techniques and results

developed in their study will be useful to us as such groups often appear in the

decompositions of non-definably amenable groups.

All groups that admit fsg are themselves definably amenable, though there are

definably amenable groups which are not fsg. In particular, the measure on an fsg

group is additionally generically stable; meaning the measure is both definable and

finitely satisfiable in some (small) model M . Hence we obtain the following.

Fact 1.5.5. [32] Let G be a definable group. Then G has fsg if and only if it is

definably amenable and admits a generically stable left invariant measure.

By a (left) f -generic type (over some set A) we mean a global type p ∈ SG(U)

such that no (left) translate of p forks over A. The existence of these types is closely

related to definable amenability.

Fact 1.5.6. [32] Let G be a definable group over some model M . Then G admits

a global f -generic type if and only if G is definably amenable.

Fact 1.5.7. [32] If a definable group G admits a global f -generic type p (over some

A), then p is invariant under left translation by G00 and it follows that Stab(p) =

G00.

Note every f -generic type is generic, but it is not necessarily true that every

generic type is f -generic. Because of this, and the above fact, it becomes much

easier to decide that a group is not definably amenable by simply demonstrating

that no generic types exist in SG(M).

Finally, a further method of showing definable amenability indirectly is to find

definably amenable normal subgroups that satisfy the following result;
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Fact 1.5.8. [32] Let G be a definable group with H a definable normal subgroup of

G. Then;

• If G is definably amenable, so is G/H,

• If both H and G/H are definable amenable, then so is G.

1.6 Ellis Groups of Definable Dynamical Systems

In this section we take the results of minimal subflows above and recall the work so

far in regards to the description of the Ellis Groups of these definable systems. We

begin with the work of Newelski which motivated this area of study.

Newelski ([18], [19]) worked towards describing the Ellis Group of (G(M), SG(M))

under the assumptions that M is a model of some stable theory T and G a definable

group in M . He proves an explicit description of the Ellis Groups for groups defin-

able in stable theories, and moreover he demonstrates a relationship to the quotient

G/G00.

Fact 1.6.1. [20] Let T be a stable theory with M a model of T . Let G be a definable

group. Then the set of generic types (over M) GenG(M) is a minimal closed left

ideal of (SG(M), ∗).

Further, (GenG(M), ∗) is a group and is isomorphic to G/G0 (= G/G00).

It was this that motivated the idea that, in the more general setting where T

is NIP rather than stable, G/G00 could be described or retrieved by considering

the definable topological dynamics on external types. Newelski conjectured that

for a group G, definable in some model of a NIP theory, that G/G00 is definably

isomorphic to the Ellis Group of (G(M), SG(M ext)). We remark here that this

conjecture was eventually proven false by way of counterexample in [9], though we

comment more on this later.
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Work towards this conjecture naturally began in o-minimal theories; a NIP the-

ory which is very much “not-stable”, with Newelski himself proving a positive case

for G a definably compact group. We recall from [11] that a topological group G is

said to be definably compact if every definable map from the open unit interval into

G has a limit in G as the interval tends to 0. A more commonly used approach is

via a result in [24] that if G is affine it is definably compact if and only if it is closed

and bounded; for example, SO2(R). When G is such a group, Newelski shows the

following.

Fact 1.6.2. [19] Let G be a definably compact group in an o-minimal theory. Then

the Ellis Group of (G(M), SG(M ext)) is isomorphic to G/G00.

Attempts to generalise definable compactness, especially outside the o-minimal

setting, is what gave rise to the application of the measures on definable groups

in dynamical systems. We provide a comprehensive study of the research done so

far, this time in the context of Ellis Groups and G/G00. These groups commonly

appear in group decompositions and as such the following results are useful tools

in understanding type multiplication for larger classes of groups. Pillay made the

first steps towards these generalisations. As before, the rest of this section assumes

a NIP theory.

Fact 1.6.3. [28] Let G be a group with fsg, ∅-definable in any model M of a NIP

theory T . Then the Ellis Group of G(M)-flow (G(M), SG(M)), denoted (u · I, ·), is

isomorphic to the quotient G/G00.

As we mentioned before, this result is really a special case of definable amenabil-

ity, though the proof that this isomorphism holds over this larger class of groups

did not come until much later. In fact, a counterexample to the general conjecture

of Newelski was found in the interim, and we recall this here.
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Fact 1.6.4. [9] Let G = SL2 definable in a real closed field, the Ellis Group of

(SL2(R), SSL2(R)(M)) is isomorphic to ({±1},×) ; a group of 2 elements.

Further, SL2(R)00 = SL2(R) and hence the quotient G/G00 is trivial and is not

isomorphic to the Ellis Group of (SL2(R), SSL2(R(M)).

This counterexample motivated the study of definable topological dynamics to

take two directions. The work of Yao [33] and Jagiella ([14], [15]) for example was

primarily concerned with applying what was known about the dynamical systems

to explicitly describe Ellis Groups for large classes of definable groups. The other

direction, seen in work of Pillay, Simon, Chernikov [2] looked towards finding the

largest class of NIP groups for which the conjecture of Newelski did hold.

We summarise both approaches here, as the results of both will be useful to

us. We begin with the latter. Recall that fsg was itself a special case of definable

amenability. A positive answer for any definably amenable group definable in an

o-minimal theory was given ([29], [2]), and was later generalised to an arbitrary

NIP theory in [3].

Fact 1.6.5. [3] Let G be a definably amenable group definable in some model M of

an NIP theory T . Then the Ellis Group of the G-flow (G(M), SG(M)) is isomorphic

to G/G00.

So far, this is the most general result for which the isomorphism between the

Ellis Group and the quotient G/G00 is known to hold. As mentioned before, other

work in the area has been pushing towards descriptions of Ellis Groups with little

regard towards the relationship with G/G00. Specifically, work in [14] focused on

groups definable in an o-minimal expansion of the reals.

We make note here of some of the machinery and preliminary results developed

in [14] as understanding their application and limitations is integral to our work in

later chapters. Let G admit a group decomposition into the semidirect product of

definable subgroups H and K; where H is torsion-free, K is definably compact and
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H∩K is trivial. This is analagous to a model theoretic interpretation of an Iwasawa

group decomposition (Expressing a square matrix as the product of an orthogonal

and upper triangular matrix).

Further, by insisting on a trivial intersection, one can develop actions of H

on K that acts by homomorphism. Namely, for each h ∈ H, construct a map

φh : K → K by φh(k) = k′, where k′ is the unique element of K such that there

exists a h′ ∈ H with hk = k′h′. The trivial intersection of H and K force these

maps to be well defined, and moreover when G is a topological group, H acts on K

by homeomorphism.

Since H is torsion-free definable in an o-minimal theory, an application of results

from [23] shows that H is definably connected. Hence the flow (H(M), SH(M))

has a one-point minimal flow and is definable extremely amenable with a unique

H-invariant type. Moreover, since K is definably compact and definable in an o-

minimal theory, it is known to admit a generic type and hence has minimal subflow

GenK(M) with idempotents the principal generics. In full generality then, the Ellis

Group for such decompositions can be explicitly described as follows.

Fact 1.6.6. [14] Let G be an M-definable group, with M = R. Let K, H be

M-definable subgroups of G such that;

(1) G = KH and K ∩H = {1}

(2) SH(M) has a H(M)-invariant type p.

(3) (K(M), SK(M)) has a minimal subflow I which is invariant under the action

of H on SK(M).

Then I ∗ p is the minimal subflow of (G(M), SG(M)).

Describing the Ellis Group from the minimal subflow here is not a trivial step,

in the sense that understanding the idempotent elements here takes some work. It
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turns out that the idempotents of I are given by certain translates of G on the

1-point flow p of (H(M), SH(M)), namely those in which the standard part map

together with the action of H on K gives the identity of K. Though somewhat

abstract, there is an isomorphism to a more well known subgroup of G.

Fact 1.6.7. [14] Let G be a group as in 1.6.6. Then the Ellis Group of the flow

(G(M), SG(M)) is algebraically isomorphic to NG(H) ∩K(R).

Of course, SL2(R) is a group which admits such a decomposition, and in fact

in [9] they suggest the Ellis Group should be somehow related to the centre of the

group though the above result of Jagiella is evidence against this.

Further work in [33] looked to generalise this result to arbitrary expansions of

models of RCF . This is not a straightforward generalisation and several of their

preliminary results are interesting in their own right. For example, in the case where

M = R, with G = HK as above, the minimal flow GenK(M) of (K(R), SK(M)) is

H(R)-invarant, and hence is also G(R)-invariant. However, for an arbitrary model

M this is not true, and they provide examples where GenK(M) is in fact a proper

subset of the minimal flow of (K(M), SK(M)).

However, despite the differences in minimal flows, it turns out that 1.6.7 does

generalise to an arbitrary model of RCF . Note that the results here are only true

in general for the Shelah expansion M ext as they make no assumptions about types

over M being definable.

Fact 1.6.8. Let G be a group definable over R, with G = KH a compact torsion-free

decomposition. Let M be an arbitrary elementary extension of R. The Ellis Group

of SG(M ext) is algebraically isomorphic to NG(H) ∩K(R).

Naturally, one might wonder whether the generalisation of definably compact to

fsg allows you to move out of the o-minimal specific context, and indeed it does,

albeit with some further restrictions on the decomposition. It is also required to
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consider to what extent torsion-free is a requisite, or whether that too could be

replaced with another condition. From the above, the torsion-free part admits a

unique 1-point minimal flow; B(R) is definably extremely amenable. It would seem

sensible then to consider instead the generalisation of torsion-free and o-minimal to

definably extremely amenable and NIP .

To this extent, [15] defines the notion of a “good” decomposition. For M a model

of an arbitrary NIP theory, and G an M -definable group, we say that G = KH

is a good decomposition if K ∩H = {1}, K has fsg and H is definably extremely

amenable. Jagiella manages to reduce the problem as follows, though a precise

general description of the Ellis Group seems too general a result for such a large

class of groups.

Fact 1.6.9. [15] Let G be an M-definable group in some NIP theory T . Suppose

G = KH is a “good” decomposition. Then the minimal subflow of the universal

flow (G(M), SG(M ext)) is given by I ∗ p, where I is the unique minimal flow of

(K(M), SK(M ext)) and p is H(M)-invariant.

Further, the Ellis Group of (G(M), SG(M ext)) is isomorphic to a subgroup of

K/K00.

Further work that attempts to describe Ellis Groups in cases where we do not

insist on a rigid decomposition has been more specific than general, though perhaps

similar generalisations will eventually be possible. A key example of such work is

again the consideration of SL2, though this time definable in the field of p-adic

numbers. SL2(Qp) admits a decomposition into the product of SL2(Zp), which is

maximally compact, and the Borel subgroup B(Qp), which admits f -generic types

and is hence definably amenable.

However, the main difference in this case study is the existence of a non-trivial

intersection; namely SL2(Zp) ∩B(Qp) = B(Zp). This has difficult consequences for
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the computations. With a trivial intersection between the subgroups of a decompo-

sition, there is a natural action by homomorphisms which can be used to simplify

the action of G. However, B(Zp) is an infinite subgroup of B(Qp) and so a similar

approach is not well defined.

Though SL2(Qp) is perfect, SL2(Zp) admits a proper connected component. By

way of considering open neighbourhoods of the identity, they demonstrate a well-

defined way of commuting the realisations of generic types in their setting. Further,

they prove that an action of conjugation on finitely satisfiable generic types (via

their realisations) remains finitely satisfiable in M . The combination of these facts

allows them to compute the Ellis Group of the flow (G(M), SG(M)), for G = SL2

and M = Qp. which we include below.

Fact 1.6.10. [22] Let M = Qp and G = SL2.

The Ellis Group of the flow (G(M), SG(M)) is isomorphic to B(Qp)/B(Qp)
0.

We now refer to work [15] in which the aim is to simplify definable systems by

way of considering the existence of certain subgroups of G. Suppose that G admits

some normal definable subgroup H and that there exists a H(M)-invariant type

in SG(M). Precisely, H is definably extremely amenable. By a result from [2],

invariant types extend to the Shelah expansion, and so there exists some H(M)-

invariant external type in SG(M ext). Since H is normal, there exists a canonical

quotient πH : G → G/H which extends to a projection from types in G over M to

types in G/H over M . Jagiella shows the following;

Fact 1.6.11. [15] Let G be a definable group with a normal definably extremely

amenable subgroup H. Let p be the H(M)-invariant type in SG(M ext).

Then the set SG(M ext) ∗ p is a subflow of SG(M ext) and is isomorphic to

SG/H(M ext). Further, there is a minimal subflow of SG(M ext) ∗ p which projects to

a minimal subflow of SG/H(M ext).
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Essentially, if you wish to study the dynamics of a group which admits a normal

definably extremely amenable subgroup, it suffices to consider only the quotient

space instead, which will often reduce the computations significantly. Further, [15]

shows that whenever we project minimal flows as above, idempotents map to idem-

potents and ideal subgroups also map isomorphically. The consequence of this then

is the following corollary in which he demonstrates the Ellis Groups of the G-flow

and G/H-flow are isomorphic.

Fact 1.6.12. [15] Let G be a definable group with H a normal definably extremely

amenable subgroup of G.

Then the Ellis Groups of (G(M), SG(M ext)) and (G(M)/H(M), SG/H(M ext)) are

isomorphic.

To conclude this section, we recall further conjectures of Newelski ([18], [19])

surrounding Ellis Groups in this model theoretic context. We paraphrase the sum-

mary of this conjecture, and its corollary, as given in [15].

Conjecture 1.6.13. Let G be an M-definable group and let N be an elementary

extension of M . Then the Ellis Group of (G(N), SG(N ext)) and (G(M), SG(M ext))

are isomorphic.

We remark that this conjecture also suggests this isomorphism can be found in a

definable way. Newelski ([19]) provides some partial solutions by constructing a so

called ∗-elementary extension, obtained by taking an extension of M ext rather than

M and naturally restricting this extension to the original language. This provides

an interpretation of externally definable sets in the extension and types in SG(M ext)

extend properly to types in SG(N ext). However this is not true for an arbitrary

elementary extension. One can then state the following;

Conjecture 1.6.14. Let G be an M-definable group and let N be an elementary

extension of M . Then there is an ideal subgroup in SG(N ext) whose restriction to

M is an ideal subgroup of SG(M ext)).
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In general, this restriction map is not a semigroup homomorphism, and so it is

not known whether the image of an ideal subgroup under this map is itself an ideal

subgroup.

These potential limitations of the ideal subgroups is something we need to be

aware of. In contrast to results of [2], where the description of G00 does not depend

on the model, it is important we fix a base model for calculating the Ellis Groups

and recognise that the choice of M is not arbitrary in our results.

1.7 Summary

We now summarise the content and key results of the thesis. In Chapter 2, we

consider the group G of 2 by 2 special linear matrices with entries from C((t)); the

field of formal laurent series with complex coefficients. We recall results surrounding

the model theory of this field, find a suitable group decomposition and prove that

this group is not definably amenable. We provide explicit description of the minimal

flows and Ellis Groups of the additive and multiplicative groups of the field, as well

as for the Borel group B(C((t))) of upper triangular matrices. The main result

of Chapter 2 is an explicit description of the Ellis Group of (G(M), SG(M)), and

demonstrating that this is not isomorphic to G/G00. This provides a counterexample

to the suggestion that the relationship between Ellis Groups and G/G00 in stable

theories may extend to the metastable setting.

Theorem 1.7.1. Let M = C((t)), G = SL2 and let B be the borel subgroup of G

of upper triangular matrices. Let I be the minimal subflow of the additive group of

C((t)) that contains a single type whose realisations are negatively infinitely valued

and lie in K∗0. Let J be the minimal subflow of (B(M), SB(M)).

Then the Ellis Group of (G(M), SG(M)) is I ∗ J , and is isomorphic to B/B0.

Though we use a nonstandard decomposition in Chapter 2, we use the fact that
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the Ellis Group is unique up to isomorphism to conjecture that SL2(C[[t]]) admits

a unique left-invariant global type. In Chapter 3 we prove this and give an explicit

description of this type.

Theorem 1.7.2. Let G = SL2(C[[t]]). Then G is definably amenable, (G,SG(M))

admits a 1-point minimal flow (G, {q}) and so the Ellis Group of (G,SG(M)) is

trivial.

The restriction of q to the stable group SL2(C) via the residue map is the unique

generic type of SL2(C).

Analogues of this result in the case of K � ACV F are already known. It is

conjectured that their result should extend to metastable groups of algebraically

closed residue but possibly non-divisible value group, and so we see that Chapter 3

is further evidence in support of that generalisation.

In Chapter 4 we turn our attention towards the description of Ellis Groups for

larger classes of metastable definable groups. We begin by recalling recent results of

metastable definable groups and interpreting those results in the context of definable

topological dynamics. We demonstrate that for G stably dominated, the collection

of stably dominated types forms a subflow of (G(M), SG(M)), though this is not

necessarily minimal. Our main results are explicit descriptions of minimal flows and

Ellis Groups for metastable definable groups that admit a definably (extremely)

amenable / maximally stably dominated group decomposition. The main results of

Chapter 4 are as follows.

Theorem 1.7.3. Suppose G = NH with N normal and both N , H = G/N sta-

bly dominated. Then the minimal subflow of (G,SG(M ext)) is precisely cl(I ∗ J),

where I is the minimal subflow of (N,SN(M ext)) and J is the minimal subflow of

(H,SH(M ext)).

Theorem 1.7.4. Let G be a definable group with subgroups H, J of G such that;
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• G = HJ

• J is maximally stably dominated

• (H,SH(M)) admits a unique 2-sided 1-point minimal flow, p.

Then the minimal flow of (G,SG(M)) is a subset cl(G(M ext) · p ∗ q) where q is the

principal generic of GenJ(M ext) and the Ellis Group of (G,SG(M)) is a subset of

p ∗GenJ(M ext)).

Theorem 1.7.5. Let G be a definable stably dominated group. Then there exists

some stable group, G, such that the minimal subflow of (G(M), SG(M)) is expressible

as a section of the minimal subflow of (G(M ext), SG(M ext)).

In future work, we believe removing the assumption thatH is definably extremely

amenable may be possible.

In Chapter 5 we instead work towards generalisation of the group and metastable

setting. Namely, we seek to provide an explicit description of the Ellis Group for

G affine algbraic admitting a decomposition with a maximally stably dominated

subgroup. We begin with an example of SL2(K), and compute the minimal flows,

Ellis Groups and connected components for the additive, multiplicative and borel

subgroups. We also give an explicit description for the left-invariant global type

in SSL2(OK
(M), as well as consider the minimal flows of the infinite intersection

B(OK).

We summarise the difficulties in the area surrounding generalisations with infinite

intersection, and suggest how we would progress in future work.
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Definable Topological Dynamics of

SL2(C((t)))

We investigate definable, non-definably amenable groups in metastable theories. The

motivation here is whether the results for stable groups - where G/G00 and the Ellis

Group are always isomorphic - have analogues for groups in metastable theories.

Work on metastability has been largely concerned with algebraically closed valued

fields, though it is known that all valued fields with non-divisible value group and

algebraically closed residue field are also metastable [10]. The field of formal Laurent

series with coefficients from C is an example of such a field, and is the setting we

will be focused on throughout this chapter. We denote this field by C((t)) and note

that elements of this field are of the form
∞∑
i=n

ait
i for some n ∈ Z. We begin with

some classical, preliminary results of k((t)), where k is some arbitrary algebraically

closed field. Our key references here are [5] and [10].

2.1 Preliminaries

We consider C((t)) as a valued field. For this chapter, unless otherwise stated, we

will let M = C((t)) and will use this notation interchangeably, making no formal
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distinction between M as a model with universe C((t)) and simply considering C((t))

itself as the model. Similarly, we will use M = K for some elementary extension of

M = C((t)), not necessarily saturated, and again will use M̄ and K interchangeably.

The valuation on C((t)) is given by v

(
∞∑
i=n

ait
i

)
= n, where an is the first non-

zero coefficient of the series. We call this the t-adic valuation. For C((t)) equipped

with the t-adic valuation, we have value group Z and residue field C. We will denote

the valuation ring by C[[t]] and the maximal ideal by M.

We now recall the definition of a Henselian valued field here.

Definition 2.1.1. Let K be a valued field complete with respect to some valuation v.

Let OK be the valuation ring of K and k the residue field of K. Let f(x) ∈ OK [X].

Then K is Henselian if the reduction f̄(x) ∈ k[x] has a simple root (that is, a0

such that f̄(a0) = 0 and f̄ ′(a0) 6= 0), then there exists a unique a ∈ OK such that

f(a) = 0 and the reduction (residue) res(a) = a0.

It is well known that C((t)) equipped with the t-adic valuation is a Henselian

valued field.

Corollary 2.1.2. Let K be a henselian valued field and suppose that an element

a ∈ K is in the coset 1 + M. Then a has nth roots for all n ∈ N.

One final thing to consider is the existence of (definably or otherwise) an angular

component map.

Definition 2.1.3. Let K be a valued field with valuation v. Let k be the a residue

field of K and Γ the value group of K. Then an angular component map is a map

ac : K → k such that;

• ac(0) = 0

• The restriction ac∗ : K∗ → k∗ is a group homomorphism (with multiplication

from the fields K and k respectively).
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• The restriction of ac to the group of units is the residue map.

Not all valued fields may admit an angular component map, though power series

field k((tΓ)) do, in particular, if f ∈ k((tΓ)) with f =
∑
γ>γ0

aγt
γ with γ0 6= 0, then

ac(f) = aγ0 . That is, map an element f to it’s first non-zero coefficient.

However, the angular component map is not (in general) definable, even in a

3-sorted language with sorts of the field, residue field and value group. It is known

[21] that the theory of henselian valued fields of residue characteristic 0 with an

angular component map ac eliminates field quantifiers in this 3-sorted language

when equipped with a predicate for ac.

We will be considering C((t)) as a valued field in the language of rings, together

with the predicates N(x), div(x, y) and Pn(x) for all n ∈ N, where;

• Pn(x) ⇐⇒ ∃y(yn = x)

• N(x) ⇐⇒ v(x) = 1

• div(x, y) ⇐⇒ v(x) ≤ v(y).

The angular component map is not definable in this language. We can however

access the angular component for elements with valuation in Z since we allow pa-

rameters from our base model M . That is, if f ∈ C((t)) with v(f) = z ∈ Z, we can

define the angular component of f as res(t−zf).

The main motivation for using the Delon language is that complete types over

C((t)) are all definable, and as such we can avoid working in a Shelah expansion

M ext in which the computational work is more difficult.

Fact 2.1.4. [5]

• C((t)) admits quantifier elimination in the language

(0, 1,+,×) ∪ {div,N(x)} ∪ {Pn : n ∈ N}.

• Th(C((t))) is NIP.
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• The complete 1-types over M = C((t)) are definable.

It was later proven in [10] that Th(C((t))) is metastable (over Γ). Of course,

there are many groups definable in C((t)) which are known to be definably amenable,

the Ellis Groups of which are fully understood.

We remark here that the majority of the work that follows in this Chapter is

submitted for publication. We confirm that the results of this chapter are my own

and that the submitted publication is a single author paper with no collaboration.

In testing whether the relationship between the Ellis Group and G/G00 holds for

an arbitrary metastable definable group, we need to look at a group which is not

definably amenable. We show that SL2(C((t))) is such a group.

Proposition 2.1.5. SL2(C((t))) is not definably amenable.

Proof. First, it is easy to check that SL2(C((t))) = SL2(C((t)))00, using the fact

that PSL2(C((t))) is simple and SL2(C((t))) is perfect. Assume for contradiction

that SL2(C((t))) is definably amenable. Then there is a global left SL2(C((t)))00-

invariant, and hence SL2(C((t)))-invariant, type p(x).

Let x1 6= 0 (we will handle x1 = 0 later) be the top left entry of a 2× 2 matrix.

Then p(x) ` x1 ∈ Ci for some coset Ci of K∗0 =
⋂
n

Pn(x).

Consider then the translation g of a realisation of p(x), where g =
(
a 0
0 a−1

)
for

some a ∈ C((t)). Then gp(x) ` ax1 ∈ Ci if and only if a is in the identity coset

K∗0. Clearly since C((t)) is not algebraically closed we can easily find some suitable

a /∈ K∗0 and see gp(x) 6= p(x).

For completeness sake, if the x1 entry of a realisation of p(x) is 0, since the

determinant of the realisation is 1, we see that the top right entry x2 6= 0 and the

above argument follows for the same g. Since p is not G00-invariant then p is not an

f -generic type and hence SL2(C((t))) is not definably amenable by Fact 1.5.7.

For the remainder of this chapter, we will useG = SL2 withG(M) = SL2(C((t)))

unless otherwise stated.
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To consider the action of G of SG(M) directly we would need to understand

3-types over C((t)) which is itself a difficult problem. We instead attempt to build

a subflow using complete 1-types and we do this by decomposing G into subgroups

of a smaller dimension.

Let

H(M) = {( 1 0
α 1 ) : α ∈M}

and let

B(M) =
{(

β γ
0 β−1

)
: β ∈M∗ and γ ∈M

}
.

It is clear that the map f : ( 1 0
α 1 ) 7→ α is an isomorphism from H(M̄) into

(K,+). Similarly, one can see B(M̄) ∼= K∗ × K. Finally, we consider the subgroup

Z/4Z =
{

( 1 0
0 1 ) ,

( −1 0
0 −1

)
, ( 0 1
−1 0 ) , ( 0 −1

1 0 )
}

. We choose this notation as this subgroup

is isomorphic to the cyclic group of 4 elements.

Proposition 2.1.6. Every element of G(M) = SL2(C((t))) can be expressed as a

product of elements from Z/4Z, H(M) and B(M).

Proof. Let g = ( x1 x2
x3 x4 ) be an arbitrary matrix in G(M). Assume that x1 6= 0 and

let β = x1 6= 0, γ = x2, α = x3(x−1
1 ). Then;1 0

0 1

1 0

α 1

β γ

0 β−1

 =

 β γ

βα β−1 + αγ

 =

x1 x2

x3 x4

 .

It remains to show that we can obtain matrices where x1 = 0. Choose z ∈ Z/4Z

to be the matrix ( 0 −1
1 0 ), and assume x1 = 0. Let α = 0, β = x3 and γ = x4. Then;0 −1

1 0

1 0

α 1

β γ

0 β−1

 =

−αβ −(β−1 + αγ)

β γ

 =

x1 x2

x3 x4

 .

Hence for any given arbitrary matrix we can solve for z, α, β and γ as above

and thus proves the decomposition.
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We note that there are multiple ways (at most 4) to decompose an element of

G(M) in this way. We considered the decomposition used in [22], namely that

SL2(K) = B(K) · SL2(O) for a valued field K. However, an issue occurs in that

SL2(C[[t]]) is not locally compact. We show later in this thesis that we could in

fact deal with this subgroup in several ways, though for this chapter we recall the

results as we originally proved them.

We now provide a classification of the 1-types over C((t)) as given in [5].

Fact 2.1.7. Let K ≺ L be valued fields with ΓK and ΓL the value groups of K and

L respectively. Let x ∈ L. Then to describe the type of x over K, we introduce the

following set;

IK(x) = {g ∈ ΓK : ∃k ∈ K such that v(x− k) ≥ g}.

We distinguish the following cases;

• If {v(x−k) : k ∈ K} ⊂ ΓK and IK(x) does not have a maximum element, we

say that x is immediate over K.

• If {v(x− k) : k ∈ K} ⊂ ΓK and IK(x) has a maximum element, we say that

x is residual over K.

• If there exists a k0 ∈ K such that v(x− k0) /∈ ΓK, then we have that

{v(x − k) : k ∈ K} = IK(x) ∪ {v(x − k0)}, and we say that x is valuational

over K.

Remark 2.1.8. We remark that Pn(x) and x 6= 0 determine a finite index subgroup

of K∗. It is clear that the type
⋂
n

Pn(x) determines the connected component K∗0 of

the multiplicative group (K∗,×). We will use Ci to denote an arbitrary coset of the

connected component K∗0, with C0 denoting the identity coset K∗0 itself. We use K

here for consistency with the rest of the thesis, though one can see via a countability

argument (using the fact that in ACV F an element a is an nth power if and only if

n|v(a)) that there are as many cosets of K∗0 as there are of C((t))∗0.
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We establish some final notation before progressing with this proof. By aPn(x)

we mean the multiplicative coset of the set defined by Pn(x). That is, aPn(x) =

{ap : p ∈ Pn(x)}. Similarly when using aK∗0 we mean the multiplicative coset of

K∗0 =
⋂
n

Pn(x).

Lemma 2.1.9. The complete 1-types over M = (C((t)),+,×) are precisely the

following;

(a) The (realized) types tp(a/M) for each a ∈ C((t)).

(b) For each a ∈ C((t)) and coset C of K∗0, the type pa,C determined by the formulas

{v(x− a) > n : ∀n ∈ Z} and (x− a) ∈ C.

(c) For each coset C of K∗0, the type p∞,C determined by the formulas

{v(x) < n : ∀n ∈ Z} and x ∈ C.

(d) For each a ∈ C((t)) with a of the form
j∑

m=i

, and for each n ∈ Z with n > j, the

type pa,n,trans determined by the formulas v(x− a) = n, and

{f(res((x− a)t−n)) 6= 0 : f ∈ C[x]}.

Proof. It is well known that realised types are complete and since determined by

a single formula are clearly consistent.

Claim: Types of Kind (b) are complete.

Proof of Claim. We first prove that p0,C0 is a complete type, but see that the

other types of kind (b) are just translations of p0,C0 and completeness is preserved.

To see consistency, consider a finite subset A of the set of formulas {Pn(x) : n ∈

N} ∪ {v(x − 0) > z : z ∈ Z}. This finite subset A has a realisation in C((t)) since

we can take the product of all n (for each Pn(x) ∈ A) and the maximum value of z

(of the v(x− 0) > z formulas in A). This obtains some finite integer for which any

element of C((t)) with this valuation is n-divisible (for each Pn(x) ∈ A), and hence
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an nth-power by Hensel’s Lemma. Further such an element has valuation strictly

greater than the maximum z in the finite set of formulas of the form v(x− 0) > z in

A. Hence the collection of formulas that we claim determine the types of kind (b)

is finitely consistent in C((t)), and hence consistent over C((t)) by compactness.

Since we have quantifier elimination, we need only consider formulas of the form

Pn(f(x)) and N(f(x)) where f(x) ∈ C((t))[x], n ∈ N. We begin with Pn(f(x)).

Suppose that f(x) = amx
m + ...+ a1x+ a0. Let i ≤ m be the least such that ai 6= 0.

Let x0 � p0,C0 . Then x0 ∈ C0 = K∗0, and so is an nth power for all n ∈ N. Hence

Pn(f(x0)) ⇐⇒ Pn(x−i0 f(x0)).

Since x0 is infinitely valued, we claim that Pn(x−i0 f(x0)) ⇐⇒ Pn(ai). Consider

then v(x−i0 f(x0)). This is in infinitely valued as x−i0 f(x0) = ai+ai+1x0 + ...+amx
m−i
0

and ai is infinitely valued. As the value of each term in x−i0 f(x0) is in a different coset

of Z, we can divide by ai to translate the polynomial at x0 into the coset 1+M. Hence

by Hensel’s Lemma a−1
i x−i0 f(x0) has nth roots, and so Pn(x−i0 f(x0)) ⇐⇒ Pn(ai) as

required.

We repeat this for N(f(x)). Again, let x0 � p0,C . Recall that N(f(x0)) ⇐⇒

v(f(x0)) = 1. Then, since x0 � p0,C , v(x0) > z for all z ∈ Z, and so f(x0)

is the sum of objects from distinct cosets of Z (as an additive group). That is,

f(x0) = a0+a1x0+...+anx
n
0 , where v(ai) ∈ iv(x0)+Z. This means that v(f(x0)) = 1

exactly when v(a0) = 1, meaning we have N(f(x0)) ⇐⇒ N(a0) for any x0 � p0,C .

These arguments demonstrate that p0,C0 is a complete type, and further that

each can be determined by a single element proves definability (over ∅).

We now prove that types of kind (c) are complete. We show that p∞,C0 is

complete, and observe that other types of kind (c) are translations of p∞,C0 and

completeness is preserved.

Claim Types of kind (c) are complete.

Proof of Claim. To first see consistency, consider a finite subset A of the set
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of formulas {Pn(x) : n ∈ N} ∪ {v(x) < z : z ∈ Z}. This finite subset A has a

realisation in C((t)) since we can take the product of all n (for each Pn(x) ∈ A)

and the modulus of the minimum value of z (of the v(x < z) formulas in A). This

obtains some finite integer, the additive inverse of which in Z has the propery that

any element of C((t)) with this valuation is n-divisible, and hence an nth-power (for

each Pn(x) ∈ A) by Hensel’s Lemma. Further this is strictly less than all z where

v(x) < z is in A. Hence the set of formulas which we claim describes the types of

kind (c) is finitely consistent, and hence consistent by compactness.

Since we have quantifier elimination, we need only consider formulas of the form

Pn(f(x)) and N(f(x)) where f(x) ∈ C((t))[x], n ∈ N. We begin with Pn(f(x)).

Suppose that f(x) = amx
m + ...+ a1x+ a0. Let i ≤ m be the least such that ai 6= 0.

Let x0 � p∞,C0 . Then x0 ∈ C0 = K∗0, and so is an nth power for all n ∈ N. Hence

Pn(f(x0)) ⇐⇒ Pn(x−i0 f(x0)).

We claim that Pn(x−m0 f(x0)) ⇐⇒ Pn(am). As f(x0) = amx
m
0 +am−1x

m−1
0 + ...+

aix
i
0, we have x−m0 f(x0) = am+am−1x

−1
0 +am−2x

−2 + ..+aix
i−m
0 . Since v(x0) < z for

all ∈ Z, we see v(x−1
0 ) > z for all z ∈ Z, and hence x−m0 f(x0) ∈ am+M. By factoring

am and again applying Hensel’s Lemma, we see Pn(x−m0 f(x0)) ⇐⇒ Pn(am) as

required.

We repeat this for N(f(x)). Again, let x0 � p∞,C0 . We again see that f(x0) =

xm0 (am+am−1x
−1
0 +...). Then, ifm = 0, f is a constant polynomial andN(f(x0)) ⇐⇒

N(am). If m 6= 0, then since x0 � p∞,C0 , we have f(x0)) negatively infinitely valued,

and so � ¬N(f(x0)) for all non-constant f ∈ K[x]. This determines every formula

of the form N(f(x)).

Hence p∞,C0 is a complete type as required.

Claim: Types of kind (d) are complete.

Proof of Claim. Consistency is clear since for any element A of C there are in-

finitely many polynomials with f(A) = 0. Hence any finite subset of the formulas
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which determine types of kind (b) clearly has a realisation in C((t)). That the infinite

collection of formulas is consistent then follows from compactness.

Let pb,n,trans be as above. Let x0 � pb,n,trans. Then x0 = b + x = b + αtn + ...,

where α is transcendental over the residue field of K.

Then by QE, we consider polynomials f of C((t))[x]. We may assume f is not a

constant polynomial. Hence

f(x0) = a0 + a1x0 + a2x
2
0 + ...+ amx

m
0

= a0 + a1(b+ x) + a2(b+ x)2 + ...+ am(b+ x)m

= (a0 + a1b+ a2b
2 + ...+ amb

m) + (a1x+ a2(2bx+ x2) + ....+ amx
m)

= f(b) + c1x+ c2x
2 + c3x

3 + ...cmx
m

= f(b) + g(x)

Where the coefficients ci are elements of C((t))∗0. This is possible since b ∈ C((t))∗0

and not a variable.

Remember that the angular component is not definable in this setting [17], but

since each cix
i has some valuation β ∈ Z, we can instead consider res(cix

it−β).

Hence, since x is transcendental over C, the angular component of each term cix
i is

transcendental over C((t))∗0.

Also note that since C is algebraically closed, xi /∈ C for any i.

We can express g(x) = d0δ0 + d1δ1 + d2δ2 + ... with di ∈ C((t)) and δi transcen-

dental over C. Using this, we know Pn(g(x)) ⇐⇒ Pn(d0δ0) ⇐⇒ Pn(d0) since δ0

is transcendental over the residue field, and so since Th(C((t))) knows it has alge-

braically closed residue, in some expansion K(x) with residue field acl(res(K(x0))),

δ0 has nth roots for all n, and so � Pn(δ0) for all n.

Hence Pn(g(x)) ⇐⇒ Pn(d0). We then just need to account for f(b), but since

this is itself an element of C((t))∗0, we just see Pn(f(x0)) ⇐⇒ Pn(f(b)+g(x)) ⇐⇒

Pn(f(b) + d0). Hence Pn(f(x0)) is determined.
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We can determine N(f(x0)) similarly by considering the valuation of g(x). Since

the transcendental coefficients have valuation 0, N(g(x)) is determined by the lead-

ing term, d say, which is an element of C((t)). Hence N(f(x0)) ⇐⇒ N(f(b) + d).

Hence Pn(f(x0)) and N(f(x0)) are determined and hence pb,n,trans is a complete

type as required.

Hence we have demonstrated that the types as above are complete 1-types over

C((t)).

Claim: There are no other complete 1-types over C((t)).

Proof of Claim: To see that these are all the complete 1-types over C((t)) we

apply Fact 2.1.7 from [5]. As in Fact 2.1.7 we define the set IC((t))(x) = {g ∈

Z : ∃a ∈ C((t)) with v(x− a) ≥ g}.

Immediate: Clearly, the immediate types correspond to the realised types de-

termined by the formula x = a.

Residual: To see that the residual types correspond to those of kind (d), assume

that we have the type of x over C((t)) for which {v(x− k) : k ∈ C((t))} is a subset

of Z and IK(x) obtains a maximum value in Z.

Since IC((t))(x) obtains a maximum value in Z and C((t)) can be considered as

an additive group, we must have that x /∈ C((t)) (else the type of x over C((t))

would be realised). Further, since {v(x− a) : a ∈ C((t))} is a subset of Z, we must

have that v(x) ∈ Z. Hence x lies in some extension K of C((t)) where ΓK = Z, and

so res(x) /∈ C. Since C is algebraically closed, res(x) is transcendental over C.

Moreover, for a fixed a ∈ C((t)), by the above we have v(x − a) ∈ Z. Since

IC((t))(x) obtains a maximum value n in Z, the type of x over C((t)) must contain

the formula v(x−a) = n for any a ∈ C((t)) for which v(a) ≥ n. What this means is,

to describe the type of x over C((t)) is suffices to consider only the terms in x which

have value less than n. Specifically, these terms can be thought of as an element of

C((t)) with finite support.
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Hence x is of the form a+x′ where v(x′) = n, a ∈ C((t)) and a has finite support.

Hence, over C((t)), we can determine all residual types via the formulas v(x−a) = n

and {f(res((x− a)t−n) 6= 0 : f ∈ C[x]}, where a is of the form
j∑

m=i

amt
m and j < n

as required. This is precisely the description of (d). Note that the Pn(x) predicates

are not necessary here as the nth powers are determined exclusively by the valuation

(which is in Z) since the residue field is algebraically closed.

Valuational: Let us consider the type of x over C((t)) which is valuational over

C((t)) as given in Fact 2.1.7.

Then there exists an a ∈ C((t)) for which v(x−a) /∈ Z. Since Th(C((t))) knows Z

is discrete, we must have either v(x−a) > z for all z ∈ Z or v(x−a) < z for all z ∈ Z.

Clearly this means there is more than 1 possibility for the type of x over C((t)) as

these formulas are not finitely consistent. Moreover, if v(x−a) < z for all z ∈ Z, and

a ∈ C((t)), we must have v(x) < z for all z ∈ Z since v(x− a) = min{v(x), v(a)}.

Since the angular component map is not definable in this language (see [17]),

we can not define the properties x relative to the residue field since v(x) /∈ Z. It

remains to consider the predicates of the language. Since it does not make sense to

ask whether something not in Z is n-divisble, and since types must complete, for

any Pn(x) the type of x over C((t)) must contain either Pn(x) or ¬Pn(x) for all n.

Hence the type of x over C((t)) must know which coset of
⋂
n

Pn(x) it is contained

in.

Hence the type of x over C((t)) where x is valuational is determined by either

{v(x − a) > z : z ∈ Z} ∪ x ∈ Ci, which is precisely the types of kind (b), or by

{v(x) < z : z ∈ Z}∪x ∈ Ci, which is precisely the types of kind (c), as required.

Hence we have shown that this is the complete list of complete 1-types over

C((t)) (in the Delon language) as required.

Corollary 2.1.10. Every (left) K∗-translate of p0,C0 is definable over M .
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Proof. Let a ∈ M̄∗ and x0 � p0,C Suppose Pn(f(x)) ∈ ap0,C . Then ax0 �

Pn(f(x)) ⇐⇒ a−1Pn(f(x)) ∈ p0,C . Since Pn(K∗) has finite index in K∗, ∃b ∈ M∗

such that a−1Pn(K∗) = bPn(K∗). Hence Pn(f(x)) ∈ ap0,C ⇐⇒ bPn(f(x)) ∈ p0,C .

As p0,C0 is ∅-definable, b is C((t))-definable and so ap0,C0 is definable over M as

required.

2.2 Additive and Multiplicative Groups of C((t))

We consider the additive and multiplicative groups of C((t)).

We denote by SGa(M) the space of complete types concentrating on Ga, where

Ga(M) = (C((t)),+), and so (Ga, SGa(M)) is a flow under the additive group action.

We note that Ga(M) = (K,+). By global in this context we mean over some large

sufficiently saturated model. Recall that by a (left) f -generic type (over some set

A) we mean a global type p ∈ SG(U) such that no (left) translate of p forks over A.

Proposition 2.2.1.

(i) The types p(x) ∈ SGa(M) of kind (c) are definable generic types of (Ga,+).

Moreover, the global heir of p∞,C is invariant under the action of (K,+) for

any coset C of K∗0.

(ii) The types {p∞,C} are 1-point minimal subflows of (Ga(M), SGa(M)).

(iii) The global heirs of the types of kind (c) are precisely the global (strongly) f -

generics of (K,+) and are all definable and invariant under (K,+), and hence

K00 = K0 = K.

Proof.

(i) Suppose that a ∈ K and β � p∞,C |Ma. Since v(β) = α < Γ, and v(a) = c ∈ Γ,

we have v(β) < v(a) and hence v(a + β) < Γ. It remains to show that
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a+ β ∈ Pn(K). Since v(β) = −v(β−1), and v(β−1) > Γ, we have v(aβ−1) > Γ.

Hence 1 + aβ−1 ∈ 1 + M, and so by Hensel’s Lemma 1 + aβ−1 has nth roots in

K for all n. Hence β(1+aβ−1) = a+β ∈ βK∗0, and so a+β � p∞,C . Since this

type is K-invariant, in general, it must be K00-invariant and hence is f -generic.

(ii) This follows from (i). Let q ∈ S(C((t)),+)(M) and consider q ∗ p∞,C = tp(a +

β/M). Then from above we have tp(a + β/M) = tp(β/M), and hence is a

subflow of SGa(M) under the action of (K,+). Minimality follows trivially

since {p∞,C} is a singleton, there can be no properly contained non-empty

subflow.

(iii) Since (K,+) is abelian, it is amenable as a discrete group and hence definably

amenable [3]. Hence by Fact 1.5.6, (K,+) admits some global f -generic type.

Further, by Corollary 8.20 of [3], as (K,+) admits a global f -generic, it must

admit an f -generic over any model; in particular, over M . Hence we need only

check the complete 1-types over M .

We claim that the p∞,Ci
are all f -generic over M . Note that by Fact 1.5.7 if a

type q ∈ SGa(M) is f -generic then Stab(q) = (K00,+).

Clearly, immediate types are not f -generic. The stabilisers of those types are

trivial in all models and hence not of bounded index in (K,+), meaning the

stabilizer is not (K00,+) and so not f -generic.

To decide whether the transcendental types are f -generic, it suffices to consider

the type p0,0,trans. We see that Stab(p0,0,trans) is precisely the valuation ring,

which does not have bounded index in (K,+) and further has an infinite chain

of smaller subgroups, and so is not (K00,+).

This leaves the valuational types. It is clear that the infinitesimal types are not

f -generic as their stabilizers in the additive group are also trivial, and hence
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not of bounded index in (K,+).

Hence the types p∞,Ci
must be f -generic, and we confirm this further by con-

sidering that Stab(p∞,Ci
) is (K,+) itself, which is of course of bounded index

and hence we conclude (K00,+) = (K0,+) = (K,+) as required.

Similarly, we denote by SGm(M) the space of complete types concentrating on

Gm, where Gm(M) = (C((t))∗,×), and so (Gm, SGm(M)) is a flow under multi-

plication. Again, we have Gm(M) = (K∗,×) and will use both notations where

appropriate.

Proposition 2.2.2.

(i) The types P0 = {p0,C : C some coset of (K∗)0} form a minimal subflow of

(Gm, SGm(M)).

(ii) The types P∞ = {p∞,C : C some coset of (K∗)0} form a minimal subflow of

(Gm, SGm(M)).

(iii) The type-definable connected component K∗00 coincides with the definable con-

nected component K∗0.

Proof.

(i) To show P0 is a minimal subflow, we show it is precisely the SGm(M)-orbit

(meaning under the semigroup action of type multiplication) of a type p0,C0 .

Let q ∈ SGm(M) with a realising q and α realise the heir of p0,C0 over (M,a).

Then q ∗ p0,C0 = tp(aα/M). Since v(aα) = v(a) + v(α) > Γ, then tp(aα/M)

must be a type of kind (b), with aα infinitesimally close to 0. Hence, tp(aα/M) =

p0,Ci
for Ci some coset of K∗0. Further, since α is an element of the identity

coset C0, we have aα ∈ Ci ⇐⇒ a ∈ Ci.
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However, the choice of q (and a) was arbitrary. In particular, a could lie in any

coset Ci, and so the SGm(M)-orbit of p0,C0 is P0 = {p0,Ci
: Ci a coset of K∗0}

as required.

(ii) To show P∞ is a minimal subflow, we show it is precisely the SGm(M)-orbit of

a type p∞,C0 .

Let q ∈ SGm(M) with a realising q and α realise the heir of p∞,C0 over (M,a).

Then q ∗ p∞,C0 = tp(aα/M). Since v(aα) = v(a) + v(α) < Γ, then tp(aα/M)

must be of kind (c); that is, tp(aα/M) = p∞,Ci
for Ci some coset of K∗0. Again,

since α is an element of the identity coset C0, we have aα ∈ Ci ⇐⇒ a ∈ Ci.

However, the choice of q (and a) was arbitrary. In particular, a could lie in any

coset Ci, and so the SGm(M)-orbit of p∞,C0 is P∞ = {p∞,Ci
: Ci a coset of K∗0}

as required.

(iii) Since (K∗,×) is abelian, it is amenable as a discrete group and hence definably

amenable [3]. Hence by Fact 1.5.6, (K∗,×) admits some global f -generic type.

Further, by Corollary 8.20 of [3], as (K∗,×) admits a global f -generic, it must

admit an f -generic over any model; in particular, over M . Hence we need only

check the complete 1-types over M .

We claim that the p∞,Ci
and p0,Ci

are all f -generic over M . Note that by Fact

1.5.7 if a type q ∈ SGm(M) is f -generic then Stab(q) = (K∗,×)

Clearly, immediate types are not f -generic. The stabilisers of those types are

trivial in all models and hence not of bounded index in (K∗,×), meaning they

are not (K∗00,×) and so not f -generic.

For the transcendental types, it is clear that the stabilizers of those types are

the multiplicative group of the residue field, which are not of bounded index

in (K∗,×) and so the transcendental types are not f -generic.
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We are left with the valuational types. The stabilizers of these types are

equivalent, and are all equal to
⋂
n

Pn(x) = (K∗0,×), which is of bounded index

in (K∗,×) and hence since at least one of these types must be f -generic, we

conclude (K∗0,×) = (K∗00,×) as required.

2.3 The Borel Subgroup of SL2(C((t)))

We now consider the Borel subgroup, B(M̄), of upper triangular matrices. We will

often associate the matrix
(
b c
0 b−1

)
∈ B(M̄) with the pair (b, c) where b ∈ K∗ and

c ∈ K. For this section, multiplication of these pairs is given by matrix multiplica-

tion and so (b, c)(β, γ) = (bβ, bγ + cβ−1).

Lemma 2.3.1. B(M̄)00 = B(M̄)0 ∼= {(b, c) : b ∈ K∗0, c ∈ K}.

Proof. Consider the following mapping;

π : B(M̄)→ K∗

(b, c) 7→ b

With Ker(π) = (K,+). Then it is clear that B(K00)→ K∗00 has Kernel isomorphic

to (K00,+). Using the results of Propositions 2.2.1 and 2.2.2 that K∗00 = K∗0 and

(K00,+) = (K,+), we obtain B(M̄)00 = B(M̄)0 = {(b, c) : b ∈ K∗0, c ∈ K}.

Recall that C0 denotes (K∗)0, p0,C0 is an f -generic of SGa(M) and that p∞,C0 is

an f -generic type in SGm(M). Let β realise p0,C0|M̄ and γ realize p∞,C0|M̄,β.
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Consider then the pairs (β, 0) and (1, γ) and we identify these pairs with the types

tp((β, 0)/M̄) and tp((1, γ)/M̄, β) of the corresponding matrix. Then p0,C0 ∗ p∞,C0 =

tp((β, 0)/M̄) ∗ tp((1, γ)/M̄, β) = tp((β, γβ)/M̄).

Further, since γ realises an heir over M̄β, we have that p∞,C0 is invariant under

left multiplication by β−1, and hence tp((β, γβ−1)/M̄) = tp((β, γ)/M̄).

Let p̄0 = tp((β, γ)/M̄) ∈ SB(M̄), and so by p0 we mean the restriction of this

type to M .

Lemma 2.3.2. p̄0 ∈ SB(M̄) is a B00(M̄)-invariant global type, and moreover every

left B(M̄)-translate is definable over M (i.e. definable over C((t))).

Proof. We first show that p̄0 is B(M̄)00-invariant. Let (b, c) ∈ B(M̄)00, which by

Lemma 2.3.1, means b ∈ (K∗)0 and c ∈ K. Since the operation here is matrix

multiplication, we note that (b, c)(β, γ) = (bβ, bγ + cβ−1).

We want to show that tp((bβ, bγ + cβ−1)/M̄) = tp((β, γ)/M̄).

It is equivalent to show that tp(bβ/M̄) = tp(β) and that tp(bγ + cβ−1/M̄, bβ) is

an heir of tp(γ/M̄).

As b ∈ K∗0 we have that tp(bβ/M̄) = tp(b/M̄). Then since bβ ≡M̄ β, γ must

also realise the heir of p∞,C0 over M̄, bβ.

Since p∞,C0 is invariant under multiplication by any element in K∗0, we have

tp(bγ/M̄, bβ) = tp(γ/M̄, bβ).

Moreover, as v(γ) < Γ ∩ dcl(M,β), tp(bγ + cβ−1/M̄, bβ) = tp(bγ/M̄, bβ) and so

tp(bγ + cβ−1/M̄, bβ) is an heir of tp(γ/M̄).

Again, since p∞,C0 is invariant under multiplication by elements of K∗0, we have

that tp((bβ)−1(bγ + cβ−1)/M̄, bβ) is an heir of tp(γ/M̄).

Since bβ realises p0,C0 and (bβ)−1(bγ + cβ−1) realises the unique heir of p∞,C0

over (M, bβ), we have that p0,C0 ∗ p∞,C0 = tp((bβ, bγ + cβ−1)/M̄) = tp((β, γ)/M̄).

Hence p̄0 is a B(M̄)00-invariant type of SB(M̄).
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Finally, since tp(β/M̄) is definable over M , and tp(γ/M̄, β) is the heir of p∞,C0 ,

which is also definable over M , we have that tp((β, γ)/M̄) is definable over M . It

is clear using the above argument that every left B(M̄)-translate of p̄0 is definable

over M .

Proposition 2.3.3.

(i) The B(M̄)-orbit of p̄0 is closed and is a minimal B(M̄)-subflow of SB(M̄).

We call this subflow J̄ .

(ii) The restriction of J̄ to M , denoted J , is a subgroup of (SB(M), ∗), is isomor-

phic to B(M̄)/B(M̄)0 and hence is the Ellis Group of the flow (B(M), SB(M)).

Proof.

(i) The fact that the orbit is closed follows from Lemma 1.15 of [29], and it is

well known that a non-empty set is a minimal flow if and only if it is the orbit

closure of each of its points, a proof of which can be found in [1].

(ii) First, we note that p0 is itself contained in SB0(M), and since p̄0 is B(M̄)0-

invariant by Lemma 2.3.2, we have that the restriction to p0 is B(M)0-invariant

and hence idempotent.

That subflows are preserved under restrictions is a consequence of Proposition

5.4 of [29]. Since J̄ is the minimal subflow of (B(M̄), SB(M̄)), the restriction

J is a minimal subflow of (B(M), SB(M)). We can then form the Ellis group

of (B(M), SB(M)), which is (p0 ∗ J , ∗).

We now show that p0 ∗J = J . Clearly, p0 ∗J ⊆ J , as J is a minimal subflow

of SB(M). Let pi ∈ J . We claim that p0 ∗ pi = pi.

Claim: p0 ∗ pi = pi.
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Proof of Claim. Let (b, c) realise p0 and (β, γ) realise the heir of pi over

(M, (b, c)). Then we want to show that tp((bβ, bγ+ cβ−1)/M) = tp((β, γ)/M).

The valuational arguments in Lemma 2.3.2 carry over, namely that if β is

negatively infinitely valued then so is bβ, and that v(γ) < dcl(M,β) ∩ Γ. It

remains to prove that bβ lies in the same coset as β, and that bγ + cβ−1 lies

in the same coset as γ.

Since K∗0 acts as the identity on K∗/K∗0, and b ∈ K∗0, we know that bβ lies

in the same coset as β.

For bγ + cβ−1 this is not as clear. Instead observe that γ + b−1cβ−1 is in the

same coset as γ if and only if γ−1(γ+ b−1cβ−1) = 1 + γ−1b−1cβ−1 ∈ K∗0. Since

v(γ−1) is infinite over (M, b, c, β), we see that 1 + γ−1b−1cβ−1 ∈ 1 + M.

Hence by the corollary to Hensel’s Lemma (2.1.2), 1+γ−1b−1cβ−1 has nth roots

for all n and so lies in K∗0. Hence γ + b−1cβ−1 lies in the same coset as γ.

Finally, since b ∈ K∗0, b(γ + b−1cβ−1) = bγ + cβ−1 also lies in the same coset

as γ as required. Hence p0 ∗ pi = pi for all pi ∈ J .

So p0 ∗ J = J , with p0 acting as identity we see (p0 ∗ J , ∗) = (J , ∗).

From this, we obtain the following map;

π : J → B(M̄)/B(M̄)0

tp(t/M) 7→ tB(M̄)0

It is clear that π is well defined, and we now show that π is an isomorphism.

First, we show π is a group homomorphism. Note that it is not longer necessary

to consider entries in the realisations of these types, and so for simplicities sake

we make a small change in notation here.

Let t0 realise p0. Then t0 is a matrix in B(M̄)0, and so clearly t0B(M̄)0 =

B(M̄)0, the identity element of the quotient group B/B0.
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Since J is a group, let pi ∈ J with inverse p−1
i . Then pi is realised by some

ti, and so π(pi) = ti(B(M̄)0).

The heir of p−1
i over (M, ti), and so in particular p−1

i itself, is realised by some

si, and so π(p−1
i ) = si(B(M̄)0). Note we are not claiming si is the inverse of ti

in G, just that si is a realisation of the inverse of pi in J .

We claim that si(B(M̄)0) · ti(B(M̄)0) = B(M̄)0.

From coset multiplication we have si(B(M̄)0)·ti(B(M̄)0) = (tisi)B(M̄)0. Then

as p−1
i ∗ pi = p0, we see siti ∈ B(M̄)0, and so si(B(M̄)0) · ti(B(M̄)0) = B(M̄)0.

Hence π((pi)
−1) = ((ti)(B(M̄)0))−1 as required, and so π is a group homomor-

phism.

It is easy to see that π is bijective. Note J is a section of B(M̄)/B(M̄)0. That

is to say π is surjective since, for every coset t(B(M̄)0), we can associate a type

pi ∈ J with t′ ∈ t(B(M̄)0) and t′ � pi such that π(pi) = t(B(M̄)0). Injectivity

follows from the definition of J , observing that each type in J is determined

uniquely by a coset of K∗0.

We make no claims that the above minimal subflow is unique. In fact, taking

v(β) < Z and v(γ) < Γ ∩ dcl(M,β), both in C0, describes another left-invariant

idempotent element p′0 of (SB(M), ∗). It is easy to check that p0 ∗ p′0 = p′0 and

p′0 ∗ p0 = p0. This dichotomy is important as it confirms that the types p0 and p′0

cannot share a minimal flow using a result of topological dynamics found in [1]. As

such, J is definitely not the unique minimal flow of (B(M), SB(M)). This is simply

noted for interest, since the isomorphism of Ellis Groups means our choice of minimal

flow is unimportant beyond personal preference or perhaps ease of computation.
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2.4 The Minimal Subflow of (G(M), SG(M)).

Recall J is the minimal subflow of (B(M), SB(M)). As before, pi will denote a

type in J , where pi specifies in which coset Ci of K∗/K∗0 the first coordinate of

the realisation of pi lies. Later in this section we may need to be specific about the

coset, and we clarify this change in notation when it used.

We will again use the notation in 2.1.9 for the valuational types, with p∞,C0 the

minimal subflow of (Ga, SGa(M)).

We will often associate some h � p∞,C0 with the matrix ( 1 0
α 1 ), and likewise some

t � pi with the matrix
(
β γ
0 β−1

)
. We will not distinguish between z ∈ Z/4Z and the

type determined by the formula x = z. As before, K will denote some elementary

extension of C((t)) with C0 denoting the identity coset K∗0 itself.

We approach the construction of the minimal flow differently to how it has been

done in the past. In the literature, they take the closure of the ∗-product of the

minimal flows of groups in the decomposition for G and prove that it is indeed

minimal. In the following work, we instead begin with an idempotent element and

build our minimal flow around it by taking the closure of the G(M)-orbit. In general,

this will not be a minimal flow; for example, the realised type of the identity element

will have G(M)-orbit equal to G(M) itself which is rarely minimal.

Proposition 2.4.1. Let p0 ∈ J as in Lemma 2.3.2 and p∞,C0 a minimal subflow of

SGa(M). Then the type p∞,C0 ∗ p0 is an idempotent element of (SG(M), ∗).

Proof. To show this is an idempotent, we need to show (p∞,C0 ∗ p0) ∗ (p∞,C0 ∗ p0) =

p∞,C0 ∗ p0.

Let h0 realise p∞,C0 , let t0 realise the heir of p0 over (M,h0), let h realise the

heir of p∞,C0 over (M,h0, t0) and let t realise the heir of p0 over (M,h0, t0, h). Then

(p∞,C0 ∗ p0)2 = tp(h0t0ht/M). Then;
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h0t0ht =

1 0

a 1

b c

0 b−1

1 0

α 1

β γ

0 β−1


=

1 0

a 1

b+ cα c

b−1α b−1

β γ

0 β−1


=

1 0

a 1

 1 0

b−1α
b+cα

1

b+ cα c

0 (b+ cα)−1

β γ

0 β−1


=

 1 0

a+ b−1α
b+cα

1

β(b+ cα) γ(b+ cα) + cβ−1

0 β−1(b+ cα)−1


Then, since (β, γ) � p0|M,h0,t0,h, we see that

(β(b + cα), γ(b + cα) + cβ−1) also realises p0|M,h0,t0,h since p0 ∈ J (the minimal

subflow) and all b, c, β, γ, α ∈ K∗0.

We prove that a+ b−1α
b+cα

realises p∞,C0 . Write b−1α
b+cα

= (b2α−1 + bc)−1. Then, since

v(c) < dcl(M, b, α) ∩ Γ, we see v(b2α−1 + bc) < dcl(M, b, α) ∩ Γ.

Hence v((b2α−1 + bc)−1) > dcl(M, b, α) ∩ Γ. Then v(a + b−1α
b+cα

) = v(a) < Z, and

hence a+ b−1α
b+cα

� p∞,C0 .

Hence p∞,C0 ∗ p0 is idempotent in (SG(M), ∗).

Consider a type q in SG(M). Then by using the group decomposition from

Proposition 2.1.6, we see that we can express any realisation g of q in the form

g = zht for z ∈ Z/4Z, h ∈ H(M̄) and t ∈ B(M̄). The same can be done for any

g ∈ G(M), this time with z ∈ Z/4Z, h ∈ H(M) and t ∈ B(M).

We first compute the action of G(M) on p∞,C0 ∗ p0, and do so by considering the

action of H(M), B(M) and Z/4Z separately.

Proposition 2.4.2. The H(M)-orbit of p∞,C0 ∗ p0 is p∞,C0 ∗ p0.

Proof. Clearly, since p∞,C0 is a minimal flow of the additive group, H(M) acts

trivially, and we see H(M) ∗ p∞,C0 ∗ p0 = p∞,C0 ∗ p0.
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The following computations require us to be more precise about the cosets of

K∗0 than previously in the thesis. In the following work, p0 ∈ J will still mean the

identity coset, and pi, pj,... will denote arbitrary elements of J . However, by pkK∗0 ,

we mean a type in J realised by some (β, γ) with β, γ ∈ kK∗0.

Similarly, for one types, C0 will still denote the identity coset, but when necessary

we will be explicit and use kK∗0 in place of Ci to denote the specific coset of K∗0

which contains the realisations.

We claim that we can express the B(M) orbit of p∞,C0 ∗ p0 as a subset V of

S1(M) ∗ J . We first show left inclusion.

Proposition 2.4.3. The B(M)-orbit of p∞,C0∗p0 is a proper subset V of S1(M)∗J ,

where V = {p∞,k−2K∗0 ∗pkK∗0 : k ∈ C((t))∗}∪{pa,k−2K∗0 ∗pkK∗0 : a 6= 0, k ∈ C((t))∗}.

Proof. Again, let p0 be as in Lemma 2.3.2. We compute B(M) · p∞,C0 ∗ p0. Let

t0 =
(
b c
0 b−1

)
be an element of B(M).

Let h = ( 1 0
α 1 ) realise p∞,C0|M,t0 .

Let t =
(
β γ
0 β−1

)
realise p0|M,t0,h.

Then t0 ∗ p∞,C0 ∗ p0 = tp(t0ht/M). We split into two cases; where c = 0 and

c 6= 0.

Case 1: Let c = 0.

Then;

t0ht =

b c

0 b−1

1 0

α 1

β γ

0 β−1


=

b 0

0 b−1

1 0

α 1

β γ

0 β−1


=

 1 0

b−2α 1

bβ bγ

0 β−1b−1

 .

Since v(α) < Z, and v(b) ∈ Z, we see v(b−2α) < Z. Further, since α ∈ K∗0,

b−2α ∈ b−2K∗0. Hence b−2α � p∞,b−2K∗0 .
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Next, since (β, γ) � p0, which has B(M)-orbit J as J is minimal, we see that

(bβ, bγ) realises pbK∗0 ∈ J .

Hence, when t0 = (b, c) ∈ B(M) with c = 0, t0 ∗ p∞,C0 ∗ p0 = p∞,b−2K∗0 ∗ pbK∗0.

Case 2: Let c 6= 0.

Then;

t0ht =

b c

0 b−1

1 0

α 1

β γ

0 β−1


=

 1 0

b−1α
b+cα

1

β(b+ cα) γ(b+ cα) + cβ−1

0 β−1(b+ cα)−1


As bα−1 6= 0, we can write b−1α

b+cα
= (b2α−1 + cb)−1 = (bc)−1(1 + bc−1α−1)−1.

Since (1 + bc−1α−1) is in the infinitesimal neighbourhood of 1, which is itself

a multiplicative group, we know that (1 + bc−1α−1)−1 is of the form 1 + x where

v(x) ≥ Z. Then (1 + bc−1α−1)(1 + x) = 1 + bc−1α−1 + x+ xbc−1α−1.

Since (1 + bc−1α−1)(1 + x) = 1, we see bc−1α−1 + x + xbc−1α−1 = 0. Hence

x = −bc−1α−1 − xbc−1α−1, and since v(x) ≥ Z, and (b, c) ∈ B(M), we see v(x) =

v(−bc−1α−1), and the coset of K∗0 which contains x is determined by −bc−1.

Hence b−1α
b+cα

= (bc)−1(1 + x) = (bc)−1 + (bc−1)x, and x ∈ −bc−1K∗0, and hence

((bc)−1)x ∈ c−2K∗0.

Hence, b−1α
b+cα

� p(bc)−1,c−2K∗0 , where (bc)−1 6= 0 ∈ C((t)).

Next, since (β, γ) � p0, which has B(M)-orbit J since J is a minimal flow of

(B, SB(M)), we see that (β(b + cα), γ(b + cα) + cβ−1) realises some pj ∈ J , where

the coset Cj of K∗0 in which β(b + cα) and γ(b + cα) + cβ−1 lie is determined by

(b+ cα).

Since α � p∞,C0 , we see that this coset is determined by c.

Hence when t0 = (b, c) with c 6= 0, we see that (b, c) · p∞,C0 ∗ p0 = p(bc)−1,c−2K∗0 ∗

pcK∗0 .

Note that b has no bearing on the cosets here and c 6= 0. As such, for any
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a ∈ C((t)) and coset c−2K∗0 we can find an element t0 ∈ B(M) such that t0 · p∞,C0 ∗

p0 = pa,c−2K∗0 ∗ pcK∗0 ; namely, where t0 = ((ac)−1, c).

Hence, the B(M)-orbit of p∞,C0 ∗ p0 is a set of the form {p∞,k−2K∗0 ∗ pk} ∪

{pa,k−2K∗0 ∗ pk : a 6= 0}, where pk here means entries in the realisations of p ∈ J are

elements of the coset kK∗0.

We now demonstrate that the right hand side is a subset of the left; that any

type in V can be factorised into an element of the B(M)-orbit of p∞,C0 ∗ p0.

Proposition 2.4.4. Let V be as in the above proposition. Then V is a subset of

B(M) · p∞,C0 ∗ p0 and hence the two sets are equal.

Proof. We show that for any q ∈ V , there exists some (b, c) ∈ B(M) such that

q = (b, c) ∗ p∞,C0 ∗ p0.

We first consider the case where q = p∞,k−2K∗0 ∗ pk. Let h � p∞,k−2K∗0 and let

t = (β, γ) � pk|M,h. Then ht � q.

Since β, γ ∈ kK∗0, we can write β = kβ′ and γ = kγ′, where β′ and γ′ lie in the

coset C0 = K∗0. Since k ∈ C((t)), we see (β′, γ′) � p0|M,h.

Hence (k, 0) · p0 = pk.

p∞,k2K∗0 · (k, 0) =

1 0

α 1

k 0

0 k−1


=

 k 0

k−1α k−1


=

k 0

0 k−1

 1 0

k2α 1


Finally, since α lies in k−2K∗0 we can write α = k−2α′, for α′ ∈ p∞,C0 . Hence

k2α = k2k−2α′ = α′ ∈ K∗0.

Hence, for q ∈ V of the form p∞,k−2K∗0 ∗ pk, we can find an element t0 of B(M)

such that q = t0 · p∞,C0 ∗ p0.
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We now show that we can do the same when q ∈ V is of the form pa,k−2K∗0 ∗ pk.

Let α0 � pa,k−2K∗0 , and let (β, γ) � pk|M,α0 . We show there exists some element

t0 ∈ B(M) such that q = t0 ∗ p∞,C0 ∗ p0.

Since α0 � pa,k−2K∗0 , we can write α0 = a + ε, where ε ∈ k−2K∗0 and v(ε) > Z.

Further, we can write ε = −k−2ε′ for some ε′ ∈ K∗0 with v(ε′) > Z.

Hence α0 = a(1 + a−1ε) = a(1− a−1k−2ε′).

Let b be such that a = (bk)−1 ∈ C((t)).

Then α0 = a(1 = bk−1ε′). Now, bk−1ε′ ∈ −bk−1K∗0, and v(bk−1ε′) > Z. Hence

1− bk−1ε′ is in the infinitesimal neighbourhood of 1, and hence so is (1− bk−1ε′)−1

since this neighbourhood forms a multiplicative group.

Then (1− bk−1ε′)(1 + x) = 1, for some x ∈ dcl(C((t)), α0), and one can see that

x ∈ bk−1K∗0 with v(x) > Z.

Hence we can write α0 = a(1 + bk−1α)−1 where α ∈ K∗0 and v(α) > Z. Hence

α � p0,C0 and we can write α0 = a(1+bk−1α)−1 = a
1+bk−1α

= b−1α−1

b+kα−1 , using a = (bk)−1

from above.

Since J is a minimal flow of (B(M), SB(M)), we can find some element y ∈

B(M̄) ∩ dcl(M,α0) such that y · p0 = pk.

We claim that this y = (b + kα−1, k) where α−1 � p∞,C0 , since α � p0,C0 and

α ∈ dcl(M,α0). Further, we see that this does indeed preserve the required cosets,

since α−1 ∈ K∗0 and v(α−1) < Z and so b+ kα−1 ∈ kK∗0.
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 1 0

α0 1

β γ

0 β−1

 =

 1 0

α0 1

b+ k−1
α k

0 (b+ kα−1)−1

β′ γ′

0 β′−1


=

 b+ kα−1 k

α0(b+ kα−1) α0k + (b+ kα−1)−1

β′ γ′

0 β′−1


=

 b+ kα−1 k−1

b−1α−1

b+kα−1 (b+ kα−1) b−1α−1

b+kα−1k + (b+ kα−1)−1

β′ γ′

0 β′−1


=

b+ kα−1 k

b−1α−1 b−1α−1

b+kα−1k + (b+ kα−1)−1

β′ γ′

0 β′−1


=

b+ kα−1 k

b−1α−1 b−1

β′ γ′

0 β′−1


=

b k

0 b−1

 1 0

α−1 1

β′ γ′

0 β−1

 .

Where (β′, γ′) realise p0|M,α0 .

Then (b, k) = t0 ∈ B(M), α−1 � p∞,C0 . Further, (β′, γ′) � p0|M,α0 and since

α−1 ∈ dcl(M,α0), we have (β′, γ′) � p0|M,α−1 as required.

Hence for any q ∈ V of the form pa,k−2K∗0 ∗ pk, we can find some t0 ∈ B(M) such

that q = t0 · p∞,C0 ∗ p0.

Hence V ⊆ B(M) ·p∞,C0 ∗p0 and by Proposition 2.4.3, we see V = B(M) ·p∞,C0 ∗

p0.

Finally, we must consider how Z/4Z acts on V . We consider the union over V

of Z/4Z orbits. As before, we first demonstrate left inclusion of the union of orbits.

Proposition 2.4.5. The union
⋃
v∈V

Z/4Z · v is a subset of

V ∪ {(p0,k−2K∗0 ∗ pk3K∗0) : k ∈ C((t))∗}

Proof. Let z ∈ Z/4Z. Since Z/4Z is small, we consider each element case by case.

Clearly if z = I2, the identity of Z/4Z, then z · v = v for all v ∈ V .
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First let h � p∞,k2K∗0 and t � pkK∗0 |M,h for some k ∈ C((t)). Then ht � v for

some v ∈ V .

Suppose z = −I2. Since −I2 is in the centre of SL2, we can write z · p∞,k2K∗0 ∗

pkK∗0 = p∞,k2K∗0 ∗ z · pkK∗0 .

Then J is a minimal subflow of (B(M), SB(M)) and so z · pkK∗0 = pj for some

pj ∈ J . However, since −1 ∈ K∗0, every entry of z · pkK∗0 is in the same coset as the

corresponding entry in pkK∗0 , and so z · pkK∗0 = pkK∗0 and hence z · p∞,k2K∗0 ∗ pkK∗0 =

p∞,k2K∗0 ∗ pkK∗0 .

Finally, suppose z = ( 0 −1
1 0 ).

Then z · p∞,k2K∗0 ∗ pkK∗0 = tp(zht/M) and we see;

zht =

0 −1

1 0

1 0

α 1

β γ

0 β−1


=

−α −1

1 0

β γ

0 β−1


=

 1 0

−α−1 1

−α −1

0 −α−1

β γ

0 β−1


=

 1 0

−α−1 1

−αβ −αγ − β−1

0 −α−1β−1


Observe that −α−1 ∈ k−2K∗0 and v(−α−1) > Z. Further, −αβ ∈ k3K∗0, −αγ ∈

k3K∗0.

Hence −α−1 � p0,k−2K∗0 and (−αβ,−αγ − β−1) � pk3K∗0|M,−α−1 .

The case where z = ( 0 1
−1 0 ) follows similarly. Taking the union over elements of

V we see that
⋃
v∈V

Z/4Z · v ⊆ V ∪ {(p0,k−2K∗0 ∗ pk3K∗0) : k ∈ C((t))∗}.

Finally, we show that V ′ is included in the union of Z/4Z-orbits, and hence

demonstrate equality between the sets.
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Proposition 2.4.6. V ′ = V ∪ {(p0,k−2K∗0 ∗ pk3K∗0) : k ∈ C((t))∗} is a subset of⋃
v∈V

Z/4Z · v.

Proof. Clearly any element v ∈ V lies in the set
⋃
v∈V

Z/4Z · v since we could choose

z ∈ Z/4Z to be the identity element.

Hence we just need to show that (p0,k−2K∗0 ∗ pk3K∗0) can be expressed in the form

z · v for some z ∈ Z/4Z and some v ∈ V .

Fix some arbitrary non-zero k ∈ C((t)). Let h = ( 1 0
α 1 ), where α � p0,k−2K∗0 . Let

t = (β, γ) � pk3K∗0|M,h.

Since J is a minimal subflow of (B(M), SB(M)), and t � pk3K∗0|M,h, we can find

some (b, c) ∈ B(M̄) ∩ dcl(M,h) such that (b, c) ∗ pkK∗0|M,h = pk3K∗0 .

In particular, we know that b uniquely determines the coset in this factorisation.

Note that since α � p0,k−2K∗0 , we see −α−1 � p∞,k2K∗0 . As such, we can choose

(b, c) = (−α−1,−1), and hence;

ht =

1 0

α 1

β γ

0 β−1


=

1 0

α 1

−α−1 −1

0 −α

β′ γ′

0 β′−1


=

−α−1 −1

1 0

β′ γ′

0 β′−1


=

0 −1

1 0

 1 0

α−1 1

β′ γ′

0 β′−1


= zh′t′

Where z ∈ Z/4Z, h′ � p∞,k2K∗0 and t′ � pkK∗0|M,h.

Since h′ ∈ dcl(M,h), we also see t′ � pkK∗0|M,h′
, and so zh′t′ � z · p∞,k2K∗0 ∗ pkK∗0 ,

which is an element of
⋃
v∈V

Z/4Z · v as required.
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Hence, we have demonstrated that the G(M)-orbit of p∞,C0 ∗ p0 is precisely

V ′ = V ∪ {(p0,k−2K∗0 ∗ pk3K∗0) : k ∈ C((t))∗0}. This set is not closed, and hence not

a subflow; minimal or otherwise. However, we can take the closure of V ′ and we

claim that this is indeed minimal, as we now show.

Taking closures of both sides, we see that cl(G(M) ·p∞,C0 ∗p0) = cl(V ′). By Fact

1.5.1, for any type p ∈ SG(M), cl(G(M) ∗ p) = SG(M) ∗ p. Hence the closure of the

G(M)-orbit of p∞,C0 ∗p0 is the SG(M)-orbit of p∞,C0 ∗p0. Hence SG(M) ·p∞,C0 ∗p0 =

cl(V ′).

Lemma 2.4.7. SG(M) ∗ p∞,C0 ∗ p0 ⊆ S1(M) ∗ J .

Moreover, every element s∗p∞,C0 ∗p0 is of the form r∗p with r ∈ S1(M), p ∈ J .

Proof. We can see from Propositions 2.4.2, 2.4.4 and 2.4.6 and see that the G(M)-

orbit of p∞,C0 ∗ p0 = V ′ ⊂ S1(M) ∗ J . The SG(M)-orbit behaves in a similar way,

though it will be a proper superset of V ′, however still a subset of S1(M) ∗ J .

Lemma 2.4.8. Let p, p′ ∈ J . Let q ∈ S1(M). Then p ∗ q ∗ p′ can be expressed as

an element of S1(M) \ {p∞,Ck
: k ∈ C((t))} ∗ J .

Proof. This is easy to see using the same method as in Proposition 2.4.4, and note

that insisting p ∈ J removes the case where c = 0.

Proposition 2.4.9. cl(V ′) is a minimal subflow of (G(M), SG(M)).

Proof. Any point in cl(V ′) is of the form s ∗ p∞,C0 ∗ p0, and by the above lemma

we can show any type of the form s ∗ p∞,C0 ∗ p0 can be expressed as an element q ∗ p

of S1(M) ∗ J .

We claim that for any r in S1(M) ∗ J , we can demonstrate that p∞,C0 ∗ p0 is in

the orbit-closure cl(G(M) ∗ r) = SG(M) ∗ r.

Let r = q ∗ p ∈ S1(M) ∗ J .

Then we can find some type p∞,C0 · pj, such that p∞,C0 ∗ pj ∗ q ∗ p = p∞,C0 ∗ q′ ∗

p0, using a similar argument to Proposition 2.4.4. However, here we see that the
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realisation (b, c) of the heir of pj ensures that q′ /∈ {p∞,Ck
: k ∈ C((t))∗}. As such,

p∞,C0 ∗ q′ = p∞,C0 .

Hence we can find some s ∈ SG(M) such that s∗ r = p∞,C0 ∗p0, and so p∞,C0 ∗p0

is in the orbit-closure of r for any r ∈ cl(V ′).

Since p∞,C0 ∗ p0 is in the SG(M)-orbit of any element of cl(V ′), and cl(V ′) =

SG(M) ∗ p∞,C0 ∗ p∞, we see that the cl(V ′) is the orbit-closure of any type in cl(V ′),

and hence minimal.

2.5 The Ellis Group of (G(M), SG(M)).

To obtain the Ellis Group of (G(M), SG(M)), from Theorem 1.3.6, we act on the

minimal subflow of (G(M), SG(M)) (equivalently, the minimal closed left ideal of

(SG(M), ∗)) by an idempotent, namely p∞,C0 ∗ p0.

Theorem 2.5.1. The Ellis Group of (G(M), SG(M)) is

p∞,C0 ∗ p0 ∗ cl(V ′) = p∞,C0 ∗ J , and is isomorphic to B/B0.

Proof. This is clear to see. Take any element r = q ∗ p ∈ cl(V ′). We compute

p∞,C0 ∗ p0 ∗ r.

We note that p0∗r is of the form q′∗p′ for some q′ ∈ S1(M)/{p∞,Ck
: k ∈ C((t))∗}

and p′ ∈ J .

Then p∞,C0 ∗p0 ∗q∗p = p∞,C0 ∗p′ for some p′ ∈ J , and hence p∞,C0 ∗p0 ∗cl(V ′) ⊆

p∞,C0 ∗ J .

To demonstrate equality, we must show that p′ can range over all cosets of K∗0.

That is, for any p∞,C0 ∗pj, we can find some r ∈ cl(V ′) with p∞,C0 ∗p0∗r = p∞,C0 ∗pj.

This is clear to see from Proposition 2.4.4. Since V ⊂ cl(V ′), we see that types

of the form p∞,k2K∗0 ∗ pk for all k ∈ C((t)) are contained cl(V ′). One can simply

choose r = p∞,j2K∗0 ∗ pj and show p∞,C0 ∗ p0 ∗ r = p∞,C0 ∗ pj. Hence p∞,C0 ∗ J ⊆

p∞,C0 ∗ p0 ∗ cl(V ′).
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Hence p∞,C0 ∗ p0 ∗ cl(V ′) = p∞,C0 ∗ J , and so the Ellis Group of (G(M), SG(M))

is precisely p∞,C0 ∗ J .

That (q0 ∗J , ∗) is isomorphic to (J , ∗) follows almost identically to Theorem 3.7

of [22].

Hence, we have demonstrated that the Ellis Group of (G(M), SG(M)) is not

isomorphic to G/G00; namely the Ellis Group has infinite elements whereas G/G00

is trivial.

To summarise then, we have demonstrated that the Ellis Group of SL2(C((t)))

is determined by the Borel Subgroup. This is similar to what we see in [22] where

the Ellis Group of SL2(Qp) is isomorphic to a subgroup of B(Qp).

The main result of this chapter provides a negative answer to the hypothesis

that the restriction of NIP to Metastable Theories is not a suitable weakening of

Newelski’s conjecture.

Since the Ellis Groups of (G(M), SG(M)) are all isomorphic for any choice of min-

imal flow and idempotent, we can guess here that if we had chosen SL2(C((t)) =

SL2(C[[t]]) × B(C((t))) as our group decomposition we would have found that

SL2(C[[t]]) has an invariant type. We show in the following chapter that this is

indeed the case.
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Definable Topological Dynamics of

SL2(C[[t]])

From the Ellis Group of SL2(C((t))) in Chapter 2, we expect to find that SL2(C[[t]])

admits a unique left-invariant generic type. In this chapter we prove that this is

indeed the case. We recall a result from [10] at the end of this chapter which proves

a similar result for SL2(OK) where K � ACV F . They conjecture that this result

should extend to metastable groups with algebraically closed residue, and we note

here that the results of this chapter support this by providing an explicit description

of a unique left-invariant type in SL2(C[[t]]).

In this chapter we give a group decomposition for SL2(C[[t]]) into subgroups of

smaller dimension and find their minimal subflows. We build a minimal subflow for

SL2(C[[t]]) and demonstrate that this is a 1-point minimal subflow, and hence that

SL2(C[[t]]) is a definably (extremely) amenable group.

3.1 Group Decomposition of SL2(C[[t]])

We first demonstrate a group decomposition of SL2(C[[t]]). Recall that a sequence

G0
f1−→ G1

f2−→ G2
f3−→ ....

fn−→ Gn of groups Gi and group homomorphisms fj is
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called exact if Im(fk) = ker(fk+1) for all k. A short exact sequence is of the form

0 → A
f−→ B

g−→ C → 0 where f is an injective homomorphism and g a surjective

homomorphism. Recall that for a short exact sequence, we have C ∼= B/Im(f).

Lemma 3.1.1 (Splitting Lemma). If a short exact sequence admits a morphism

t : B → A such that t ◦ f is the identity on A, or, a morphism u : C → B such that

g ◦ u is identity on C, then B is the semidirect product of A and C.

We define a mapping π : SL2(C[[t]]) → SL2(C) that maps entrywise from ele-

ments of C[[t]] to their residue in C.

Proposition 3.1.2. SL2(C[[t]])
π−→ SL2(C)→ 0 is exact

Proof. We show that π is a surjective homomorphism. Firstly, since π acts as

identity on any element of SL2(C), which itself is a subset of SL2(C[[t]]), res is

surjective.

That π is a group homomorphism follows easily from the properties of the residue

map.

We see then that

Ker(π) = {
(
a b
c d

)
: a, d ∈ 1 + tC[[t]]; c, b ∈ tC[[t]] and ad− bc = 1}

and moreover this is a normal subgroup of SL2(C[[t]]).

Let Ker(π) = H / SL2(C[[t]]).

Proposition 3.1.3. 0→ H
id−→ SL2(C[[t]]) is exact.

Proof. This is trivial as the identity map is clearly an injective homomorphism.

Proposition 3.1.4. 0 → H
id−→ SL2(C[[t]])

π−→ SL2(C) → 0 is a short exact se-

quence.

Proof. From Propositions 3.1.2 and 3.1.3 the functions id and π are injective and

surjective respectively. It is clear by construction that Im(id) = Ker(π).

63



CHAPTER 3

Proposition 3.1.5. There exists a morphism u : SL2(C) → SL2(C[[t]]) such that

π ◦ u acts as identity on SL2(C).

Proof. Clearly choosing u to be the identity map satisfies the above.

Proposition 3.1.6. SL2(C[[t]]) = SL2(C) nH

Proof. From Proposition 3.1.4 we have a short exact sequence

0→ H
id−→ SL2(C[[t]])

π−→ SL2(C)→ 0.

Further, there exists a morphism u : SL2(C) → SL2(C[[t]]) such that π ◦ u acts as

identity on SL2(C) by Proposition 3.1.5.

Hence we can apply the Splitting Lemma 3.1.1 and this proves the result.

We look to factor H into subgroups of smaller dimension. We remark that(
1 0
α 1

)
·
(
b c
0 b−1

)
=
(
b c
αb αc+b−1

)
.

Then
(
b c
αb αc+b−1

)
is an element of H exactly when;

• b ∈ 1 + tC[[t]]

• c ∈ tC[[t]]

• α ∈ tC[[t]]

It is clear that any element of H(M) can be written uniquely as a product of

matrices from {
(

1 0
α 1

)
: α ∈ tC[[t]]} and {

(
b c
0 b−1

)
: b ∈ 1 + tC[[t]] and c ∈ tC[[t]]}.

Likewise, any element in the product of

{
(

1 0
α 1

)
: α ∈ tC[[t]]} and {

(
b c
0 b−1

)
: b ∈ 1 + tC[[t]] and c ∈ tC[[t]]} is an element of

H.

We see that ({
(

1 0
α 1

)
: α ∈ tC[[t]]}, ·) is isomorphic to (tC[[t]],+) and that

({
(
b c
0 b−1

)
: b ∈ 1 + tC[[t]] and c ∈ tC[[t]]},×) is isomorphic to (1 + tC[[t]],×) ·

(tC[[t]],+).
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Hence H = {( x1 x2
x3 x4 ) : x1, x4 ∈ 1 + tC[[t]];x2, x3 ∈ tC[[t]] and x1x4 − x2x3 = 1}

and SL2(C[[t]]) is isomorphic to ((tC[[t]],+) ·((1+tC[[t]],×) ·(tC[[t]],+)))oSL2(C).

Finally, we remark that H has infinite torsion elements. In particular, for every

diagonal (scalar) matrix A in H and every n ∈ N, there exists some matrix B in

H such that Bn = A. This is a consequence of Hensel’s Lemma 2.1.2. We mention

torsion elements as to draw parallels to the work on SL2(R) in [9] in which they

make use of a torsion-free group decomposition. In this setting however, all parts of

our group decomposition have infinitely many torsion elements.

3.2 Additive and Multiplicative groups in C[[t]]

As before, we wish to build a minimal flow by considering the components of a

group decomposition individually. We once again start by considering additive and

multiplicative groups contained in the ring. We will use the same notation as in

Lemma 2.1.9, and for convenience recall the result here.

Lemma 3.2.1. The complete 1-types over M = (C((t)),+,×) are precisely the

following;

(a) The (realized) types tp(a/M) for each a ∈ C((t)).

(b) For each a ∈ C((t)) and coset C of K∗0, the type pa,C determined by the formulas

{v(x− a) > n : ∀n ∈ Z} and (x− a) ∈ C.

(c) For each coset C of K∗0, the type p∞,C determined by the formulas

{v(x) < n : ∀n ∈ Z} and x ∈ C.

(d) For each a ∈ C[t] and for some n ∈ Z, the type pa,n,trans determined by the

formulas

v(x− a) = n, deg(a) < n and {f(res((x− a)t−n)) 6= 0 : f ∈ C[x]}.

If a = 0 then, we can drop the deg(a) < n from the description.

65



CHAPTER 3

We first consider the additive group (tC[[t]],+).

Proposition 3.2.2. The type p0,1,trans is an idempotent element of (S(tC[[t]],+)(M), ∗).

Proof. Let a � p0,1,trans and let α � p0,1,trans|M,a.

Then p2
0,1,trans = tp(a+ α/M). We check that a+ α � p0,1,trans|M .

We know a = a1t
1 + ... and α = α1t

1 + ... with a1 transcendental over C and α1

transcendental over res(C((t))(a)).

Then a+ α = (a1 + α1)t1 + ..., and since α is transcendental over res(C((t))(a))

we see a1 + α1 /∈ res(C((t))(a)). In particular, this shows a1 + α1 6= 0 and so

v(a+ α) = 1.

Further, this shows that a1 + α1 is transcendental over res(C((t))(a)), and so in

particular transcendental over C.

Hence a+ α � p0,1,trans|M as required.

Proposition 3.2.3. The tC[[t]]-orbit of p0,1,trans is precisely p0,1,trans itself, and

hence {p0,1,trans} is a minimal subflow of ((tC[[t]],+), S(tC[[t]],+)(M)).

Proof. Let a ∈ tC[[t]] and let α realise the heir of p0,1,trans over (M,a). Then

tp(a/M) ∗ p0,1,trans = tp((a+ α)/M)

Now, v(α + a) ≥ min{v(α), v(a)} = 1. As ac(α) is transcendental over C, it is

clear that v(α + a) = min{v(α), v(a)} = 1. Further, as v(α) = 1 and v(a+ α) = 1,

we see that res(a + α) is transcendental over C because res(α) is transcendental

over C.

Hence a+α realies p0,1,trans, and so tp((a+α)/M) = p0,1,trans. This is a subflow

by consturction, and is clearly minimal as it is a singleton there can be no properly

contained non-empty subsets, and hence p0,1,trans is a minimal subflow of (tC[[t]],+)

as required.

Corollary 3.2.4. The single element set {p0,n,trans} is a minimal subflow of

((tnC[[t]],+), S(tnC[[t]],+)(M)) for all 1 ≤ n ∈ N.
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Proof. This follows easily using the same proof as in 3.2.3 by replacing v(α) = 1

with v(α) = n as necessary.

We now consider the multiplicative group (1 + tC[[t]],×).

Proposition 3.2.5. The type p1,1,trans is an idempotent element of (S1+tC[[t]](M), ∗).

Proof. Let a � p1,1,trans and α ` p1,1,trans|M,a. Then p2
1,1,trans = tp(aα/M).

We see that a = 1 +a1t
1 + ... and α = 1 +α1t

1 + .... Then aα = 1 + (a1 +α1)t1 +

a1α1t
2 + ...

Clearly aα− 1 has valuation 1, and the proof that a1 +α1 is transcendental over

res(C((t))) = C follows using the same argument as in Proposition 3.2.2.

Proposition 3.2.6. The 1 + tC[[t]]-orbit of p1,1,trans is precisely {p1,1,trans} itself,

and is a minimal subflow of (1 + tC[[t]], S1+tC[[t]](M)).

Proof. Let 1+a ∈ 1+tC[[t]] and let 1+α realise the heir of p1,1,trans over (M, 1+a).

Then;

tp((1 + a)/M) ∗ p1,1,trans = tp((1 + a)(1 + α)/M)

= tp((1 + a+ α + aα)/M)

= tp((1 + α) + a(1 + α))/M).

Write (1 + α) + a(1 + α) = (1 + α)(1 + a). We show that (1 + α)(1 + a) realises

p1,1,trans.

Since v(α) = 1, and a ∈ tC[[t]], we see that v((1 + a)(1 + α)− 1) = 1. Further,

(1 + a)(1 + α) − 1 has angular component transcendental over C, and so clearly

res(t−1((1 + a)(1 + α) − 1)) is transcendental over C. Finally observe that v(1) =

0 < v((1 + a)(1 + α)− 1) = 1.

Hence (1 + α) + a(1 + α) realises p1,1,trans, and so tp((1 + α) + a(1 + α))/M) =

p1,1,trans. The set {p1,1,trans} is a subflow of (1+tC[[t]], S1+tC[[t]](M)) by construction,

and is clearly minimal as there can be no properly contained non-empty subsets.
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Hence {p1,1,trans} is a minimal subflow as required.

3.3 Minimal Flows of H = Ker(π)

Having established minimal flows for the additive groups (tC[[t]],+) and (1+tC[[t]],×),

we can begin to construct a minimal subflow for H.

Recall that H = {
(
a b
c d

)
: a, d ∈ 1 + tC[[t]] : b, c ∈ tC[[t]] and ad − bc = 1},

which we can decompose further into the product of {
(

1 0
α 1

)
: α ∈ tC[[t]]} and

{
(
b c
0 b−1

)
: b ∈ 1 + tC[[t]] and c ∈ tC[[t]]}.

Define the Borel subgroup of H to be BH(M) = {
(
b c
0 b−1

)
: b ∈ 1+tC[[t]] and c ∈

tC[[t]]}.

As in Chapter 2 we once again associate a matrix in BH(M) with pairs (b, c),

this time with b ∈ 1 + tC[[t]] and c ∈ tC[[t]]. Remember that the group operation

here is matrix multiplication, and so given pairs (b, c) and (β, γ), we have that

(b, c)(β, γ) = (bβ, bγ + cβ−1).

Define a type p = tp((b, c)/M) where b � p1,1,trans and c � p0,1,trans|M,b. Then

p ∈ SBH
(M) and we claim that {p} is a 1-point minimal flow of BH(M).

Proposition 3.3.1. The BH(M)-orbit of p is {p}. This orbit is closed and clearly

minimal, and hence is a minimal subflow of (BH , SBH
(M)).

Proof. Let (b, c) ∈ BH(M).

Let β realise the heir of p1,1,trans over (M, (b, c)) = M , and let γ realise the heir

of p0,1,trans over (M,β). Then (β, γ) ` p.

Then; b c

0 b−1

β γ

0 β−1

 =

bβ bγ + cβ−1

0 b−1β−1


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Since β realises p1,1,trans, a minimal subflow of the multiplicative group, we see

that bβ also realises p1,1,trans over M .

We now consider bγ + cβ−1. It is clear that this has valuation 1 with angular

component (γ1 + c1). Since γ was chosen such that γ1 is transcendental over the

residue field of (M,β), we know that (γ1 +c1) is also transcendental over the residue

field of (M,β), and hence res(t−1bγ+cβ−1) is transcendental over res(K)∩dcl(M,β).

Therefore, bγ+cβ−1 realises the heir of p0,1,trans over (M,β), hence (bβ, bγ+cβ−1)

realises p|M and so the BH-orbit of p is {p}.

Corollary 3.3.2. The SBH
(M)-orbit of p is {p} and hence p is an idempotent

of (SBH
(M), ∗) and the Ellis Group of (BH , SBH

(M)) is trivial. Further, BH is

definably (extremely) amenable and B00
H = BH .

Proof. The fact that the SBH
(M)-orbit of p is trivial follows similarly to the proof

of Proposition 3.3.1, and it follows that p2 = p since p ∈ SBH
(M).

This shows that the Ellis Group of (BH , SBH
(M)) is trivial.

Finally, this means BH is definably extremely amenable as BH admits a 1-point

minimal flow, and as such B00
H = BH as B00

H = StabBH
(p) = BH by Fact 1.5.2.

We are now in a position to construct a minimal subflow for (H,SH(M)). Recall

that H ∼= A×BH , where A = {
(

1 0
a 1

)
: a ∈ tC[[t]]}.

From Proposition 3.2.3 we see that (A, SA(M)) has a 1-point minimal subflow,

{q} where q is realised by a matrix
(

1 0
a 1

)
, with a � p0,1,trans. We will often associate

the matrix
(

1 0
a 1

)
with the bottom left entry a, and so by a � q we mean

(
1 0
a 1

)
� q.

We claim that q ∗ p is a minimal subflow of (H,SH(M)), and prove this by

calculating cl(q ∗ p) = SH(M) ∗ q ∗ p. Note that in the following proof we make

mention to the angular component. We discussed earlier in the thesis that this map

is not definable in this context, though since the valuations here are in Z, we can

access the angular component of some element a with v(a) = z with the expression

res(f−za).
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Proposition 3.3.3. The BH-orbit of q, BH(M) ∗ q = q ∗ (p1+at,2,trans ∗ q), where

(p1+at,2,trans ∗ q) denotes a type tp((x, y)/M) with x ∈ X ⊂ (1 + tC[[t]](α),×) and

y ∈ tC[[t]].

Proof. Let (b, c) ∈ BH(M) with α realising the heir of q over (M, (b, c)).

Write (b, c) =
(
b c
0 b−1

)
and α = ( 1 0

α 1 ). Then;

(b, c) · p0,1,trans =

b c

0 b−1

1 0

α 1


=

b+ cα c

b−1α b−1


=

 1 0

b−1α
b+cα

1

b+ cα c

0 (b+ cα)−1



We first show that b−1α
b+cα

realises q. Since b ∈ 1 + tC[[t]], b−1 is also, and since

c ∈ tC[[t]] and v(α) = 1, it is easy to see that (b + cα)−1 has valuation 0 with

angular component 1. Further, v(b−1α) = v(α) = 1, and ac(b−1α) = ac(α) = α1.

So (b−1α)(b+ cα)−1 has valuation 0 + 1 = 1. Moreover, we know that ac(x)ac(y) =

ac(xy) (since angular components are non-zero), and hence the angular component

of (b−1α)(b+ cα)−1 is α1, which is transcendental over C by assumption.

Hence b−1α
b+cα

has valuation 1 with res
(
t−1( b

−1α
b+cα

)
)

transcendental (over C). So

b−1α
b+cα

realises p0,1,trans.

It remains to decide which types the pair (b + cα, c) could realise. Given that

the ∗ mapping would add b−1α
b+cα

in as parameters, we lose information about the

transcendental nature of α.

Hence (b+ cα, c) realises a 2-type where b+ cα is of the form 1 + t2C[[t]](α) and

c ∈ tC[[t]].
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Proposition 3.3.4. The H-orbit of q ∗ p is q ∗ p and moreover {q ∗ p} is a minimal

subflow of (H,SH(M)).

Proof. We can consider the H-orbit as being an action of A×BH .

Let a ∈ A, and (b, c) ∈ BH . Suppose that α realises q, and that (β, γ) realise

the heir of p over (M,α).

Then;

H ∗ q ∗ p =

1 0

a 1

b c

0 b−1

1 0

α 1

β γ

0 γ−1


=

1 0

a 1

 1 0

b−1α
b+cα

1

 b+ cα c

0(b+ cα)−1

β γ

0 β−1


=

 1 0

a+ b−1α
b+cα

1

β(b+ cα) γ(b+ cα) + cβ−1

0 (b+ cα)−1β−1

 .

Then from 3.3.3, we see that b−1α
b+cα

realises q, which is a 1-point minimal subflow

of A, and since α is transcendental over M , we see that a+ b−1α
b+cα

realises q.

Further, since (β, γ) realises the heir of p over (M,α), and that p is a minimal

subflow of BH , we see that (β(b + cα), γ(b + cα) + cβ−1) realises the heir of p over

(M,α).

Hence H ∗ q ∗ p = q ∗ p.

Since the H(M)-orbit is {q ∗ p}, which is closed, a subflow by construction, and

can clearly contains no proper non-empty subsets, we must have that q ∗ p is a

1-point minimal subflow of (H,SH(M)) as required.

Corollary 3.3.5. The Ellis Group of (H,SH(M)) is trivial, H is definably (ex-

tremely) amenable and H00 = H.

Proof. The Minimal Subflow of (H,SH(M)) contains a single element, and hence

it follows that the Ellis Group is isomorphic to the trivial group. Further, by 1.5.2
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we see H00 = StabH(q ∗ p) = H. Since q ∗ p is a left-invariant type, H is definably

(extremely) amenable by definition.

From Proposition 3.3.4 it is easy to see that that q ∗ p extends uniquely to a

SH(M)-invariant global type.

3.4 The Ellis Group of SL2(C[[t]])

We now apply well known results of Newelski for stable groups, as well as the group

decomposition from Proposition 3.1.6 to construct a minimal flow of SL2(C[[t]]).

Fact 3.4.1. As G = SL2(C) is a stable group, the Ellis Group is isomorphic to

SL2(C)/SL2(C)00 by Fact 1.6.1. Further, SL2(C)/SL2(C)00 is trivial.

We need not give an explicit description of any minimal flow in SL2(C[[t]]). In-

stead, we can simply demonstrate this the group is definably amenable and construct

the Ellis Group using the connected component as follows.

Proposition 3.4.2. SL2(C[[t]]) is definably extremely amenable and hence the flow

of SL2(C[[t]]) acting on the its space of types has trivial Ellis Group.

Proof. We know H is definably amenable, with H normal in SL2(C[[t]]). Further,

SL2(C) = SL2(C[[t]])/H is definably amenable by 3.4.1. Hence by Fact 1.5.8,

SL2(C[[t]]) is definably amenable.

Further, SL2(C[[t]]) contains no normal subgroups of bounded index, and so

clearly SL2(C[[t]])00 = SL2(C[[t]]).

Hence since SL2(C[[t]]) is definably amenable and SL2(C[[t]])00 = SL2(C[[t]]),

the Ellis Group is isomorphic to SL2(C[[t]])/SL2(C[[t]])00, which is trivial.

We first comment briefly on how this, and Chapter 2, relate to the SL2(Qp) case.

In Fact 1.6.10 we see that the Ellis Group of (SL2(Qp), SG(M)) is B(Qp)/B(Qp)
0.
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In Theorem 2.5.1 we demonstrate that the Ellis Group of (SL2(C((t))), SG(M)) is

isomorphic to B(C((t)))/B(C((t)))0.

We suggest that the Ellis Group of G = SL2(K), where K is a characteristic 0

Henselian valued fields, could have a generalisation of the form B(K)/B(K)0. In

ACV F , we suspect that B(K)/B(K)0 is trivial. In this setting, we would see Ellis

Group is isomorphic to G/G00 despite G not having any generic types (and hence

G here is not definably amenable).

This would be a new example of a setting in which, for G not definably amenable,

G/G00 is isomorphic to the Ellis Group of (G(M), SG(M)).

To conclude this chapter, we recall a result for ACV F from [10]. Note that

in this context, invariant type refers to a complete global type p ∈ S(U) which is

Aut(U/C)-invariant for some (small) C. This is equivalent to saying p does not split

over C. In our context we will take C = M , and so p is some global type left fixed

by Aut(U/M). In this sense, the restriction of p M -invariant will be M -invariant

and hence form a 1-point minimal flow of (G,SG(M)).

Fact 3.4.3. Let G be an affine algebraic group over an algebraically closed valued

field K, with H a C-definable subgroup of G(K). Let p be a C-definable global type

of elements of H. Then the following are equivalent;

• p is invariant and stably dominated.

• For any f ∈ C[G], b � p and a ∈ H, then |f(a)| ≤ |f(b)|.

It is suggested in [10] that this result should extend to valued fields of alge-

braically closed residue but with non-divisible value group, though it is not explicitly

proven.

By taking G = SL2(C((t))) with H = SL2(C[[t]]) here, we apply the results of

Proposition 3.4.2 to see that H admits a translation invariant type p. Using our

construction, we see that p is described via a generic of SL2(C) together with a
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generic of Ker(res) which is trivial. As such, we can map p into a type over C and

see that this restriction is a generic of SL2(C).

It is observed in [10] that the same is true for SLn(K) and SLn(OK) for K �

ACV F .

It is easy to see that the realisations of p also obtain a maximum modulus here.

Observe that |f(b)| maximal is equivalent to considering v(f(b)) minimal. This is

clear since v(f(b)) = 0 for all f by way of b being transcendental when b � p.
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Dynamical Systems in Metastable

Theories

In this chapter we investigate the definable topological dynamics of groups defin-

able in metastable theories. Our approach to finding the Ellis Group of SL2(C((t)))

was computational, though here we take a more general approach and aim to pro-

vide descriptions of minimal flows and Ellis Groups for larger classes of metastable

definable groups.

We begin by recalling the definitions of metastability as well as preliminary

results of definable metastable groups. The key aims in this chapter are to investigate

to what extent stably dominated groups in metastable theories admit analogues to

compactly dominated groups in o-minimality. We also seek to interpret the results

of [12] into the context of definable topological dynamics.

4.1 Preliminaries

The notation in this chapter is standard, and follows the conventions outlined pre-

viously in the thesis unless otherwise stated. We add that for all a, b, C, we write

a |̂
C
b if there exists an acl(C)-definable type p such that a � p|acl(Cb) [12].
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For the following recap of stability theory, we refer to [10], [25] and [26].

A formula φ(x, y) is stable if it does not have an order property. That is, there

does not exist any ai, bi for i < ω such that � φ(ai, bj) ⇐⇒ i ≤ j. We will say that

a theory T is stable if every formula φ(x, y) is stable.

If D ⊆ U is some C-definable set, we say D is stable if the structure with domain

D, equipped with all C-definable relations, is stable.

We recall some equivalences of stability. First, T is stable if and only if, for all

models M of T , every type over M is definable. Equivalently, T is stable if there

exists some cardinal κ such that for any M , the type space S(M) has size at most

|M |κ.

Suppose that T is a complete theory with M � T and D a ∅-definable set in M eq.

We say D is stably embedded if, for any n, any definable subset of Dn is definable

with parameters from D. If a C-definable set D in U is stable, then D is also stably

embedded.

A projective system is family of objects Xi and morphisms fij : Xi → Xj such

that fii is the identity on Xi, and fik = fij ◦ fjk for all i ≤ j ≤ k.

A pro-definable set X is a projective filtered system (Xi)i∈I of definable sets and

definable maps. We think of X as the inverse limit lim←−iXi. We can think of types

as pro-definable sets by considering systems of definable sets ordered by inclusion.

In this context it can be useful to view types this way as we will want to construct

mappings from types into stable, stably embedded sets. A pro-definable map [12]

f : X → Y , where Y is definable, is a definable map from some Xi into Y . If Y

is itself a pro-definable set, then a pro-definable map is a compatible collection of

maps fj : X → Yj.

For some set of parameters C, let (Di)i be all C-definable stable sets. Define the

stable part StC to be the pro-definable set lim←−iDi. We can also choose to view StC

as a structure whose sorts are the Di together with all C-definable relations Rj on
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the sets Di. As a structure, StC is stable.

For a tuple b, define StC(b) to be dcl(Cb) ∩ StC . By A |̂
C
b we mean a |̂

C
b

for all a ∈ A.

Definition 4.1.1. [12] Let p = tp(a/C) and α : p → StC be a pro-C-definable

map. Then we say p is stably dominated (via α) if, for any tuple b, whenever

StC(b) |̂
C
α(a), then

tp(b/Cα(a)) ` tp(b/Ca).

A type p over C is stably dominated if it is stably dominated via some α.

Put simply, a type is stably dominated if, whenever the stable part of its realisa-

tions are sufficiently independent from the stable part of some tuple b, then the type

of b over Ca can be determined using only the stable part Cα(a) of the parameters.

Let θC(a) be a pro-definable map that enumerates StC(a) where a � p. Then

from [12] we see p is stably dominated if and only if it is stably dominated via θC .

We take opportunity here to draw a closer parallel between this property and

that of compact domination. Recall the following definitions.

Definition 4.1.2. [11] Let X be an A-definable set in M , C a compact Hausdorff

space of bounded size, and f a map from X to C. We will say that f is definable

over A if, for any closed subset C1 of C, f−1(C1) ⊆ X is type-definable over A in

M .

Definition 4.1.3. [11] Let X be some type-definable set and π : X → C a definable

surjective map from X into some compact space C. Let µ be a probability measure

on C.

Then we say X is compactly dominated by (C, µ, π) if, for any definable subset

Y of X, and for every c ∈ C outside a set of µ measure zero, either π−1(c) ⊆ Y or

π−1(c) ⊆ X \ Y .
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One can observe that these notions are similar. The key difference is the re-

placement of topological properties on C with sufficient notions of stability and

independence. Our hope then is that the results from o-minimality surrounding

compact domination and Ellis Groups can be adapted to the metastable case by

considering stable domination instead.

One says a type-definable group G is compactly dominated (as a group) if G

is compactly dominated by some (H,m, π) where m here is specifically the unique

normalised Haar measure on H (some compact group) and π is a group homomor-

phism. We say that a definable group G is Stably Dominated if SG(M) contains

a stably dominated generic type. Hence a group will be stably dominated if it is

stably dominated via some group homomorphism into a stable group, as the exis-

tence of a stably dominated generic implies G/G00 is a stable group. If H is a stably

dominated subgroup of G, we say that H is maximal if there exists no proper stably

dominated subgroup. We will call such H the maximally stably dominated subgroup

of G.

It is seen in [28] and [8] that for all type-definable (over M) groups G, with G

compactly dominated, the Ellis Group of (G(M), SG(M)) is isomorphic to G/G00.

In this chapter we investigate to what extent these results have analogues in the

metastable case for G some definable stably dominated group.

Let Γ be an ∅-definable stably embedded set. We assume Γ is orthogonal to the

stable part; no infinite definable subset of Γeq is stable. For any C, a, let ΓC(a)

denote (C ∪ Γeq) ∩ dcl(Ca).

By a global C-invariant type p we mean that p does not split over C. That is, p

is Aut(U/C)-invariant.

Definition 4.1.4. [12] The theory T is metastable (over Γ) if, for any C:

(1) There exists D ⊇ C such that, for any tuple a, tp(a/ΓD(a)) is stably dominated.

(2) If C = acl(C), then for all tuples a there exists a global C-invariant type p with
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a � p|C.

A set D as in (1) is called a metastability basis.

The motivating example of a metastable theory is ACV F , and it is shown in

[10] that Th(C((t))) is also metastable.

For this chapter, unless otherwise stated, we use T to denote an arbitrary

metastable theory. We will use M � T with the universe of M denoted by K.

We use M̄ to denote an elementary extension of M , with the universe of M̄ denoted

K.

4.2 Topological Dynamics of Stably Dominated

Groups

In metastable structures many types can be determined via reduction to parameters

in a stable structure. We ask if we can apply the results of stability to definable

topological dynamics to study minimal flows. In this section we recall several re-

sults concerning stably dominated types and draw some preliminary conclusions for

definable topological dynamics in the metastable setting.

Fact 4.2.1. [10] For all a, C;

(1) tp(a/C) is stably dominated if and only if tp(a/acl(C)) is.

(2) If C = acl(C) and tp(a/C) is stably dominated via α, then tp(a/C) has a

unique C-definable extension p. Moreover, for all B ⊇ C, a � p|B if and only if

StC(B) |̂
C
α(a).

Hence, when working with stably dominated types, there is no loss of generality

in considering C algebraically closed. By doing so, we can assume stably dominated

types will admit unique heirs. Given that for an arbitrary metastable structure
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M , types over M may not be definable, this fact allows our action of G on stably

dominated types to be well defined in all metastable structures.

Fact 4.2.2. [10] Assume tp(a/C) is stably dominated.

(1) Let q be a global acl(C)-definable type and b � q|acl(C), a |̂ C b implies b |̂
C
a.

In particular, if tp(b/C) is stably dominated, a |̂
C
b if and only if b |̂

C
a.

(2) a |̂
C
bd if and only if a |̂

C
b and a |̂

Cb
d.

(3) If tp(b/Ca) is stably dominated, then so is tp(ab/C)

(4) If b ∈ acl(Ca), then tp(b/C) is stably dominated.

It follows immediately that we can say something meaningful about the definable

topological dynamics of maximally stably dominated groups.

Proposition 4.2.3. Let M be a metastable structure with the universe of M al-

gebraically closed. Let G be an M-definable maximal stably dominated group, and

X ⊂ SG(M) the set of stably dominated types in G (over M). Then the flow (G,X)

is closed.

Proof. This follows from (4) of Fact 4.2.2. Take any type p ∈ X and let a � p.

Then clearly any g ∈ G is contained in M algebraically closed, and so tp(g/M) is

stably dominated.

The action of G on X can be considered as an action of types of g ∈ G over M

on X wherein the action is given by tp(g/M) ∗ p = tp(ga/M) where a � p.

As tp(g/M) stably dominated, and since p = tp(a/M) = tp(a/Mg) (since g ∈M)

is stably dominated, we have tp(ga/M) stably dominated by (3) of Fact 4.2.2.

Hence X is closed under action of G and (G,X) is a subflow of (G,SG(M)).

We can refine this further by extending the action of G on X to an action of X

on itself.
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Proposition 4.2.4. Let M be a metastable structure with the universe of M al-

gebraically closed. Let G be an M-definable maximal stably dominated group, and

X ⊂ SG(M) the set of stably dominated types in G (over M).

Let p, q ∈ X with a � p and b � q|M,a. Then the action

∗ : X ×X → X

(p, q) 7→ tp(ab/M),

is well-defined and moreover (X, ∗) is a semigroup.

Proof. The fact that the action is well defined follows immediately from (2) of Fact

4.2.1. Namely, that extensions to heirs over supersets of M are unique.

We now show this is a semigroup. Closure follows from (3) of Fact 4.2.2, by

showing that p ∗ q ∈ X. Associativity is a consequence of (2) of 4.2.2, though also

from the general topological dynamics of type multiplication as shown in Chapter

1.

Hence (X, ∗) is a semigroup as required.

What we are showing here is simply that the collection of stably dominated types

form a subflow of (G,SG(M)) where G is maximally stably dominated. We make no

claims about minimality of such a subflow; in fact in general this subflow will not be

minimal. However, it will contain a minimal subflow and as such this preliminary

result can be used to narrow down our search for idempotent elements.

We now recall a notion of symmetry for stably dominated types, and extend

this once again to the action on the type space to demonstrate 2-sidedness of type

multiplication in stably dominated groups. We say a (generic) type p ∈ SG(M) is

2-sided if, for all q ∈ SG(M), we have q ∗ p = p ∗ q.

Definition 4.2.5. [12] Let p be a definable type. We say that p is symmetric if

for all definable types q and parameters C such that p and q are defined over C,

a � p|acl(C) and b � q|acl(Ca), then a � p|acl(Cb).
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It is remarked in [12] that stably dominated types are symmetric. Note that for

p, q ∈ SG(M) stably dominated types, this is not claiming p ∗ q = q ∗ p. However, it

does imply that a type multiplication ∗′ given by taking heirs on the left rather than

the right would be a similarly well-defined semigroup action on the set X ⊆ SG(M)

of stably dominated types.

Fact 4.2.6. [12] Assume G admits a symmetric right generic type. Then left and

right generics coincide, they are all symmetric, and there is a unique left (right)

orbit of generics. In particular, there are only boundedly many generics in G.

Since stably dominated types are symmetric, it follows that all generics of G are

both left and right generics and are all stably dominated. The boundedness condition

is especially interesting here, and we should note the comparison to G/G00 having

boundedly many cosets when asking if G/G00 and Ellis Groups of maximally stably

dominated groups coincide.

The existence of unique symmetric types has consequences for the connectedness

of G, as shown by the following result of Hrushovski and Rideau.

Fact 4.2.7. [12] Assume G admits a symmetric generic type p. Then the following

are equivalent;

• p is the unique generic of G.

• For all g ∈ G, pg = p.

• G is connected.

What this shows is that whenever G admits a symmetric generic type, then

there is a unique principal generic. By a principal generic type we mean that the

realisations are contained in G00. Note that some literature uses G0 here, as this

setting is close to stability where G0 = G00, but we will use G00 to be consistent

with the majority of the NIP literature on generics.

An easy consequence of these equivalences is as follows.
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Proposition 4.2.8. If G is a stably dominated connected group, then G is definably

extremely amenable.

Proof. As G is stably dominated, by definition it admits a symmetric generic type

p.

By Lemma 4.2.7, if G is connected, then p is the unique such type.

The existence of a unique generic is sufficient for G to be definably extremely

amenable.

We note that this is more of a specific case of the following result.

Proposition 4.2.9. Let M be a metastable structure with the universe of M al-

gebraically closed. Let G be an M-definable maximal stably dominated group, and

GenG(M) ⊂ SG(M) the set of stably dominated generic types in G (over M).

Then (G,GenG(M)) is a subflow of (G,SG(M)).

Proof. Since G is a maximal stably dominated group, there exists at least one

stably dominated generic type in SG(M). It follows from 4.2.6 that in fact every

generic type is stably dominated and by the above GenG(M) is nonempty. It is

easy to see then that if p is generic, p is stably dominated and hence has unique

extensions by (2) of Fact 4.2.1, as are all of its left G-translates. As p is generic,

gp = tp(ga/M) is also generic and hence also stably dominated. Hence GenG(M) is

closed under left-action by G and hence (G,SG(M)) is a subflow of (G,SG(M)).

I make no claims currently that such a subflow is minimal, though a remark of

Hrushovski in [11] suggests that maximally stably dominated groups admit finitely

satisfiable generics, and as such we can apply Fact 1.5.4 and conclude that

(G,GenG(M ext)) is minimal and two-sided.

This would mean that that stably dominated groups are definably amenable, and

as such questions as to whether Ellis Groups and G/G00 coincide are already known.

In general, we want to study the dynamics of groups which are not themselves stably
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dominated, but instead admit a group decomposition containing definable maximally

stably dominated subgroups. In doing so, we wish to assess to what extent the

description of Ellis Groups can be simplified using results of stable domination and

stability.

The following results are useful for such study, and we see some preliminary

consequences for groups that admit slightly simpler decompositions than we plan

on working with.

Fact 4.2.10. [12] The class of stably dominated pro-definable groups is closed under

Cartesian products and image under definable group homomorphisms. If G and H

are stably dominated pro-definable groups with p and q stably dominated generics of

G and H (resp.), then p⊗ q is a stably dominated generic of G×H.

Note here that ⊗ is a map SG(M)×SH(M)→ SG×H(M), and is distinct from the

type multiplication ∗. Specifically, p⊗ q = tp((a, b)/M), where a � p and b � q|M,a;

mapping pairs of complete n and m-types (depending on the dimension of G, H) to

complete n+m-types.

However, if G and H have the same group operation, and G ∩ H is trivial,

we could construct the group GH and observe that there exists a homeomorphism

between the minimal flows of (G×H,SG×H(M)) and (GH,SGH(M)).

Fact 4.2.11. [12] Let G be a pro-definable group and let N / G be a stably domi-

nated pro-definable subgroup. Assume that there exists a stably dominated type con-

centrating on G/N whose orbit under G-translations is bounded. Then G is stably

dominated.

In particular, if N / G and N,G/N are stably dominated, then so is G.

We remark the similarities to Fact 1.5.8 and the results of [15] in which groups

admitting similar decompositions, though insisting on definable amenability rather

than stable domination, are shown to have the same property. Of course this is some-

what trivial knowing stably dominated groups are themselves definably amenable,
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though this context-specific result may be beneficial in describing minimal flows in

terms of stable groups.

Fact 4.2.12. [12] Let G be an algebraic group with N ≤ G an algebraic subgroup.

Let H ≤ G be definable in ACV F and stably dominated. Then H ∩ N is stably

dominated.

This result is especially beneficial when it comes to manipulating types in group

decompositions with a large intersection. For example, let K be an algebraically

closed valued field and consider that every element of SL2(K) can be expressed

as the product of elements from B(K) and SL2(O). This decomposition has an

infinite intersection of elements in the decomposition; namelyB(O). Using the above

with the Borel subgroup algebraic (so G = B) and H = SL2(O) maximally stably

dominated, we see B(O) is itself stably dominated and admits stably dominated

generics in SB(O)(M).

We now include several results of [12] which demonstrate the existence of a group

homomorphism from stably dominated group into a stable group and describes a

relationship between the generics of these groups. We use these later to demon-

strate how the minimal subflows of a stably dominated group can be described via

reduction to the stable group.

Fact 4.2.13. [12] Let G be a stably dominated pro-definable group. There exists a

pro-definable stable group G and a pro-definable homomorphism π : G → G such

that the generics of G are stably dominated via π.

We remark some consequences of this fact for G maximally stably dominated.

Consider the above π and observe that π extends to a function SG(M) → SG(M)

that acts on realisations. First, since the action of G on SG(M) acts by homomor-

phism, we can see that π(g ∗ p) = π(g) ∗π(p). This means that we reduce closed left

ideals of (SG(M), ∗) to some closed set in (SG(M), ∗), and we claim later that this

reduction coincides with the closed left ideals of (SG(M), ∗).
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This would mean that, given some metastable definable group that admits a

decomposition with maximally stably dominated subgroups, we could describe the

dynamics of that subgroup quickly via reduction to a stable group. To do this, we

would like π to have some maximal property, or perhaps some notion of uniqueness,

to ensure that the reduction of G to G is well determined. We see using the following

result that such a notion is known to exist for these homomorphisms.

Fact 4.2.14. [12] There exists a pro-C-definable stable group G and a pro-C-

definable homomorphism π : G→ G, maximal in the sense that any pro-C-definable

homomorphism π′ : G→ G′ into a pro-C-definable stable group factors through π.

The kernel of this maximal π is uniquely determined. If G is stably dominated

it will be stably dominated via this maximal homomorphism.

Further, as minimal flows of stable groups are known to contain the generic

types, we would want that the projection to generic types in G should come from

types generic in G. Again, we see that there is a duality between the generics in a

stably dominated group G and the stable group G.

Fact 4.2.15. [12] Let G be a pro-C-definable group stably dominated via some pro-

C-definable group homomorphism π : G→ G. Then tp(a/C) is generic in G if and

only if tp(π(a)/C) is generic in G.

The existence of a homomorphism into a stable group will be useful to us in

describing minimal flows via the reduction to stable groups, and is especially useful

at quickly finding explicit descriptions of generic types in stably dominated groups.

For example, let K be an algebraically closed valued field with residue field

res(K). Then SL2(OK) is maximally stably dominated via the homomorphism

that maps matrices entrywise to their residue. We see an explicit description of

the unique stably dominated generic of SL2(OK) later in the thesis, and note that

this homomorphism maps that generic into the unique stably dominated generic of

SL2(res(K)).
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We first show that we can use this homomorphism to demonstrate minimality of

the subflow of generics as given in Proposition 4.2.9.

Proposition 4.2.16. Let G be a Stably Dominated Group. Then the Minimal Sub-

flow of (G,SG(M ext)) is precisely the set of stably dominated (left) generic types,

denoted GenG(M ext).

Proof. We first prove that this is a subflow. By definition, G contains at least one

stably dominated generic type, and so GenG(M ext) is non-empty. Further, it is clear

that the set of generic types forms a subflow as any translate of a generic type is

itself generic.

It remains to show that this is minimal.

By Fact 4.2.13, there exists a definable stable group G and pro-definable map

π : G → G a group homomorphism. Further, by Fact 4.2.15, this extends to a

projection π′ : GenG(M ext)→ GenG(M ext) that sends tp(a/M ext) ∈ GenG(M ext) to

tp(π(a)/M ext) ∈ GenG(M ext).

Suppose for contradiction that there exists some subflow (H,SG(M ext)) with

H ⊂ GenG(M ext).

Then π′(H) = H is clearly a minimal subflow of (G, SG(M ext)) since the action

of G on H projects via π to an action of G on H which remains closed since π is a

homomorphism.

However, we know from results on the topological dynamics of definable stable

groups, that GenG(M ext) is the unique minimal subflow of (G, SG(M ext)), and so

we have a contradiction.

Hence (GenG(M ext), SG(M ext)) is a minimal subflow of (G,SG(M)) as required.

An easy Corollary of this is as follows.

Proposition 4.2.17. For G a Stably Dominated Group, the flow (G,SG(M ext)) has

Ellis Group p ∗GenG(M ext), where p is a stably dominated principal generic.
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Proof. It is clear that p is idempotent, since the principal generic knows its reali-

sations lie in G0, a subgroup of G. Then by definition p ∗ GenG(M ext) is the Ellis

Group of (G,SG(M ext)).

We now move to more general results where we study larger classes of groups

which admit decompositions with stably dominated components, and observe how

we can describe their Ellis Groups using the results of this section.

4.3 Metastable Definable, Non-Stably Dominated

Groups

We demonstrated in Chapter 2 that a non-definably amenable group definable in

the metastable structure C((t)) provided another negative answer to the Ellis group

conjecture of Newelski. However, the follow up work in Chapter 3 shows something

interesting for the flow of SL2(C[[t]]); that SSL2(C[[t]])(M) admits an invariant type.

We see now that such a type is actually stably dominated via the residue map.

Given that we can write SL2(C((t))) as the product of SL2(C[[t]]) × B(C((t)))

and all Ellis Groups are isomorphic, we can conlude the following; the maximally

stably dominated part of SL2(C((t))) collapses completely when finding the Ellis

Group. We hypothesize here that this is a consequence of a trivial minimal flow in

the stably dominated part, which is not necessarily true for all stably dominated

groups.

Proposition 4.3.1. Suppose G ∼= NH with N normal, both N , H stably dominated,

and H definably isomorphic to G/N . Then the minimal subflow of (G,SG(M ext))

is precisely cl(I ∗ J), where I is the minimal subflow of (N,SN(M ext)) and J is the

minimal subflow of (G/N, SG/N(M ext)).

Proof. The assumptions here imply that G itself is stably dominated by Fact 4.2.11.
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Further, by Fact 4.2.11, we know that the product of any types p, q in I, J (resp.)

will be a stably dominated generic type in G.

Next, we see that I ∗ J is left G(M ext)-invariant. Consider some g ∈ G(M ext).

Then we can express g = nh for some n ∈ N(M ext)) and h ∈ G/N(M ext). Let

n′h′ � q ∗ p ∈ I ∗ J (over M ext, nh). Using the normality of N in G, we can find

some h̄ ∈ G/N(M ext) such that nhn′h′ = nn′h̄h′. Then since n′ � q|Mext,n, and q is

in the minimal flow I of (N,SN(M ext)), nn′ � q′ ∈ I. Similarly, since h′ � p|M,n,h,n′ ,

and p ∈ J the minimal flow of (G/N, SG/N(M ext)), we see h̄h′ � p′|M,nn′ as required,

and hence g · q ∗ p = q′ ∗ p′ ∈ I ∗ J as required.

It remains to prove that cl(I ∗ J) is minimal. Note that by Fact 1.5.1, we can

express every element of cl(I ∗J) as s∗q ∗p for some s ∈ SG(M ext), q ∈ I and p ∈ J .

We prove that the SG(M ext)-orbit of s ∗ q ∗ p generates all of cl(I ∗ J), for which it

is sufficient to show I ∗ J ⊆ SG(M ext) ∗ s ∗ q ∗ p.

Let q′∗p′ ∈ I∗J . We need to find some r ∈ SG(M ext) such that q′∗p′ = r∗s∗q∗p.

The normality assumption makes this somewhat easy. Let r be realised by some

nh. Let the heir of s (over nh) be realised by some n1h1. Let the heir of q (over

nh, n1h1) be realised by some n2. Let the heir of p (over nh, n1h1, n2) be realised by

some h2. In this description, ni ∈ N and hi ∈ G/N .

Then r ∗ s ∗ q ∗ p = tp(nhn1h1n2h2/M). Using normality of N we can find some

h̄ ∈ G/N(M ext) such that nhn1h1n2h2 = nn1n2h̄h2.

Since n2 � q ∈ I we can choose n such that nn1n2 � q′ ∈ I. Similarly, since

h2 � p ∈ J , we can choose h such that the resulting h̄h2 � p′|Mext,nn1n2 .

Let r ∈ SG(M ext) be the type realised by nh chosen as above. Hence I ∗ J ⊆

SG(M ext) ∗ s ∗ q ∗ p. Then cl(I ∗ J) is the orbit-closure of every element in cl(I ∗ J)

and hence a minimal flow of (G(M ext), SG(M ext)) as required.

Proposition 4.3.2. Let G be a definable group with subgroups H, J of G such that;

• G = HJ
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• J is maximally stably dominated

• (H,SH(M)) admits a unique 2-sided 1-point minimal flow, p.

Then the minimal flow of (G,SG(M)) is cl(G(M ext) · p ∗ q) where q is the prin-

cipal generic of GenJ(M ext). The Ellis Group of (G,SG(M)) is a subset of p ∗

GenJ(M ext)).

Proof. First, since J is maximally stably dominated, SJ(M) contains stably domi-

nated generic types and hence the set GenJ(M ext) is non-empty. Let q be the prin-

cipal generic (i.e. centred on J00). Further, for any s ∈ SJ(M ext), s ∗GenJ(M ext) =

GenJ(M ext) by the properties of generic types as GenJ(M ext) the minimal flow of

(J(M ext), SJ(M ext)).

The fact that cl(G(M ext) · p ∗ q) is minimal follows similarly to the proof of

Proposition 4.3.1. Note that we do not assume normality in this case, but that the

arguments in Proposition 4.3.1 can be sufficiently adapted using the 2-sided 1-point

minimal flow of (H(M ext), SH(M ext)).

To see then that the Ellis Group is a subgroup of p ∗GenJ(M ext), consider that

cl(G(M ext) · p ∗ q) contains some idempotent element s ∗ q ∗ p.

Claim: There exists an idempotent in cl(G(M ext) · p ∗ q) of the form s ∗ q ∗ p,

where s = q ∗ p′ for some p′ ∈ GenJ(M ext).

Proof of Claim. We show there exists a p′ such that q ∗ p′ ∗ q ∗ p is idempotent.

First, note we can write p′ ∗ q as q0 · p0 for some q0 ∈ SH(M ext) and p0 ∈ SJ(M ext).

Hence q ∗ p′ ∗ q ∗ p = q ∗ q0 ∗ p0 ∗ p.

Then, since q is a 2-sided 1-point minimal flow of (H(M ext), SH(M ext)) and

p ∈ GenJ(M ext), we can write q ∗ q0 = q and p0 ∗ p = p1 ∈ GenJ(M ext).

Hence q ∗ p′ ∗ q ∗ p = q ∗ p1. Then (q ∗ p′ ∗ q ∗ p)2 = (q ∗ p1)2, and we can use the

same argument to write (q ∗ p1)2 = q ∗ p2.

We claim now that p′ can be chosen such that p2 = p1.

90



CHAPTER 4

Let h � q and let j � p1|Mext,h. Let h′ � q|Mext,h,j and let j′ � p1|Mext,h,j,h′ .

Then (q ∗ p1)2 = tp(hjh′j′/M ext). Further, there exists some h0 ∈ H(M̄ ext) and

j0 ∈ J(M̄ ext) such that jh = h0j0. hence tp(hjh′j′/M ext) = tp(hh0j0j
′/M ext).

Then asGenJ(M ext) is a section of J/J00 is a minimal subflow of (J(M ext), SJ(M ext)),

there exists some j0 such that j0 · p1 = p1. Hence we can choose p′ appropriately

such that j0j
′ � p1.

Hence, as required, we can find some p′ ∈ SJ(M ext) such that q ∗ p′ ∗ q ∗ p is

idempotent as required.

Finally then, as we have demonstrated the idempotent is of this form, we can

act on cl(G(M ext) ∗ q ∗ p) on the left by q ∗ p′ ∗ q ∗ p. Hence the Ellis Group of

(G(M ext), SG(M ext)) is precisely q ∗p′ ∗q ∗p∗ cl(G(M ext)∗q ∗p). Using similar argu-

ments to the above, since q is a 2-sided 1 point minimal flow of (H(M ext), SH(M ext)),

and p ∈ GenJ(M ext)), we can rearrange the realisations of elements of q ∗ p′ ∗ q ∗ p ∗

cl(G(M ext) ∗ q ∗ p) such that it realises some q ∗ p′ ∈ q ∗GenJ(M ext).

We make no claims that this covers all of GenJ(M ext), simply that the Ellis

Group is a subgroup contained in the set q ∗GenJ(M ext).

Proposition 4.3.3. Let G be a definable stably dominated group. Then there exists

some stable group, G, such that the minimal subflow of (G(M), SG(M)) is expressible

as a section of the minimal subflow of (G(M ext), SG(M ext)).

Proof. Since G is stably dominated, there exists some stable group G and group

homomorphism π : G → G by Fact 4.2.13 such that G is stably dominated via π.

Moreover, by Fact 4.2.14, we may assume π is maximal in the sense that any other

such homomorphism cycles through π.

By definition, since G is a stably dominated group, SG(M ext) contains stably

dominated generic types. Hence the minimal flow of (G(M ext), SG(M ext)) is the set

GenG(M ext) of generic types in SG(M ext), by Fact 1.5.3.
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Finally, by Fact 4.2.15, {π(p) : p ∈ GenG(M ext)} is precisely the set GenG(M ext)

of generic types in SG(M ext), which is itself a minimal subflow by Fact 1.6.1. Further,

since G is a group definable in a stable structure, we can take M ext = M .

Consider the binary relation π̄ on GenG(M ext) defined by π̄(p, q) if π(p) = π(q).

It is easy to see using the fact that π is a group homomorphism that this is an

equivalence relation, and moreover that GenG(M ext)/π̄ = GenG(M) as required.

Of course, this result would be especially useful when |GenG(M ext)| = |GenG(M)|,

so that the quotient by π̄ is trivial. In general however, SG(M ext) may contain more

generic types. We leave this as an open question.

Question 4.3.4. Consider the result of Proposition 4.3.3. When can the generic

types of SG(M ext) be recovered using the generic types of SG(M)?

Clearly there exists some preliminary but somewhat trivial answers to this;

namely when π−1 is itself a group homomorphism (and hence π is a group iso-

morphism). In general however, this will not be the case. We ask whether there are

any properties of the topologies or of the model theory that allow us to recover the

generic types in the opposite direction. We would not necessarily require a result

that provides a description; an argument which counts the generic types in SG(M ext)

using the generic types of SG(M) would be useful in itself. Such a result would allow

us to know quickly if G were definably extremely amenable for example. Similarly,

due to the isomorphism between the Ellis Group and G/G00, we could quickly find

the type-definable connected component of more complicated groups if we could

count the generics using the - likely simpler - reduction of G to a stable group.
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Definable Topological Dynamics of

SL2(K)

We look to generalise the work of Chapter 2 to a larger class of groups; namely

definable, non-definably amenable groups in a metastable structure. The intention

is that the work here should generalise to affine algebraic groups over algebraically

closed valued fields, providing those groups admit similar group decompositions.

Unlike C((t)), there is no known language in which all models of ACV F admit

definable types over some small (base) model M . This property is required for

type multiplication to be well defined. We have two options in solving this issue;

work in the Shelah expansion M ext, or restrict to a smaller class of algebraically

closed valued fields for which types over M are definable. We choose the latter, and

restrict to models K of ACV F which are maximally complete and have value group

isomorphic to (R,+); it is known that all complete types over K are definable in

this setting.

Further, it is well known that ACV F is not a complete theory. Since we look to

generalise the results of Chapter 2, we restrict to ACV F0,0, and hence K will be of

equicharacteristic 0.

Where the work in Chapter 2 was focused on demonstrating non-equivalence of
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Ellis Groups and 00-components in unstable metastable settings, the work in this

chapter is aimed at providing a description for Ellis Groups in this setting, and

determining to what extent maximally stably dominated subgroups determine Ellis

Groups.

5.1 Preliminaries

The notation in this chapter should be consistent with the rest of this thesis unless

otherwise stated. We will work in the language of rings, augmented with a predicate

div for division where div(x, y) ⇐⇒ v(x) ≤ v(y). Let Ldiv the language Lring ∪

{div}. We use M to denote an Ldiv-structure with domain K, where K is an

algebraically closed value field. As before, M̄ will denote some elementary extension

of M , and we use L to denote the domain of M̄ . We use U to denote some global

(monster) model. For a given field K, we use ΓK , OK and res(K) for the value

group, valuation ring and residue field of K respectively. Models of ACV F in this

language do not necessarily admit definable types over M .

Fact 5.1.1. [10] Let K be an algebraically closed valued field.

(i) The theory of K has quantifier elimination in Ldiv.

(ii) The theory of K has quantifier elmimination in a 2-sorted language with a sort

K for the field in Lring, a sort Γ for the value group (written multiplcatively in

the language (<, .., 0) and an absolute value map | − | : K → Γ with |0| = 0).

(iii) The theory of K has quantifier elimination in a 3-sorted language LΓk with the

sorts and language of (ii) together with a sort k for the residue field in Lring

and a map Res : K2 → k given by Res(xy−1) equal to the residue of xy−1 and

taking value 0 ∈ k if |x| > |y|.
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This fact has a partial converse; namely that any non-trivially valued field whose

theory has QE in Ldiv must be algebraically closed.

We now recall a well known fact about Ldiv definable sets in models of ACV F ,

with the intention of giving a description of complete 1-types over K. Let K be a

valued field with value group Γ. Then any definable subset of K (in 1-variable) is a

Boolean combination of open balls Bγ(a) = {x ∈ K : |x− a| < γ}. In the topology

induced by the valuation, all open balls of non-zero radius are clopen.

Recall that a residual extension of K an algebraically closed valued field is a field

L ⊃ K such that res(L) ⊃ res(K). Likewise a ramified (or valuational) extension

is an extension L of K such that ΓL ⊃ ΓK . An Immediate extension of K is such

that res(L) = res(K) and ΓL = ΓK .

Fact 5.1.2. Let K � ACV F , with K � L, t ∈ L \ K and consider the type

p = tp(t/K). Then;

• If K(t)/K is a residual extension, then p is definable.

• If K(t)/K is a ramified (valuational) extension with val(t) = γ /∈ ΓK, then p

is definable if and only if the cut definable by val(t) in Γ(K) is rational.

• If K(t)/K is an immediate extension, then p is not definable.

This result has a useful consequence; by taking a complete valued field such that

no proper immediate extension exists, and insisting that ΓK is isomorphic to R, one

can see the following result.

Fact 5.1.3. Suppose K � ACV F . Then the following are equivalent;

• K is maximally complete, and the value group ΓK ∼= (R,+, <).

• Every type p ∈ S1(K) is definable.

• Every type p ∈ Sn(K) is definable for all n ∈ N.
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I recall several well-known results of algebraically closed valued fields that will be

useful to us in this section. Firstly, every valued field has an immediate maximally

complete extension. As such, for K � ACV F0,0, we will assume K to be maximally

complete. Further, any maximally complete field is Henselian.

The fields K = k((tΓ)) = {f =
∑
γ∈Γ

aγt
γ : supp(f) is well ordered } are all max-

imally complete. As such, generalising to G affine algebraic over some maximally

complete K � ACV F0,0, seems reasonable; taking G = SL2 and K = C((tR)) as a

canonical example.

For this chapter, I assume that K is maximally complete, with ΓK isomorphic

to (R,+, <).

We first provide an analogue for Lemma 2.1.9 where K is a maximally complete

algebraically closed valued field in Lring ∪ {div}.

Fact 5.1.4. [13] Let K � ACV F with L an extension of K. Let v be the valuation

on K with value group Γ. Suppose that for some t ∈ L, L = K(t). Then we can

determine the valuation on L via the set I = {v(t− a) : a ∈ K} as follows;

• If I ⊃ Γ - that is, there exists some v(t − a) = γ /∈ Γ - then ΓL = Γ(γ) and

the residue field of L is the residue field of K.

• If I takes a maximal value v(b) in Γ at some a ∈ K, then kL = kK(e) where

e = res((t− a)/b).

• If I = Γ with no maximal value for all a ∈ K, then K(t) is an immediate

extension.

The first case is an extension of the value group in which we can determine the

possibilities for the complete types via the o-minimal theory. The non-immediate

types here are of elements with infinite or infinitesimal value with respect to ΓK .

The second case is what we referred to as transcendental types or residual types.

These are types whose realisations extend the residue field. In the case of ACV F
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these are elements whose residue is transcendental over res(K). These are uniquely

determined by being “transcendentally close” to an element of K. Finally, we have

immediate extensions and these coincide with the immediate types of elements al-

ready in K.

Following from Fact 5.1.4 we see that the complete descriptions of 1-types in

this setting are as follows. Types of kind (a) are immediate, the valuational types

correspond to 1-types in an o-minimal setting and the transcendental types are

determined as above as the ac map is not definable in this language by [21].

Proposition 5.1.5. [13] Let K � ACV F be a henselian, maximally complete field

of equicharacteristic 0.

Then the complete 1-types over K are precisely the following;

(a) tp(a/M) for a ∈ K determined by the formula x = a.

(b) Types p∞ determined by the formulas v(x) < γ for all γ ∈ Γ.

(c) Types pa determined by the formulas v(x− a) > γ for all γ ∈ Γ.

(d) Types pa− determined by v(x) < v(a) for some a ∈ K and v(x) > γ for all

γ < v(a) ∈ Γ.

(e) Types pa+ determined by v(x) > v(a) for some a ∈ K and v(x) < γ for all

γ > v(a) ∈ Γ.

(f) Types pa,γ determined by a ∈ K, v(a) < v(x − a) = γ, and res((x − a)/γ) is

transcendental over k. (If a = 0, we simply use v(x) = γ instead.)

We compute the Ellis Group for SL2(K) by hand as to better inform the general

case where G is affine algebraic over K. Although C((t)) does not elementarily

embed into K, we expect that the Ellis Groups should be similar. As before, it can

be shown SLn(K) is not definably amenable.
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Proposition 5.1.6. For K � ACV F and any n ∈ N with n > 1, the group SLn(K)

has no definable generic types, and hence is not definably amenable.

Proof. This can be seen directly as in Proposition 2.1.5, or found in Example 1.14

of [12].

We know now that C((t)) does indeed admit a decomposition into a product of

SL2(C[[t]]) and B(C((t))), though until the work in Chapter 3, we were unaware

that SL2(C[[t]]) was definably amenable with a 1-point minimal subflow. We show

later in this chapter that OK similarly admits a unique invariant type, and as such

we can consider SL2(K) = B(K) · SL2(OK), and note that this decomposition

is a definably amenable / maximally stably dominated decomposition. Note that

B(K) ∩ SL2(OK) = B(OK) is infinite. This is similar to the SL2(Qp) case in [22],

however we remark later that this case is much more difficult to work with.

As before, we first compute the minimal flows, idempotents and Ellis Groups of

the additive and multiplicative groups of K. The motivation here is to construct

minimal flows of B(K) and SL2(OK).

5.2 Additive and Multiplicative Flows

We now use the types in Proposition 5.1.5 to explicitly describe the minimal sub-

flows of the additive and multiplicative groups of some K � ACV F in Ldiv with

equicharacteristic 0 and Γ ∼= (R,+). This should carry through to an arbitrary value

group providing 1-types over M are definable. We denote these groups by Ga and

Gm respectively with corresponding flows (Ga, SGa(M)) and (Gm, SGm(M)). Recall

we also assume that complete types over K are definable.

Proposition 5.2.1. Let K � ACV F and consider the additive group Ga of K.

Then the type p∞ is the unique 1-point minimal subflow of (Ga, SGa(M)).
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Proof. Let a ∈ Ga and let α � p∞|M,a. Then ap∞ = tp(a + α/M) and we show

that a+ α � p∞.

Clearly, v(a + α) = v(α) < γ for all γ ∈ ΓK . Hence {p∞} is a subflow of

(Ga, SGa(M)). Further, as {p∞} is closed and cannot contain any proper non-trivial

subflows it must be a minimal subflow of (Ga, SGa(M)) as required.

To see that this is the unique minimal subflow of (Ga, SGa(M)), recall that

minimal subflows coincide with minimal closed left ideals of (SGa(M), ∗). For any

two minimal flows W1,W2, either W1 = W2 or W1 ∩W2 = ∅.

Suppose for contradiction there exists some other closed left ideal W ∈ (SGa(M), ∗).

Then we can assume since p∞ is minimal that p∞ /∈ W . Since W is a closed left

ideal we have p ∗W ⊂ W .

However, let q ∈ W and suppose α � p∞ and β � q|M,α. Then q∗p = tp(α+β/M).

However, it is easy to see that since β does not realise p∞|M,α that v(α+β) = v(α).

Hence q ∗ p = p ∈ W , a contradiction.

Hence {p∞} is the unique such minimal flow.

Proposition 5.2.2. Let K � ACV F . Then;

(1) The type p∞ is an idempotent of (SGa(M), ∗).

(2) The Ellis Group of (Ga, SGa(M)) is trivial.

(3) G00
a = G0

a = Ga.

Proof. (1) Let α � p∞ and β � p∞|M,α. Then p2
∞ = tp(α + β/M). Since

v(β) < Γ ∩ dcl(M,α), we see v(α + β) = v(β) < γ for all γ ∈ ΓK .

Hence α + β � p∞|M and hence p2
∞ = p∞ as required.

(2) Since {p∞} is a minimal subflow of (Ga, SGa(M)), and p∞ is an idempotent of

(SGa(M), ∗), we see the Ellis Group is p∞ ∗ p∞ = p∞ by definition. Hence the

trivial group ({p∞}, ∗) is the Ellis Group of (Ga, SGa(M))
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(3) Finally, the above demonstrates that p∞ is an f -generic type and as such

G00
a = StabGa(p∞) = Ga. Hence G00

a = G0
a = Ga as required.

We now repeat the above for the multiplicative group of K.

Proposition 5.2.3. Let K � ACV F and consider the multiplicative group Gm of

K. Then the minimal subflows of (Gm, SGm) are precisely the following;

(1) The type p∞ is a 1-point minimal subflow of (Gm, SGm(M)).

(2) The type p0 is a 1-point minimal subflow of (Gm, SGm(M)).

Proof. We first demonstrate that the types p∞ and p0 are invariant under left action

of Ga.

(1) Let a ∈ Gm and let α � p∞|M,a. Then ap∞ = tp(aα/M). Note v(aα) =

v(a) + v(α), and so v(aα) < γ for all γ ∈ ΓK since v(α) < Γ ∩ dcl(M,a) = ΓK .

Hence ap∞ = p∞ and so {p∞} is a 1-point subflow of (Gm, SGm(M)). Clearly

this is minimal as {p∞} cannot contain any proper non-trivial subflows.

(2) Let a ∈ Gm and let α � p0|M,a. Then ap0 = tp(aα/M). Note v(aα) = v(a) +

v(α), and so v(aα) > γ for all γ ∈ ΓK since v(α > Γ ∩ dcl(M,a) = ΓK . Hence

ap0 = p0 and so {p0} is a 1-point subflow of (Gm, SGm(M)). Clearly this is

minimal as {p0} cannot contain any proper non-trivial subflows.

We now prove the claim that these are the only 2 minimal subflows of (Gm, SGm(M)).

Recall for any minimal subflows W1 and W2, either W1 = W2 or W1 ∩W2 = ∅.

Suppose there exists some minimal subflow W ⊆ SGm(M). Assume first that W

does not contain the type p∞. Then p0 ∗W ⊆ W . But clearly for any type q in

SGm(M) \ {p∞} we have p ∗ q = p. Hence p0 ∈ W . But {p0} is minimal and hence

W = {p0} since a minimal subflow cannot contain another minimal subflow.
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There is a duality in this argument by switching p∞ and p0, and so we see that

for any subflow W of (Gm, SGm(M)), W contains either p0 or p∞, and so these are

the only 2 subflows of (Gm, SGm(M)).

Proposition 5.2.4. Let K � ACV F . Then;

(1) The type p∞ is an idempotent element of (SGm(M), ∗).

(2) The type p0 is an idempotent element of (SGm(M), ∗).

(3) The Ellis Group of (Gm, SGm(M)) is trivial.

(4) G00
m = G0

m = Gm.

Proof. (1) Let α � p∞ and β � p∞|M,α. Then p2
∞ = tp(αβ/M). Since

v(β) < Γ ∩ dcl(M,α), we see v(αβ) = v(α) + v(β) < γ for all γ ∈ ΓK .

Hence αβ � p∞|M and hence p2
∞ = p∞ as required.

(2) Let α � p0 and β � p0|M,α. Then p2
0 = tp(αβ/M). Since v(β) < Γ ∩ dcl(M,α),

we see v(αβ) = v(α) + v(β) < γ for all γ ∈ ΓK . Hence αβ � p0|M and hence

p2
0 = p0 as required.

(3) Since {p0} is a minimal subflow of (Gm, SGm(M)), and p0 is an idempotent of

(SGm(M), ∗), we see the Ellis Group is p0 ∗ p0 = p0. Hence the trivial group

({p0}, ∗) is the Ellis Group of (Ga, SGa(M)). It is clear to see that choosing the

subflow {p∞} would similarly provide a trivial Ellis Group, as we would expect

since all such groups should be isomorphic.

(4) The global extensions of both p0 and p∞ are f -generic over M . Hence

G00
m = StabGm(p0) = Gm. Hence G00

m = G0
m = Gm.
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5.3 Borel Subgroup

As in the C((t)) case, we can consider the Borel subgroup as the direct product of

the multiplicative and additive groups of K, obtaining a pair (b, c) ∈ Gm×Ga where

the operation is given by matrix multiplication.

Similarly, we once again construct the projection π : B(K) → K∗ that sends

(b, c) to b. This has kernel isomorphic to K. Given that (K00,+) = (K,+) and

(K∗00,×) = (K∗,×), we conclude B00(K) = B(K).

We consider then the 2-type p = tp((b, c)/M ext) where v(b) ≤ ΓK and

v(c) < Γ ∩ dcl(M, b). We claim that p is idempotent, and further that p is left-

invariant under action of B(K) (and more generally, of SB(M)) as follows.

Proposition 5.3.1. The type p = tp((b, c)/M ext) where v(b) ≤ ΓK and

v(c) < Γ ∩ dcl(M, b) is an idempotent of (SB(M), ∗).

Proof. Let b � p∞|Mext and c � p∞|(Mext,b). Then (b, c) � p. Define β and γ similarly

such that (β, γ) � p|(Mext,(b,c)).

Then p2 = tp((b, c)(β, γ)/M ext) = tp((bβ, bγ + cβ−1)/M ext).

We prove that (bβ, bγ + cβ−1) ≡Mext (b, c) and hence (bβ, bγ + cβ−1) � p.

We see v(bβ) = v(b)+v(β) ≈ v(β) < ΓK as β � p∞|(Mext,(b,c)) and so in particular

β � p∞|Mext . Hence bβ � p∞|Mext .

Next, we consider bγ+cβ−1. Clearly, v(bγ+cβ−1) = min{v(bγ), v(cβ−1)} = v(bγ)

as γ � p∞|(Mext,(b,c),β). Since v(γ) < Γ ∩ dcl(M, b), v(γ) + v(b) ≈ v(γ) and so we see

bγ � p∞|(Mext,(b,c),β). In particular, it is clear that bγ � p∞|(Mext,bβ).

Hence (bβ, bγ + cβ−1) � p|Mext and so p2 = p as required.

Proposition 5.3.2. The type p as above is a 1-point minimal subflow of

(B(M), SB(M)).

Proof. Let (b, c) represent a matrix in B(M). Let β � p∞|M and γ � p∞|(M,β). Then

(β, γ) � p|M,(b,c) and so tp((b, c)/M)∗p = tp((b, c)(β, γ)/M) = tp((bβ, bγ+cβ−1)/M).
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We prove that (bβ, bγ + cβ−1) ≡M (β, γ) and so (bβ, bγ + cβ−1) � p.

First notice that v(bβ) = v(b) + v(β) ≈ v(β) < ΓK as β � p∞|(M,(b,c)). Hence

bβ � p∞|M .

Next, we consider bγ+cβ−1. Clearly, v(bγ+cβ−1) = min{v(bγ), v(cβ−1)} = v(bγ)

as γ � p∞|(M,(b,c),β). Since v(γ) < Γ ∩ dcl(M, b), v(γ) + v(b) ≈ v(γ) and so we see

bγ + cβ−1 � p∞|(M,(b,c),β). In particular, it is clear that bγ � p∞|(Mext,bβ).

Hence (bβ, bγ + cβ−1) � p and so (b, c) ∗ p = p and so {p} is a 1-point minimal

subflow of (B(M), SB(M)) as required.

Proposition 5.3.3. Let K � ACV F with G = SL2 a definable group. Let B ⊂ G

be the Borel Subgroup of upper triangular matrices. Let p ∈ SB(M) be an invariant

type as above. Then;

• B(K) is definably extremely amenable and hence the Ellis Group of

(B(K), SB(M)) is trivial.

• B00(K) = B0(K) = B(K) and B/B00 ∼= ({p}, ∗)

Proof. • Since (SB(M), ∗) has a left-invariant type, B(K) is definably

(extremely) amenable by definition. It follows that the Ellis Group of

(B(K), SB(M)) is trivial as the minimal flow of (B(K), SB(M)) is a singleton.

• Since B is definably (extremely) amenable, we know that the Ellis Group of

(B(K), SB(M)) is isomorphic to B/B00. Hence B/B00 ∼= ({p}, ∗) and hence

B = B0 = B00.

This is not the only minimal subflow of (B, SB(M)). The type realised by the

pair (β, γ) where β � p0|M and γ � p∞|M,β is another 1-point minimal flow of

(B, SB(M)).

We take the opportunity here to consider the minimal flows and idempotents

of SL2(OK) ∩ B(K) = B(OK). We can use Fact 4.2.12 and immediately see that
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B(OK) is stably dominated, and is in fact maximally stably dominated in B(K). As

a subgroup of SL2(OK), we expect that B(OK) admits an invariant type satisfying

the conditions in Fact 3.4.3. We expect a type in SB(OK)(M) invariant under action

of B(OK)(M). We give an explicit description of this type below and note that this

forms a 1-point minimal subflow of B(OK).

Proposition 5.3.4. The type pO ∈ SB(O)(M) realised by (β, γ) - with β � p0,0,trans

and γ � p0,0,trans|M,β - is an idempotent.

Proof. Let (b, c) � pO and let (β, γ) � pO|M,(b,c). Then;b c

0 b−1

β γ

0 β−1

 =

bβ bγ + cβ−1

0 b−1β−1


Then bβ clearly has valuation v(b) + v(β) = 0, and since β � p0,0,trans|M,(b,c), we

have that f(res(bβ)) 6= 0 for all f ∈ res(K(b, c)), and so in particular f(res(bβ)) 6= 0

for all f ∈ res(K).

Hence bβ � p0,0,trans.

We now consider bγ + cβ−1. First, we observe that b, γ, c and β−1 all have

valuation 0, and so v(bγ + cβ−1) ≥ 0. However, since γ � p0,0,trans|M,(b,c),β, clearly

bγ and cβ−1 are linearly independent.

Hence v(bγ + cβ−1) = 0.

Further, since γ � p0,0,trans|M,(b,c),β, we see that f(res(bγ + cβ−1)) 6= 0 for all

f ∈ res(K(b, c, β)), and so in particular for all f ∈ res(K(b, β)) ⊃ res(K(bβ)).

Hence bγ + cβ−1 � p0,0,trans|M,bβ and thus (bβ, bγ + cβ−1) � p0,0,trans as required.

Proposition 5.3.5. The type pO ∈ SB(O)(M) realised by (β, γ) - with β � p0,0,trans

and γ � p0,0,trans|M,β - is a 1-point minimal subflow of B(O), SB(O)(M).

104



CHAPTER 5

Proof. Let (b, c) � r ∈ SB(O)(M) and let (β, γ) � pO|M,(b,c). Then;b c

0 b−1

β γ

0 β−1

 =

bβ bγ + cβ−1

0 b−1β−1


We prove that (bβ, bγ + cβ−1) realises p0,0,trans.

We first observe that v(b) = v(b−1) = 0 regardless of type r. Hence v(bβ) =

v(b)+v(β) = 0. The fact that this is transcendental over res(K) follows easily since

we chose β � p0,0,trans|M,(b,c).

We now prove that bγ+cβ−1 realises p0,0,trans|M,bβ. By the same argument above,

and that bγ is linearly independent from cβ−1, we see v(bγ + cβ−1) = 0.

Proving that res(bγ + cβ−1) is transcendental over res(K(bβ)) follows again

from the fact that γ � p0,0,trans|M,(b,c),β, we see that f(res(bγ + cβ−1)) 6= 0 for all

f ∈ res(K(b, c, β)), and so in particular for all f ∈ res(K(b, β)) ⊃ res(K(bβ)).

Proposition 5.3.6. Let K � ACV F with G = SL2 a definable group. Let B ⊂ G

be the Borel Subgroup of upper triangular matrices. Let pO ∈ SB(OK)(M) be an

invariant type as above. Then;

• B(OK) is definably extremely amenable, stably dominated in SL2(OK) and

maximally stably dominated in B(K).

• The Ellis Group of (B(OK), SB(OK)(M)) is trivial.

• B00(OK) = B0(OK) = B(OK) and B(OK)/B(OK)00 ∼= ({pO}, ∗)

Proof.

The fact that B(OK) is stably dominated, and maximally so in B(K), follows from

Fact 4.2.12. That B(OK) is definably extremely amenable follows from Proposi-

tion 5.3.5; a 1-point minimal subflow is sufficient to demonstrate definable extreme

amenability.
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Since (B(OK), SB(OK)(M)) admits a 1-point minimal subflow, the Ellis Group is

trivial.

Since B(OK) is definably amenable,B00(OK) = StabB(OK)(pO) = B(OK). Hence

B00(OK) = B0(OK) = B(OK) and B(OK)/B(OK)00 ∼= ({pO}, ∗) is trivial.

5.4 SL2(O)

We now calculate the minimal flow of the maximally stably dominated part of the

decomposition of SL2(K).

Let q be a type in SG(O)(M
ext) realised by the matrix ( a bc d ) where ad − bc = 1

and each of a, b, c and d each realise the type p0,0 of kind (f) in Proposition 5.1.5 in

such a way that c � p0,0|Mext,a and b � p0,0|Mext,a,c.

Proposition 5.4.1. The type q is a 1-point minimal subflow of (G(O), SG(O)(M)).

Proof. Let x = ( a bc d ) realise some r ∈ G(O) and let y =
(
α β
γ δ

)
realise q|Mext,x.

Then r ∗ q = tp(xy/M ext) and further;

xy =

a b

c d

α β

γ δ


=

aα + bγ aβ + bδ

cα + dγ cβ + dδ


We first show that each entry of xy has valuation 0. We note that the realisations

of r here may have entries with valuations greater than 0.

However, as ad − bc = 1, we have v(ad − bc) = 0 ≥ min{v(ad), v(−bc)}. If

v(ad) < v(−bc), then v(a) = v(d) = 0. Likewise if v(−bc) < v(ad).

If v(ad) = v(−bc), then v(a) + v(d) = v(−b) + v(c) ≤ 0. Clearly all a, b, c and d

have valuation 0 in this case since we consider only O-points.

Hence for each entry of xy, at least one of the terms has valuation 0. Since

addition takes the minimum value, every entry of xy has valuation 0.
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It remains to show that the translation does not affect the transcendental prop-

erties of the entries. Let α′ = aα + bγ and γ′ = cα + dγ.

Clearly, as both α and γ are transcendental over K, we have that α′ is transcen-

dental over K and hence α′ � p0,0.

Showing that γ′ � p0,0|Mext,α′ requires some additional steps. We also need to be

careful of when x contains 0-entries, and so we split case-by-case.

Case 1: Let b = 0. Then a, d 6= 0 and we have α′ = aα, γ′ = cα + dγ. Then

clearly as γ � p0,0|Mext,α, γ′ � p0,0|Mext,α′ .

We note c could be 0 also, but this does not affect the above argument.

Case 2: Let b 6= 0. Suppose for contradiction that K(α′) = K(γ′).

Then there exists some r, s ∈ K such that r + sα′ = γ′. Clearly any solution to

this would require r = 0, as both α and γ are transcendental over K.

Hence we claim s(aα + bγ) = cα + dγ.

Comparing coeffients, we obtain sa = c and sb = d. We seek to show that this

system has no solutions for s ∈ K for these a, b, c, d.

Since b 6= 0, we write s = d
b
, and substituting into sa = c we obtain da

b
= c.

But this gives da = bc, which is a contradiction since det(x) = 1.

Hence trdeg(K(α′, γ′)) ≥ 2. Since there are only 2 elements in this extension,

we have trdeg(K(α′, γ′)) = 2, and further γ′ � p0,0|Mext,α′ .

We finally remark that even in the case where a = c = 0 this argument follows

through. As γ is transcendental over K(α) and α is transcendental over K, there

is a duality in the sense that α is transcendental over K(γ) and γ is transcendental

over K.

Hence γ′ � p0,0|Mext,α′ as required.

The final step is observing that β′ = aβ + bδ realises p0,0|Mext,α′,γ′ . This is clear

since β is transcendental over both α and γ, and hence transcendental over α′ and

γ′ as necessary. Hence q is left-invariant under G(O) and is a minimal subflow of
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(G(O), SG(O)).

Corollary 5.4.2. The type q ∈ SSL2(O)(M) as above is an idempotent element of

(SL2(O), ∗) and hence ({q}, ∗) is the Ellis Group of (SL2(O), SSL2(O)(M)).

The result that SL2(OK) admits a 1-point minimal subflow and is definably

extremely amenable follows quickly from 3.4.3, though we wished to give an explicit

description of the subflow as we will require it to compute the minimal flow of

SL2(K).

Corollary 5.4.3. The type q ∈ SSL2(O)(M) as above is 2-sided, in the sense that

for any r ∈ SSL2(O)(M), r ∗ q = q ∗ r = q.

Proof. This can be seen directly using a similar proof to Proposition 5.4.1, but can

also be seen as follows.

Since SL2(O) is maximally stably dominated, then a type in SSL2(O)(M) is

generic if and only if its restriction to SL2(k), where k is algebraically closed, is

a generic in SSL2(k)(M); by Fact 4.2.13 and Fact 4.2.15. Since SL2(k) admits a

unique generic p whose entries are transcendental over k and algebraically indepen-

dent from one another, the only generic types in SSL2(O)(M) are those who restrict

to p via the entry-wise residue map on matrices in SL2(O). Hence q is the unique

generic of SSL2(O)(M).

Further SL2(O) is definably extremely amenable and hence admits fsg, and so

left and right generics coincide by Fact 1.5.2. Hence the global heir of q is unique

and has fsg, and so it is invariant under right-translation by G(M̄). Extending this

action to the ∗ action on types, we see q ∗ r = q.

5.5 The Minimal Subflow of SL2(K)

What we have demonstrated now is that SL2(K) admits a group decomposition with

a maximally stably dominated / definably extremely amenable group decomposition,
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with possibly infinite B(O). We demonstrated in Proposition 4.3.2 that for groups

with a similar decomposition we can explicitly describe their minimal flow and Ellis

Group.

SL2(K) admits a similar group decomposition in the sense that SL2(O) admits

a 2-sided 1-point minimal flow. B(K) is definably extremely amenable, however it is

not a 2-sided minimal flow. Indeed there is a second generic type p′ in B(K) which

is also a 1-point minimal flow, but for which p ∗ p′ = p′ and p′ ∗ p = p. That is; the

SG(M)-orbits of p and p′ are disjoint.

We claim that the minimal flow of (G(M), SG(M)) - where G = SL2 and K is

some maximally complete algebraically closed valued field with value group isomor-

phic to (R,+) - can be obtained as in Proposition 4.3.2. We now demonstrate this

explicitly.

Proposition 5.5.1. Let q be the 2-sided 1-point minimal flow of SL2(O) as in

Proposition 5.4.1. Let p be the 1-point minimal flow of B(K) as in 5.3.1. Then q ∗p

is an idempotent element of (SG(M), ∗).

Proof. Let h0 � q|M , t0 � p|M,h0 , h1 � q|M,h0,t0 and t1 � p|M,h0,t0,h1 . Then (q ∗ p)2 =

tp(h0t0h1t1/M). We show that h0t0h1t1 � q ∗ p.

We write t0h1 as h′t′ for some h′, t′ ∈ dcl(M, t0, h1, h0). We note that the choice

of h′, t′ is not unique here since B(K)∩SL2(O) is infinite. However, this should not

be an issue.

Since h′ realises the heir of some r ∈ SSL2(O)(M) over (M,h0), we can see from a

duality argument that h0 realises the coheir of q over M,h′. Hence h0h
′ � q|M since

q is 2-sided by Corollary 5.4.3.

Further, since t1 � p|M,h0,t0,h1 , and t′ ∈ dcl(M,h0, t0, h1), we see that t′t1 �

p|M,h0,t0,h1 .

Hence (q ∗ p)2 = tp(h0t0h1t1/M) = tp(h0h
′t′t1/M) = q ∗ p and hence q ∗ p is

idempotent as required.
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Proposition 5.5.2. Let q ∗ p be the idempotent element of (SG(M), ∗) as in Propo-

sition 5.5.1. Then cl(G(M) · q ∗ p) is a minimal subflow of (G(M), SG(M)).

Proof. From Fact 1.5.1, we see that cl(G(M) · q ∗ p) = SG(M) ∗ q ∗ p. This is a

subflow by construction but not necessarily minimal. To demonstrate minimality,

we show that for any type r in cl(G(M) · q ∗ p). The orbit-closure of r is precisely

cl(G(M) · q ∗ p).

This follows similary to the proof of Proposition 2.4.9. Since cl(G(M) · q ∗ p)

is, by construction, the orbit-closure of q ∗ p, it suffices to prove that q ∗ p is in the

orbit-closure of any r ∈ cl(G(M) · q ∗ p).

Let r = s ∗ q ∗ p, and consider that any element in the closure of the G(M)-orbit

of r is an element of the set SG(M)∗ s∗ q ∗p. We show that q ∗p ∈ SG(M)∗ s∗ q ∗p,

which is to show there exists some s′ ∈ SG(M) such that s′ ∗ r = s′ ∗ s ∗ q ∗ p = q ∗ p.

Choose s′ = q ∗ p′ for any p′ ∈ SB(M). Then since q is two-sided, and p is

left-invariant under the ∗-operation, it is clear that q ∗ p′ ∗ s ∗ q ∗ p = q ∗ p using a

similar proof to that of Corollary 5.4.3. Hence cl(G(M) · q ∗ p) is minimal.

Corollary 5.5.3. The Ellis Group of (G(M), SG(M)) is precisiely the trivial group

({q ∗ p}, ∗). This is isomorphic to G/G00.

Proof. Since cl(G(M) · q ∗ p) is minimal, and q ∗ p is an idempotent element in

cl(G(M) · q ∗p), we can compute the Ellis Group of (G(M), SG(M)) by constructing

the set q ∗ p ∗ SG(M) ∗ q ∗ p.

Again, since q is a 2-sided 1-point minimal flow, and p is left-invariant, we can

use identical arguments as in Propositions 5.5.2 and 5.5.1 and see q∗p∗r∗q∗p = q∗p

for any r ∈ SG(M).

Hence ({q∗p}, ∗) is the Ellis Group of (G(M), SG(M)). To see this is isomorphic

to G/G00 is easy, since G00 = G for G = SL2.

This is one of the only examples we are aware of where G/G00 and the Ellis Group

of (G(M), SG(M)) are isomorphic despite G not being definably amenable. However,
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I do not believe this result generalises very far. Insisting on a decomposition where

one of the subgroups has a 2-sided 1-point minimal flow is an exceptionally strong

property, and in general will not be the case for an arbitrary affine algebraic group

over K � ACV F . It does however provide insight into how we may generalise using

slightly weaker group decompositions.

5.6 Generalisations and Future Work

We first note that the work above is not specific to the case where G = SL2,

and that the proof should follow identically under similar assumptions. We remark

that generalising in this way does require a lot of assumptions, though we suggest

afterwards how to relax many of these assumptions to apply to a much more general

setting.

Theorem 5.6.1. Let G be a non-definably amenable group, definable in a metastable

structure M for which M = M ext. Suppose G is expressible as the product of groups

H and J such that;

• H is maximally stably dominated.

• J is definably extremely amenable and (J(M), SJ(M)) contains a 2-sided 1-

point minimal subflow (J(M), p).

Then the minimal subflow of (G(M), SG(M)) is a subflow of cl(G(M) · p ∗ q), where

q is the principal generic in the set GenH(M) of stably dominated generic types in

SH(M).

Hence the Ellis Group is a subgroup of (p ∗GenH(M)).

Proof. The proof of this statement follows by generalising Proposition 5.5.2, Propo-

sition 5.5.1 and Corollary 5.5.3, and further observing that H maximally stably

dominated ensures GenH(M) is non-empty by definition.
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A special case of this, an example of which is demonstrated by the construction

of the Ellis Group of (SL2(K), SSL2(M)), is as follows.

Theorem 5.6.2. Let G be an M-definable group as in Theorem 5.6.1. Suppose

further that G is an affine algebraic group over M and let q ∈ SH(M̄) be the unique

global stably dominated generic type of H.

Then the minimal subflow of (G(M), SG(M)) is precisely cl(G(M) · p ∗ q), and

the Ellis Group of (G(M), SG(M)) is ({p ∗ q}, ∗) and is trivial.

Proof. This is a special case of Theorem 5.6.1 which makes use of the fact that

both subgroups in the decomposition admit 1-point minimal flows.

We remark that the above example of G(M) = SL2(K), where K is maximally

complete with value group isomorphic to (R,+), is an example of a group for which

Theorem 5.6.2 applies. In this example we also note that G = G00 and hence

there is an isomorphism between the Ellis Group of (G(M), SG(M)) and G/G00.

This is especially interesting as SSL2(K) contains no global generics, and as such

G = SL2 is not definably amenable. We expect that this is more a coincidence

rather than evidence towards a non-definably amenable setting for which the Ellis

Group conjecture of Newelski holds.

Comparing this example to the work of Chapters 2 and 3 where G(M) =

SL2(C((t)), we remark some similarities in that the interpretation of G over the

valuation ring both admit a unique invariant type. In that sense, both Ellis Groups

can be described via the non-stably dominated part of the group decomposition.

That is, where G = SL2 and M is either C((t)) or K � ACV F (maximally com-

plete with additive real value group), the Ellis Group of (G(M), SG(M)) is precisely

descibed by B/B0. This is also the case in [22] where M = Qp.

In the metastable setting, we believe that this is likely a consequence of Fact

3.4.3, in that SL2 here is affine algebraic over K and admits maximum modulus

on regular functions, and hence has a unique global stably dominated generic type.
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In settings where this is not the case, we suspect the Ellis Group will have some

dependance on the stably dominated subgroup in the decomposition.

In future work, we would look towards providing a description for the Ellis

Groups of the G(M)-flow of metastable definable groups which admit decompo-

sition containing a maximally stably dominated subgroup. We would like this de-

composition to hold for any affine algebraic G over some K metastable field, with no

dependency on the existence of a unique global generic type in the stably dominated

subgroup.

Further, we would like to generalise the result towards the Ellis Groups of

G(M ext)-flows. This would allow a more complete description that does not re-

strict to metastable structures with additive real value group. We would also like to

remove the condition that K be maximally complete, though the space of types here

becomes more complex as we have immediate extensions of K which do not extend

the residue field or value group. Ideally, we would like to find a general description

of the Ellis Group for a large class of metastable definable groups which holds over

expansions of any metastable M ext. This would be a metastable analogue of the

work of Yao [33] that described the Ellis Group for a large class of groups definable

in arbitrary expansions of models of RCF .

We demonstrated in Chapter 4 that the Ellis Group of stably dominated groups

can be described via their reduction to a stable group. We would also like to in-

vestigate under what conditions the converse is true. That is to ask under what

conditions we could recover the Ellis Group of a stably dominated group by instead

considering its reduction to a stable group. Such a result would be useful in de-

scribing the Ellis Groups of more complex stably dominated groups as the definable

topological dynamics for stable groups is well understood.
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