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a b s t r a c t 

The modern food system is characterised by 1) unsustainable agricultural practices, heavily dependent on 

agrochemical inputs and leaking large amounts of reactive nitrogen (N) whilst degrading soils, and 2) the 

consumption of energy-rich but nutrient-poor foods, contributing to non-communicable diseases related 

to malnutrition. Substituting cereals with low-input, protein- and fibre-rich legumes in the production 

of mainstream foods offers a promising solution to both issues. Chickpea ( Cicer arietinum ) is a legumi- 

nous crop that can be grown with little or no synthetic N fertiliser. We performed life cycle assessment 

(LCA) to compare the environmental footprint of pasta made from chickpeas with conventional pasta 

made from durum wheat ( Triticum durum ) from cradle to fork. Two functional units were used, an 80g 

serving of pasta, and a Nutrient Density Unit (NDU). Environmental burdens per serving were smaller 

for chickpea pasta across at least 10 of the 16 impact categories evaluated. Global warming, resource 

use minerals and metals, freshwater eutrophication, marine eutrophication, and terrestrial eutrophication 

burdens were smaller than those of durum wheat pasta by up to 45%, 55%, 50%, 86%, and 76%, respec- 

tively. Cooked chickpea pasta contains 1.5 more protein, 3.2 times more fibre and 8 times more essential 

fatty acids than cooked durum wheat pasta per kcal energy content. Thus, the environmental advantage 

of chickpea pasta extended to 15 of the 16 impact categories when footprints were compared per unit 

of nutrition. Global warming, resource use and eutrophication burdens per NDU were 79–95% smaller for 

chickpea pasta than for durum wheat pasta. The one major trade-off was land use, where chickpea pasta 

had a burden 200% higher per serving, or 17% higher per NDU, than wheat pasta. We conclude that there 

is high potential to simultaneously improve the environmental sustainability and nutritional quality of 

food chains through simple substitution of cereals with legumes in staple foods such as pasta. Breeding 

and agronomic management improvements for legumes could reduce the yield gap with cereals, miti- 

gating the land use penalty. Meanwhile, the higher protein content of chickpea pasta could contribute 

towards wider environmental benefits via animal protein substitution in diets, and merits further investi- 

gation. Consumers who look for the traditional taste and texture of wheat pasta can achieve these aspects 

by cooking the chickpea pasta al dente and combining it with a typical pasta sauce, which will hide its 

subtle nutty taste. 

© 2020 The Authors. Published by Elsevier B.V. on behalf of Institution of Chemical Engineers. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

The global food sector faces a major challenge to deliver sus-

tainable nutrition. Intensive agricultural practices adopted to meet
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rowing food demand have driven massive anthropogenic pres-

ures on the Earth’s ecosystems, notably via land occupation, fer-

iliser use and animal-related greenhouse gas (GHG) and ammonia

missions ( Steffen and Sorlin, 2015 ). Synthetic Nitrogen Fertiliser

SNF) use causes significant environmental and economic damage,

s its production is resource-intensive, and over-application of SNF

auses N leaching and ammonia emissions to air, degrading the
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uality of air, water, and soil (Sutton et al., 2011 ), changing the cli-

ate and promoting biodiversity loss ( Mozumder, Berrens, 2007 ).

n terms of cereal production, the use of SNF represents a ma-

or source of greenhouse gas emissions to the atmosphere, with

ypical farm gate values per kg of grain of the order of 0.50 kg

O 2 e for oats, wheat and barley ( Williams et al., 2020 ). To put

his in perspective, the cultivation of grain legumes (faba bean,

hickpea and pea), where nitrogen is provided by biological fixa-

ion of atmospheric nitrogen by bacteria present in root nodules,

roduces typical farm gate emission values of the order of 0.18 kg

O 2 e ( Williams et al., 2020 ). Accumulation of this biologically fixed

 in plants boosts yields ( Peoples et al., 2009 ), while the use of

egumes in agriculture increases biodiversity, reduces weed inva-

ion (Sturludóttir et al., 2014 ), and can enhance carbon sequestra-

ion in the soil (Peoples et al., 2019 ). 

Grain legumes are also more beneficial than cereal grains

n term of human health, providing a rich source of nutri-

nts. The risk of type-2 diabetes and cardiovascular diseases de-

reases with consumption of legumes ( Flight, Clifton, 2006 ; Jay-

thilake et al., 2018 ; Kouris-Blazos, Belski, 2016 ; Viguiliouk et al.,

017 ), while other positive effects include a reduction in the

elative risk of developing myocardial infarction (Miller et al.,

017 ). The presence of fibre and phytochemicals in legumes low-

rs cholesterol and helps regulate blood pressure (Bazzano et al.,

011 ). Moreover, the consumption of legumes improves gut health

 Clemente, Olias, 2017 ) and assists in managing weight (McCrory

t al., 2010 ). Legumes are also a source of anti-cancer peptides

 Luna-Vital, González de Mejía, 2018 ) that can potentially assist in

he prevention against prostate (Park et al., 2008 ) and colorectal

ancers ( Zhu et al., 2015 ). 

A growing demand for grain legumes for feed and food cou-

led with supportive policies and yield enhancements in the EU

as led to a record production of legume crops in Europe in

017-2018 (Barel et al., 2018 ). This demand for pulses, especially

hickpeas and lentils is forecast to increase further (Barel et al.,

018 ). Recently, a growing demand for vegetarian products has

een observed across Europe with the rise of flexitarian diets

 Derbyshire, 2017 ; European Commission, 2018a ; NatCen, 2016 ).

aunches of vegan and vegetarian food products have increased

orldwide by 140% and 21%, respectively ( Statista, 2017 ), and high-

ight the opportunity to increase legume-based substitutes for sta-

le foods. One such possibility is legume pasta, where substituting

urum wheat with pulses in pasta production could dramatically

xpand legume cultivation and consumption in Europe, with asso-

iated environmental and nutritional benefits. Such a substitution

ould contribute towards crop diversification in the EU and biodi-

ersity restoration (Zander et al., 2016 ). 

Pasta is a popular staple food with high versatility. It is typi-

ally made from semolina flour obtained by milling durum wheat,

nd mixing with water, and sometimes eggs. In Europe alone, 5.4

illion tonnes of pasta were produced in 2017 ( Eurostat, 2018 ) and

onsumption of durum wheat pasta amounted to around 3.4 thou-

and tonnes per year ( Statista, 2019 ). Despite the high variability in

onsumption amongst EU countries, with Italians consuming 23.5

g of pasta per capita annually, Greeks 11.2 kg, British 3.5 kg, and

rish 1 kg ( Statista, 2018 ) for example, pasta production and con-

umption are growing worldwide, with a compound annual growth

ate of 4.4% projected between 2019 and 2023 ( Statista, 2019 ). 

Numerous pasta products made from ingredients other than du-

um wheat are appearing commercially. Major categories include

ther types of wheat pasta (spelt), other cereals pasta (quinoa,

ice), 0-calories pasta (konjac), and legume-based pasta (edamame,

dzuki, black bean, chickpea, red or green lentil, and mung bean

ermicelli). Legume-based pasta also represents a food opportunity

or the 1.4% individuals with celiac disease in the world, due to the

egumes pasta being gluten-free (Celiac Disease Foundation, 2018 ) .
 sensory analysis of legumes pasta showed consumer acceptabil-

ty of legumes pasta (Turco et al., 2019 ). Chickpea pasta can be

ooked al dente , conserving a similar texture to that of traditional

urum wheat pasta , and the difference in taste can be hidden with

he sauces typically added to pasta dishes. 

In this paper we report results from a ‘farm to fork’ analysis

f the environmental burden of both durum wheat and chickpea

ry pasta using Life Cycle Assessment (LCA) methodology. LCA is

 defined protocol used in assessing the environmental impacts

f a product system, by looking at the inputs and outputs of its

ife cycle ( International Organization for Standardization, 2006 ). It

as been widely used in the food sector, and is a powerful tool

o support decision making when considering the sustainability of

ood systems (Sala et al., 2017 ). Despite the wealth of LCA data on

ood systems ( Heller, Keoleian, Willett, 2013 ), our literature search

n Google Scholar (20 0 0-2010) revealed only two LCA studies that

ave considered the use of legumes in pasta: Chaudhary et al.

 2018 ) estimated the carbon footprint and nutritional content of

 partial substitution of refined wheat flour with Canadian yel-

ow pea flour in pasta (30% pea-70% wheat flours), while Nette

t al. ( 2016 ) performed a comparative LCA of pasta made with

gg or pea protein. Nette et al. ( 2016 ), like in numerous other

ood LCAs, disregarded nutrition by using a weight-based func-

ional unit for comparing different foodstuffs, omitting the key nu-

ritional role of the products involved ( Heller et al., 2013 ), and

hus potentially supporting misleading conclusions on the wider

ustainability of these foodstuffs. On the other extreme, Chaud-

ary et al. ( 2018 ) compared the Nutrient Balance Score of the food

roducts, requiring the knowledge of 32 macro and micronutrients

ontents, an expensive process that can dissuade LCA practition-

rs to use a nutritional functional unit. The study also used nu-

ritional content of raw ingredients, which will ultimately change

hen cooked ( Fabbri, Crosby, 2016 ). Moreover, both studies found

hat the legume alternative had a lower global warming potential,

ut did not assess the foods across other impact categories. Prod-

ct Environmental Footprint (PEF) guidelines ( European Commis-

ion, 2018c ) recommend a more comprehensive evaluation of 16

nvironmental impact categories when assessing the environmen-

al sustainability of products. Furthermore, most food LCA studies

ave used weight-based functional units for comparing 

The comparative LCA of chickpea and durum wheat pasta re-

orted here has been assessed over the sixteen impact categories

ecommended by PEF Guidance ( European Commission, 2018c ),

nd has two objectives, 1) to compare the environmental burdens

f a serving of cooked pasta using a conventional functional unit

f 80g dry weight of pasta, cooked), and 2) to compare the same

ut use a functional unit based on the nutritional density of the

asta serving, as proposed by Van Dooren (2016) . 

. Materials and methods 

.1. Goal, scope, and boundary definition 

This LCA study is a comparative assertion of the overall envi-

onmental burden from cradle to fork arising from the consump-

ion of chickpea pasta and conventional durum wheat pasta. The

pen source software OpenLCA 1.10.2 ( GreenDelta, 2019 ) was used

o calculate the environmental footprint of the two pasta prod-

cts, using Agrifootprint 3.0 (Durlinger et al., 2017 ) and Ecoin-

ent 3.6 (Wernet et al., 2016 ) international databases. Inventory

ata on chickpea pasta were collected specifically for this study

rom Variva Ltd. ( www.variva.bg, 2019 ), the Bulgarian manufac-

urer of chickpea pasta Variva®. Data on durum wheat pasta man-

facture were adapted from Bevilacqua et al. ( 2007 ) and modelled

s though the durum pasta was manufactured in Bulgaria to make

he geographical origin of the two products identical. 



28 S. Saget, M. Costa and E. Barilli et al. / Sustainable Production and Consumption 24 (2020) 26–38 

Figure 1. Mass balance flow of chickpea and durum wheat pasta. 
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In order to represent the differing nutritional profiles of the two

types of pasta in the LCA analysis, two functional units were used;

80 grams dry weight pasta, cooked (a mass-based FU) and one

NDU. The mass-based functional unit is referred to as a serving in

this paper. The NDU represents the integration of nutrient density

as a comparative basis between the chickpea and wheat pasta in

the LCA, such that the environmental burdens are quantified per

integrated content of protein, essential fatty acids, fibre, and calo-

ries. The reference flow was defined as a cooked portion of pasta.

The mass balance flow for both pastas is represented in figure 1 . 

An attributional LCA was performed with economic alloca-

tion for harvested wheat straw and wheat feed co-products from

wheat semolina production. Allocation factors were of 92.5% for

wheat grains and 7.5% for wheat straw; 84% for semolina and

16% for wheat feed ( EPD International, 2016 ; European Commis-

sion, 2018b ). Small amounts of biowaste obtained from chickpea

sorting and cleaning were assumed to be discarded in the field, al-

though they could potentially be used as a soil conditioner (which

could reduce the environmental burden of chickpea pasta, thus

the applied assumption of allocating all burdens to chickpea pasta

is conservative). To ensure compatibility between the LCA of du-

rum wheat and chickpea pasta, a second-order approach was used,

where the system boundaries included all stages of the life cycle

from cradle to fork. Figure 2 illustrates both the system boundaries

used and manufacturing steps for the cradle to fork assessment of

chickpea and durum wheat pasta value chains. In accordance with

the ILCD handbook ( JRC, 2010 ), identical product use was consid-

ered, the same life cycle stages were included, and the inventory

data had roughly matching degrees of accuracy. The LCA method-

ology followed PEF guidelines ( European Commission, 2018c ) as far

as possible, excluding end of life, in line with the need to har-

monise approaches for improved transparency and comparability.

The recycling stage was not modelled, as the focus of the study

was to compare the differences between pasta made with different

raw materials, wheat or chickpea. Therefore, including recycling for

the same packaging would not have contributed any useful differ-

entiation in the study. 

Results obtained from running the impact assessment of the

LCA procedure were normalised by annual person equivalents, us-

ing the factors recommended in the PEF guide ( European Commis-

sion, 2018c ). This was done to facilitate interpretation of impact

scores by providing a joint reference impact (Benini et al., 2014 ). 

Four scenarios were assessed in this study to compare different

assumptions about cultivation of the wheat and chickpeas used to

make the pastas: 

1) Wheat (0% straw) - pasta made from durum wheat with none

of the wheat straw harvested during field operations 

2) Wheat (80% straw) - pasta made from durum wheat with 80% of

the wheat straw harvested during field operations, and cultiva-
tion burdens economically allocated between grain (for pasta)

and straw, with a 7.5% allocation factor for wheat straw and

92.5% for wheat grain ( EPD International, 2016 ) 

3) Chickpea (Bulgaria) - pasta made from chickpeas using a Bulgar-

ian case study, with 100% chickpea cultivation residues remain-

ing in the field 

4) Chickpea (Spain) - pasta made from chickpeas using the Bulgar-

ian case study for all steps but cultivation, which was mod-

elled from a Spanish case study, representing chickpea culti-

vation with no added fertilisers, chemicals/pesticides based on

best practice. As for the other chickpea scenario, 100% chickpea

cultivation residues remained in the field 

Scenarios 2) Wheat (80% straw) and 3) Chickpea (Bulgaria) are

he baseline scenarios, and scenarios 1) Wheat (0% straw) and 4)

hickpea (Spain) are alternative scenarios. In scenario 2) Wheat

80% straw) , 80% was an estimate of the amount of above ground

traw residue that is removed during straw harvesting operations,

s in Lienhardt et al. ( 2019 ). 

.2. Chickpea pasta inventory 

Post-farm gate data were provided by Variva Ltd., and culti-

ation data provided by the main grower supplying Variva Ltd.

ith chickpea. Chickpea cultivation was modelled with emission

actors of the IPCC 2019 guidelines; N content of ground residues

ere of 0.008 N for below-ground residues, and the same amount

or above-ground residues per hectare ( IPCC, 2019 ). Amount of

PK applied per hectare and yield (1 820 kg.ha −1 dry matter)

ere obtained from the farmer working with Variva Ltd. Distribu-

ion of fertiliser types specific to Bulgaria was extracted from the

nternational Fertilizer Association (2020) . Field activities included

rom Ecoinvent 3.6 processes were sowing, tillage and ploughing,

ertilising, and harvesting. Two applications of fertiliser were as-

umed. Due to the high variability in crop protection application,

he difficulty of finding trustworthy sources that describe which

ype and what quantities are needed, and the fact that amounts

re usually much smaller than those of fertilisers, crop protection

as excluded from the study. Lime application was fixed for all

cenarios at 400 kg/ha, as a corrector of acidity. This was a conser-

ative approach, as lime is typically applied to prevent soil acidifi-

ation as a result of the application of ammonium-based fertilisers

 Defra, 2010 ), which are applied in greater amounts in cereal crops

han to legume crops. 

Direct field emission of nitrous oxide - from crop residues re-

aining on field and synthetic N fertilisers (SNFs) – were calcu-

ated following equation 11.2 of IPCC ( 2019 ). Direct emissions of

itrogen oxides resulting from the application of SNF were mod-

lled according to Nemecek and Kägi (2007) , while ammonia emis-

ions from the volatising N fraction of SNF were modelled accord-



S. Saget, M. Costa and E. Barilli et al. / Sustainable Production and Consumption 24 (2020) 26–38 29 

Figure 2. System boundary of chickpea pasta, from cradle to fork. The manufacturing steps of chickpea pasta are indicated in green (right side), those of durum wheat pasta 

in red (left side), and those shared by the two products are white (middle). For more information on these emissions, see the following section. 
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ng to IPCC ( 2019 ). Indirect emissions of nitrous oxide resulting

rom a) the volatilisation of SNF and b) from SNF and on field crop

esidues leaching were calculated with equations 11.9 and 11.10 of

PCC, respectively ( IPCC, 2019 ). Indirect emissions of nitrate losses

o water were determined following Reckling and Bachinger (2016) ,

nd those of CO 2 emissions from lime and urea applications were

alculated according to IPCC (2006) . Finally, indirect emissions of

hosphorus losses to water from the use of synthetic P fertilisers

ere determined with the cropping system loss coefficients, as in

tyles et al. (2015 ). 

Chickpeas were harvested and transported at most 50 kilome-

res to the cleaning facility. The sorting machine consumed 40Wh

er kg, and 5-10% of the material was separated as biowaste. The

emaining 90-95% of clean chickpeas were then thermally pro-

essed in a 10 0 0 kg capacity oven, transported 150 kilometres to

he milling plant where the obtained flour was mixed with water,

ressed, cooked in a pasta oven, and finally packaged. 

The fertiliser applications in the Bulgarian scenario, Chickpea

Bulgaria) , were likely used for boosting yields, though chickpea

ultivation guides indicate that high use of nitrogen fertilisers is
eedless, and may be detrimental to chickpea growth by inhibiting

odulation and atmospheric nitrogen fixation (Corp et al., 2004 ).

oreover, in some areas, use of phosphorus fertiliser is not re-

uired (Corp et al., 2004 ; GRDC, 2012 ). Consequently, an additional

cenario, Chickpea (Spain) , was modelled, using yields from a Span-

sh field experiment for which no fertiliser, insecticides or pesti-

ides were added. High variability of yields was observed in the

panish case study, ranging from 0 to 3520 kg.ha −1 chickpeas dry

atter across the sixteen plots studied. This high variance was

ue to fungal pathogen ascochyta blight. The average yield, 2014.5

g.ha −1 dry matter was selected for the Chickpea (Spain) scenario. 

The amount of energy and volume of water used for cooking

ere determined by adapting data from PEF guidelines for dry

asta ( European Commission, 2018b ) and information provided by

ariva® pasta (variva.bg, 2018). Calculations are listed in Table SI.2

or both durum wheat and chickpea pasta. The energy required

or cooking for chickpea pasta is less than wheat pasta, due to

he shorter cooking time required (6 minutes versus 11). Adding

alt was not mentioned in the chickpea pasta cooking recommen-

ations. However to maintain a consistent comparison, it was as-
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sumed that the same amount of salt was added in cooking both

products. Electric cooking was modelled with a flow specific to

Bulgarian electricity. All of the cooking water was assumed to go

to residential wastewater treatment. Information on packaging was

provided directly by Variva Ltd. 

2.3. Durum wheat pasta inventory 

Data for durum wheat pasta cultivation was obtained from the

same farm in Bulgaria that supplies the chickpeas, using a com-

bination of Agrifootprint 3.0 and Ecoinvent 3.6 processes. Data for

durum wheat pasta manufacturing was adapted from Bevilacqua

et al. ( 2007 ) using Ecoinvent 3.6 processes. Inputs and outputs for

all processes involved in the delivery of an 80 g dry weight serv-

ing of al dente – a cooking technique in which pasta is still firm -

cooked pasta, from cradle to fork, were recorded and are included

in full in Table 1 . Relevant background processes for chickpea and

durum wheat pasta production were extracted from LCA databases

Ecoinvent 3.6 and Agrifootprint 3.0. 

Agricultural data for both wheat and chickpea production came

from the same farm in Bulgaria. Amount of NPK applied per

hectare and yield (5 340 kg ha −1 dry matter) for wheat were ob-

tained from the farmer working with Variva Ltd. As for chickpea

cultivation, wheat cultivation was modelled with emission factors

of the IPCC 2019 guidelines based on N contents of above- and

below-ground residues, with 0.006 and 0.009 kg N per kg residue,

respectively ( Liang, Noble, 2019 ). The breakout of fertiliser types

specific to Bulgaria was extracted from the International Fertil-

izer Association (2020) since the specific fertilisers used in the

farm assessed was unknown; one application of fertiliser was as-

sumed along with 400 kg of lime per hectare. Data were collated

for the two wheat scenarios, 1) Wheat (0% straw) and 2) Wheat

(80% straw) . Following Product Category Rules (PCR) for arable

crops, economic allocation was performed for allocating the bur-

dens between wheat grain and wheat straw during the cultivation

phase ( EPD International, 2016 ). Wheat straw and wheat grain co-

products were assigned 7.5% and 92.5% of cultivation environmen-

tal burdens respectively. 

Durum wheat is transported after cultivation to a milling facil-

ity. Milling uses 70 Wh of electricity, 10 J of natural gas, and 0.02

L of water for 110 g of durum wheat, producing 80 g of semolina,

and 30 g of co-product used as cattle feed. The semolina is trans-

ported to another facility where it is dosed, kneaded (using 0.02 L

of water per 80 g of semolina), bronze drawn (shaped), and then

dried. These manufacturing steps account for 3.02 Wh of heat gas

and 13 Wh of electricity, 80 J of natural gas and 60 J of crude oil

for the FU. The dried pasta is packaged in cardboard boxes of 250

g and transported to a retail centre and subsequently to the con-

sumer. Transport modes, distances, and weights of products trans-

ported within Bulgaria, within Europe, and outside Europe, were

assumed to be the same for durum wheat pasta and chickpea

pasta so as to avoid any false differentiation between pasta types

based on factors independent of the main flour type. Transport

modes and distances were modelled following the PEF guidelines

( European Commission, 2018c ). Based on 2018 data provided by

Variva Ltd, 20% of Variva® chickpea pasta produced is sold within

Bulgaria, 20% is sold in Europe (excluding Bulgaria), and the re-

maining 60% is sold in Turkey. The distance between the centroids

of Bulgaria and Turkey was determined to be 1162 km with Google

Maps. Based on the PEF guidelines, consumer transport to the su-

permarket included product volume in the equation to determine

the share of the product in the shopping environmental burdens.

80 grams of raw pasta are then cooked in 0.8 L of boiling water

for 11 minutes with 5 grams of salt ( Barilla, 2018 ; European Com-

mission, 2018b ). 
Durum wheat and semolina are very similar in terms of en-

rgy and protein content ( USDA, 2020 ). Therefore, we assumed

hat co-products of semolina production were used as wheat-

ased feed substitutes. Following the product category rules of un-

ooked pasta, economic allocation was performed for the milling

tage, and the co-products semolina and wheat for feed were as-

igned 84% and 16% of upstream burdens respectively ( EPD Inter-

ational, 2010 ). Because co-products were in small quantities, and

ecause the wheat feed co-products from semolina production are

ikely to largely replace similar wheat-derived feeds, system expan-

ion was deemed not relevant to perform in this case. For simplifi-

ation, apart from stated co-products and waste flows, no loss was

ssumed during any of the life cycle stages of either product. 80 g

f dried pasta was used as the reference flow, assuming the same

ackaging for both pasta products based on packaging information

ollected from Variva Ltd. 

.4. Nutrient Density Unit (NDU) 

A key function of food is to deliver nutrition to the body. LCAs

f food products which are based solely on weight FUs do not take

his into account, and make inter-food comparisons difficult. LCAs

hich use a protein FU are still problematic in that nutrition is far

ore complex than just protein delivery, and that in Europe, daily

rotein intake is above recommended levels (Westhoek H. et al.,

016 ). Therefore, in this study, the Nutrient Density Unit (NDU)

eveloped by Van Dooren (2016) was selected a good proxy (see

iscussion). 

Nutritional composition of both cooked pastas was obtained

y nutritional analysis of Variva® chickpea pasta and of durum

heat pasta from the supermarket. Analyses of protein using

he Kiedahl method (ISO 1871: 20 09 ) ( ISO, 20 09 ), energy follow-

ng the EU regulation 1169/2011 ( European Union, 2011 ), fibre by

nzymatic-Gravimetric Method from the AOAC 991.43 and AOAC

85.29 ( Lee, Prosky, Vries, 1992 ; Prosky et al., 1985 ), and essen-

ial fatty acids through gas chromatography (FID) from ISO 12966-

: 2014 ; 12966-2:2011; 12966-3:2016 ( ISO, 2011 , 2014 , 2016 ) were

erformed. Random replicates were performed to 7% of the analy-

is by a credited laboratory that follows standard, verified, and cer-

ificated protocols, and that work mostly with industry. Nutritional

haracteristics of the two pastas are summarised in Table 2 . 

The Nutrient Density Unit (NDU) was applied following Van

ooren’s 2016 ) formula ( (1) . 

DU = 

(
EFA 

D V EFA 

)
+ 

(
Protein 
D V prot 

)
+ 

(
Fibre 

D V fibre 

)

3 ×
(

S i 
20 0 0 kcal 

) (1)

here: 

EFA is the amount of essential fatty acids in 100g of product,

xpressed in grams. 

Protein is the amount of protein in 100g of product, expressed

n grams. 

Fibre is the amount of fibre in 100g of product, expressed in

rams. 

DV EFA is the recommended daily value intake of essential fatty

cids, expressed in grams. 

DV prot is the recommended daily value intake of protein, ex-

ressed in grams. 

DV fibre is the recommended daily value intake of fibre, ex-

ressed in grams. 

S i is the amount of kilocalories in 100g of product, expressed in

ilocalories. 

D U v ari v a pasta ( cooked ) = 

1 . 6 
12 . 4 

+ 

8 . 1 
50 

+ 

5 . 7 
25 

3 × 150 
= 2 . 3 (2)
20 0 0 
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Table 1 

Inventory of inputs and outputs for an 80 g dry pasta serving of al dente cooked chickpea or wheat pasta. 

Stage Input/output/process Units Wheat Chickpea 

(Bulgaria) 

Chickpea 

(Spain) 

Input Output Input Output Input Output 

Cultivation Fertiliser –N kg 0.0040 0.0016 

Fertiliser – P 2 O 5 kg 0.0025 0.0052 

Fertiliser – K 2 O kg 0.0024 0.0077 

Urea kg 0.0021 0.0009 

Lime kg 0.008 0.008 0.008 

SO 3 kg 0.001 

Energy, diesel burned in 

machinery 

MJ 0.13 0.04 0.04 

Seed kg 0.004 0.004 0.004 

Land m 2 0.20 0.53 0.48 

Chickpeas (dry matter) g 97 97 

Wheat straw g 148 / 0 ∗

Wheat grain (dry matter) g 110 

Flour production Transport 16-32 t lorry 

(200km) 

kg.km 21.27 18 18 

Electricity Wh 70 17.4 17.4 

Organic residual material kg 0.005 0.005 

Chickpea flour kg 0.08 0.08 

Water L 0.0200 0.0200 0.0200 

Natural gas J 10 

Semolina kg 0.08 

Wheat grain, feed kg 0.03 

Pasta production Machines electricity Wh 13 16 16 

Water L 0.0200 0.0242 0.0242 

Heat, other than nat. gas Wh 3.02 19.73 19.73 

Nat gas- thermal energy MJ 0.08 

Heat and power 

co-generation, oil 

MJ 0.06 

Packaging Film, low density PET g 1.6 1.6 1.6 

Kraft paper, unbleached g 4.5 4.5 4.5 

Folding boxboard g 4.5 4.5 4.5 

Polypropylene, granulates g 0.0029 0.0029 0.0029 

Extrusion, plastic film g 0.0029 0.0029 0.0029 

Trans PP film > 32 t lorry kg.km 7.40E-4 7.40E-4 7.40E-4 

Corrugated board box 

production 

g 3.7 3.7 3.7 

Flat pallet Unit 8.53E-6 8.53E-6 8.53E-6 

Transport of boxes > 32t 

lorry 

kg.km 2.11 2.11 2.11 

Packaging electricity Wh 1.2 1.2 1.2 

Printing ink, offset g 0.0149 0.0149 0.0149 

Transport factory- 

retail-consumer 

Transport factory-DC (BG) 

lorry 3.5-7.5 t 

kg,km 19.2 19.2 19.2 

Transport factory- 

retail-consumer 

Transport factory-DC (EU) 

lorry 16-32 t 

kg,km 56.0 56.0 56.0 

Transport factory-DC 

(outside EU) lorry 16-32 t 

kg,km 55.8 55.8 55.8 

Consumer transport by car km 1.56E-7 1.56E-7 1.56E-7 

Cooking Tap water L 0.80 0.80 0.80 

Boiling and cooking 

electricity 

kWh 0.694 0.394 0.394 

Salt g 5 5 5 

∗Depending on whether wheat straw was harvested or not, with 148 g belonging to scenario 2) and 0 to scenario 1). 

Table 2 

Energy, protein, dietary fibre, and essential fatty acids content of 80 g dry 

weight durum wheat and chickpea pasta, cooked. 

Durum wheat pasta Variva ® pasta chickpea 

Energy (kcal) 144 150 

Protein (g) 5.3 8.1 

Dietary fibre (g) 1.8 5.7 

EFAs (g) 0.2 1.6 

N  

 

w  

c  

c  

t  

a  

p  

a  

fi  

f  

d  

m  

2.3 vs 0.90 NDU. 
D U wheat pasta ( cooked ) = 

0 . 2 
12 . 4 

+ 

5 . 3 
50 

+ 

1 . 8 
25 

3 × 144 
= 0 . 90 (3)
20 0 0 
The energy content of the two products does not differ greatly,

ith 144 kilocalories per 80 g dry weight durum wheat pasta,

ooked versus 150 kilocalories per 80 g dry weight chickpea pasta,

ooked. The protein content of chickpea pasta is 1.5 times higher

han that of durum wheat pasta (8.1 g and 5.3 g for chickpea

nd durum wheat pasta, respectively). The EFA content of chick-

ea pasta is 8 times higher than that of durum wheat pasta (1.6 g

nd 0.2 g for chickpea and durum wheat pasta, respectively). The

bre content is 3.2 times higher in chickpea pasta (5.7 g and 1.8 g

or chickpea and durum wheat pasta, respectively). Applying these

ata to NDU Eq. (2) and (3) shows that chickpea pasta is 2.6 times

ore nutrient dense than durum wheat pasta overall – delivering
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Table 3 

Summary of environmental burdens for durum wheat pasta and chickpea pasta, expressed per serving and per NDU. 

Impact category Unit Impact per serving Impact per NDU 

Wheat (0% 

straw) 

Wheat 

(80% straw) 

Chickpea 

(Bulgaria) 

Chickpea 

(Spain) 

Wheat (0% 

straw) 

Wheat 

(80% straw) 

Chickpea 

(Bulgaria) 

Chickpea 

(Spain) 

Acidification ter. & 

freshwater 

mol H + eq 0.00208 0.00198 0.00132 0.00067 0.00289 0.00275 0.000717 0.000419 

Cancer human health CTUh 1.89E-09 1.86E-09 2.23E-09 1.85E-09 2.62E-09 2.59E-09 1.21E-09 1.00E-09 

Climate change kg CO2 eq 0.207 0.196 0.163 0.114 0.287 0.272 0.088 0.062 

Ecotoxicity freshwater CTUe 0.217 0.214 0.293 0.254 0.301 0.298 0.159 0.138 

Eutrophication 

freshwater 

kg P eq 0.00019 0.00019 0.00012 9.551E-05 0.00026 0.00026 0.000065 0.000052 

Eutrophication marine kg N eq 0.00133 0.00111 0.00104 0.00019 0.00185 0.00154 0.00057 0.00010 

Eutrophication 

terrestrial 

mol N eq 0.00627 0.00587 0.00388 0.00153 0.00871 0.00815 0.00211 0.00083 

Ionising radiation, HH kBq U-235 

eq 

0.0424 0.0423 0.0243 0.0230 0.0589 0.0588 0.0132 0.0125 

Land use Pt 24.3 22.5 67.4 60.6 33.7 31.3 36.7 32.9 

Non-cancer human 

health 

CTUh 3.50E-08 3.43E-08 7.54E-08 6.43E-08 4.86E-08 4.77E-08 4.10E-08 3.50E-08 

Ozone depletion kg CFC11 

eq 

1.53E-08 1.51E-08 1.37E-08 1.14E-08 2.12E-08 2.09E-08 7.43E-09 6.17E-09 

Photochem. ozone 

form. 

kg NMVOC 

eq 

0.00048 0.00047 0.00052 0.00042 0.00067 0.00065 0.00028 0.00023 

Resource use, energy 

carriers 

MJ 2.55 2.53 1.90 1.62 3.54 3.51 1.03 0.883 

Resource use mins. & 

metals 

kg Sb eq 1.36E-09 1.26E-09 2.12E-09 6.16E-10 1.89E-09 1.75E-09 1.15E-09 3.35E-10 

Respiratory inorganics disease 

inc. 

1.70E-08 1.63E-08 1.12E-08 6.30E-09 2.36E-08 2.26E-08 6.06E-09 3.43E-09 

Water scarcity m 

3 depriv. 0.370 0.368 0.259 0.221 0.514 0.511 0.141 0.120 
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2.5. Impact Assessment 

The environmental burden of the four scenarios was as-

sessed using sixteen impact categories from the PEF recommended

methodology ( European Commission, 2018c ). Impact indicator data

were normalised according to PEF guidelines as person equivalents.

3. LCIA Results 

Table 3 lists the derived environmental burdens across the six-

teen impact categories. Results for each of the two functional units

are shown. For both functional units, scenario 4) chickpea pasta

with the Spanish agronomic data has a smaller environmental bur-

den across most categories when compared to the other 3 scenar-

ios, and scenario 1) Wheat (0% straw harvest) has the highest bur-

dens overall. Per serving, chickpea pasta from the Bulgarian case

study (scenario 3) has a smaller environmental burden across 10 of

the 16 environmental impact categories. However, chickpea pasta

from the Bulgarian case study (scenario 3) requires more than

twice the arable land than durum wheat pasta, with 0.53 m 

2 .yr

versus 0.20 m 

2 .yr, thus has a land use burden that is between 2.8

and 3.0 times the one of durum wheat pasta ( Table 3 ). This is due

to significantly lower yields for chickpea than for wheat. 

Per serving, chickpea pasta from the Spanish case study (sce-

nario 4) has a smaller environmental burden across 13 of the 16

environmental impact categories when compared to both wheat

pasta scenarios (scenarios 1 and 2). For the same weight of pasta,

the acidification, climate change, marine eutrophication, terrestrial

eutrophication and water scarcity of durum wheat pasta (scenar-

ios 1 and 2) is between 0.7 and 6 times higher than chickpea

pasta from the Spanish case study (scenario 4), respectively. How-

ever, chickpea pasta from the Spanish case study (scenario 4) still

requires more than twice the arable land use than durum wheat

pasta (scenarios 1 and 2), with 0.48 m 

2 .yr versus 0.20 m 

2 .yr, re-

spectively ( Table 1 ), and thus has a land use burden that is up to

1.7 higher than the one of durum wheat pasta ( Table 3 ). 
When one NDU is used as the FU, the comparative environ-

ental efficiency of chickpea pasta is improved further ( Table 3 ).

hickpea pasta from the Spanish case study (scenario 4) gener-

tes smaller environmental burdens than durum wheat pasta per

nit of nutrient density across all impact categories, except for the

and use one, for which scenario 2) Wheat (80% straw) has the

owest burden of all scenarios. For scenario 3) Chickpea (Bulgaria) ,

ll environmental burdens are smaller than those of durum wheat

asta per unit of nutrient density except for land use, which is 8-

5% smaller for durum wheat pasta. The differences amongst the

ther impact categories are magnified, with one NDU from wheat

asta generating between 2 and 3 times more climate change, ter-

estrial eutrophication, and water scarcity burdens than one NDU

rom chickpea pasta derived from Bulgarian chickpeas, and be-

ween 3 and 10 times more in the same categories than one NDU

rom chickpea pasta derived from Spanish chickpeas. Therefore, to

chieve the same nutrition, chickpea pasta from both scenarios (3

nd 4) has a considerably lower overall environmental burden than

urum wheat pasta (scenarios 1 and 2), with a small land use

rade-off. 

When comparing the differences between the chickpea pasta

cenarios and scenario 1) Wheat (0% straw) with the differences

etween the chickpea pasta scenarios and scenario 2) Wheat (80%

traw) , no significant change in the pattern of results was observed.

traw harvest not only “dilutes” the environmental burden of grain

roduction, but reduces the quantity of straw residues in the field

hat give rise to nitrate leaching to water. In the long term, straw

ncorporation may increase soil organic carbon, though this effect

s dependent on factors such as average C:N ration of soil organic

atter, climate, soil type, etc. and is beyond the scope of this

tudy. 

Figures 3. A. and 3.B. illustrate the environmental burdens

ormalised per person equivalents as described in Section 2 .

igure 3. A. refers to the environmental burdens per serving. Here,

e can see the same picture of environmental impact differ-

nces between the two products than in the first two result

olumns of Table 3 . Both pasta types contribute relatively more
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Figure 3. Environmental burden of cooked chickpea and durum wheat pasta across 13 impact categories, using as a FU: A. weight: serving B . NDU. Human toxicity-related 

impact categories were excluded from the graphs, following PEF recommendations (JRC, 2018). Results are normalised per person equivalents. 
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o the global burdens of freshwater eutrophication, and chick-

ea pasta to land use. The contribution of one serving of wheat

asta to an average person’s annual freshwater eutrophication

ootprint is nearly times higher than the contribution to an av-

rage person’s climate change footprint. For a serving of chick-

ea pasta, it is around 2.5 times higher. Concerning land use, the

ontribution of one serving of chickpea pasta from Bulgaria to

n average person’s annual land use footprint is 2 times higher

han the contribution to an average person’s climate change foot-

rint. For a serving of chickpea pasta from Spain, it is 3 times

igher. 

Figure 3. B. refers to the environmental burdens per NDU. This

raph represents the same broad picture as the last four result
olumns of Table 3 , but in person equivalents. Per NDU, chickpea

asta (scenarios 3 and 4) has a lower environmental burden than

urum wheat pasta (scenarios 1 and 2) across all fourteen impact

ategories displayed in Figure 3. B, excepted for land use, for which

he impact is similar. The gap in every other category is greatly

idened when comparing with Figure 3. A. 

A second aim of attributional LCA is to identify improvement

pportunities within a product life cycle. Hotspots in the produc-

ion chain of chickpea pasta from scenario 3) Chickpea (Bulgaria)

ere identified by examining the burden of each life cycle stage

or all impact categories, and were recorded in process contribu-

ion graphs ( Figure 4 ). Scenario 2) Wheat (80% straw) process con-

ributions are presented as a comparison. 
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Figure 4. Process contributions of scenario 3) Chickpea (Bulgaria) and scenario 2) Wheat (80% straw) across 16 impact categories. 
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3.1. Agricultural stage 

The agriculture stage is the major hotspot of the life cycles of

both pastas, contributing to at least 20% of total burdens in 15 out

of 16 impact categories for scenario 3) Chickpea (Bulgaria) , and 10

out of 16 categories for scenario 2) Wheat (80% straw) . The agri-

cultural stage in scenario 3) Chickpea (Bulgaria) is responsible for

more than half of the total GHG, acidification, toxicity, eutrophi-

cation marine and terrestrial, land use, photochemical ozone for-

mation, minerals and metals use, and respiratory inorganics emis-

sions of the whole life cycle. A significant proportion of these bur-

dens is due to fertiliser production and application. Acidification
as mainly caused by ammonia emission from N fertiliser applica-

ion. GHG emissions from agriculture are caused mainly by emis-

ion of dinitrogen monoxide, mainly from direct N 2 O emissions

rising from crop residue and fertiliser N inputs. Marine and ter-

estrial eutrophication is mostly caused by nitrate emission to wa-

er and air, from applied N fertilisers and residues. 

Chickpea cultivation causes scenario 3) Chickpea (Bulgaria) to

ave a higher environmental burden than durum wheat pasta

cross the resource use minerals and metals, land use, photochemi-

al ozone formation, and toxicity-related categories. Around a third

f the freshwater ecotoxicity burden of scenario 3) Chickpea (Bul-

aria) comes from the production of chickpea seeds. In the land
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se category, chickpea cultivation has a higher burden because of

ts much lower yields than durum wheat, with chickpea yields of

 820 kg DM/ha and 2 015 kg DM/ha in the Bulgarian and Span-

sh case studies, respectively, compared to wheat yields of 5 340

g DM/ha. On the other hand, wheat cultivation is responsible for

he higher environmental burden of durum wheat pasta compared

ith chickpea pasta in the terrestrial eutrophication and respira-

ory inorganics categories. This is mainly due to wheat cultivation

eleasing ammonia and nitrogen oxides to the air from use of N

ertilisers. 

.2. Cooking 

Cooking was identified as the second major hotspot behind

ultivation, contributing to more than 20% of total burden across

 impact categories in scenario 3) Chickpea (Bulgaria) and across

 in scenario 2) Wheat (80% straw) . In the Climate Change cat-

gory, cooking is responsible for nearly 20% of the total burden

f 2) Wheat (80% straw) mainly due to electricity usage, which is

igher than that of cooking chickpea pasta, due to the compar-

tively longer cooking time. Electricity production and the treat-

ent and distribution of tap water in Europe are responsible for

he water scarcity burdens from cooking. 

.3. Milling 

The high burden of freshwater eutrophication of scenario 2)

heat (80% straw) is due to the high use of electricity in milling.

he process “market for electricity, medium voltage- Bulgaria”

rom Ecoinvent 3.6 was used. This mix relies mainly on lignite,

hich also remains important in countries such as Germany and

oland. The freshwater eutrophication burden of the Bulgarian

lectricity mix is around 4.2 times higher than the UK’s, and

round 1.5 times lower than Germany’s. Therefore, this hotspot

s geographic-dependent, and the burden should significantly de-

rease once EU countries move away from polluting coal and lig-

ite fuel sources in response to climate change policy obligations. 

. Discussion 

.1. Crop type 

Environmental sustainability is affected across multiple dimen-

ions ( Steffen et al., 2015 ), therefore assessing products across

ultiple impact categories is critical to provide a more precise

nd holistic indication as to which mitigation options should be

dopted to improve the overall sustainability of food systems. 

Owing to the importance of the cultivation stage, uncertainty in

hickpea yield has a major influence on environmental footprints

f chickpea pasta. Comparatively low yields for chickpeas mean

hat modest per hectare inputs translate into relatively high bur-

ens on a mass basis for the final pasta. Relatively little research

as been undertaken on yield improvement in legumes when com-

ared to cereals such as wheat and barley (van Loon et al., 2018 ).

he reason for little improvement in chickpea productivity can be

ttributed to their subordinate position in consumer likings after

ereals, volatile prices due to irregular yields and lack of govern-

ent incentives as opposed to cereals ( Merga, Haji, 2019 ). There is

onsiderable scope for yield improvement in chickpea cultivation,

nd therefore potential for the environmental footprint of chickpea

asta to reduce further relative to durum wheat pasta. 

Limited available evidence suggests that fertiliser usage is still

ommon in chickpea cultivation, despite research and agronomy

uides stating that the practice of N application (and P applica-

ion in some cases) is not necessary (Corp et al., 2004 ; Gan et al.,

009 ; GRDC, 2012 ). On the European scale, reducing or eliminating
ertiliser application will reduce environmental degradation across

ll impact categories, as shown with 4) Chickpea (Spain) . For ex-

mple, Climate Change will decrease from 0.16 kg CO 2 eq. to 0.11

g CO 2 eq. per serving. An additional benefit of not applying fer-

iliser is that costs of production would decrease – the cost of SNF

s increasing (Abi-Ghanem et al., 2012 ; Saghir Khan, Zaidi, Wani,

007 ). The alternative scenario, 4) Chickpea (Spain) , used data from

xisting plots in Spain, showing the feasibility of such cultivation

ethods. However, even under plot trials, yield variability was very

igh. Therefore, it is crucial to educate farmers on proper chickpea

ultivation practices, and on cultivation of legumes in general, to

chieve sustainability from environmental, economical, and social

erspectives. More breeding is also important to find varieties that

roduce more reliable yields with improved resilience. 

.2. Impact study (Nutrient density functional unit) 

The advantage of the NDU as a FU as opposed to more ex-

ensive nutrient indexes lies in its simplicity whilst maintaining

uch of the nutritional differentiation achieved by the latter in-

exes ( Van Dooren, 2016 ). It requires only three ’nutrient’ inputs -

nergy, essential fatty acid, protein and fibre content - and is an

xcellent proxy for more nutrient data demanding density indices,

uch as the NRF12:3 nutrient rich food index of Drewnowski, Ful-

oni (2008) , which requires 15 ’nutrient’ data inputs per food item.

o illustrate the convenience of NDU above more conventional NRF

ndices, Figure 5 adapted with permission from Williams et al.

2020) , shows the correlation of NDU with NRF12:3 for a total of

5 separate food items spanning 11 food groups (r 2 > 0.64). 

The three macronutrient groups present in the NDU, essential

atty acids, protein, and fibre are essential for the human diet.

he two groups of dietary essential fatty acids, linoleic (omega-6)

nd alpha-linolenic (omega-3) cannot be synthesised by the hu-

an body ( Di Pasquale, 2009 ). The main source of omega-3 is in

sh and flaxseed oil, while vegetable oils are the main source of

mega-6 ( Di Pasquale, 2009 ). These nutrients are crucial for proper

rowth as constituents of cell membranes ( Simopoulos, 1999 ). Di-

tary fibre denotes the dietary constituents that mammalian en-

ymes cannot degrade ( Bach Knudsen, 2001 ). It is a key nutrient,

ecreasing the risk of obesity and type 2 diabetes ( Brennan, 2005 ;

an Dooren et al., 2014 ), cancer and heart disease ( Kendall, Esfa-

ani, Jenkins, 2010 ). A diet high in fibre also decreases bowel ail-

ents, including constipation through increased faecal substance

 Wood, Grusak, 2007 ). Dietary protein is key to achieve body

rowth and protein maintenance, and net protein utilisation from

nimal or plant sources is comparable among adults ( WHO, 2007 ).

onsuming chickpea pasta instead of durum wheat pasta has a

lear nutritional benefit in terms of fibre, essential fatty acids, and

rotein, resulting in considerably higher NDU values. Diets in de-

eloped countries are too high in omega-6 fatty acids and too low

n omega-3 fatty acids ( Simopoulos, 2016 ). Therefore, an additional

nalysis should be made to see the content of different essential

atty acids in the two products to determine the ratio of omega-

 to omega-6. One could argue that a higher amount of protein

n pasta is unnecessary, as the average European consumer already

onsumes considerably more than the daily recommended protein

ntake ( Westhoek et al., 2011 ), and that consumers will not re-

uce the amount of protein consumed from other (higher burden)

ources, leading to wasteful protein intake. However, increasing

lant protein intake to substitute animal-based protein is a shift

hat is crucial for environmental and health objectives ( Willett

t al., 2019 ). In addition, the presence of viscous fibre in foods is

inked to the achievement of satiety ( Slavin, Green, 2007 ), prevent-

ng over-eating, suggesting that chickpea pasta could contribute to-

ards reducing excess calorie consumption in industrialised coun-

ries. Ideally, chickpea pasta would substitute other sources of pro-
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Figure 5. Correlation of NDU with NRF 12:3 for different food categories. 
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tein, such as meat, dairy and eggs, further reducing the environ-

mental burdens. In their meta-analysis of food products from cra-

dle to retail, Poore & Nemecek (2018) showed that the carbon

footprint of pulses versus meat products per kg protein is signif-

icantly lower, with the 10 th percentile of 100g protein ruminant

meat, pork, and poultry being 5, 2.5, and 1.3 times higher than the

90 th percentile of pulses other than peas. Therefore, our conclu-

sions here are likely to be conservative, and the aforementioned

wider effects of substituting wheat with chickpeas in pasta pro-

duction require further investigation. 

Because the al dente texture of legume pasta is possible, and

pasta is commonly eaten with sauces, the subtle taste of chickpea

pasta can easily be masked if desired. An additional incentive for

consumers to opt for legume pasta is the high nutritional value,

promoting a healthy diet with weight management due to high fi-

bre content. Finally, a third incentive is the comparatively shorter

cooking time of chickpea pasta, which suits a market that takes

little time to prepare food. 

The PEF guidelines for pasta do not consider any nutritional as-

pects, recommending a simple weight-based FU as the only FU to

be used ( European Commission, 2018b ), potentially leading to in-

complete footprint labelling from a nutritional perspective. We rec-

ommend that PEF guidelines incorporate a nutritional FU as an op-

tional alternative to the weight-based FU, in order to support more

accurate comparison of different foods. 

4.3. Limitations 

Processing legumes into “staple” foods such as chickpea pasta

increase legume cultivation in EU rotations while encouraging diet

change, at least from cereals to legumes and, ideally, from meat to

legume protein. This study did not include the benefits of N car-

ryover legumes provide to the following crops in rotations. This

is a conservative choice that favours wheat pasta, and enables at-

tributional footprints to be compared. LCAs with legume cropping

systems should account for these benefits. 

In Bevilacqua et al.’s ( 2007 ) study, it was only mentioned that

compost and feed were co-products of milling. We adopted a con-

servative approach in this study, assuming that all co-products

of milling (24%) went to cattle feed, as this has a higher value

than compost. An economic allocation was performed for the co-

products of semolina production and sorting of chickpeas as rec-

ommended by the PEF guidelines for dry pasta ( European Commis-

sion, 2018b ). This allocation method is limited by price fluctuation
ver time due to changes in demand, leading to changes in alloca-

ion factors ( Nijdam, Rood, Westhoek, 2012 ). 

The application of crop protection agents was excluded in

ll scenarios. Pesticides are often a hotspot in agricultural LCAs

 Zortea, Maciel, Passuello, 2018 ), therefore the real impact of both

ypes of pastas should be higher, excepted for scenario 4) Chickpea

Spain) , in which no pesticides or chemicals were applied in real-

ty. However, chickpea seed production, which contributed signif-

cantly to several environmental impact categories including eco-

oxicity, is a generic background process for chickpea seed pro-

uction in the United States taken from Agrifootprint 3.0. These

igh burdens are in part due to fungicide application, releasing

ompounds like chlorothalonil to the environment, a highly toxic

ubstance for aquatic animals ( IPCS, 1996 ). A European seed pro-

uction plant could vary in terms of management, as for example,

he use of chlorothalonil has been banned in the European Union

 European Commission, 2019 ). 

Limitations of current LCA methodologies relevant to this study

nclude the fact that land use is modelled as part of the tech-

osphere, leading to potentially misleading conclusions around

igher yields per unit of land always improving eco-efficiency

Richi et al., 2015 ). Important impacts and ecosystem services as-

ociated with land use are not represented in life cycle impact

ssessment methods, including, inter alia , impacts on pollinators,

ider biodiversity (habitats) and soil quality (Ingrao et al., 2019 ). 

. Conclusions 

This study highlights the potential of chickpea pasta to play an

mportant role in the shift from animal protein to plant protein

nd higher dietary fibre consumption that is critical to achieve

ore sustainable, healthy diets in industrialised countries. Man-

ged appropriately, chickpea cultivation in Europe could help to

iversify crop rotations and decrease the use of synthetic fertilis-

rs through biological nitrogen fixation. However, variable and of-

en low chickpea yields reflect lack of crop breeding and poor

gronomic practises, and represent significant potential barriers

o more widespread chickpea cultivation. Breeding programmes

nd targeted advice via extension services could improve chickpea

ields, putting this promising sustainable food crop on a level play-

ng field with more-intensively developed wheat. 

The use of the Nutrient Density Unit proposed by

an Dooren (2016) as a functional unit to compare different

oods, or evaluate modification of foods, is an important advance

n food LCA studies that commonly use weight, calories, or protein
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ontent as functional units. Foods made with different ingredi-

nts have different nutritional qualities that cannot be reliably

epresented by just one nutritional component. In this case study,

he environmental burden per nutrient density unit delivered

y chickpea pasta is significantly smaller than for durum wheat

asta across all categories, except for land use, which remains a

ignificant challenge due to the scarcity of the resource. The use

f the Nutrient Density Unit as a functional unit is an elegant

pproach to identify the nutritional (health) and environmental

ustainability of different foods. Using the NDU extended the

verall environmental efficiency advantage of chickpea pasta. 

Further research needs to be carried out to evaluate the in-

irect burdens associated with a change of production of pasta

ypes. These indirect burdens will be captured in a conse-

uential LCA, taking into account the effects of European diet

hanges through partial substitution of durum wheat pasta with

hickpea pasta, such as indirect land use change, the effect of

igher intake of fibre on satiety leading to less food intake,

nd changing market prices of inputs, substitute products and

o-products. 
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