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Abstract. Private function evaluation aims to securely compute a function f(x1, . . . , xn) without
leaking any information other than what is revealed by the output, where f is a private input of one of
the parties (say Party1) and xi is a private input of the i-th party Partyi. In this work, we propose a novel
and secure two-party private function evaluation (2PFE) scheme based on the DDH assumption. Our
scheme introduces a reusability feature that significantly improves the state-of-the-art. Accordingly, our
scheme has two variants, one is utilized in the initial execution of the function f , and the other is utilized
in its subsequent evaluations. To the best of our knowledge, this is the first and most efficient 2PFE
scheme that enjoys a reusablity feature. Our protocols achieve linear communication and computation
complexities and a constant number of rounds which is at most three.

Keywords: Private function evaluation, Secure 2-party computation, Communication complexity,
Cryptographic protocol.

1 Introduction

Development of computing devices with the proliferation of the Internet has prompted enormous opportu-
nities for cooperative computation. These computations could occur between trusted or partially trusted
partners, or even between competitors. Secure multiparty computation (MPC) protocols allow two or more
parties to collaborate and compute a public functionality using their private inputs without the need for
a trusted third-party. However, the generic solutions for MPC are not adequate for some particular cases
where the function itself is also sensitive and required to be kept private. Private function evaluation (PFE)
is a special case of MPC, where the function to be computed is known by only one party. PFE is useful in
several real-life applications where an algorithm or a function itself needs to remain secret for reasons such
as protecting intellectual property or security classification level. Recently, designing efficient PFE proto-
cols have been a challenging and attractive task for cryptography researchers [PSS09, KM11, MS13, Sad15,
BBKL19,Bin19,KS16,GKS17].

Efficient and practical PFE schemes are becoming increasingly important as many real-world applications
require protection of their valuable assets. For example, many software companies targeting the global market
are extremely concerned about illegal reproduction of their software products. Software obfuscation methods
usually prevent reverse engineering, but still allow direct copying of programs. Another solution could be
providing the software-as-a-service in the cloud to eliminate the risk of exposure. However, this solution also
causes another issue, i.e., threatening the privacy of customer data, since computations need to take place
at the hands of software vendors.

Fully homomorphic encryption (FHE) [Gen09,HS18,BV11,BV14,BDGM19] provides a natural solution
to PFE where a party encrypts his/her input using his/her public key Epk(x) the other evaluates some
f homomorphically and returns the output y = Epk(f(x)), thus the first party can obtain the result by
decrypting y only. Ring-LWE based FHE constructions are the most favourable ones [LPR13a, LPR13b].
One important aspect of this approach is that its communication complexity is proportional to the input



and output sizes, but does not depend on the size of f [BDGM19]. However, FHE schemes suffer a polynomial
blow up factor (in the security parameter) to the ciphertext size, so that affecting the overall communication
cost. Therefore, they are still far from being practical [LN14b,LN14a,OSPG18,GH19,NDR+19].

Another approach targeting those problems falls into the category of PFE. Compared to FHE, PFE is
currently much closer to practical use. Moreover, in many occasions such a PFE scheme is quite beneficial,
including the ones where a service provider may opt keeping the functionality and/or its specific implemen-
tation confidential, and the ones where the disclosure of the function itself means revelation of sensitive
information, or causes a security weakness.

The current research goal for secure computation protocols (including PFE) is efficient and practical
solutions with low round, communication, and computation complexities. Among these three measures, as
also pointed out by Beaver, Micali, and Rogaway, the number of rounds is the most valuable resource
[BMR90]. The other important research goal in this area is the minimization of communication complexity.
Since hardware trends show that computation power progresses more rapidly compared to communication
channels, the main bottleneck for many applications will be the bandwidth usage.

In this paper, we consider the two-party PFE (2PFE) setting where the first party (say Party1) has a
function input f (compiled into a boolean circuit Cf ) and optionally a private input bit string x1, whereas
the other party (say Party2) has an input bit string x2. The parties aim to evaluate f on x1 and x2 so that at
least one of them would obtain the resulting f(x1, x2) without any of them deducing any information about
the other one’s private input beyond what f(x1, x2) itself reveals.

1.1 Related Work

First proposed by Andrew Yao [Yao82,Yao86], secure two-party computation (2PC) comprises the techniques
for joint evaluation of a function by two parties on their respective secret inputs. In recent years, there has
been a promising progress over the original Yao’s protocol [BMR90,NPS99,KS08a,PSSW09,KMR14,ZRE15,
KKS16]. As a consequence of these improvements, secure computation techniques now have promising results.

2PFE differs from the standard 2PC in that the latter involves both parties evaluating a publicly known
function on their private inputs, whereas in the former, the function itself is also a private input. 2PFE
concept is first appeared in [AFK87, AF90]. So far, there are basically two main approaches that PFE
solutions are built upon.

The first one is based on a universal circuit which takes a boolean circuit C with circuit size less than
g and an input (x1, . . . , xn), and outputs C(x1, . . . , xn). The idea is that if the regular secure computation
techniques can be applied on a universal circuit, then a PFE scheme can be obtained. Consequently, the
efforts targeting the efficiency of universal circuit based PFEs have generally been towards reducing the size
of universal circuits, and the cost of their secure computation [KS08b,SS09,KS16,GKS17].

The second approach is avoiding the use of universal circuits and designing special purpose PFE protocols.
Following this line of work, several PFE schemes have been proposed, e.g., as [PSS09, KM11, MS13, Sad15,
BBKL19]. A remarkable work embracing this approach is singly homomorphic encryption based 2PFE scheme
of Katz and Malka (KM11) applied on boolean circuits [KM11]. In KM11 [KM11], the authors utilize a
singly homomorphic scheme (e.g., ElGamal [EG85] or Paillier [Pai99]) for the generation of the two random
tokens5 on each wire, later utilized in the 2PC stage. They first propose a basic version of their protocol
in [KM11, Sect. 3.1] (which we call KM11-1st) and for the efficiency concerns they propose a more efficient
variant in [KM11, Sect. 3.2] (which we call KM11-2nd). Both schemes have only three rounds, and provide
O(g) asymptotic complexity in terms of communication and computation, where g denotes the circuit size.
The latter one reduces the communication and offline computation complexity.

In [MS13], Mohassel and Sadeghian proposed 2PFE schemes, for boolean circuits and arithmetic circuits.
Considering boolean circuits, they propose two types of protocols: one is based on oblivious evaluation of

5 Throughout this paper, the term “token” stands for a random bit string generated for a wire of the boolean circuit,
and has hidden semantics of either 0 or 1.
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switching networks (OSN)6 (which we call MS13-OSN) and the other one is based on singly homomorphic
encryption (which we call MS13-HE). Even though MS13-OSN is efficient for small sized circuits, it is
still inefficient for large circuits due to its O(g log(g)) communication and computation complexities. It
fails to outperform asymptotically linear communication and computation complexities of [KM11]. On the
other hand, MS13-HE provides linear communication and computation complexities and slightly outperforms
KM11-2nd. We remark that to the best of our knowledge, a reusability feature cannot be adapted7 to
protocols proposed in [KM11] and [MS13].

In [MS13], the authors also propose a protocol for arithmetic circuits based on partial (singly) homomor-
phic encryption. This protocol has equal number of rounds to its gates (see [MS13, p. 570]), whereas the
other PFE protocols for boolean circuits have constant number of rounds. For large circuits the number of
rounds will be a bottleneck8. [MS13] also proposes a multi-party PFE variant based on OSN that remains
the most efficient one to date. Their proposals are essentially secure in the semi-honest model, and has later
been extended to the malicious model by [MSS14].

Recently BBKL18 [BBKL19] improves the OSN based 2PFE protocol of [MS13]. They show how to utilize
the elegant half gates technique [ZRE15] to their 2PFE scheme. The optimization of BBKL18 improves
MS13-OSN by reducing the overall communication cost about 40%.

1.2 Our Contributions

In this work, we propose a highly efficient 2PFE scheme for boolean circuits secure in the semi-honest model.
Our scheme enjoys the cost reduction due to the reusability of tokens that will be used in the 2PC stage.
This eliminates some of the computations and exchanged messages in the subsequent executions for the same
function. Therefore, one of the strongest aspects of our proposed protocol is the remarkable cost reduction
if the same function is evaluated more than once (possibly on varying inputs). We highlight that such a cost
reduction is not applicable to the protocols of KM11 [KM11] and MS13 [MS13] since they require running
the whole protocol from scratch for each execution. In this respect, we present two protocols of our scheme:
(1) a protocol for initial executions (InExe), (2) a resumption protocol for subsequent executions (ReExe).
The former protocol is utilized in the first evaluation of the function, while the latter one is utilized in
the second or later subsequent evaluations of the same function. We note that the latter protocol is more
efficient than the former one due to the fact that it benefits from the reusable tokens generated already in
InExe protocol. The latter case is likely to be encountered more frequently in practice, compared to the cases
where a function is evaluated only once.

Our proposed protocols significantly enhances the state-of-the-art in terms of communication cost. Com-
pared to MS13-OSN [MS13], BBKL18 [BBKL19], and GKS17 [GKS17] protocols, we achieve an asymptotic
cost reduction. Namely, while the asymptotic communication costs of those protocols are equal to O(g log(g)),
our scheme provides O(g) communication complexity where g is the number of gates. To illustrate this asymp-
totic difference, for a thousand-gate circuit, our cost reduction is about 94% over MS13-OSN, about 88%
over BBKL18, and about 68% over GKS17. For a billion-gate circuit, our cost reduction is about 98% over
MS13-OSN, about 96% over BBKL18, and about 89% over GKS17. The protocols of MS13-HE, KM11-1st,
KM11-2nd and ours have linear asymptotic complexity. Thanks to the reusability feature, the advantage of
our scheme becomes more pronounced when the number of PFE execution is more than one. Namely, for two
executions our cost reduction is about 54% over KM11-1st, 30% over KM11-2nd, and 20% over MS13-HE.

6 The OSN mechanism is introduced in [MS13] to achieve a solution for the oblivious extended permutation (OEP)
problem. OEP allows the oblivious transition of each masked gate output to the input(s) of the next connected
gate(s). We refer the readers to the references in [MS13,Bin19,BBKL19] for detailed explanation on OSN.

7 This is due to the fact that the blinding operations in these protocols are one-time pads (XOR or cyclic addition),
therefore, reusing the blinded values inevitably leaks information about the truth values of intermediate wires. On
the other hand, our mechanism relies on DDH so that the blinding values would remain unknown to the respective
parties.

8 We can intuitively say that as the latency between parties increases, so does the cost of each additional communi-
cation round (we refer to [SZ13] that backs up this discussion). A similar analysis on trade-offs between boolean
and arithmetic circuit based protocols has also been addressed in [CKMZ14, p. 527].
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For ten executions our cost reduction is about 63% over KM11-1st, 44% over KM11-2nd, and 37% over
MS13-HE.

The number of rounds of our InExe protocol is 3 and the number of rounds of our ReExe protocol is
equal to 1, or 2, or 3 depending on the input string length of Party1 (i.e., owner of f)9. This also reflects the
improvement of ReExe protocol over the existing 2PFE protocols in terms of round complexity (see Table 1).

We also deal with the case that Party1 runs the 2PFE protocol for the same private function with various
Party2s separately. This is a common scenario where Party1 may run a business with many customers for her
algorithm/software. Trivially, our ReExe protocol can be utilized between the same two parties in the second
and subsequent evaluations after the first evaluation. Instead of running the initial execution protocol with
each Party2, we propose a more efficient mechanism for the generation of the reusable tokens by employing
a threshold based system.

1.3 Organization

In Section 2, we give a preliminary background that is used throughout the paper. Section 3 presents
the descriptions of our InExe and ReExe protocols, and a method for the case where Party1 would like to
execute 2PFE with various Party2s separately. Section 4 provides a performance analysis of our protocols,
and compare them with the existing state-of-the-art 2PFE protocols. In Section 5, we give the security proofs
of our protocols in the semi-honest model. Finally, Section 6 concludes our paper.

2 Preliminaries

This section provides some background information on the DDH assumption, describes some notations used
in this paper and briefly summarize the concept of the 2PFE framework.

2.1 Decisional Diffie-Hellman Assumption

The Decisional Diffie-Hellman (DDH) assumption for G provides that the following two ensembles are com-
putationally indistinguishable

{(P1, P2, a · P1, a · P2) : Pi ∈ G, a ∈R Z∗
q} ≈c

{(P1, P2, a1 · P1, a2 · P2) : Pi ∈ G, a1, a2 ∈R Z∗
q}.

whereX ≈c Y denotes that the setsX and Y are computationally indistinguishable, G is a group (represented
in additive notation) of prime order q (of size 2λ where λ is a security parameter), and P1, P2 ∈R G.

The security of our protocols is based on the following lemma of Naor and Reingold [NR04] providing a
natural generalization of the DDH assumption for m > 2 generators.

Lemma 1 ( [NR04]). Under the DDH assumption on G, for any positive integer m,

{(P1, . . . , Pm, a · P1, . . . , a · Pm) : Pi ∈ G, a ∈R Z∗
q} ≈c

{(P1, . . . , Pm, a1 · P1, . . . , am · Pm) : Pi ∈ G, a1, . . . , am ∈R Z∗
q}.

There exist certain elliptic curve groups where the DDH assumption holds. We will not go through the
details of these primitives and refer the reader to [Bon98,HMV03]. The main advantage of the elliptic curve
DDH assumption over the discrete logarithm based DDH assumption is that the discrete logarithm DDH
problem requires sub-exponential time [LV01] while the current best algorithms known for solving the elliptic
curve DDH problem requires exponential time resulting the same security with smaller key sizes. Therefore,

9 More concretely, if Party1 has x1 = ⊥, then the number of rounds is equal to 1. If Party1 has a non-empty input
x1 in such that the OT extension is not applicable for its garbled input, then the number of rounds is equal to 2.
Otherwise, the number of rounds is equal to 3.
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the elliptic curve based systems are more practical than the classical discrete logarithm systems since smaller
parameters may be chosen to ensure the same level of security. In fact, attacks on elliptic-curve groups require
running time that is a square root of the group size 10.
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Fig. 1. (a) A circuit representation Cf of a function f . (b) The mapping πf of f .

2.2 Notations and Concept of 2PFE Framework

In a two-party private function evaluation (2PFE) scheme, Party1 has a function input f (compiled into a
boolean circuit Cf ) and optionally a private input bit string x1, whereas Party2 has an input bit string x2.
The parties aim to evaluate f on x1 and x2 so that at least one of them would obtain the resulting f(x1, x2).
The recent 2PFE schemes [KM11,MS13] conform to a generic 2PFE framework (formalized by [MS13]) that
basically reduces the 2PFE problem to hiding both parties’ input strings and topology of the circuit. The
framework is not concerned with hiding the gates since it allows only one type of gate in the circuit structure.

In a nutshell the 2PFE framework is as follows. Before starting the 2PFE protocol, Party1 compiles
the function into a boolean circuit Cf consisting of only one type of gates (e.g., NAND gates). During the
protocol execution, Party1 and Party2 first engage in a mapping evaluation protocol where Party2 obliviously
obtains the tokens on gate inputs, and then they mutually run a 2PC protocol where Party2 garbles each
gate separately using those tokens, and Party1 evaluates the garbled circuit. As a result, Party1 obtains the
garbled tokens that map to the corresponding outputs of the function (i.e., y = f(x1, x2)).

Let g, n, and m denote the number of gates (circuit size), the number of inputs, and the number of
outputs of Cf , respectively. Let OW = (ow1, . . . , own+g−m) denote the set of outgoing wires that is the union
of the input wires of the circuit and the output wires of its non-output gates. Note that the total number
of elements in OW is M = n + g −m. Similarly, let IW = (iw1, . . . , iw2g) denote the set of incoming wires
that is the union of the input wires of each gate in the circuit. Note also that the total number of elements
in IW is N = 2g. Throughout this paper, M and N denote the numbers of outgoing and incoming wires,
respectively. Let πf be a mapping such that j ← πf (i) if and only if owi ∈ OW and iwj ∈ IW correspond to
the same wire in the circuit Cf (see Figure 1).

We define the public information of the circuit Cf as PubInfoCf
which is composed of: (1) the number

of each party’s input bits, (2) the number of output bits, (3) the total number of incoming wires N and
that of outgoing wires M , (4) the incoming and outgoing/output wire indices that belong to each gate, (5)

10 For example, for the 112-bit symmetric key security level, a 2048-bit large prime number is required for a prime
sub-group of the multiplicative group modulo a prime, whereas only a 224-bit prime p is sufficient for a NIST-elliptic
curve over Fp [Gir16].
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the outgoing wire indices corresponding to each party’s input bits. Note that, it is a common assumption
among PFE schemes [KM11,MS13,BBKL19] that both parties have pre-agreement on the number of gates
(g), the number of input wires (n), the number of output wires (m), the number of input bits of Party1 (q).
Both parties generate PubInfoCf

at the beginning of the protocol execution (without an additional round
of communication). Namely, each party runs the following deterministic procedure to obtain PubInfoCf

on
public input (g, n,m, q):

– Set N := 2g, M := n+ g −m.
– For i = 1, . . . , g, set iw2i−1 and iw2i as the incoming wires of the gate Gi.
– For i = 1, . . . , g −m, set owi as the outgoing wire of the gate Gi.
– For i = 1, . . . , q, set owg−m+i as the outgoing wire corresponding to Party1’s i-th input bit.
– For i = 1, . . . , n− q, set owg−m+q+i as the outgoing wire corresponding to Party2’s i-th input bit.
– For i = 1, . . . ,m, set the output wire yi as the output of Gg−m+i.
– Return PubInfoCf

:= (M,N,OW, IW, y).

Next, Party1 generates πf (i.e., the connection between incoming and outgoing wire indices) using the
following randomized procedure on input (Cf ,OW, IW).

– Randomly permute the indices 1, . . . , g −m, and assign it to an ordered set A.
– For i = 1, . . . , g −m, assign GA[i] to the i-th non-output gate in topological order.
– For i = 1, . . . ,m, assign Gg−m+i to i-th output gate.
– Extract πf from Cf according to the connections between ows and iws.
– Return πf .

We next define Reusable Mapping Template in which the efficiency of our scheme mostly due to the
reusability of this template.11

Definition 1 (Reusable Mapping Template). Let π−1
f (j) be the inverse mapping of πf that denotes

the index of the outgoing wire connected to iwj. A Reusable Mapping Template is a set ReuseTempf :=
(P,Q) such that P := (P1, . . . , PM ) where Pi is a generator of the group picked for owi by Party2 and
Q := (Q1, . . . , QN ) where Qj := tj · Pπ−1

f (j) is a group element generated for iwj by Party1 for tj ∈R Z∗
q ,

i = 1, . . . ,M , and j = 1, . . . , N .

3 Our PFE Scheme

In this section, we first present our protocol for initial executions InExe which is optimized by offline/online
decomposition (Figure 2). We next introduce our efficient resumption protocol for subsequent executions
ReExe (Figure 3). We then propose an efficient method for executions with multiple Party2s.

3.1 The description of our InExe protocol

InExe scheme is optimized by carrying out some of the computations in the off-line stage. In general, such
precomputation techniques enhance real-time performance at the cost of extra preliminary computations and
storage consumption. Besides, in today’s technological perspectives, memory consumption is rarely considered
to be a serious drawback since storage units are abundant in many recent devices. In what follows, we give
the full protocol steps of our optimized initial execution InExe protocol. Also, Figure 2 depicts the protocol
steps of our InExe protocol. The computations that can be carried out in the precomputation phase include
the generation of P, and the computation of the sets W0 and W1 by Party2.

In accordance with the generic 2PFE framework the description of our InExe is as follows.

11 Although, KM11 [KM11] also involves homomorphic encryption for token generation, it requires all protocol steps
to be repeated in each subsequent executions.
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Party1 Party2

input: x1 ∈ {0, 1}∗, Cf , πf Pre-shared info: input: x2 ∈ {0, 1}∗
G, q, P,PubInfoCf

Offline
Pre-computation

Pick: α0, α1 ∈R Z∗
q .

Generate: P := (P1, . . . , PM ),
W0 := (W 0

i � α0 · Pi),
W1 := (W 1

i � α1 · Pi), i = 1, . . . ,M .

P←−−−−−−−
Generate: T := (t1, . . . , tN : tj ∈R Z∗

q),
Q = (Qj ← tj · Pπ−1

f
(j)

), j = 1, . . . , N.

Keep: ReuseTempf := (P,Q).

Q−−−−−−−→
Generate: V0 := (V 0

j � α0 ·Qj),
V1 := (V 1

j � α1 ·Qj), j = 1, . . . , N.
Keep: ReuseTempf := (P,Q).

Pick: Y 0 := (y0i �R {0, 1}`),
Y 1 := (y1i �R {0, 1}`), i = 1, . . . ,m.

Run 2PC Protocol
Act as Evaluator Act as Garbler

F,X2←−−−−−−−
Generate garbled circ. F by using

(W0,W1,V0,V1, Y 0, Y 1,PubInfoCf ).
Using F,X1, X2, T, πf
obtain Y = f (x1, x2).

Fig. 2. Sketch of our InExe 2PFE Protocol. ReuseTempf and T are stored (if needed) for the later PFE runs by
(ReExe) protocol. Note that in case Party1 has inputs (x1) then OT protocol is required (to send the corresponding
garbled X1) which can be trivially combined with the protocol rounds (i.e., the first round of OT protocol is sent
accompanied by P message and second one by Q and third one by F,X2) for minimization of the total number of
rounds.

Inputs Prior to the protocol execution, both parties should have a pre-agreement on a cyclic group G of large
prime order q (where |q| = 2λ) with a generator P and the PubInfoCf

on inputs (g, n,m, q). Each party has
the following inputs: (1) Party1 holds a boolean circuit Cf consisting of only one type of gates (e.g., NAND
gates) and the corresponding mapping πf , and (possibly but not necessarily) his input x1 (2) Party2 holds
his inputs x2.

Offline pre-computation phase Party2 generates the set P of M random generators. It also picks α0, α1 ∈R Z∗
q ,

and prepares the group element sets W0 := (W 0
1 , . . . ,W

0
M : W 0

i � α0 · Pi, i = 1, . . . ,M) for FALSEs and
W1 := (W 1

1 , . . . ,W
1
M : W 1

i � α1 · Pi, i = 1, . . . ,M) for TRUEs, where Pi is the i-th element in P and each
W b
i is a token for owi ∈ OW, b ∈ {0, 1}. Party2 stores P, W0, W1, α0, and α1.

Online phase Online phase consists of three rounds as follows.

Round 1: Party2 sends P to Party1.

Round 2: Party1 generates the blinding set T := (t1, . . . , tN : tj ∈R Z∗
q , j = 1, . . . , N), computes the set

Q = (Q1, . . . , QN : Qj ← tj · Pπ−1
f (j), j = 1, . . . , N), where π−1

f (j) denotes the index of the outgoing wire

connected to iwj . Party1 sends Q to Party2. Now, both parties have the knowledge of the set ReuseTempf :=
(P,Q).

For the later PFE runs with the same function (if needed), Party1 stores ReuseTempf (see Figure 3 for
the protocol of subsequent executions (ReExe)).
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Party2 prepares the group element sets corresponding to iwj ∈ IW. The set V0 is for FALSE, V1 is for
TRUE semantic values.

V0 := (V 0
1 , . . . , V

0
N : V 0

j � α0 ·Qj , j = 1, . . . , N),

V1 := (V 1
1 , . . . , V

1
N : V 1

j � α1 ·Qj , j = 1, . . . , N).

Party2 next picks the following two randomly chosen ordered sets for output wires of the circuit

Y 0 := (y01 , . . . , y
0
m : y0i �R {0, 1}`, i = 1, . . . ,m),

Y 1 := (y11 , . . . , y
1
m : y1i �R {0, 1}`, i = 1, . . . ,m),

where ` is the bit length of a group element (i.e., ` = dlog2(q)e). For the later PFE runs with the same
function (if needed), Party2 stores ReuseTempf .
Round 3: Now, both parties then engage in a 2PC protocol where Party2 and Party1 play the garbler
and evaluator roles, respectively. Party2 garbles the whole circuit by using W0, W1, V0, V1, Y 0, Y 1, and
PubInfoCf

. Note that in contrast to the usual garbling in [KM11, MS13], in our garbling phase, Party2 has
group elements instead of random tokens. To use group elements as keys, we now define an instantiation of
a dual-key cipher (DKC) notion of [BHR12] using a pseudorandom function as

EncP1,P2
(m) := [H(P1, P2, gateID)]` ⊕m

where P1 and P2 are two group elements used as keys, m is the `-bit plaintext, gateID is the index number
of the gate, H : G × G × {0, 1}∗ → {0, 1}`+τ is a hash-function (which we model as a random oracle), τ is
an integer such that τ > 2 log2(4g) for preventing collisions in the τ rightmost bits of hashes, and [H(X)]`
denotes the truncated hash value (of the message X) which is cropped to the ` leftmost bits of H(X) for
some X. Also, we denote [H(X)]τ for the truncated hash value (of the message X) which is cropped to the
τ rightmost bits of H(X) for some X. The former truncated hash value is used for encryption, while the
latter is utilized for the point and permute optimization of Beaver et al. [BMR90]. Note that the encryption
scheme Enc is based on the encryption scheme in [LPS08] and differs from it only by utilization of group
elements as keys.

Let Ga be a non-output NAND gate for some a ∈ {1, . . . , g}. Let also iwi, iwj be the incoming wires and
owz be the outgoing wire of Ga where i, j ∈ {1, . . . ,M} and z ∈ {1, . . . , N}. To garble Ga, Party2 prepares
the following four ciphertexts

ct1a := EncV 0
i ,V

0
j

(W 1
z ), ct2a := EncV 0

i ,V
1
j

(W 1
z ),

ct3a := EncV 1
i ,V

0
j

(W 1
z ), ct4a := EncV 1

i ,V
1
j

(W 0
z )

where W 1
z and W 1

z are the `-bit string representations of the group elements. Similarly, let Gb be an output
NAND gate for some b ∈ {1, . . . , g}. Let also iwi, iwj be the incoming wires and z be the output wire index of
Gb where i, j ∈ {1, . . . ,M} and z ∈ {1, . . . ,m}. To garble Gb, Party2 prepares the following four ciphertexts

ct1b := EncV 0
i ,V

0
j

(y1z), ct2b := EncV 0
i ,V

1
j

(y1z),

ct3b := EncV 1
i ,V

0
j

(y1z), ct4b := EncV 1
i ,V

1
j

(y0z).

For the point and permute optimization [BMR90], for each gate Ga in the circuit, Party2 picks random
indices I1a , I

2
a ∈ {1, . . . , τ} such that

{(X[I1a ],X[I2a ]), (Y[I1a ],Y[I2a ]), (Z[I1a ],Z[I2a ]), (T[I1a ],T[I2a ])} =

{(0, 0), (0, 1), (1, 0), (1, 1)} where

X = [H(V 0
i , V

0
j , gateID)]τ , Y = [H(V 0

i , V
1
j , gateID)]τ , Z = [H(V 1

i , V
0
j , gateID)]τ , T = [H(V 1

i , V
1
j , gateID)]τ ,

and S[Iia] denotes the Iia-th bit of the bit string S. We denote each garbled gate GGa, which is then composed
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Party1 Party2

input: x1,k ∈ {0, 1}∗, Cf , πf , T Pre-shared info: input: x2,k ∈ {0, 1}∗
G, q, P,PubInfoCf ,ReuseTempf

Offline
Pre-computation

Pick: α0,k, α1,k ∈R Z∗
q .

Generate: W0
k := (W 0

i,k � α0,k · Pi),
W1
k := (W 1

i,k � α1,k · Pi), i = 1, . . . ,M .
V0
k := (V 0

j,k � α0,k ·Qj),
V1
k := (V 1

j,k � α1,k ·Qj), j = 1, . . . , N.

Pick: Y 0
k := (y0i,k �R {0, 1}`),

Y 1
k := (y1i,k �R {0, 1}`), i = 1, . . . ,m.
Generate garbled circ. Fk by using

(W0
k ,W1

k ,V0
k ,V1

k , Y
0
k , Y

1
k ,PubInfoCf ).

Run 2PC Protocol
Act as Evaluator Act as Garbler

Fk, X2,k←−−−−−−−−−−−
Using Fk, X1,k, X2,k, T, πf OT (if needed)

←−−−−−−−−−−−→
obtain Y = f (x1,k, x2,k).

Fig. 3. Sketch of our ReExe protocol for the k-th execution (k > 1). The number of rounds is equal to 1, or 2, or 3
depending on the input string length of Party1.

of four `-bit ciphertexts, ct1a, ct2a, ct3a, and ct4a, and an index pair (I1a , I
2
a). Note that the set of ciphertexts

in the GGa are ordered according to I1a-th and I2a-th bits of their corresponding X, Y, Z, and T values. For
example, let X = 011001 . . . 1, Y = 101111 . . . 0, Z = 110001 . . . 0, and T = 010111 . . . 1. If (I1a , I

2
a) = (1, 5)

then (X[1],X[5]) = (0, 0), (Y[1],Y[5]) = (1, 1), (Z[1],Z[5]) = (1, 0), (T[1],T[5]) = (0, 1), and therefore, we
have GGa = (ct1a, ct4a, ct3a, ct2a, (I1a , I

2
a)). A trivial method for finding such a pair (I1a , I

2
a) could be as follows.

First, Party2 can find I1a such that {X[I1a ],Y[I1a ],Z[I1a ],T[I1a ]} = {0, 0, 1, 1} with probability of 6/16 in each
trial. Then, I2a could also be found with probability of 4/16 in each trial. Therefore, the expected number
of trials to find a pair of (I1a , I

2
a) is 7. Party2 garbles all the gates in the circuit in the above-mentioned way,

and obtains the garbled circuit F . Party2 then sends F and its garbled input X2 (i.e., the Wi group elements
for outgoing wires corresponding to x2) to Party1. As usual, Party1 gets its own garbled input X1 (i.e., the
Wi group elements for outgoing wires corresponding to x1) from Party2 using oblivious transfers (OT) (or
one invocation of the OT extension schemes [IKNP03, KK13, ALSZ13]). Note that this does not increase
the round complexity of our overall protocol, since the exchange messages needed for OT rounds can be
accompanied to the protocol rounds (i.e., the first round of OT is sent with P message and second one with
Q and third one with F,X2).

Using F , the garbled input X = (X1, X2), T , and πf , Party1 evaluates the whole garbled circuit in
topological order. If an outgoing wire owd is mapped to an incoming wire iwe, then the group element Ve of
the e-th incoming wire is computed by the multiplication of the group element Wd of the d-th outgoing wire
and the blinding value te (i.e., if πf (d) = e, then Ve = te ·Wd). Each garbled gate GGa can be evaluated when
both group elements (Vi, Vj) on its incoming wires (iwi, iwj) are computed. To evaluate each GGa, Party1
first computes H(Vi, Vj , gateID), and then XORs the ciphertext in the GGa pointed by I1a-th and I2a-th bits
of the H(Vi, Vj , gateID)τ . At the end, Party1 obtains the token set Y = (y1, . . . , ym) for the output bits of
the function y = f(x1, x2).

3.2 Optimization with reusability feature: Our ReExe protocol

One of the novelties of our scheme over the state-of-the-art is that our scheme results in a significant cost
reduction when the same private function is evaluated more than once between the same or varying evaluating
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parties. This feature is quite beneficial in relevant real-life scenarios where individuals (or enterprises) can
mutually and continuously have long-term business relationship instead of a single deal. Note that such a cost
reduction is not available in the protocols of KM11 [KM11] and MS13 [MS13], since they require that token
generation and 2PC procedures be repeated in all executions. However, our scheme involves Reusable Mapping
Tamplate (ReuseTempf := (P,Q)) that is reusable for the generation of tokens on incoming and outgoing
wires. The reusability of ReuseTempf incurs upto 42% reduction in communication overhead over [MS13],
i.e., asymptotically approaching 42% as protocol is re-executed for the same function.

Figure 3 depicts the sketch of our optimized ReExe protocol. In ReExe protocol most of the calculations
are performed in the offline pre-computation phase. For the k-th evaluation, Party2 picks α0,k, α1,k ∈R Z∗

q

values then prepares the setsW0
k ,W1

k , V0
k , V1

k , Y 0
k and Y 1

k . Then usingW0
k ,W1

k ,V0
k ,V1

k , Y
0
k , Y

1
k and PubInfoCf

,
Party2 prepares the garbled circuit F as in the InExe protocol. The online phase then includes only the 2PC
stage that also runs the same way as in Section 3.1. During the evaluation procedure of the 2PC stage, Party1
always use the same T in all protocol runs.

3.3 Executing with Various Party2s

In the previous section, we have addressed the case where the same two parties would like to evaluate the
same function multiple times. In this section, we deal with the case that Party1 would like to run the 2PFE
protocol for the same private function with various Party2s separately. This is a relevant scenario where
Party1 may run a business with many customers for her algorithm/software. Suppose that a cryptological
research institution invents a practical algorithm for breaking RSA. Since such an algorithm would clearly
attract a substantial demand, the institution may prefer hiding the details of the algorithm selling only its
use. On the other hand, in many cases the clients would not like to share the keys (i.e., private inputs) with
the institution. This is one of the several scenarios that a 2PFE protocol for the same private function with
various Party2s is suitable for.

First of all, we recall that the execution of our second protocol in Figure 3 requires the preknowledge of
ReuseTempf := (P,Q) by Party2 and the set T by Party1. Trivially, once ReuseTempf and T are produced
during InExe with any Party2 as in our first protocol in Figure 2, then they can be stored, and our second
protocol can be made use of in the subsequent executions with the same Party2. We are here interested in
a more efficient mechanism running with various Party2s by eliminating the costs of our first protocol for
generating the preknowledge. The goal of this mechanism is to generate the generator set P in such a way that
Party1 does not know the relation between any two of its elements. T and Q can be subsequently computed,
once the generator set P is given to Party1. In order to do so, we utilize a distributed system12 based on a
t-out-of-n threshold mechanism (fault tolerant against arbitrary behaviour of up to t malicious and colluding
authorities) which takes (G, q, P,M) as input and outputs P. For further reducing communication and round
costs in the first execution, P might be generated via a random oracle by both parties in an offline phase.
This will result in reduction of one round and M tokens of InExe.

In the offline stage of our new mechanism, the generator set P is generated by the distributed authorities,
and given to Party1. Next, Party1 computes the sets T and ReuseTempf . It then publishes PubInfoCf

and
ReuseTempf so that any prospective k-th party Party2,k can utilize them in a 2PFE protocol run. This offline
stage is dealt with only once, and its outputs (i.e., T and ReuseTempf ) are used in the subsequent executions.
Note that the flow of re-executions for all Party2,ks is exactly the same as our ReExe protocol. We would like
to stress that the costs of any execution in our new mechanism with a distributed system does not differ
from the ReExe protocol.

4 Complexity Analysis

In this section, we first present the costs of our InExe and ReExe protocols in terms of communication, online
computation, and round complexities. We then compare these protocols with the existing boolean circuit

12 One can also suggest a single semi-trusted authority for generation of the generator set P. However, the knowledge
of the relations among the elements of P by a single party may violate the privacy of inputs, and therefore, it is
better to distribute the trust among multiple authorities.
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Table 1. Comparison of the existing 2PFE schemes in terms of overall communication (in bits) and online computa-
tion costs (in terms of symmetric-key operations), offline computation costs (in terms of symmetric-key operations),
and the number of rounds.

Communication Online Comp. Offline Comp. Rounds

KM11-1st [KM11] (4M + 10N)λ N Asym.+ 2.5N Sym. 4(M +N) Asym. 3

KM11-2nd [KM11] (2M + 7N)λ N Asym.+ 2.5N Sym. 2(M +N) Asym. 3

MS13-OSN [MS13] (10N log2N + 4N + 5)λ (6N log2N + 2.5N + 3) Sym. O(λ) Sym. 6

MS13-HE [MS13] (2M + 6N)λ N Asym.+ 2.5N Sym. 2(M +N) Asym. 3

GKS17 [GKS17] (2N log2N)λ 0.7N log2N Sym. 2N log2N Sym. 3

BBKL18 [BBKL19] (6N log2N + 0.5N + 3)λ (6N log2N +N + 3) Sym. O(λ) Sym. 6

Our InExe (2M + 6N)λ 4N Asym.+ 2.5N Sym. (3M − 1) Asym. 3

Our ReExe 4Nλ N Asym.+ 0.5N Sym. 2(M +N) Asym.+ 2 Sym. 1 / 2 / 3

based 2PFE schemes. M , N and λ denote the number of outgoing wires (i.e., equal to n+g−m), the number
of incoming wires (i.e., N = 2g) and the security parameter, respectively.

4.1 Complexity of Our Scheme

Communication cost Considering our InExe protocol, the overall communication overhead is (2M + 6N)λ
bits, composed of (i) the set P (M of 2λ-bit strings) is sent by Party2 in Round 1, (ii) the set Q (N of 2λ-bit
strings) is sent by Party1 in Round 2, (iii) the garbled circuit (2N of 2λ-bit strings) is sent by Party2 in Round
3, where M is the number of outgoing wires and N is the number of incoming wires (N = 2g). Considering
our ReExe protocol, the use of ReuseTempf eliminates the transmission of (2M + 2N)λ bits (required for
token generation). Therefore, in total only 4Nλ bits (required for the garbled circuit) are transmitted.

Table 2. Comparison of the existing 2PFE schemes in terms of overall communication costs for various circuit sizes.
Here we take N = 2M and λ = 128.

Number of Gates

210 215 220 225 230

KM11-1st [KM11] 0.38 MB 12.00 MB 0.38 GB 12.00 GB 384.00 GB

KM11-2nd [KM11] 0.25 MB 8.00 MB 0.25 GB 8.00 GB 256.00 GB

MS13-OSN [MS13] 3.56 MB 164.00 MB 6.69 GB 264.00 GB 10, 048.00 GB

MS13-HE [MS13] 0.22 MB 7.00 MB 0.22 GB 7.00 GB 224.00 GB

GKS17 [GKS17] 0.68 MB 32.00 MB 1.31 GB 52.00 GB 1, 984.00 GB

BBKL18 [BBKL19] 1.89 MB 90.50 MB 3.77 GB 151.00 GB 5, 776.00 GB

Our InExe 0.22 MB 7.00 MB 0.22 GB 7.00 GB 224.00 GB

Our ReExe 0.13 MB 4.00 MB 0.13 GB 4.00 GB 128.00 GB

Computation cost In terms of online computation complexity, InExe protocol requires 4N elliptic curve point
multiplications, composed of (i) N operations by Party1 in Round 2, (ii) 2N operations by Party2 in Round
3, (iii) N operations by Party1 during the evaluation of the garbled circuit. There is also a relatively small
cost of 2.5N symmetric-key operations during the 2PC stage (composed of 2N operations by Party2 for
garbling and 0.5N operations by Party1 for evaluating). ReExe protocol reduces the online computation costs
to N elliptic curve point multiplications and 0.5N symmetric-key operations (carried out only by Party1).
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Note that Beaver’s OT pre-computation technique [Bea95] can be used for decomposing OT’s for Party1’s
input bits into online/offline stages. This eliminates online public-key operations of OT by carrying out them
offline.

Number of rounds Our InExe protocol has 3 rounds. The number of rounds of our ReExe protocol is equal to
1, or 2, or 3 depending on the input string length of Party1. Namely, if Party1 has x1 = ⊥, then the number of
rounds is equal to 1 (i.e., no rounds needed for OT). If Party1’s input bits are not many, it is more efficient to
use separate OTs for Party1’s input tokens in parallel instead of an OT extension scheme. There exists OT
schemes with 2 rounds (e.g., [Bea95] and [NP01]). Hence, this choice results in a PFE scheme with overall
2 rounds. If Party1’s input bits are many, then using an OT extension scheme is more efficient. Note that
Ishai based OT extension schemes are composed of O(λ) parallel OTs (again can be realized by Naor and
Pinkas’s OT [NP01]) and an additional round. Similarly, this choice results in a PFE scheme with overall 3
rounds.

4.2 Comparison

We now compare our 2PFE protocols with the state-of-the-art constant-round 2PFE protocols. In our scheme,
we utilize an EC cyclic group where the DDH assumption holds for state-of-the-art efficiency. For [KM11],
we take into account both protocols: (1) their “C-PFE protocol” (see [KM11, Sect. 3.1], which we call KM11-
1st) and (2) their “A More Efficient Variant” (see [KM11, Sect. 3.2], which we call KM11-2nd). For a fair
comparison, we assume that the point and permute optimization [BMR90] is directly applied to the MS13
and KM11 protocols during the 2PC phase13. Regarding the HE based schemes, for a fair comparison, we
assume that EC-ElGamal is used. Also, considering KM11 and our protocols, we assume that each element
of G has a length ` = 2λ bits for a λ-bit security.

Table 1 compares the existing 2PFE schemes in terms of overall communication cost, online/offline
computation costs, and the number of rounds. We also provide Table 2 that depicts a comparison in terms
of overall communication costs for various circuit sizes. In general, MS13-OSN, GKS17, BBKL18 performs
O(NlogN), whereas MS13-HE, KM11 and our protocols achieves linear complexity14. Note that although
the complexity of MS13-HE is same as our InExe protocol, for the later executions our ReExe protocol enjoys
a significant cost reduction due to the reusability feature, which is not possible for MS13-HE and KM11
protocols. For all circuit sizes, the communication costs of ReExe protocol are significantly lower than that
of existing 2PFE protocols.

The advantage of our scheme becomes more pronounced when the number of executions is more than
one. To demonstrate this, we define the normalized cost efficiency (NCE) function that takes a protocol
(Proti), a circuit Cf and the number of executions (k), then outputs an efficiency ratio wrt our scheme. The
normalized cost efficiency is calculated via dividing the cumulative communication cost of our protocol by
that of Proti.

NCE(Proti, Cf , k) =
fc(InExe, Cf ) + (k − 1)fc(ReExe, Cf )

kfc(Proti, Cf )
,

where fc is the cost function that outputs the communication cost value for given protocol and Cf .
Figure 4 depicts the normalized cost efficiency comparison of the protocols for circuits with 210 and 230

gates. Also, without loss of generality, we take N = 2M . Considering MS13-HE, although it performs the
same efficiency in the initial execution, after the second execution, its efficiency is about 0.8 (meaning that
our protocol saves about 20% bandwidth as compared to MS13-HE), and after ten executions it is about 0.63
(i.e., we achieve 37% saving). Moreover, for two executions our cost reduction is about 54% over KM11-1st,
30% over KM11-2nd. For ten executions our cost reduction is about 63% over KM11-1st, 44% over KM11-
2nd. For large number of runs (e.g. a hundred runs) our savings over KM11-1st, KM11-2nd and MS13-HE
are 66%, 50% and 43%, respectively.

13 In [MS13] and [KM11], for the 2PC phases, the authors do not suggest any optimization. However, a point and
permute optimization is available for both schemes.

14 Note that M ≤ N , therefore O(M +N) = O(N)
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Figure 4 (a) and (b) shows how the normalized cost efficiency changes wrt circuit size. For the protocols
that has linear complexity, the normalized cost efficiency does not change as the number of gates increases.
However, for the protocols with O(NlogN) complexity, their normalized efficiency dramatically decreases.
For instance, after two executions, our cost reduction is about 74% and 91% over GKS17; about 91% and
97% over BBKL18; and about 95% and 98% over MS13-OSN for a thousand and a billion-gate circuits,
respectively.

(a) Number of gates = 210 (b) Number of gates = 230

Fig. 4. Comparision of cummulative communication cost via normalized bandwidth efficiency vs. number of PFE
executions. (a) gives a comparison using a circuit 210 gates where (b) gives a comparison using a circuit 230 gates.

Regarding the computation costs, Table 1 gives both asymmetric (denoted by Asym.) and symmetric
(denoted by Sym.) cryptographic operations, separately. On the other hand, comparing the complexity of
asymmetric operations with symmetric operations is subject to discussion. To compare with each other, one
can define a computation cost ratio as the cost of a primitive asymmetric operation divided by the cost of
a primitive symmetric operation for the same security level. Note that the value of this ratio depends upon
several factors such as the software implementations, the underlying symmetric-key encryption scheme, the
availability of short-cut algorithms, the type of the chosen elliptic curve, the hardware infrastructure, and the
type of utilized processors. For example, according to [EIV18], in a setting where curve25519 and SHA256
are picked as the EC and the hash function, respectively, and the operations take place on an Intel Xeon
Processor E3-1220 v6 (amd64, 4x3GHz), this ratio is roughly 130.

Among all protocols, our ReExe protocol performs the best result in terms of round complexity. Namely,
the number of rounds in ReExe is equal to 1 if Party1 has x1 = ⊥, or 2 if Party1 has a non-empty input x1 in
such that the OT extension is not applicable for its garbled input, or 3 otherwise. Note that the arithmetic
circuit based protocol of [MS13] provides O(g) round complexity (see [MS13, p. 570])).

5 Security of Our Protocols

In this section, we give simulation-based security proofs of our InExe protocol in Figure 2, ReExe protocol
in Figure 3, and our mechanism with various Party2s in Sect. 3.3 in accordance with the security proof
of [KM11].

Theorem 1. If the following three conditions hold then the 2PFE protocol proposed in Figure 2 is secure
against semi-honest adversaries: (1) the DDH assumption is hard in the cyclic group G, (2) the hash-function
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H : G × G × {0, 1}∗ → {0, 1}`+τ involved in the instantiation of DKC scheme is modeled as a random
oracle, (3) the OT scheme securely realizes FOT functionality in the OT-hybrid model against semi-honest
adversaries.

Proof. First, consider the case that Party1 is corrupted. For any probabilistic polynomial time adversary A1,
controlling Party1 in the real world, we construct a simulator S1 that simulates A1’s view in the ideal world.
S1 runs A1 on Party1’s inputs, f and x1, the function output token set Y = (y1, . . . , ym), the pre-shared
group parameters, and PubInfoCf

as follows.

1. S1 generates the generator set P̃ := (P̃1, . . . , P̃M ). S1 also prepares the group element sets W̃0 :=
(W̃ 0

1 , . . . , W̃
0
M : W̃ 0

i � α̃0,i · P, α̃0,i ∈R Z∗
q , i = 1, . . . ,M) and W̃1 := (W̃ 1

1 , . . . , W̃
1
M : W̃ 1

i � α̃1,i ·
P, α̃1,i ∈R Z∗

q , i = 1, . . . ,M). S1 gives P̃ to A1.
2. S1 receives the blinding set T := (t1, . . . , tj : tj ∈R Z∗

q , j = 1, . . . , N) from A1, and prepares the sets

Ṽ0 := (Ṽ 0
1 , . . . , Ṽ

0
N : Ṽ 0

j � tj · W̃ 0
π−1
f (j)

, j = 1, . . . , N) and Ṽ1 := (Ṽ 1
1 , . . . , Ṽ

1
N : Ṽ 1

j � tj · W̃ 1
π−1
f (j)

, j =

1, . . . , N).
3. S1 prepares the garbled circuit F̃ by garbling each gate as follows. S1 garbles each non-output NAND

gate by encrypting only the group element for FALSE on its outgoing wire with all four possible input
token combinations (i.e., for a gate whose incoming wires are iwi and iwj , outgoing wire is owz, S1
prepares the following four ciphertexts: c̃t

1
a = EncṼ 0

i ,Ṽ
0
j

(W̃ 0
z ), c̃t

2
a = EncṼ 0

i ,Ṽ
1
j

(W̃ 0
z ), c̃t

3
a = EncṼ 1

i ,Ṽ
0
j

(W̃ 0
z ),

c̃t
4
a = EncṼ 1

i ,Ṽ
1
j

(W̃ 0
z ). To garble an output NAND gate whose incoming wires are iwi and iwj , and

output wire is z, S1 prepares the four ciphertexts: c̃t
1
b = EncṼ 0

i ,V
0
j

(yz), c̃t
2
b = EncṼ 0

i ,Ṽ
1
j

(yz), c̃t
3
b =

EncṼ 1
i ,Ṽ

0
j

(yz), c̃t
4
b = EncṼ 1

i ,Ṽ
1
j

(yz). For each garbled gate G̃Ga, S1 then permutes c̃t
2
a, c̃t

3
a, c̃t

4
a, and picks

Ĩ1a , Ĩ
2
a ∈R {1, . . . , τ}, and places c̃t

1
a in the order pointed by Ĩ1a-th and Ĩ2a-th bits of [H(Ṽ 0

i , Ṽ
0
j , gateID)]τ

among the other three ciphertexts. Each garbled gate G̃Ga is then composed of four `-bit ciphertexts
and two log2(τ)-bit random values Ĩ1a and Ĩ2a .

4. S1 gives F̃ to A1 along with the simulated garbled input consisting of only the group elements for FALSEs
on both parties’ input wires X̃ = (X̃1, X̃2). This completes our simulation.

In what follows, we prove that the information obtained by Party1 in the real execution (P,W, F ) is

identically distributed to (P̃, W̃, F̃ ), where for outgoing wires, Party1 obtains the group elements W =

(W1, . . . ,WM ) while A1 obtaining the group elements W̃ = (W̃ 0
1 , . . . , W̃

0
M ). We now show the computational

indistinguishability of (P,W) and (P̃, W̃) by utilizing Lemma 1, which ultimately ties the security of our
protocol to the DDH assumption. More concretely, we need to show

{(P1, . . . , PM ,W1, . . . ,WM )} ≈c {(P̃1, . . . , P̃M , W̃
0
1 , . . . , W̃

0
M )}

{(r1 · P, . . . , rM · P, αb1 · (r1 · P ), . . . , αbM · (rM · P ))} ≈c
{(r̃1 · P, . . . , r̃M · P, α̃0,1 · P, . . . , α̃0,M · P )}

where bi ∈ {0, 1} is the semantic value on owi and P̃i = r̃i · P . For the sake of a simpler representation,
we replace αbiri with rM+i, and α̃0,i with r̃M+i for i = 1, . . . ,M . Note that (r1, . . . , r2M ) is not identically
distributed to (r̃1, . . . , r̃2M ), while it is only sufficient to show that

{(r1 · P, . . . , r2M · P )} ≈c {(r̃1 · P, . . . , r̃2M · P )}.

For this purpose, we generate a new set R := (R1, . . . , R2M ) by picking 2M random generators. Hence, we
now need to show

{(R1, . . . , R2M , r1 · P, . . . , r2M · P )} ≈c
{(R1, . . . , R2M , r̃1 · P, . . . , r̃2M · P )}
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Thanks to Lemma 1 and the underlying DDH assumption, we have both

{(R1, . . . , R2M , γ ·R1, . . . , γ ·R2M )} ≈c

{(R1, . . . , R2M , r1 · P, . . . , r2M · P )}

and
{(R1, . . . , R2M , γ ·R1, . . . , γ ·R2M )} ≈c
{(R1, . . . , R2M , r̃1 · P, . . . , r̃2M · P )}

where γ ∈R Z∗
q . Hence, the following sets are computationally indistinguishable

{(r1 · P, . . . , r2M · P )} ≈c {(r̃1 · P, . . . , r̃2M · P )}

which effectively concludes the proof for {(P,W)} ≈c {(P̃, W̃)}. Furthermore, since the same values in T are
used among the outgoing wire tokens and incoming wire tokens in both the real and the ideal executions,
we have {(P,W,V)} ≈c {(P̃, W̃, Ṽ)} where for each incoming wire V = (V1, . . . , VN ) is the set of tokens
obtained by Party1 and Ṽ = (Ṽ 0

1 , . . . , Ṽ
0
N ) is the set of tokens obtained by A1. In contrast to [KM11], it is

relatively simple to prove the computational indistinguishability of F and F̃ in our scheme since we use a
hash function modeled as random oracle during garbling. Once the distribution of four hash outputs for each
gate (in the real and ideal executions) are proven to be computationally indistinguishable random values,
outputs of our instantiation of DKC is also proven to be computationally indistinguishable. This results in
the computational indistinguishability of each garbled gate GGa and G̃Ga, and eventually computational
indistinguishability of F and F̃ . For a gate whose incoming wires are iwi and iwj , in the real execution, we
have four hash outputs involved in the garbling as follows:

H(V 0
i , V

0
j , gateID), H(V 0

i , V
1
j , gateID),

H(V 1
i , V

0
j , gateID), H(V 1

i , V
1
j , gateID).

Similarly, for each gate, in the ideal execution, we have the following four hash outputs in the garbling as
follows:

H(Ṽ 0
i , Ṽ

0
j , gateID), H(Ṽ 0

i , Ṽ
1
j , gateID),

H(Ṽ 1
i , Ṽ

0
j , gateID), H(Ṽ 1

i , Ṽ
1
j , gateID).

Since in Party1’s view, resulting from the indistinguishability of V and Ṽ, the hash inputs are computationally
indistinguishable, and therefore, the hash outputs are computationally indistinguishable random values. This
completes the proof for {(P,W, F )} ≈c {(P̃, W̃, F̃ )}.

We now consider the case that Party2 is corrupted. For any probabilistic polynomial-time adversary A2,
controlling Party2 during our first protocol in the real world, we construct a simulator S2 that simulates A2’s
view in the ideal world. S2 runs A2 on Party2’s input, and the pre-shared group parameters, and PubInfoCf

as follows.

1. S2 asks A2 to generate P̃ � Init(G, q, P,M) and receives P̃.
2. S2 then picks t̃j ∈R Z∗

q for j = 1, . . . , N , and computes Q̃j � t̃j ·P which are now random group elements

in G. S2 assigns Q̃ = (Q̃1, . . . , Q̃N ), and gives Q̃ to A2. This completes our simulation.

In the real execution of our protocol, Party2 receives only the message Q := (Q1, . . . , QN : Qj �
tj ·Pπ−1

f (j), j = 1, . . . , N) in Round 2 (apart from the exchanged messages during the OT protocol for Party1’s

garbled input). However, the transcripts received by Party2 during the OT do not leak any information to
Party2 because of the ideal execution of FOT in the OT-hybrid model. Due to DDH assumption, in Party2’s
view, the distributions of Q̃ and Q are identical (i.e., Q̃ ≈c Q). This concludes the proof for the InExe
protocol.
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Theorem 2. If the 2PFE protocol proposed in Figure 2 is secure against semi-honest adversaries (i.e., the
three conditions in Theorem 1 are satisfied), then the 2PFE protocol proposed in Figure 3 is also secure
against semi-honest adversaries.

Proof (Sketch). The main difference of the ReExe protocol from the first one is the utilization of ReuseTempf .
Therefore, the proof will be complete once we show that the utilization of the sets W0

k , W1
k , V0

k , and W1
k

computed from the same ReuseTempf in the k-th execution gives Party1 no advantage in deducing Party2’s
inputs.

We now show that in Party1’s view, (Wk,Vk,Wk+1,Vk+1) in two consecutive real executions are compu-
tationally indistinguishable from (W̃1, Ṽ1, W̃2, Ṽ2) where W̃1 := (W̃1,1, . . . , W̃M,1 : W̃i,1 = q̃i,1 · P, q̃i,1 ∈R
Z∗
q , i = 1, . . . ,M), Ṽ1 := (Ṽ1,1, . . . , ṼN,1 : Ṽj,1 � tj · W̃π−1

f (j),1, j = 1, . . . , N), W̃2 := (W̃1,2, . . . , W̃M,2 :

W̃i,2 = q̃i,2 · P, q̃i,2 ∈R Z∗
q , i = 1, . . . ,M), and Ṽ2 := (Ṽ1,2, . . . , ṼN,2 : Ṽj,2 � tj · W̃π−1

f (j),2, j = 1, . . . , N).

More concretely, we have

{((1, k), . . . , (M,k), t1 · (π−1
f (1), k), . . . , tN · (π−1

f (N), k),

(1, k + 1), . . . , (M,k + 1), t1 · (π−1
f (1), k + 1),

. . . , tN · (π−1
f (N), k + 1))}

≈c {(q̃1,1 · P, . . . , q̃M,1 · P, t1 · (q̃π−1
f (1),1 · P ),

. . . , tN · (q̃π−1
f (N),1 · P ), q̃1,2 · P, . . . , q̃M,2 · P,

t1 · (q̃π−1
f (1),2 · P ), . . . , tN · (q̃π−1

f (N),2 · P ))}

where (i, j) is the abbreviation for αbi,j ,j · Pi, and bi,k ∈ {0, 1} is the semantic bit value of owi in the k-th
execution. The proof of their indistinguishability relies on the same flow as the proof of Theorem 1, which
depends on Lemma 1 and ultimately on the DDH assumption.

Theorem 3. If the threshold system is secure against malicious adversaries at most t − 1 of whom are
allowed to collude, and the 2PFE protocol proposed in Figure 3 is secure against semi-honest adversaries;
then our mechanism with various Party2s in Sect. 3.3 is also secure against semi-honest adversaries.

Proof (Sketch). First, the Party1’s view in the 2PFE mechanism is equivalent to the one in the protocol in
Figure 3. Observe that the generator set is generated by the distributed system and the tokens (that are used
in preparation of the garbled input Xk and the garbled circuit Fk) are computed from α0,k or α1,k in each
evaluation as in Figure 3. Therefore, the 2PFE mechanism prevents Party1 from deducing any information
about Party2,k’s input. Second, Party2,ks cannot obtain any information about Party1’s input in none of the
executions since the OT outputs are only obtained by Party1 due the FOT functionality in the OT-hybrid
model. Also, due to Theorem 1, no one can obtain information about πf from the ReuseTempf . Moreover,
any Party2,k has a negligible advantage on distinguishing the exchanged messages in an evaluation between
Party1 and Party2,l from a random string due to the underlying DDH assumption for l 6= k. More concretely,
the tokens (that are used in preparation of Party2,l’s garbled input X2,l and the garbled circuit Fl) are
computed by multiplying the elements of the ReuseTempf with the private values α0,l or α1,l of Party2,l.

6 Conclusion

We have proposed a secure and highly efficient 2PFE scheme for boolean circuits based on DDH assumption.
Our scheme consists of two protocols: (1) a protocol for initial executions (InExe), (2) a resumption protocol
(ReExe) for subsequent executions. The latter protocol is more efficient due to the fact that it benefits
from the reusable tokens generated already in the former one. The reusability case is more likely to be
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frequent in practice, compared to the cases where parties execute a function only once. We note that such
cost reduction by the reusability feature is not applicable in the existing PFE protocols (i.e., for each PFE
execution the parties should run the all the steps from scratch). Our protocols achieve linear communication
and computation complexities and a constant number of rounds which is at most three. To the best of our
knowledge, this is the first and most efficient 2PFE scheme that enjoys a reusablity feature.

Our scheme asymptotically reduces the communication cost compared to MS13-OSN [MS13], BBKL18 [BBKL19],
and GKS17 [GKS17] protocols (i.e., from O(g log(g)) to O(g) where g is the number of gates). For instance,
for a billion-gate circuit, our cost reduction is about 98% over MS13-OSN, about 96% over BBKL18, and
about 89% over GKS17. Comparing with the protocols that has linear complexity, for ten executions (re-
gardless of number of gates) our cost reduction is about 63% over KM11-1st, 44% over KM11-2nd, and 37%
over MS13-HE.

We also propose a solution for the case that Party1 runs the 2PFE protocol for the same private function
with various Party2s separately. This is a common scenario where Party1 may run a business with many
customers for her algorithm/software. Instead of running InExe protocol with each Party2, we have proposed
a more efficient mechanism for the generation of the reusable tokens by utilizing a threshold based system.
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GKS17. Daniel Günther, Ágnes Kiss, and Thomas Schneider. More Efficient Universal Circuit Constructions. In
Advances in Cryptology - ASIACRYPT 2017 - 23rd International Conference on the Theory and Applica-
tions of Cryptology and Information Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part
II, pages 443–470, 2017.

HMV03. Darrel Hankerson, Alfred J. Menezes, and Scott Vanstone. Guide to Elliptic Curve Cryptography. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2003.

HS18. Shai Halevi and Victor Shoup. Faster homomorphic linear transformations in helib. In Hovav Shacham
and Alexandra Boldyreva, editors, Advances in Cryptology – CRYPTO 2018, pages 93–120, Cham, 2018.
Springer International Publishing.

IKNP03. Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending Oblivious Transfers Efficiently.
In Advances in Cryptology - CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science, pages
145–161. Springer Berlin Heidelberg, 2003.

KK13. Vladimir Kolesnikov and Ranjit Kumaresan. Improved OT extension for transferring short secrets. In
Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA,
August 18-22, 2013. Proceedings, Part II, pages 54–70, 2013.

KKS16. Carmen Kempka, Ryo Kikuchi, and Koutarou Suzuki. How to circumvent the two-ciphertext lower bound
for linear garbling schemes. In ASIACRYPT 2016: Hanoi, Vietnam, December 4-8, 2016, pages 967–997,
Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

KM11. Jonathan Katz and Lior Malka. Constant-round private function evaluation with linear complexity. In
ASIACRYPT 2011, Seoul, South Korea, December 4-8, pages 556–571, Berlin, Heidelberg, 2011.

KMR14. V. Kolesnikov, P. Mohassel, and M. Rosulek. Flexor: Flexible garbling for xor gates that beats free-xor.
In Advances in Cryptology – CRYPTO 2014: 34th Annual Cryptology Conference, Santa Barbara, CA,
USA, August 17-21, 2014, Proceedings, Part II, pages 440–457, Berlin, Heidelberg, 2014. Springer Berlin
Heidelberg.

KS08a. Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free xor gates and applications.
In ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, pages 486–498, Berlin, Heidelberg, 2008. Springer
Berlin Heidelberg.

KS08b. Vladimir Kolesnikov and Thomas Schneider. A practical universal circuit construction and secure evalu-
ation of private functions. In FC 2008, pages 83–97, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.
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