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Abstract: Reactive pyritic mine tailings can be populated by chemolithotrophic prokaryotes that
enhance the solubilities of many metals, though iron-reducing heterotrophic microorganisms can
inhibit the environmental risk posed by tailings by promoting processes that are the reverse of those
carried out by pyrite-oxidising autotrophic bacteria. A strain (IT2) of Curtobacterium ammoniigenes,
a bacterium not previously identified as being associated with acidic mine wastes, was isolated
from pyritic mine tailings and partially characterized. Strain IT2 was able to reduce ferric iron
under anaerobic conditions, but was not found to catalyse the oxidation of ferrous iron or elemental
(zero-valent) sulfur, and was an obligate heterotrophic. It metabolized monosaccharides and required
small amounts of yeast extract for growth. Isolate IT2 is a mesophilic bacterium, with a temperature
growth optimum of 30 ◦C and is moderately acidophilic, growing optimally at pH 4.0 and between
pH 2.7 and 5.0. The isolate tolerated elevated concentrations of many transition metals, and was
able to grow in the cell-free spent medium of the acidophilic autotroph Acidithiobacillus ferrooxidans,
supporting the hypothesis that it can proliferate in acidic mine tailings. Its potential role in mitigating
the production of acidic, metal-rich drainage waters from mine wastes is discussed.

Keywords: acidophile; Curtobacterium ammoniigenes; heterotroph; mine tailings; iron reduction

1. Introduction

Waste materials from metal mining, such as mineral tailings, have little or no economic value,
making their exploitation not profitable. In the context of mine management, tailings have the potential
to pose a long-term threat to the environment. Mine tailings are one of the major waste products
generated during the mining of metal ores, and have variable physical and chemical compositions,
dependent on the ore body being processed and the mining operations [1]. Following the crushing and
grinding of ores (comminution), target minerals are segregated from other (gangue) minerals by froth
flotation. The fine-grain mineral wastes produced (tailings) may account for up to 99% of the primary
ore body [2]. While the mineralogical composition of tailings is highly variable, they frequently contain
significant amounts of potentially acid-generating minerals, such as pyrite (FeS2), though the acidity
generated in fresh tailings can be neutralized by basic materials, such as lime (CaO), that are often
added to enhance froth flotation [3].

The dissolution of sulfide minerals requires water and an oxidizing agent, which may be either
molecular oxygen or ferric iron, and may occur in either aerobic or anaerobic (micro) environments
via mechanisms that have been widely reported [4]. In many cases, the potential for acid generation
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greatly exceeds the neutralization potential of tailings, and liquors within and draining from tailing
deposits can become highly acidic, and enriched with soluble transition metals derived from the
dissolution of residual sulfidic (e.g., chalcopyrite; CuFeS2) and other minerals. In addition, such waters
are highly toxic to most life-forms [5]. The reactivity of pyritic mine tailings derives from their small
particle size, and their content of acid-generating and metal-rich sulfidic minerals [6]. There have
been a number of studies on the microbiology of tailing deposits located in different parts of the
world [7–10]. Indigenous prokaryotes include well-known chemolitho-autotrophic acidophiles, such as
Acidithiobacillus and Leptospirillum spp., and chemolitho-heterotrophic species (e.g., Ferrimicrobium and
Ferroplasma spp.), which use the ferrous iron and/or reduced sulfur as electron donors. Most species
of iron-oxidizing acidophiles that oxidize iron when oxygen is present can also use ferric iron as an
alternative electron acceptor in anaerobic environments [11]. Some species of obligately heterotrophic
acidophiles, including Acidiphilium, Acidocella and Acidobacterium which are able to reduce ferric iron
but not oxidize ferrous iron, have also been identified in mine tailings [8]. Interestingly, heterotrophic
acidophilic bacteria that reduce iron attach to sulfide minerals and form biofilms. Pyrite particles
colonized with Acidiphilium and Acidocella spp. were found to be less susceptible to accelerated
oxidation by mineral-oxidizing acidophiles, and a technique based on this observation, referred to as
“bioshrouding”, was suggested as a method of partially securing reactive mine wastes [12].

In a series of mesocosm experiments, set up to examine how engineering the microbial communities
of reactive mine tailings could be used to limit the generation of acidity and the release of metals [13],
it was found that those that had either not been inoculated, or had been inoculated only with a mixed
culture of iron-oxidizing chemolithotrophic acidophiles, became heavily colonized (~ 3 × 106 colony
forming units/g), within 12 months, by a bacterium that was identified (from its partial 16S rRNA gene
sequence) as a strain of Curtobacterium ammoniigenes (99% gene similarity). This bacterium (and two
others that were also isolated from the tailings) was inferred to have originated from the tailings
themselves, and had not been completely eradicated by pre-treatment of the tailings, which were
washed with strong (3 M) sulfuric acid to remove the residual lime. C. ammoniigenes is a heterotrophic,
ammonium-oxidizing actinobacterium, the type strain of that had been isolated from water weeds
growing in highly acidic (pH 2–4) swamps adjacent to acid sulfate soils in Vietnam [14]. There have
been no previous reports of this bacterium in acidic mine-impacted environments, such as acid mine
drainage, biomining sites, or waste rock and tailings deposits. Curtobacterium ammoniigenes strain IT2
has been shown to be a moderate-acidophile and an obligate heterotroph, which tolerates elevated
concentrations of many transition metals, and also catalyses the dissimilatory reduction of ferric iron.
These characteristics infer that is has a potential role in mitigating the formation and migration of
acidic, metal-rich waters from tailings dumps.

2. Materials and Methods

2.1. Isolation and Cultivation of C. ammoniigenes IT2

The bacterium was originally isolated from pyritic tailing obtained from the Agua Blanca
nickel–copper mine, Spain [13]. Briefly, homogenized tailing samples were serially diluted onto solid
medium that contained 5 mM fructose/0.02% (w/v) yeast extract, acidophile basal salts (ABS) and trace
elements (TE) [15], adjusted to pH 3.5 with sulfuric acid, and incubated aerobically for 14 days at 30 ◦C.
The isolate was purified by repeated single-colony using the same medium and incubation conditions.
After the purity of the isolate was confirmed, DNA was extracted and 16S rRNA genes were amplified,
sequenced and compared to those in public databases, as described previously [16]. Single colony was
transferred into liquid medium containing 5 mM/fructose/0.005% (w/v) yeast extract, and ABS adjusted
to pH 3.5, incubated at 30 ◦C and shaken at 100 rpm.
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2.2. pH and Temperature Characteristics

C. ammoniigenes IT2 was grown in batch mode in a bioreactor (1 L liquid volume in a 2 L reactor
vessel; Electrolab Ltd., Tewkesbury, UK) under conditions of fixed temperature and pH. The liquid
medium used contained 5 mM fructose/0.005% (w/v) yeast extract, and ABS/TE and cultures were
aerated at 1 L/min and stirred at 150 rpm. To determine the effect of pH on its growth, cultures were
maintained at 30 ◦C and varying pH (2.7–5.0; controlled by automated addition of 0.1 M NaOH),
and to determine the effect of temperature, cultures were maintained at between 22 and 37 ◦C with pH
maintained at 4.0. Samples were withdrawn from the reactor at regular intervals, the optical densities
at 600 nm were measured (OD600), and culture doubling times were evaluated from semi-logarithmic
plots of changes in OD600 against time.

2.3. Organic Nutrition of C. ammoniigenes IT2

The ability of the isolate IT2 to grow in the absence of yeast extract was tested by comparing growth
in 5 mM fructose/ABS/TE liquid medium with and without yeast extract. The isolate was also tested for
growth in liquid medium (pH 4.0, containing 0.005% yeast extract and ABS/TE) amended with various
organic compounds, including sugars, alcohols, aliphatic acids and amino acids (listed in Table 1).
Different concentrations of substrates were used to approximately equalize their carbon-equivalents
(i.e., 5 mM for C6 substrates, 10 mM for C3 substrates, etc.). Replicate universal bottles were incubated
30 ◦C and OD600 were measured over 7 days.

2.4. Oxidation of Iron and Reduced Sulfur

C. ammoniigenes IT2 was assessed for its ability to grow autotrophically in oxic medium, using
ferrous iron or elemental sulfur as electron donors in organic carbon-free medium, containing 5 mM
ferrous sulfate (pH 3.0) or 1% (w/v) elemental sulfur (pH 3.5). Non-inoculated controls were also
prepared. The ability to oxidize ferrous iron and sulfur when grown heterotrophically was also tested in
the same medium, amended with 0.002% (w/v) yeast extract. Oxidation of ferrous iron was determined
by measuring changes in concentrations of ferrous iron using the ferrozine assay [17], and changes in
culture pH as a measure of sulfur oxidation, again relative to non-inoculated controls.

2.5. Growth of C. ammoniigenes IT2 in Spent Medium of Acidithiobacillus ferrooxidans

Acidithiobacillus (A.) ferrooxidans (ATCC 23270T) was grown in batch mode in a bioreactor using 5%
(w/v) elemental sulfur as electron donor and ABS/TE, at pH 1.8 and 30 ◦C. The bioreactor was stirred
at 150 rpm and aerated at 1 L/min. After 25 days of growth, the culture was removed and cell-free
culture liquors was obtained by centrifugation (10,000× g; 15 min) followed by filtration through
0.2 µm (pore size) cellulose nitrate membrane filters (Whatman, UK). Cell-free culture liquors were
adjusted to pH 3.5 with 1 M NaOH, filtered, and 30 mL aliquots were dispensed into 100 mL conical
flasks. These were then inoculated, in duplicate, with C. ammoniigenes IT2, and a third (non-inoculated)
duplicate set used as sterile controls. Cultures were incubated and shaken at 150 rpm, at 30 ◦C for
up 12 days, and samples were withdrawn at days 0, 4, 8 and 12 to enumerate bacterial cells (using a
Thoma counting chamber and Leitz phase contrast microscope). Concentrations of glycolic acid were
determined by a colorimetric technique [18], and total dissolved organic carbon (DOC) was measured
using a LABTOC DOC analyzer (Pollution and Process Monitoring, UK).

2.6. Tolerance of C. ammoniigenes IT2 to Some Transition Metals

To evaluate its tolerance to four transition metals frequently often found in elevated concentrations
in pyritic tailings, C. ammoniigenes IT2 was grown in liquid medium containing 5 mM fructose, 0.005%
(w/v) yeast extract, ABS and TE, supplemented with sterile solutions of copper, ferrous, nickel and zinc
sulfates (concentrations used listed in Table 2). Culture pH was adjusted to pH 4.0 with sulfuric acid,
and pH 2.7 in the case of ferrous iron (to minimize chemical oxidation and precipitation of iron), and the



Microorganisms 2020, 8, 990 4 of 9

cultures were incubated at 30 ◦C for 7 days. Positive growth was assessed from OD600 measurements.
In the case of ferrous iron, where culture turbidity was also due to some abiotic formation of ferric iron,
growth was assessed by measuring changes in fructose concentrations using ion chromatography [19],
and concentrations of ferrous iron were also measured after 7 days to determine the amount of this
metal remaining in the solution.

Table 1. Comparison of organic substrates utilized by isolate IT2, and Acidobacterium capsulatum and
Acidiphilium cryptum also found in mine tailings. ++, strong growth; +, weak growth; -, no growth.
Key: (++) OD600 values > 0.6; (+) OD600 values between 0.1 and 0.6; (−) OD600 < 0.1.

Substrate IT2 Acidobacterium capsulatum a Acidiphilium cryptum a

Glucose ++ ++ ++
Galactose ++ ++ ++
Fructose ++ Nd Nd
Xylose ++ ++ ++

Mannose ++ ++ +
Arabinose − ++ ++
Rhamnose − Nd Nd

Maltose + ++ +
Lactose + ++ +
Glycerol ++ − ++
Mannitol + − ++
Sorbitol − Nd Nd

Acetic acid − Nd Nd
Citric acid − Nd Nd

Glutamic acid − Nd Nd
Asparagine − Nd Nd

Arginine − Nd Nd
Lysine − Nd Nd

Leucine − Nd Nd
Proline − Nd Nd
Ethanol − − −

Methanol − Nd Nd
Tryptone soy broth ++ Nd Nd

Yeast extract ++ Nd Nd
a data from [20]; Nd, not determined.

Table 2. Minimum inhibitory concentration (MIC) of some metals (mM) recorded for C. ammoniigenes
strain IT2, with the highest concentration at which growth of the bacterium was observed indicated
in parentheses.

Metal MIC (mM)

Cu2+ 15 (10)
Fe2+ 250 a (200)
Zn2+ 125 (100)
Ni2+ 100 (75)

a The largest concentration tested to avoid precipitation of iron.

3. Results and Discussion

Pale yellow colonies of strain IT2 were observed, after 7 days of incubation, on yeast extract/fructose
solid medium pH 3.5. Cells were non-motile rods of irregular shape, and did not appear to
produce endospores. The isolate did not oxidize elemental sulfur or ferrous iron autotrophically or
heterotrophically. It grew poorly on defined single carbon sources, but the addition of small amounts
of yeast extract promoted growth on sugars, fructose in particular, presumably due to the requirement
of one or more growth factors (Table 1). The isolate was able to use a relatively limited range of
defined organic substrates, including glucose, fructose and galactose, compared with Acidobacterium
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capsulatum and Acidiphilium cryptum also found in mine tailings. Its substrate range differed from other
acidophilic bacteria found in mine tailings [20]. All of the amino acids tested inhibited the growth of
the bacterium at the concentrations tested (i.e., growth was less than in the presence of yeast extract
alone), even though they grew well on tryptone soya broth. It was also noted that some of the low
molecular weight organic acids tested, such as acetic and citric acid, inhibited the growth of strain
IT2 [21]. The absence of growth in an organic carbon-free medium suggested that C. ammoniigenes IT2
is an obligate heterotroph.

Culture doubling times of isolate IT2 grown at different temperatures and pH values are shown in
Figure 1. Strain IT2 grew between pH 2.7 and 5.0, with a pH growth optimum of 4.0. The optimum
temperature for growth was found to be at 30 ◦C, and the maximum temperature at which growth was
observed at 37 ◦C. Under optimum conditions of temperature and pH, its culture doubling time was
3.8 h, equivalent to a growth rate of 0.18 h−1. The isolate was unable to grow below pH 2.7 and above
pH 5.0, indicating that it is a moderate acidophile. Strain IT2 is therefore more tolerant of extreme
acidity than C. ammoniigenes B55T (pH range 3.5–8.0, with optimal growth at pH 4.0). All other species
of Curtobacterium are neutrophiles [14].
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In addition, Curtobacterium isolate IT2 showed similar copper tolerance to that reported for
Acidiphilum cryptum [22], a heterotrophic acidophilic bacteria that has also been found in pyritic mine
tailings [8] and can also grow on a wide range of monosaccharides, dicarboxylic acids and tricarboxylic
acids. As is the case with many other acidophilic bacteria, isolate IT2 exhibited a high tolerance to
elevated concentrations of ferrous iron, zinc and nickel (Table 2), which helps to explain why it is able
to proliferate in pyritic tailings [13]. Tolerance to transition metals is another major characteristic of
heterotrophic bacteria isolated from mineral tailings, though, in general, heterotrophs are less tolerant
to dissolved metals than iron-oxidizing chemolithotrophs (A. ferrooxidans in particular) [23].

C. ammoniigenes IT2 was able to grow in the spent medium of A. ferrooxidans. Figure 2 shows that
numbers of C. ammoniigenes cells increased by over one order of magnitude within 12 days, and that
this was accompanied by a decrease in the concentration of total DOC. However, only about 24% of
the total DOC was metabolized over this period, and the cessation of growth of C. ammoniigenes isolate
suggests that the residual DOC was not metabolized by this strain. No changes in the concentration of
DOC were observed in the control cultures containing sterile spent medium of A. ferrooxidans, which
were also confirmed to be devoid of bacterial cells (data not shown). This result provides further
support that primary-producing chemolitho-autotrophic acidophilic bacteria, such as A. ferrooxidans,
can support the growth of heterotrophic bacteria by providing them with electron donors and carbon
sources. Diaby et al. [8] proposed a model using the microbiological and geochemical results to explain
how autotrophic acidophiles sustained the growth of heterotrophic iron-reducers present in mine
tailings at the Andina mine, CODELCO, Chile. DOC, mainly lysates and exudates from A. ferrooxidans
and other primary producers, was proposed to sustain the heterotroph communities dominated by
Acidiphilium, Acidocella and Acidobacterium spp. Carbon transfer between acidophilic prokaryotes that
either fix or produce CO2 was demonstrated by Kermer et al. [24], using protein-based stable isotope
probing, to be a two-way process. The syntrophic relationship of the acidophilic species involves
organic carbon, derived from autotroph (as exudates or cell lysates), being used as the carbon source
by heterotrophic bacteria, and CO2 generated by heterotrophic species being using as carbon source by
autotrophs. The latter is particularly important in low pH environments, where the solubility of CO2

is very low [25]. Previously, Schnaitman and Lundgren [26] had shown that 10% of labelled carbon
(14CO2) was leaked by A. ferrooxidans into its growth medium, and pyruvic acid was identified as one
the low molecular weight exudates. Besides, low molecular weight carboxylic acids, such as formate,
acetate and pyruvate, were detected from two copper mine tailings [27].
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Nancucheo and Johnson [28] reported that glycolic acid was produced and excreted by
mineral-oxidizing bacteria, such as L. ferriphilum, Acidithiobacillus caldus and A. ferrooxidans,
and demonstrated that this was used as a carbon and energy source by Sulfobacillus spp. The results of
this study confirmed that glycolic acid in the spent medium of A. ferrooxidans, as previously reported
by Nancucheo and Johnson [28], was also used, at least in part (~20%), by the Curtobacterium isolate
(Figure 2).

To mitigate the risk of reactive mineral tailings generating metal-rich, extremely acidic waste
drainage waters, they are usually stored under water to limit contact with oxygen. Even so, ferric iron,
generated in the aerobic upper layers, can diffuse into tailings and oxidize sulfide minerals in the
absence of oxygen [29]. Diaby et al. [8] found that, in pyritic tailings (deposits below the “oxidation
front”, the junction between the oxidation and neutralization zones), the dissimilatory reduction
of ferric iron was a dominant geochemical process, since ferric iron, produced by iron-oxidizing
acidophiles in the aerobic tailings surface and migrating downwards in percolating drainage waters,
can act as a terminal electron acceptor, for both heterotrophic and many autotrophic species (including
A. ferrooxidans), when oxygen is limited or absent. Extremely acidic environments usually contain
ferrous and ferric iron in much greater concentrations than those typically found in neutral pH water
bodies [30]. The redox potential of the ferrous/ferric couple is relatively high, at pH values less than
~2.0 (~ +680 mV in sulfate-rich liquors; [31]), due to the enhanced solubility of both ionic species of this
metal. This makes ferric iron a thermodynamically attractive alternative electron acceptor to oxygen in
acidic environments, both for heterotrophic (coupled to organic carbon) and autotrophic (coupled to
reduced sulfur or hydrogen) acidophiles [25]. Previously, Nancucheo and Johnson [13] showed that
the C. ammoniigenes strain IT2 catalysed the dissimilatory reductive dissolution of amorphous ferric
hydroxide (concurrent with a corresponding increase in cell numbers), when incubated under anaerobic
conditions in cultures containing glucose as the electron donor. This important trait was not previously
described for this genus, and adds another species of mesophilic, acidophilic bacteria to the list of those
that can use the dissimilatory reduction of ferric iron to support growth in oxygen-limited cultures
in highly acidic environments, such as those found in many pyritic mine tailings. Most currently
known iron-reducing heterotrophic acidophiles found in pyritic mine tailings are Proteobacteria [32].
Interestingly, dissimilatory reduction of ferric iron has also been described for other genera of
acidophilic actinobacteria, including Ferrimicrobium acidiphilum, Ferrithrix thermotolerans, Aciditerrimonas
ferrireducens and Acidithrix ferrooxidans [33], and the novel recently-described genus Acidiferrimicrobium
australe [11]. In addition, species of acidophilic actinobacteria, except Aciditerrimonas ferrireducens and
the isolate IT2, also oxidize ferrous iron.

By lowering concentrations of ferric iron, the prime oxidant of sulfide minerals in low pH
environments, C. ammoniigenes strain IT2 (and other iron-reducing acidophiles) can, in theory,
help control the production of metal-rich mine waters, especially where mineral wastes are ecologically
engineered to stimulate such bacteria by limiting oxygen ingress and (possibly) promoting the influx of
organic electron donors (e.g., algal exudates, [13]). New strategies are required to stabilize the storage
of mineral tailings, which represents a long-term engineering and environmental challenge, where,
occasionally, catastrophic environmental pollution has occurred due to the failings of the retaining
dam of a tailings impoundment [6]. Preventing the oxidation of metallic sulfides in mineral tailings
has been highlighted as a key criterion for the ecological restoration of mine tailings by revegetation,
and heterotrophic bacteria such as Curtobacterium spp. may possibly be used as biological indicators for
monitoring mineral tailings during the process of restoration, in order to minimize the solubilization
of a variety of transition metals associated with sulfide minerals.

4. Conclusions

This study provides further evidence to explain how C. ammoniigenes, a moderately acidophilic,
heterotrophic actinobacterium, can be found and can proliferate in mine pyritic tailings, where primary
producers, such as chemolithotrophic acidophiles like A. ferrooxidans, sustain the growth of heterotrophic



Microorganisms 2020, 8, 990 8 of 9

iron-reducing bacteria, which may contribute to mitigating the formation of acidic, metal-rich waters
from mineral tailing dumps.
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