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Abstract13

This work presents a reduced order model for gradient based aerodynamic

shape optimization. The solution of the fluid Euler equations is converted

to reduced Newton iterations by using the Least Squares Petrov-Galerkin

projection. The reduced order basis are extracted by Proper Orthogonal

Decomposition from snapshots based on the fluid state. The formulation

distinguishes itself by obtaining the snapshots for all design parameters by

solving a linear system of equations. Similarly, the reduced gradient formu-

lation is derived by projecting the full-order model state onto the subspace

spanned by the reduced basis. Auto-differentiation is used to evaluate the

reduced Jacobian without forming the full fluid Jacobian explicitly during

the reduced Newton iterations. Throughout the optimisation trajectory, the

residual of the reduced Newton iterations is used as an indicator to update

the snapshots and enrich the reduced order basis. The resulting multi-fidelity
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optimisation problem is managed by a trust-region algorithm. The ROM is

demonstrated for a subsonic inverse design problem and for an aerofoil drag

minimization problem in the transonic regime. The results suggest that the

proposed algorithm is capable of aerodynamic shape optimization while re-

ducing the number of full-order model queries and time to solution with

respect to an adjoint gradient based optimisation framework.

Keywords: ROM, CFD, Aerodynamics, Shape Optimisation,14

Gradient-based Optimisation, Trust-Region, Multi-fidelity15
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Nomenclature16

Latin Symbols

Cl = lift coefficient

Cd = drag coefficient

CE = equality constraint

CI = inequality constraint

Cm = pitching moment coefficient

D = diagonal matrix containing singular values

F = objective function

J = fluid Jacobian matrix

lb = design parameter lower bound values

M∞ = free-stream Mach number

MUSCL = Monotonic Upwind Scheme for Conservation Laws

N = number of degrees of freedom

np = number of deseign parameters

nr = number of basis

p = static pressure

p̂ = non-dimensional static pressure, p̂ =
p

q∞

p = line search vector for Newton method

q = dynamic pressure

R = vector of fluid equations residuals

S = surface mesh points

s = optimisation step

t = time

U = left singular vectors
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ub = design parameter upper bound values

V = right singular vectors

Vn = design velocity

w = vector of fluid and structural unknowns

wr = reduced vector of fluid unknowns

X = matrix of snapshots

Greek Symbols

α = step length for Newtown method, angle of attack

∆ = trust region radius

δ = small perturbation

ε = residual threshold

εµ = trust-region termination threshold

ε∇ = trust-region gradient threshold

ζ = constant for Carter condition

Λ = vector of adjoint unknowns

λi = singular value

η1, η2 = trust-region effectiveness thresholds

ρ = trust-region effectiveness

Φ = vector subspace

µ = design parameters

Ψ = reduced Jacobian matrix
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1. Introduction21

Numerical shape optimization usually requires the solution of parametric22

Partial Differential Equations (PDEs). This is a challenging process due to23

the high computational cost associated with having to interrogate a large and24

complex model multiple times. The number of evaluations of the full-order25

model (FOM) depends on the number of parameters, the number of con-26

straints and objectives of the problem. For shape optimization problems this27

usually means several more parameters than functional constraints. Even for28

problems with a moderate number of parameters, the need for multiple model29

evaluations quickly makes it less attractive to deploy evolutionary methods or30

alternative global optimization algorithms [34]. Gradient-based optimization31

approaches, on the other hand, require the calculation of parametric sensi-32

tivity and respective function gradients. The cost of evaluating gradients,33

i.e. the scaling of the gradient evaluation with the number of parameters34

and associated number of model evaluations, can be mitigated by employing35

adjoint methods [30, 16, 17, 12, 28, 13]. This, however, introduces another36

PDE system with the same number of degrees of freedom as the primal PDE37

problem, equally or more challenging to solve.38

Reduced-order modelling remains a popular topic in many engineering39

disciplines as a means to accelerate otherwise impractical or intractable sim-40

ulations. Broadly speaking, the term reduced-order model (ROM) is a rel-41

ative term that presupposes the existence of a FOM, of which some output42

is to be replicated at a reduced expense. More pertinent to this work, are43

the class of ROMs that maintain a close link to the physics described by the44

FOM but are computationally more efficient. This typically involves exam-45
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ining the governing equations and performing some type of model reduction,46

suitable for the physics of the problem. A particular model reduction tech-47

nique assumes that the parametric behaviour of the FOM can be captured48

by a small number of modes or basis, typically obtained by methods such as49

Proper Orthogonal Decomposition (POD) [33], Balance POD [35, 32], Proper50

Generalized Decomposition [4]; excellent overviews of the range of applica-51

tions and model reduction methods can be found in [22, 29, 20, 6, 5, 37]. In52

this work the resultant set of modes or basis is referred to as reduced order53

basis (ROB).54

Within the context of model reduction, shape optimization involving non-55

linear fluid equations poses significant challenges to model reduction due to56

the large number of parameters, more or less exacerbated by the degree57

of nonlinearity exhibited by the flow problem. Therefore, it is difficult to58

build a static and global basis that effectively covers the design space. Rel-59

evant efforts to this study include the approach for inverse aerofoil design60

of LeGresley and Alonso [21], where a POD ROM based on a Hicks-Henne61

surface parameterization was constructed to approximate the gradient by62

finite-differencing. Manzoni et al. successfully solve the Stokes equations for63

shape optimization of coronary arteries parameterized using a mapped Free-64

Form Deformation (FFD) technique and a reduced basis method [23]; the65

reduced basis are built from samples of the design space, obtained during66

an offline phase that incurs the majority of the computational cost. This67

technique was later expanded and applied to minimize vorticity by solving68

the same equations [27]. The elliptical nature of the PDE system enabled69

the authors to compute error bounds for the ROM. The availability of error70
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bounds for the surrogate model allowed Yue and Meerbergen [38] to prove71

that a trust-region method converges to the FOM optimum relying only on72

surrogates. This idea is further developed in [31], that proposed a trust re-73

gion approach using reduced basis to build a ROM with a posteriori error74

bounds for elliptical and parabolic PDEs. Here, instead of building a global75

set of basis, the trust region method triggers updates to the basis when the76

error deteriorates, minimizing calls to the FOM.77

For problems exhibiting stronger nonlinearities, building a global ROB,78

deducing error bounds for the ROM becomes increasingly challenging or is79

not feasible. A possible solution to this problem is to implement a zonal80

approach where the FOM is used to solve for the region of the flow subject81

to strong nonlinearities and a ROM reduces the overall cost by solving the82

remainder of the domain [15]. In the absence of strict error bounds, Zahr and83

Farhat assume a monotonic relationship between residual norm of the ROM84

and its error and proposed a nonlinear trust-region optimisation method85

that updates the ROB along the optimization trajectory, when the residual86

fails to reach a required threshold [39]. The authors exploit a Least-Squares87

Petrov-Galerkin projection [18] to reduce the state equations and respective88

sensitivities, hence, each snapshot involved concatenating samples of the fluid89

state variables and sensitivities with respect to the design variables.90

To further reduce the number of snapshots required to build accurate91

ROMs, this work proposes a new type of ROM for gradient based aerody-92

namic shape optimization problems, centred on ROB built with samples from93

solving a linear system. As in reference [39], the residual is used to trigger94

the enrichment of the ROB within a trust-region framework, however, in this95
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work only sensitivity information is collected as part of each snapshot used to96

build both the fluid state and compute the gradient of the design variables.97

Further efficiency is gained by employing an auto-differentiation procedure98

to compute the reduced Jacobian. A subsonic inverse design and a transonic99

flow drag minimization problems are adopted to demonstrate the capability100

of the ROM based optimization methodology for problems exhibiting weak101

and strong nonlinearities. The efficiency of the proposed method is bench-102

marked against the FOM adjoint based optimisation strategy.103

The paper is organized as follows: section 2 introduces the reference104

optimisation framework using the FOM for analysis and respective adjoint105

based gradient computation; section 3 derives the ROM, describes the ROBs106

updating procedure and the ROM gradient evaluation required for the op-107

timisation; section 4 introduces the trust-region formalism used to solve the108

optimisation problems employing the ROM; this is followed by two sets of109

results and respective analysis; finally, the paper finishes with a conclusion110

section.111

2. Shape Optimization Using a Full-Order Model112

The FOM used to obtain the flow solutions in this work solves the com-113

pressible fluid Euler equations. The equations are discretized using a cell-114

centred finite-volume scheme over block-structured conforming meshes, em-115

ploying a Roe flux function, together with MUSCL interpolation, and the116

van Albada limiter is used to obtain second-order accuracy. The nonlinear117

system of algebraic equations is marched forward in time by an explicit four-118

stage Runge-Kutta method [36].119
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120

The flow solver provides the optimisation objective and constraints as a121

function of a given geometry. The geometry itself, is parameterised in terms122

of design parameters that allow defining the shape of interest. Hence, the123

optmization problem can be formulated as:124

minimize
µ∈D

F(w(µ), µ)

subject to R(w(µ), µ) = 0,

CE(w(µ), µ) = 0,

CI(w(µ), µ) ≤ 0,

(1)

where F is the objective function, w and µ are fluid state and design pa-125

rameters, respectively, D ⊂ Rnp represents the parameter space, R is the126

residual of the Euler equations and CE , CI are equality and inequality con-127

straints, respectively. To solve for the fluid state variables, the fluid residual128

R(w(µ), µ) is driven to zero.129

130

For gradient-based optimisation, the total derivative can be used to ex-131

press how the objective function changes with respect µ:132

dF
dµ

=
∂F
∂µ

+
∂F
∂w

dw

dµ
. (2)

Note that while computing Eq. 2, R(w(µ), µ) = 0 must still be satisfied,133

therefore we can use134

dR

dµ
=
∂R

∂µ
+
∂R

∂w

dw

dµ
= 0. (3)

The cost of evaluating dw
dµ

is not trivial as it requires the solution of the135
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following linear system136

dw

dµ
= −

[
∂R

∂w

]−1
∂R

∂µ
, (4)

where the term ∂R
∂w
∈ RN×N , is the fluid Jacobian J, with N representing the137

degrees of freedom of the fluid state. Substituting Eq. 4 into Eq. 2, results138

in139

dF
dµ

=
∂F
∂µ
− ∂F
∂w

[
∂R

∂w

]−1
∂R

∂µ
. (5)

The evaluation of the derivatives in Eq. 5 can be performed by finite-140

differencing, however this quickly becomes impractical even for a small num-141

ber of design variables. Alternatively, it is possible to employ the so called142

direct or adjoint methods. This requires the solution of an appropriate lin-143

ear system, see for example Hwang and Martins for further details [24]. The144

direct method requires the solution of Eq. 4, the cost of solving this lin-145

ear system is proportional to the number of design variables. The adjoint146

method involves re-writing Eq. 5 as147

dF
dµ

=
∂F
∂µ

+ ΛT ∂R

∂µ
, (6)

where ΛT is the adjoint vector, obtained by solving the following linear (ad-148

joint) system,149 [
∂R

∂w

]T
Λ = −

[
∂F
∂w

]T
. (7)

The Jacobian matrix ∂R
∂w

and right hand side vector ∂F
∂w

in Eq. 7 are ob-150

tained through auto-differentiation of the discretized Euler equations using151

the Tapenade library [14]. The Jacobian is typically a large, sparse matrix152

where only the non-zeros entries are computed. For small problems, matrix153
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factorization can be used to solve Eq. 7, which is the case in this work; al-154

ternatively, iterative solvers such as GMRES can be used for larger meshes,155

whereby only matrix-vector products are necessary to solve the linear system.156

The adjoint system scales with the number of functions in Eq. 1, there-157

fore, is the preferred choice for aerodynamic shape optimisation problems,158

where the number of parameters, np, usually outnumbers the number of ob-159

jective and constraint functions. In this work, the optimisation results based160

solely on the FOM are used as reference and are solved using the Sequential161

Quadratic Programming (SQP) algorithm from MatLab’s fmincon function162

[26], with the gradient built using the solution of the adjoint system repre-163

sented in Eq. 7.164

3. Shape Optimization Using a Reduced-Order Model165

The aim of this work is to reduce the cost of solving Eq. 1, by employing166

an approximate model, i.e. the ROM, in lieu of the FOM, at minimum loss of167

fidelity. To minimize cost, the ROM is built as the optimisation progresses,168

i.e. the ROM is only developed along the optimisation trajectory. This169

work aims to minimize or mitigate the dependence of the number of model170

queries on the number of design variables required to either build the ROM171

or compute gradients. The result is a multi-fidelity optimisation formulation,172

employing a trust-region strategy to manage the high and low fidelity model173

solves.174

3.1. FOM Reduction175

The central idea of projection-based ROMs is to project the full state176

vector w onto a subspace Φ ∈ RN×nr spanned by the ROB, where N � nr,177
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i.e.:178

w ≈ w̄ + Φwr, (8)

where w̄ is the operation reference state and wr is the reduced state vector.179

By Substituting Eq. 8 into the fluid residual R, the FOM is converted to the180

following optimization problem,181

minimize
wr∈Rnr

L2 =
1

2
‖R(w̄ + Φwr, µ)‖2

2. (9)

This type of ROM is equivalent to the minimum residual approach, meaning182

that if the ROB is enriched, the solution error in the JTJ − norm is non-183

increasing [8]. The first order optimality condition gives184

dL2

dwr

= ΨTR(w̄ + Φwr, µ) = 0, (10)

where Ψ = JΦ ∈ RN×nr is the reduced Jacobian matrix. Following [18],

the Newton method is employed to solve Eq. 10, referred to as the reduced

Newton iterations:

ΦTJTk JkΦpk = −ΦTJTkRk (11)

wk+1
r = wk

r + αkpk. (12)

In the above reduced Newton method, also known as Least-Squares Petrov-

Galerkin projection formulation, αk is the step length and pk is the line

search direction vector. The reduced Jacobian JΦ needs to be evaluated at

each iteration, which is the major computational cost and requires access to

the solver functions. As mentioned above, the Jacobian matrix is typically a

large and sparse matrix, scalable with w degrees of freedom. Evaluating and

storing J explicitly quickly becomes impractical for large scale problems, By
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realizing that

JΦ = δR(w̄)Φ ≈
1

δ
[R(w̄ + δΦ, µ)−R(w̄, µ)] (13)

it is apparent that JΦ can be approximated by finite-differences, however185

this would require the user to set the perturbation parameter, δ. This can186

be avoided by using auto-differentiation. Recall that Φ ∈ RN×nr , therefore187

forming JΦ requires N × nr flux function calls. The value (N × nr) is, in188

general, much smaller than the number of non-zero entries in J, i.e. the189

number of flux function evaluations required to explicitly compute J, which190

suggests auto-differentiation methods become more advantageous for larger191

problems, therefore it is the preferred approach in this work.192

3.2. Construction and Enrichment of Reduced Order Basis193

It is common practice to extract ROB from a matrix of snapshots or194

database X by POD [33]. The key is to build sufficient data in the range of195

interest. In the present work, only snapshots of ∂w
∂µ

samples are considered,196

assuming the nonlinearity is weak or the state does not deviate far from the197

operation state w̄. The snapshots are computed by solving the linear system198

of equations given by Eq. 4, that is,199

X =
dw

dµ
= −

[
∂R

∂w

]−1 [
∂R

∂µ

]
. (14)

In Eq. 14, ∂R
∂w

is computed from the fluid system and200

∂R

∂µ
=
∂R

∂S

∂S

∂µ
(15)

where S represents the surface mesh and ∂S
∂µ

is obtained from the parameteri-201

zation of the problem, e.g. Class-Shape Transformation (CST) [19], FFD [24]202
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or third party CAD systems [2]; in this work the mesh is deformed following203

the transfinite interpolation method and the term ∂R
∂S

which represents the204

flow residual sensitivity to mesh changes is obtained by auto-differentiation.205

Once the database is obtained, the following procedure is adopted to build

the subspace Φ:

XTX = UDVT , (16)

Φ = XVD−
1
2 . (17)

Where D = diag[λ1, λ2, ..., λnp] corresponds to the singular values, and U,206

V are the left and right singular vectors, respectively. The cost of applying207

singular value decomposition (SVD) to XTX, which is an nr × nr matrix, is208

trivial.209

It is difficult, if possible at all, to construct a static global subspace Φ for210

a nonlinear system, therefore, it is necessary to update Φ along the optimiza-211

tion trajectory. The L2 norm of the fluid residual in the Newton’s iteration212

is used as an indicator to update Φ. If the L2 norm remains larger than213

the user defined threshold ε, new snapshots are generated by Eq. 14 at the214

current state and appended to the previous snapshot matrix, and used to215

enrich Φ.216

3.3. Gradient Evaluation217

By substituting Eq. 8 into the FOM gradient Eq. 4 yields the reduced218

gradient approximation:219

dw

dµ
≈ −Φ [JΦ]+

dR

dµ
, (18)
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Where ”+” denotes Moore-Penrose pseudoinverse. Substituting Eq. 18220

into Eq. 2 and obtain221

dF
dµ
≈ ∂F
∂µ
− ∂F
∂w

Φ [JΦ]+
dR

dµ
. (19)

Eq. 19 can be expressed as the following by introducing the design velocity222

Vn = dS
dµ

, which is the surface mesh derivative with respect to the design223

parameter µ [2],224

dF
dµ
≈

[
∂F
∂S
− ∂F
∂w

Φ [JΦ]+
∂R

∂S

]
Vn. (20)

The objective function sensitivity to the mesh changes, ∂F
∂S

, is obtained from225

the auto-differentiation of the solver.226

Compared with the full order adjoint system in Eq. 7, which requires227

solving anN×N linear system, the reduced system only needs to solve anN×228

nr linear system, which provides the speed up in the gradient computation.229

However, it is necessary to point out that the Φ updates scale with the230

number of design variables due to the need to solve Eq. 14, hence this method231

remains competitive if the number of Φ updates remains significantly lower232

than the FOM calls required by the adjoint based method.233

4. Trust-Region Framework234

As the name indicates, the trust-region method aims to establish a sub-

domain where the low-fidelity model provides an adequate representation of

the FOM [10]. At each major iteration k, an optimisation subproblem is
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defined on the trust-region centred at µk and radius ∆k:

minimize
s∈Bk

F̂(w(µk), µ)

subject to ĈE(w(µk), µk + s) = 0,

ĈI(w(µk), µk + s) ≤ 0, (21)

lb ≤ (µk + s) ≤ ub,

||s||∞ ≤ ∆k,

where the “ ˆ ” symbol indicates quantities computed using the ROM (using235

Eq. 8 for the functionals and Eq. 20 for the gradients); s is the optimisation236

step size and Bk = {µ ∈ Rnp : ||µ− µk|| ≤ ∆k}.237

Trust region methods are provably convergent for constrained optimisa-

tion problems to an optimum of the FOM, provided both models satisfy a

number of conditions, including that the low-fidelity model is corrected to be

at least first-order consistent with the FOM [3, 7, 1], i.e.:

F(µk) = F̂(µk), CE(µk) = ĈE(µk), CI(µk) = ĈI(µk) (22)

∇Fk = ∇F̂k,∇CE(µk) = ∇ĈE(µk),∇CI(µk) = ∇ĈI(µk). (23)

For unconstrained optimisation, the first-order consistency requirement can238

be relaxed and a suitable approximation of the gradient at the centre of the239

trust region will suffice. This approximation is usually based on the Carter240

condition,241

||∇Fk −∇F̂k||
||∇F̂k||

≤ ζ, ∀k, (24)

with the constant ζ < 1, [9, 11].242

To guarantee convergence to a stationary point of the FOM, the following243

are also required [10]: a) F̂ is locally Lipschitz continuous and regular with244
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respect to s for all µ and continuous in µ for all s; b) the set of problem245

parameters is closed and bounded; c) the sufficient decrease condition re-246

quires the step to satisfy the fraction of Cauchy decrease (FCD). In addition247

the second derivatives of the ROM at µk remain bounded within the trust248

region domain for all k [1]. The FCD condition was derived for the clas-249

sical trust-region method, where the FOM is approximated by a quadratic250

Taylor’s series expansion. With POD based approaches, this is no longer251

feasible, instead the low-fidelity function step is determined by solving Eq.252

21 using MatLab’s fmincon SQP algorithm, which maximizes the decrease in253

the objective function of the trust-region subproblem.254

The effectiveness of the trust-region step is evaluated by the ratio of the255

actual improvement over the improvement predicted by the ROM, ρ:256

ρk =
F(µk)−F(µk + s)

F̂(µk)− F̂(µk + s)
. (25)

For values of ρ < η1 the step is rejected and the trust-region radius is reduced;257

if η1 < ρ < η2, the trust-region size is maintained and increased when ρ > η2.258

In this work, the trust-region is set up with η1 = 0.5 and η2 = 0.9; the trust-259

region size, ∆k+1, is then reduced by a factor of 0.5, maintained or increased260

by a factor 1.25.261

The optimisation terminates when the change in the design variables is262

less than the termination threshold, εµ or the trust-region size drops below a263

minimum ∆k < ∆min. This is complemented by enforcing the assessment of264

the ratio ρ when the ROM gradient norm is below the threshold ε∇. Hence,265

if the ROM is not accurate when the ROM optimiser is in effect converged,266

the trust-region radius is reduced, which means that eventually the linear267

approximation will be valid and the FOM gradient norm will also drop below268

17



the ε∇. This is particularly relevant for highly nonlinear problems, where269

the ROM accuracy is more volatile. Algorithm 1 summarises the complete270

process.271

5. Results272

5.1. Subsonic Flow Inverse Design273

A subsonic inverse design test case used in [39] was chosen to assess the274

current ROM, the problem is formulated as:275

minimize
µ∈D

1

2
‖p(w, µ)− pRAE2822‖2

2

subject to R(w(µ), µ) = 0

(26)

where p is the pressure distribution. Equation 26 aims to modify the aerofoil276

shape to match the target pressure distribution pRAE2822 produced by an277

inviscid analysis of the RAE2822 aerofoil, hence the optimum shape should278

correspond to the RAE2822 aerofoil. The flow is described by the fluid279

Euler equations, the free-stream conditions are (M∞, α) = (0.5, 0◦). The280

NACA0012 aerofoil is used as the initial geometry. The CST method using281

20 weights (np = 20), is used to parameterize the aerofoil by superimposing282

Bernstein polynomials, shown in Fig. 1, on the initial geometry definition.283

The CST formulation also provides the analytical definition of Vn. Figure284

2-(a) shows the aerodynamic grid around the NACA0012 aerofoil and Fig.285

2-(b) the respective pressure field. The O-type grid contains 121× 41 points286

in the circumferential and radial directions respectively, resulting in the fluid287

state w of dimension N = 19844.288
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Algorithm 1 ROM for Shape Optimization

Input: Initial geometry, initial parameters values, ROM update threshold

ε, ROM maximum order, ∆0

Output: Optimum shape, fluid state w

1: Initialize:

2: compute snapshot using Eq. 14, compute Φ with Eq. 17

3: while ∆k > ∆min do

4: solve optimisation subproblem, Eq. 21

5: if Fluid residual L2 > ε or ||∇ROM || < ε∇ then

6: compute ρ

7: if ρ < η1 then

8: reject step, update ∆k(η1)

9: else

10: accept step, update ∆k(η1, η2)

11: µk+1 ← µk + s

12: compute new snapshot using Eq. 14, enrich basis, update Φ

13: compute ∇F̂(µk+1) if corrections are required.

14: end if

15: else

16: accept step, increase ∆k

17: µk+1 ← µk + s

18: end if

19: if |µk+1 − µk| < εµ then

20: stop

21: end if

22: end while
19



Figure 1: Bernstein polynomials used to parameterise the geometry.

X

Y

X

Y

Figure 2: (a) aerodynamic grid of NACA0012 aerofoil; (b) non-dimensional pressure, p̂,

flow field at (M∞, α) = (0.5, 0).
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Table 1: Relative cost to compute the ROM components, normalized by the wall-clock

time required to solve the steady state once.

w̄ + Φ JΦ ( ∂p
∂w

,∂R
∂S

) wr

1.75 0.05 0.12 0.25–0.4

The grid size is normalized by the aerofoil chord length c. Following Eq.

19, the pressure gradient with respect to the design parameters is given by

dp

dµ
= − ∂p

∂w
J−1∂R

∂S
Vn, (27)

≈ − ∂p

∂w
Φ [JΦ]+

∂R

∂S
Vn. (28)

The subspace Φ is constructed using POD on the snapshot matrix de-289

fined by Eq. 14. The process starts with 20 ROBs being retained for the290

first optimization iteration, and is limited to 40 ROBs for the remainder it-291

erations. Table 1 shows the wall clock time required to build the ROM and292

reconstruct the fluid state. It is worth noting that the cost of building Φ293

requires computing the steady state, i.e. the reference state w̄, extracting294

the fluid Jacobian and solving the np linear system of Eq. 4. The cost of295

evaluating wr increases with the addition of basis to the ROM.296

Figure 3 shows the gradient calculated for the initial conditions using297

finite differencing (FD) and the adjoint FOM (Eq. 6), together the with298

the ROM prediction obtained from Eq. 28. All methods are in excellent299

agreement with each other, indicating the Carter condition is respected at300

the centre of the trust region. The trust-region setup for this problem avoids301

the use of corrections and assumes the gradient approximation satisfies the302

Carter condition, results in Table 2 show the Carter condition is indeed met303
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Table 2: Carter condition parameter, ζ, and trust-region effectiveness, ρ.

ROM update ζ ρ

1 0.1317 –

2 0.0648 1.0570

3 0.0686 0.7916

4 0.0262 1.0312

5 0.0307 1.0226

6 0.0386 0.9949

7 0.0304 0.9635

8 0.0447 0.9702

9 0.0280 1.0221

10 0.3216 0.9697

11 0.2381 0.9462

for all iterations.304

The threshold ε determines when Φ is updated, a smaller value of ε results305

in more frequent updates, hence more FOM calls, as shown by Fig. 4-(a).306

A ROM with ε = 10−5 requires three updates. However, it is worth noting307

the threshold is case dependent and must be defined a priori by the user.308

In this case, the a value of ε = 10−7 is used to complete the assessment of309

the ROM. The gradient norm predicted by the ROM at the centre of each310

trust-region is compared to the FOM gradient in Fig. 4-(b), indicating the311

level of agreement shown in Fig. 3 is maintained throughout the optimisation312

trajectory.313

The optimisation trajectory and final geometry obtained are shown in Fig.314
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Figure 3: Pressure gradient with respect to the first weight comparison. The Finite-

Differencing (FD) result is computed by perturbing the first weight with a step-size δ =

0.01. The deformed shape is enlarged by 10 times for better visualization. The ROM used

20 basis.
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(a) (b)

Figure 4: (a) Convergence of the objective function for different residual thresholds, ε; (b)

objective function gradient norm evaluated at the centre of each trust-region.

5 using the residual threshold of ε = 10−7. Results show the ROM converging315

to the FOM optimum, with both methods requiring just over 100 iterations to316

reach the optimum. As shown in table. 3, the ROM requires 11 steady state317

evaluation and linear snapshots to be collected to match the target pressure,318

which compares favorably with respect to the FOM optimization. The cost319

of using the ROM to evaluate the objective function and gradient is not320

trivial, the ROM iterations require the evaluation of JΦ, which dominates the321

computational effort of each iteration (about 95%), the remainder operations322

to compute wr are two orders of magnitude faster using QR decomposition323

MatLab function qr[25]; in the end, a reduction to approximately 70% of324

the total time required by the FOM based optimisation was achieved, when325

using ε = 10−7. The pressure fields obtained from both the final geometries326

are compared in Fig. 6, which further underlines the ROM accuracy. The327
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(a) (b)

Figure 5: (a) Optimized shape and the pressure distribution compared with target

RAE2822 and associated pressure. (b) The objective function convergence history and

retained number of ROBs.

fluid system is basically linear or rather weakly nonlinear, this resulted in an328

optimisation trajectory without any rejected steps, despite the ever increasing329

trust-region radius.330

5.2. Transonic Flow Drag minimization331

The RAE2822 aerofoil constrained drag minimization at (M∞, α) = (0.73, 2◦)332

problem is adopted to evaluate the proposed ROM for aerodynamic shape333

optimization in the transonic regime. The constrained optimisation problem334

is defined as follows:335

minimize
µ∈D

Cd

subject to R(w(µ), µ) = 0

(Cl, Cm) = (Cl, Cm)RAE2822

(29)
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X

Y

Figure 6: Pressure field comparison between FOM and ROM (ε = 10−7) final aerofoils.

The solid and dashed lines represent ROM and FOM, respectively. The ROM result is

produced by the FOM using with the aerofoil shape from the ROM optimization.

Table 3: Performance and resource usage - comparison of FOM and ROM based inverse

design problem.

FOM Optimisation ROM Optimisation

n. evals. wall clock [s] n. evals. wall clock [s]

FOM steady state 105 1039 12 119

FOM adjoint state 105 1040 - -

Update Φ: - - 11 77

ROM - - 242 762

Total Wall Clock: 2079 958

1
2
‖p(w, µ)− pRAE2822‖2

2: 3.56× 10−4 3.53× 10−4
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(a)

X

Y
(b)

Figure 7: (a) aerodynamic grid of RAE2822 aerofoil and (b) pressure flow field at

(M∞, α) = (0.73, 2◦).

As in the previous case, a CST parameterization with 20 weights (np = 20)336

is used to control the shape. As shown in Fig. 7-(a), the solutions are337

obtained on an O-type grid with 161× 41 points in the circumferential and338

radial directions, respectively. The resultant fluid state w has a dimension339

of N = 26404. The initial pressure flow field is shown in Fig. 7-(b), which340

exhibits a shock just aft of the mid chord on the upper surface.341

The gradients of the objective function, lift and pitching moment con-342

straints are compared in Fig. 8, showing excellent agreement between the343

different methods available to compute the gradients. For the constrained op-344

timisation problem, it was advantageous to include the corrections described345

by Eq. 22. Although numerical experiments show the problem reaches con-346

sistent converged solutions without corrections, the addition of these sped347

up convergence and yielded further reductions of the objective function.348
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Figure 8: Constrained optimisation gradient comparison - the finite-difference result is

computed by perturbing the design parameters with a step-size δ = 0.001. The ROM used

20 basis.
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The presence of a strong nonlinearity in this problem required the use349

of a smaller residual threshold, ε = 10−8, to produce meaningful solutions;350

however, the total number of Φ updates remains similar to the previous351

problem. The convergence of the ROM based optimisation is compared to352

the FOM using the adjoint method to compute the gradient in Fig. 10-(a).353

As in the previous test, the ROM is able to find a minimum close to the354

FOM based optimisation solution. Reducing the number of ROBs used to355

build the ROM deteriorates the convergence rate as illustrated in Fig. 10-(b).356

Nevertheless, the final solution is identical to those retaining 40 or 80 ROBs.357

Increasing the number of ROBs beyond 40 appears to have a limited impact358

on the solution.359

The number of FOM calls for both optimisation strategies plotted in360

Fig. 10-(a) are shown in Table. 4, together with wall clock times. Using361

the matrix factorisation method to solve the adjoint systems greatly reduces362

the solution time required to obtain the gradients for the FOM optimisation363

with respect to the flow solution. For the ROM based optimisation, and as364

before, the number of FOM calls is reduced by almost a quarter. Despite365

the number of FOM calls reducing significantly for the ROM problem, the366

cost of evaluating the ROM using 40 basis leads only to a marginal reduc-367

tion in wall-clock times for both strategies. However, without impacting the368

quality of final solution, it is possible to solver this problem retaining 20369

ROBs, which yields more significant savings. To understand the impact of370

the number of ROB and design variables on the performance of this ROM371

based optimisation, the computational time to evaluate a functional with372

the ROM and updating Φ is compared in Fig. 9. For a given number of373
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design parameters, increasing number of ROBs has a dramatic effect on the374

effort required by the ROM - Fig. 9-(a),this stems mainly from the need to375

evaluate the reduced Jacobian Jφ, which is an operation ∝ (N × nr); on the376

other hand, the cost of evaluating the ROM is independent of the number377

of design parameters, the cost of updating Φ, for a fixed number of ROBs,378

increases linearly with the number of design parameters, as shown in Fig.379

9-(b). It is worth pointing out that the number of basis required to solve a380

problem adequately is dependent on the number of design parameters and381

as shown by the results, increasing the number of basis beyond 40 will not382

result in significant improvements over the FOM approach. As noted in [39],383

this excessive cost in evaluating functionals using the ROM can be mitigated384

by employing hyper-reduction techniques. Figure 11 shows the solutions cor-385

responding to the minima found by the FOM and ROM optimisations. The386

results show that even for problems exhibiting nonlinearities such as shocks,387

the ROM based strategy is able to produce similar results to those obtained388

with conventional FOM optimisation strategies.389

6. Conclusion390

A ROM is developed for gradient based aerodynamic shape optimization391

with reduced Newton’s iterations. Auto-Differentiation is used to evaluate392

the reduced Jacobian without forming the full fluid Jacobian explicitly dur-393

ing the reduced Newton’s iterations. A sampling procedure based on the394

solution of linear system of equations, is adopted to construct the subspace.395

The procedure only requires solving linear systems with the number of de-396

sign parameters without resorting to sample for new fluid states for each397
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(a)

(b)

Figure 9: computational effort for the ROM steady state solution and updating the Φ: (a)

as a function of the number of ROBs retained, for 20 design parameters; (b) as a function

of the number of design parameters, whilst retaining 40 ROBs. Time is normalized with

respect to cost one steady state solution.
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Figure 10: (a) ROM and FOM based optimisation convergence history; (b) impact of

number of ROBs on optimisation convergence.

X

Y

Figure 11: Pressure field comparison between FOM and ROM (ε = 10−8). The ROM

result is obtained by FOM steady state solution with the aerofoil shape from the ROM

optimization. The solid and dashed lines represent ROM and FOM, respectively.
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Table 4: Performance and resource usage - comparison of FOM and ROM based transonic

drag minimization.

FOM ROM 20 ROB ROM 40 ROB

n. evals. time[s] n. evals. time[s] n. evals. time[s]

FOM steady

state

74 1952 14 364 15 416

FOM adjoint

state

18 242 - - - -

Update Φ: - - 8 21 13 42

ROM - - 142 1169 89 1379

Total wall

clock time:

2194 1554 1825

Cd reduction: 48.10% 48.17% 48.33%
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design variable, which quickly becomes prohibitive for large number of de-398

sign parameters. It was demonstrated that the proposed ROM is suitable for399

subsonic inverse design and transonic flow drag minimization problems. The400

inverse design optimization problem can be solved with fewer basis updates401

than the transonic case, as the latter represents a strongly nonlinear system.402

Even for the more demanding test case, it was possible to reduce the number403

of FOM analysis by a factor of four, however this was not translated into404

significant time savings.405
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