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Abstract

We introduce a process calculus with a new prefixing operator that allows us
to model locally controlled reversibility. Actions can be undone spontaneously,
as in other reversible process calculi, or as pairs of concerted actions, where
performing a weak action forces undoing of another action. The new operator
in its full generality allows us to model out-of-causal order computation, where
causes are undone before their effects are undone, which goes beyond what
typical reversible calculi can express. However, the core calculus, which uses
only the reduced form of the new operator, is well behaved as it satisfied causal
consistency. We demonstrate the usefulness of the calculus by modelling the
hydration of formaldehyde in water into methanediol, an industrially important
reaction, where the creation and breaking of some bonds are examples of locally
controlled out-of-causal order computation.

Keywords: Reversible process calculi, local reversibility, modelling of
biochemical reactions

1. Introduction

There are many different computation tasks which involve undoing of pre-
viously performed steps or actions. Consider a computation where the action a
causes the action b, written a < b, and where the action c occurs independently
of a and b. There are three executions of this computation that preserve causal-
ity, namely abc, acb and cab. We note that a always comes before b. There are
several conceptually different ways of undoing these actions [38]. Backtracking
is undoing in precisely the reverse order in which they happened. So, undo b
undo c undo a is a backtrack of the execution acb. Reversing is a more general
form of undoing: here actions can be undone in any order provided causality is
preserved (meaning that causes cannot be undone before effects). For example,
undo c undo b undo a is a reversal of acb for the events a, b and c above.

There are networks of reactions in biochemistry, however, where actions are
undone seemingly out-of-causal order. The creation and breaking of molecular
bonds between the proteins involved in the ERK signalling pathway is a good
example of this phenomenon [29]. Let us assume for simplicity that the creation
of molecular bonds is represented by actions a, b, c where, as above, a < b and c
is independent of a and b. In the ERK pathway, the molecular bonds are broken
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in the following order: undo a, undo b, undo c, which seems to undo the cause
a before the effect b.

We introduced informally a novel and purely local in character mechanism
for undoing of computation in short papers [16, 17]. Here, we build a process
calculus around this mechanism and give it operational semantics. We then
discuss various properties that hold in the calculus. Most importantly, we show
that out-of-causal order computation can be modelled in the calculus. Hence, in
general, the causal consistency property [7] does not hold. There are reachable
states that can only be arrived at by a mixture of forward and reverse steps.
However, we argue that causal consistency holds in a restricted version of our
calculus, thus the full calculus is in effect a “conceptual” extension of a causally
consistent reversible process calculus. The benefits of the calculus are shown
by modelling hydration of formaldehyde in water. The molecules of formalde-
hyde and water are modelled as compositions of carbon, oxygen and hydrogen
atoms. When composed in parallel, the molecules react and the reactions are
represented by sequences of transitions of concerted actions. We are able to rep-
resent different forms of reversibility, including out-of-causal order reversibility,
and computation can proceed in any directions without external control.

The novel features of our calculus are introduced via an example of a simple
catalytic reaction. Consider two molecules A and B that are only able to bond
if assisted by a catalyst C. Once A and B are bonded with the catalyst C, A
bonds with B and, at the same time, the bond between A and C is broken.
Finally, the bond between B and C is broken. This is illustrated below.
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Figure 1: A catalytic reaction.

We assume A
def
= (a; p).A′, B

def
= (b, p).B′ and C

def
= (a, b).C′, where A′, B′

and C′ represent further potential behaviour of the molecules A,B and C. We
use a new prefix operator (s; p).P where s is a sequence of actions or executed
actions and p is a weak action. Initially the actions in s take place, and then p
takes place. The molecules A,B and C can bond by performing synchronously
the matching actions according to the communication function γ(a, a) = c,
γ(b, b) = d and γ(p, p) = q, producing thus new actions c, d and q respectively.
A weak action p can be left out in (s; p) resulting in the simple prefix (s).P (as
in B and C above). In general, the actions of s in (s; p).P can take place in any
order, very much like in [8, 29], and the new feature is that p can happen only
if all actions in s have already taken place. Once p takes place, one of the exe-
cuted actions in s must be undone immediately: this is our new mechanism for
triggering reverse computation. We shall model these two almost simultaneous
events as a transition of concerted actions. This is a realistic representation of
the mechanism of covalent bonding, the most common type of chemical bonding
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between atoms, hence we call our calculus a Calculus of Covalent Bonding.
Returning to our example, we represent the system of molecules A,B and C

as ((a; p).A′ | (b, p).B′ | (a, b).C′)\{a, b, p}, where ‘ | ’ is the parallel composition
and ‘\’ the restriction as in ACP [1]. We note that A and B cannot interact
initially since γ(a, b) is not defined. They can however both interact with C:

(a; p).A′ | (b, p).B′ | (a, b).C′ c[1]
−−→ (a[1]; p).A′ | (b, p).B′ | (a[1], b).C′ d[2]

−−→

(a[1]; p).A′ | (b[2], p).B′ | (a[1], b[2]).C′

Numbers 1 and 2 are the communication keys [25, 26]: they indicate which
pairs of actions have bonded. Molecules A and B can now bond on p (with the
key 3), producing the action q[3]. This causes immediately the breaking of the
bond c[1], which means undoing of the action a in A and action a in C (and
still leaving A and B bonded). We model such an event of creating a bond and
simultaneously breaking another bond by a pair of concerted actions :

(a[1]; p).A′ | (b[2], p).B′ | (a[1], b[2]).C′ {q[3],c[1]}
−−−−−−→

(a; p[3]).A′ | (b[2], p[3]).B′ | (a, b[2]).C′

The bond with the key 3 on the weak action p in A is unstable, and thus gets
promoted to a stable and stronger bond on a and p, which is modelled by the
following rewrite:

(a; p[3]).A′ | (b[2], p[3]).B′ | (a, b[2]).C′ ⇒ (a[3]; p).A′ | (b[2], p[3]).B′ | (a, b[2]).C′

Finally, the catalyst dissolves the bond with B:

(a[3]; p).A′ | (b[2], p[3]).B′ | (a, b[2]).C′ d[2]
−−→ (a[3]; p).A′ | (b, p[3]).B′ | (a, b).C′

We note that A and B are now bonded although the synchronisation function
did not allow it to happen initially. The main consequence of this is that the
bond between a[3] and p[3] is irreversible, namely it cannot be undone. Looking
at the pattern of doing and undoing of bonds we obtain c[1]d[2]q[3]c[1]d[2]. Since
creation of bonds c and d causes the bond q, we have here an example of an
out-of-causal order computation.

The calculus CCB is given Structural Operational Semantics (SOS for short)
style semantics. This includes novel SOS rules for concerted actions and three
rewrite rules that prescribe when bonds on weak actions can be promoted to
strong action bonds. We show that CCB is a well behaved calculus by proving
a number of useful properties. For example, the sub-calculus with the simple
prefixing operator (s).P satisfies causal consistency. We show that the full
calculus allows us to represent out-of-causal order computation patterns via the
hydration of formaldehyde in water case study.

Next we summarise the main items of related work.

3



1.1. Related Work

Scientists started to investigate the speed of chemical reactions and the rates
achieved as soon as the concept of chemical reactions was first developed. The
behaviour of a system of compounds over time can be modelled using a set of
ordinary differential equations (ODEs). The fast calculations of such ODEs were
popularised by Gillespie [13] in order to show the dynamic behaviour of systems
of chemical compounds. When biochemical processes, which involve not only
small molecules but also macromolecules, cells and membranes, were modelled
attention turned to how the individual objects were represented and how they
behaved, and the usefulness of computer science methods was demonstrated in
[12].

Process calculi are very successful formalisms for representing concurrent and
distributed systems. Each component of a system has its definition which spec-
ifies what it does and how it interacts with other components. The behaviour
of the system emerges then from the independent actions of the components
and from the interactions between them. Calculus of Communicating Systems
(CCS) [21], Communicating Sequential Processes (CSP) [14], and the π-calculus
[22] are examples of process calculi. Starting with Regev et al. [32, 35, 34] pro-
cess calculi, specifically the π-calculus, were used to model biochemical systems.
The biochemical compounds are represented as processes, and how they react is
modelled by communication on ports. A creation of a bond or a dissolution of
a bond is represented as establishing or breaking of a communication between
ports. So there is a natural analogy between concurrent processes and biochem-
ical entities in natural systems, and between communication among processes
and reactions between biochemical entities. The aim of this work, as stated in
[35], was to represent suitably biological knowledge in processes and to enable
computer-based analysis of this representation. This approach was extended
shortly afterwards to include reaction rates [31] using the stochastic π-calculus,
which was introduced previously in [30].

Various other calculi, including Bio-PEPA ([3]), the biochemical abstract
machine (BIOCHAM, [10]), P systems ([24]), BioAmbients ([33]), the kappa
calculus ([9]) and Brane Calculus ([2]), followed aiming to capture various other
aspects of biological systems such as, for example, compartments and mem-
branes.

Most of biochemical reactions are reversible, and creating bonds is as im-
portant in biochemical processes as breaking of bonds. Hence, it became use-
ful to be able to represent directly reversibility in process calculi. This re-
alisation lead to the development of a number of reversible process calculi
[7, 8, 25, 26, 19, 18, 20, 6], which have application far beyond biochemistry.
Out-of-causal order reversibility, an important aspect of biochemical system
which is typically not captured in traditional reversible process calculi, was first
proposed in [29], where the calculus CCSK [26] is extended with an execution
control mechanism for managing the pattern and the direction of computation.
The control mechanism for reversibility is external to the processes it controls,
and it can have a global scope. The calculus introduced in this paper has in
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contrast no global control and the behaviour of a biochemical systems emerges
from the behaviour of its components. Out-of-causal order computation was
also studied in [28, 27].

2. A Calculus of Covalent Bonding

In this section we define the calculus introduced informally in the Introduc-
tion. First, we introduce some preliminary notions and notations.

Let A be the set of (forward) action labels, ranged over by a, b, c, d, e, f . We
partition A into the set of strong actions, written as SA, and the set of weak
actions, written as WA. Reverse (or past) action labels are members of A,
with typical members a, b, c, d, e, f , and represent undoing of actions. The set
P(A∪A) is ranged over by L.

Let K be an infinite set of communication keys (or keys for short) [25, 26],
ranged over by k, l,m, n. The Cartesian product A × K, denoted by AK, rep-
resents past actions, which are written as a[k] for a ∈ A and k ∈ K. Corre-
spondingly, we have the set AK that represents undoing of past actions. We use
α, β to identify actions which are either from A or AK. It would be useful to
consider sequences of actions or past actions, namely the elements of (A∪AK)∗,
which are ranged over by s, s′ and sequences of purely past actions, namely the
elements of AK∗, which are ranged over by t, t′. The empty sequence is denoted
by ǫ. We use the notation α, s and s, s′ to denote a concatenation of elements,
which can be strings or single actions.

We shall also use two sets of auxiliary action labels, namely the set (A) =
{(a) | a ∈ A}, and its product with the set of keys, namely (A)K. These labels
will be used in the auxiliary rules when defining the semantics of CCB.

We now define the Calculus of Covalent Bonding, or CCB for short. The
syntax of CCB is given below where P is a process term:

P ::= S | (s; b).P | P | Q | P \L

The set of process identifiers (constants) PI contains typical elements S

and T . A process identifier S has normally a defining equation S
def
= P where

P contains only forward actions (and no past actions). There is also a special
identifier 0, denoting the deadlocked process, which has no defining equation.

We have a general prefixing operator (s; b).P , where s is a non-empty se-
quence of actions or past actions. This operator extends the prefixing operator
in [29]. The action b is a weak action and it can be omitted, in which case the
prefixing is written as (s).P and is called the simple prefix. The simple prefix is
the prefixing operator in [29]. One of the actions in s in (s).P may be a weak
action from WA. If s is a sequence that contains a single action, then the action
is a strong action and the operator is the prefixing operator of CCS [21]. We
omit trailing 0s so, for example, (s).0 is written as (s). The new feature of the
operator (s; b).P is the execution of the weak action b, which can happen only
after all the actions in s have taken place. Performing b then forces undoing one
of the past actions in s (by the concert rule in Figure 5).
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P | Q represents two systems P and Q which can perform actions or re-
verse actions on their own, or which can interact with each other according to
a communication function γ. As in the calculus ACP [11], the communication
function is a partial function γ : A × A → A which is commutative and asso-
ciative. The function γ is used in the operational semantics to define when two
processes can interact. Processes P and Q in P | Q can also perform a pair
of concerted actions, which is the new feature of our calculus. We also have
the ACP-like restriction operator \L, where L is a set of labels. It prevents
actions from taking place and, due to the synchronisation algebra used, it also
blocks communication. If γ(a, b) = c then a.P and b.Q cannot communicate in
(a.P | b.Q) \ c. Note that we do not use here the usual relabelling operator [f ],
where f : A → A, which could be easily added.

The example in the Introduction and our main example in Section 5 seem
to indicate that only simple processes of the form (s; b).0 are sufficient in the
modelling of chemical reactions. However, there are examples where a nested
prefix (s; b).(s′; b′).P is useful. Consider a base excision repair as in [15] where
a protein “walks” along a strand of DNA and repairs faults which occurred in
the DNA replication. The walking along a DNA strand could be modelled by
actions in s, and, once a fault is found, the repair mechanism could be modelled
by the actions in s′. Another example where the full calculus is useful is a model
of long standing transactions with compensations in [29].

The set of process terms is ranged over by P,Q and R and is denoted by
Proc. In the setting of CCB these terms are called simply processes. A context
C[ ] is a process term containing a hole, represented by [ ]. Formally, contexts
are defined by the following syntax: C ::= [ ] | (s; b).C | P | C | C | P | C \L.
The term C[Q] denotes the result of filling the hole in the context C[ ] with the
process Q. We say that R is a subprocess of P if P is C[R] for some context
C[ ].

We define the semantics of our calculus by a labelled transition system,
LTS for short, which is a structure (St,AL,→:⊆ St × AL × St) with St the
set of states, AL the set of action labels and →:⊆ St × AL × St the labelled
transition relation. The set of states St is the set Proc. In practice, all our
results and examples hold for consistent processes, namely processes reachable
from standard processes (see Definition 4). The action labels are the forward
actions AK, the reverse actions AK and the pairs of concerted actions AK×AK.
The labelled transition relation is defined by SOS rules (Figures 3–6) and rewrite
rules (Figure 7), where the rules in Figures 3–4 are influenced by [26]. Note that
sequences s and t are members of (A∪AK)∗ and AK∗ respectively in Figures 3–
5.

We now introduce and explain the SOS rules before returning to the rewrite
rules. Let r be an SOS rule for an operator f of CCB as in Figures 3–5.
Transitions above the horizontal bar in r are called premises. The set of premises
is written as pre(r). The transition below the bar in r is the conclusion and is
written as con(r). We use two predicates std(P ) : Proc and fsh[m](P ) : K×Proc

in our SOS rules. They are defined in Figure 2, and they use two auxiliary
functions k(s) : (A ∪ AK)∗ → P(K) and keys(P ) : Proc → P(K). The function

6



std(0) fsh[m](0)

std(P )

std(S)
S

def
= P

fsh[m](P )

fsh[m](S)
S

def
= P

k(s) = ∅ std(P )

std((s; b).P )

m /∈ k(s) fsh[m](P )

fsh[m]((s; b).P )

std(P ) std(Q)

std(P | Q)

m /∈ k(s) m 6= n fsh[m](P )

fsh[m]((s; b[n]).P )

std(P )

std(P \ L)

fsh[m](P ) fsh[m](Q)

fsh[m](P | Q)

fsh[m](P )

fsh[m](P \ L)

Figure 2: Predicates std and fsh.

act1
std(P ) fsh[k](s, s′)

(s, a, s′; b).P
a[k]
−−→ (s, a[k], s′; b).P

act2
P

a[k]
−−→ P ′ fsh[k](t)

(t; b).P
a[k]
−−→ (t; b).P ′

par
P

a[k]
−−→ P ′ fsh[k](Q)

P | Q
a[k]
−−→ P ′ | Q

com
P

a[k]
−−→ P ′ Q

d[k]
−−→ Q′

P | Q
c[k]
−−→ P ′ | Q′

(∗)

res
P

a[k]
−−→ P ′

P\L
a[k]
−−→ P ′\L

a /∈ L con
P

a[k]
−−→ P ′

S
a[k]
−−→ P ′

S
def
= P

Figure 3: Forward SOS rules. The condition (*) is γ(a, d) = c, and b ∈ WA.

k() is defined as follows: k(ǫ) = ∅, k(α : s) = {l} ∪ k(s) if α = a[l], for a ∈ A
and l ∈ K, and k(α : s) = k(s) if α ∈ A. The function keys() is given by

keys(0) = ∅, keys(S) = keys(P ) if S
def
= P , keys((s; b).P ) = k(s) ∪ k(b) ∪ keys(P ),

keys(P | Q) = keys(P )∪ keys(Q), and keys(P \L) = keys(P ). Informally keys(P )
associates with each term P the set of its keys. A process P is standard, written
std(P ), if it contains no past actions (hence no keys). A key n is fresh in Q,
written fsh[n](Q), if Q contains no past action with the key n. We extend the
notion of fresh keys to the sequences of actions and past actions s and t via the
function k().

Example 1. We illustrate how processes compute forwards using the new pre-
fixing operator. Consider a standard process (a; b).(c) | (a, d, c) and the com-
munication function γ given by γ(a, a) = a and γ(c, c) = c. We have

(a; b).(c) | (a, d, c)
a[1]
−−→ (a[1]; b).(c) | (a[1], d, c)
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rev act1
std(P )

(s, a[k], s′; b).P
a[k]
−−→ (s, a, s′; b).P

rev act2
P

a[k]
−−→ P ′

(t; b).P
a[k]
−−→ (t; b).P ′

rev par
P

a[k]
−−→ P ′ fsh[k](Q)

P | Q
a[k]
−−→ P ′ | Q

rev com
P

a[k]
−−→ P ′ Q

d[k]
−−→ Q′

P | Q
c[k]
−−→ P ′ | Q′

(∗)

rev res
P

a[k]
−−→ P ′

P\L
a[k]
−−→ P ′\L

a /∈ L rev con
P

a[k]
−−→ P ′

P
a[k]
−−→ S

S
def
= P ′

Figure 4: Reverse SOS rules. The condition (*) is γ(a, d) = c, and and b ∈ WA.

by the SOS rules act1 and com from Figure 3. This is because (c) is standard and
the key 1 is fresh in ε. The next step of computation involves a communication
of the actions c, which we obtain by rules act2 and com:

(a[1]; b).(c) | (a[1], d, c)
c[2]
−−→ (a[1]; b).(c[2]) | (a[1], d, c[2])

We note that the key 2 is fresh in a[1]. Finally, the action d takes place by act1

and, informally, the symmetric version of par.

(a[1]; b).(c[2]) | (a[1], d, c[2])
d[3]
−−→ (a[1]; b).(c[2]) | (a[1], d[3], c[2])

Formally, we use par, the structural congruence rule sc in Figure 6 and the
reduction rule red1 in Figure 7.

The next example illustrates how some of the reverse SOS rules work.

Example 2. Consider (a[1], b).(c).S where S
def
= (a, b).(c).S. We have

(a[1], b).(c).S
a[1]
−−→ (a, b).(c).S

by rev act1 since (c).S is standard. Since (a, b).(c).S is the definition of S we

obtain by rule rev con (a[1], b).(c).S
a[1]
−−→ S.

Figure 5 contains the SOS rules that define the new concerted actions tran-
sitions. The main rule is the rule concert that defines when a pair of concerted
actions takes place. We also have two auxiliary rules aux1 and aux2 which define
only an auxiliary transition relation needed in the concert rule. Note that the
concert rule uses lookahead [36]. Also note that transitions in aux1 and aux2

use the auxiliary labels (b)[k] for all b ∈ WA and k ∈ K. The rule concert par

requires that k is fresh in Q, correspondingly as in par. Moreover, we need to
ensure that when we reverse h with the key l in P we do not leave out any
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aux1
std(P ) fsh[k](t)

(t; b).P
(b)[k]
−−−→ (t; b[k]).P

aux2
P

(b)[k]
−−−→ P ′ fsh[k](t)

(t; b′).P
(b)[k]
−−−→ (t; b′).P ′

concert
P

(b)[k]
−−−→ P ′ P ′ a[l]

−−→ P ′′ Q
α[k]
−−→ Q′ Q′ d[l]

−−→ Q′′

P | Q
{e[k],f [l]}
−−−−−−→ P ′′ | Q′′

(∗)

concert act
P

{a[k],h[l]}
−−−−−−→ P ′ fsh[k](t)

(t; b).P
{a[k],h[l]}
−−−−−−→ (t; b).P ′

concert par
P

{a[k],h[l]}
−−−−−−→ P ′ fsh[k](Q) fsh[l](Q)

P | Q
{a[k],h[l]}
−−−−−−→ P ′ | Q

concert res
P

{a[k],h[l]}
−−−−−−→ P ′

P\L
{a[k],h[l]}
−−−−−−→ P ′\L

(∗∗)

Figure 5: SOS rules for concerted actions. The condition (*) is 1. α is c or (c) and γ(b, c) = e
for some c ∈ A, and 2. γ(a, d) = f . The condition (**) is a, h /∈ L∪ (L). Recall that t ∈ AK∗.

P ⇒ Q Q
µ
→ Q′ Q′ ⇒ P ′

P
µ
→ P ′

Figure 6: Structural congruence rule sc when µ ∈ AK∪ (AK×AK), and rev sc when µ ∈ AK.

actions with the key l in Q which make up a multiaction communication with
the key l. Hence, we also include the premise fsh[l](Q) in concert par. The rule
concert act requires, correspondingly as act, that k is fresh in t. Our operational
semantics guarantees that if a standard process evolves to (t; b).P , for some P ,
and P reverses an action with the key l, then l is fresh in t. Hence, we do not
include fsh[l](t) in the premises of concert act. Next, we illustrate how concerted
actions transitions work.

Example 3. Consider the process (a; b) | a | b with γ(a, a) = c and γ(b, b) = d.
After the initial synchronisation of actions a, which produces the transition c[1],
we have a transition with a pair of concerted actions by rule concert in Figure 5

(a[1]; b) | a[1] | b
{d[2],c[1]}
−−−−−−→ (a; b[2]) | a | b[2]

since (a[1]; b)
(b)[2]
−−−→ (a[1]; b[2]) by aux1, (a[1]; b[2])

a[1]
−−→ (a; b[2]) by rev act1, and

since a[1] | b
b[2]
−−→ a[1] | b[2]

a[1]
−−→ a | b[2] by par and rev par.
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red1 : P | Q ⇒ Q | P

red2 : P | (Q | R) ⇒ (P | Q) | R

red3 : (P | Q) | R ⇒ P | (Q | R)

red4 : P | 0 ⇒ P

red5 : (P | Q)\L ⇒ P\L | Q if fn(Q) ∩ L = ∅

red6 : P\L | Q ⇒ (P | Q)\L if fn(Q) ∩ L = ∅

prom : (s, a, s′; b[k]).P ⇒ (s, a[k], s′; b).P if a ∈ SA, b ∈ WA

move-r : (s, a, s′, b[k], s′′).P ⇒ (s, a[k], s′, b, s′′).P if a ∈ SA, b ∈ WA

move-l : (s, b[k], s′, a, s′′).P ⇒ (s, b, s′, a[k], s′′).P if a ∈ SA, b ∈ WA

Figure 7: Reduction rules. Sequences s, s′, s′′ are members of (A ∪AK)∗.

Example 4. Consider (a[1]; b) | (a[1]; b) | e with γ(a, a) = c and γ(b, b) = d.
We clearly have the following pair of concerted actions

(a[1]; b) | (a[1]; b) | e
{d[2],c[1]}
−−−−−−→ (a; b[2]) | (a; b[2]) | e.

There are processes with weak actions that can potentially communicate but
there are no concerted actions transitions due to our SOS rules:

Example 5. Consider (a[1]; b) | (e[2]; b) | (a[1], e[2]) with γ(a, a) = c and
γ(b, b) = d. The process cannot perform any concerted actions: Although

(a[1]; b)
(b)[l]
−−−→

a[1]
−−→ (a; b[l]), for any l different from 1 and 2, but (e[2]; b) | (a[1], e[2])

cannot perform the auxiliary (b[l]) transition since there are no SOS rules for
parallel composition and auxiliary actions (b). This forces us to treat (a[1]; b)
and (e[2]; b) as P and Q in the concert rule, respectively, and we notice that we
cannot undo a communication on a or e.

Overall, the transitions in Figures 3–5 are labelled with a[k] ∈ AK, or with
c[l] ∈ AK, or with concerted actions (a[k], c[l]).

We also have the usual structural congruence rules sc and rev sc in Figure 6,
which potentially combine reductions (defined below) with transitions.

Next, we introduce our reduction relation which is given by the reduction
(rewrite) rules in Figure 7. The reduction relation is needed to define promotion
of actions. First we define the function fn for free names of processes.

Definition 1. The function fn : Proc → P(K) is given as follows: fn(0) = ∅,

fn(S) = fn(P ) if S
def
= P , fn((α : s; b).P ) = {α} ∪ fn((s; b).P ), fn((a; b).P ) =

{a, b} ∪ fn(P ), fn(P | Q) = fn(P ) ∪ fn(Q), and fn(P \L) = fn(P )\L.
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Our reduction rules have names such as, for example, red and we write red:
P ⇒ Q to indicate that the reduction rule P ⇒ Q is called red. The process P
in the rule P ⇒ Q is called a redex, and the process Q is called a contractum. A
reduction rule P ⇒ Q can be seen as a prescription for deriving rewrites C[P ] ⇒
C[Q] for arbitrary context C[ ]. A P redex may be replaced by its contractum
Q in an arbitrary context C[ ] giving rise to a reduction step: C[P ] ⇒ C[Q].

Definition 2. The reduction relation ⇒ is the smallest reflexive and transitive
relation on CCB processes that is preserved by all contexts, and that satisfies
the rules in Figure 7.

Note that we do not want ⇒ to be symmetric as we wish to apply prom only
from left to right.

The rewrite rules in Figure 7 include prom, move-r, andmove-l which promote
weak bonds (here b) to strong bonds (here a). The rule prom applies to the full
version of our prefix operator (with the ; construct), and move-r and move-

l apply only to the simple prefix. These three rules are here to model what
happens in chemical systems: a bond on a weak action is temporary and as soon
as there is a strong action that can accommodate that bond (as the result of
concerted actions) the bond establishes itself on the strong action thus releasing
the weak action. In order to align the use of these three rules to what happens
in chemical reactions, we insist that they are used as soon as they becomes
applicable: this is made precise in Definition 3. We could have used the idea
of ordering on SOS rules and rewrite rules [37, 23] to specify that the rewrite
rules prom, move-r and move-r are higher in the ordering than all SOS rules and
the remaining rewrite rules, implying that they should be applied first when
deriving transitions. Alternatively, we could have tried to employ some of the
techniques presented in [5] to define our transition relation. This would require
the use of negative information in the premisses, and the definitions in the style
as those in [37, 23]. However, since we combine SOS rules with rewrite rules,
we opted for a directly defined transition relation.

We now define the transition relation for the labelled transition system for
CCB. Recall that the states of the LTS are processes in Proc and the labels are
members of A, AK, (A)K and the concerted actions labels in AK × AK. Let
d : Proc → N be the operator depth function defined by d(P ) = 0 if P is a
constant, and d(f(P1, . . . , Pn)) = 1+max{d(Pi)|1 ≤ i ≤ n} otherwise, where f
is an operator of CCB. The transition relation is given as follows:

Definition 3. We associate to Proc and AK ∪ AK ∪ (A)K ∪ (AK × AK) a
transition relation → given by

⋃
l<ω →l, where transition relations →l⊆ Proc×

AK ∪ AK ∪ (A)K ∪ (AK × AK) × Proc are as follows, with b ∈ AK and µ ∈
AK ∪AK ∪ (AK ×AK):

1. P
(b)[k]
−−−→ P ′ ∈→l if d(P ) = l, P

(b)[k]
−−−→ P ′ = ρ(con(r)), where r is either

aux1 or aux2, and each premise in pre(r) is a valid transition in
⋃

k<l →
k

or a valid predicate.
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2. P
µ
→ P ′ ∈→l if d(P ) = l, P ⇒ Q, for some Q such that Q does not

contain any prom, move-r and move-l redex, Q
µ
→ Q′ = con(r), for some

rule r where each member of pre(r) is either a valid transition in
⋃

k<l →
k,

a valid rewrite or a valid predicate, and Q′ ⇒ P ′.

The first part of the definition specifies the auxiliary transitions using rules
aux1 and aux2. The second part tells us how to use the remaining rules to define
transitions. If P has no prom, move-r and move-l redex, then we apply our rules
in a standard way. Otherwise, we are required to reduce P to Q with prom,
move-r and move-l first, then we define a transition of Q to Q′ in a standard
way, and finally we reduce Q′ to P ′ (if needed). This implies that if P has a
prom, move-r or move-l redex, then we must use one of the structural congruence
rules in Figure 6. And, if we use any of these rules, then the reduced process Q
must no longer have any prom, move-r and move-l redex.

The next example illustrates the application of the promotion rewrite rule.

Example 6. The transition (a[1]; b) | a[1] | b
{d[2],c[1]}
−−−−−−→ (a; b[2]) | a | b[2] from

Example 3 cannot be followed by a communication of actions a because there
is a prom redex (a; b[2]) in (a; b[2]) | a | b[2]. The rewrite of this redex takes
priority: the bond 2 moves from the weak b to the strong a by prom:

(a; b[2]) | a | b[2] ⇒ (a[2]; b) | a | b[2]

As a result, we can bond on the weak b again and, importantly, the a[2] to b[2]
bond is irreversible as γ(a, b) is undefined. Note that reaching this bond by
computing forwards alone is not possible.

We shall call henceforth the transitions derived by the forward SOS rules as
the forward transitions and, the the transitions derived by the reverse SOS rules
as the reverse transitions. Correspondingly, there are the concerted (action)
transitions.

3. Properties of CCB

In this section we establish several properties of the LTS for CCB. We start
by showing the expected properties of keys, namely that when an action takes
place it uses a fresh key, and when a past action is undone its key is removed
from the resulting process. We also show that the reverse transitions invert the
corresponding forward transitions, and vice versa.

Definition 4. A process P is consistent if Q →∗ P for some process Q such
that std(Q).

Proposition 1. Let P be consistent. Then

1. If P
a[k]
−−→ Q then k /∈ keys(P ) and keys(Q) = keys(P ) ∪ {k} for all Q.

2. If P
a[k]
−−→ Q then k ∈ keys(P ) and keys(Q) = keys(P ) \ {k} for all Q.

3. If P
a[k]
−−→ P ′ then P ′ a[k]

−−→ P . If P ′ a[k]
−−→ P and P ′ has no move-r or move-l

redexes, then P
a[k]
−−→ P ′.
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Proof. By induction on the depth of the inference tree of transitions P
a[k]
−−→ Q

or P
a[k]
−−→ Q.

Next, we introduce some notation. We define a new transition relation 7−→

by P
a[k]
7−→ Q if P

a[k]
−−→ Q or P

a[k]
−−→ Q. Process P is called the source and Q the

target of P
a[k]
7−→ Q. We will use t, t′, t1, . . . to denote transitions, for example

t : P
a[k]
7−→ Q. Two 7−→ transitions are coinitial if they have the same source,

and they are cofinal if their targets are identical.
We define when two transitions are concurrent.

Definition 5. Two coinitial transitions P
a[k]
7−→ P ′ and P

b[l]
7−→ P ′′ are concurrent

if there exists M 6= P such that P ′ b[l]
7−→ M and P ′′ a[k]

7−→ M .

Note that two concurrent transitions are coinitial and, together with the two
transitions (with the targetM) required by Definition 5, they form a “diamond”
structure with the nodes P, P ′, P ′′ and M .

When transitions in Definition 5 are forward, we may not be able to complete
the diamond as the following example shows. In such case, we say that the
transitions are in conflict. Consider (a) | (b) | (b) with γ(a, b) = c. The two
coinitial transitions below are in conflict:

(a) | (b) | (b)
c[1]
−−→ (a[1]) | (b[1]) | (b)

(a) | (b) | (b)
c[2]
−−→ (a[2]) | (b) | (b[2])

However, coinitial reverse transitions are concurrent. We shall denote the syn-
tactical equality of process expressions by ≡.

Proposition 2 (Reverse Diamond). Let P be a consistent process and let

t′ : P
a[k]
−−→ P ′ and t′′ : P

b[l]
−−→ P ′′ with l 6= k. Then t′ and t′′ are concurrent.

Proof. We prove Proposition 2 by induction on the depth of the inference tree
for transition of P .

1. Base case: Processes with an inference tree of depth 0 have no reverse
transitions, so the proposition is valid.

2. Inductive hypothesis: We assume that for all subprocesses R of P and all

c[m], d[n], if R is a consistent process, R
c[m]
−−−→ R′ and R

d[n]
−−→ R′′, with

m 6= n, then there is an N so that R′ d[n]
−−→ N and R′′ c[m]

−−−→ N .

3. Induction step: We consider cases depending on the structure of P :
(a) P ≡ (s; b).R with s containing two or more past actions: This in-

cludes the the case P ≡ (t; b).R. This is by rule rev act1. With s′

being the sequence obtained from s by removing a[k] and b[l] with

k, l /∈ keys(s′) we have (a[k], b[l], s′; c).R
a[k]
−−→ (a, b[l], ts; c).R

b[l]
−−→

(a, b, s′; c).R or (a[k], b[l], s′; c).R
b[l]
−−→ (a[k], b, s′; c).R

a[k]
−−→ (a, b, s′; c).R.

Let M ≡ (a, b, s′; c).U | T as required.
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(b) P ≡ (s; b).R with s containing one or none past action: We can-

not deduce the required transitions P
a[k]
−−→ P ′ and P

b[l]
−−→ P ′′ for

any a, b, k, l and l 6= k by any SOS rule. Hence the proposition is
vacuously valid.

(c) P ≡ Q | R: There are three cases:

i. P
a[k]
−−→ P ′ by rule rev par and P

b[l]
−−→ P ′ by rule rev par. There

are two subcases here:

A. Transitions in the same subprocess: Assume without loss

of generality Q
a[k]
−−→ Q′ and Q

b[l]
−−→ Q′′. By the inductive

hypothesis there is an N so that Q′ b[l]
−−→ N and Q′′ a[k]

−−→ N .

We can conclude by using rule rev par that Q′ | R
b[l]
−−→ N | R

and Q′′ | R
a[k]
−−→ N | R. With M ≡ N | R we get the result.

B. Transitions in different subprocesses: Assume without loss

of generality that Q
a[k]
−−→ Q′ and R

b[l]
−−→ R′. By rule rev par

Q | R
a[k]
−−→ Q′ | R

b[l]
−−→ Q′ | R′ and Q | R

b[l]
−−→ Q | R′ a[k]

−−→
Q′ | R′ are valid. These form the required reversal diamond
with M ≡ Q′ | R′.

ii. P
a[k]
−−→ P ′ by rule rev com and P

b[l]
−−→ P ′ by rule rev par: Without

loss of generality this covers all cases with one rev par and one
rev com transition. We assume that a[k] is by rule rev com, that
γ(a1, a2) = a and that b[l] is by rev par. We also assume that b

happens in Q, so that Q
b[l]
−−→ Q′ and fsh[l](R), and that Q

a1[k]
−−−→

Q′′ and R
a2[k]
−−−→ R′. We know that l 6= k because fsh[l](R) and

R
a2[k]
−−−→ R′′, a transition which could not happen if l = k, since

according to Proposition 1.2 a key cannot be fresh for a reverse
transition to happen with this key. By the inductive hypothesis

there is an N so that Q′
a1[k]
−−−→ N and Q′′ b[l]

−−→ N . Using the

rev com rule we can deduce P
a[k]
−−→ Q′′ | R′, P

b[l]
−−→ Q′ | R,

Q′′ | R′ b[l]
−−→ N | R′ and Q′ | R

a[k]
−−→ N | R′. Taking M ≡ N | R′

we get the result.

iii. P
a[k]
−−→ P ′ by rev com and P

b[l]
−−→ P ′′ by rev com: Without loss

of generality this covers all cases with two rev com transitions.

We assume γ(a1, a2) = a and γ(b1, b2) = b. Also Q
a1[k]
−−−→ Q′,

Q
b1[l]
−−→ Q′′, R

a2[k]
−−−→ R′ and R

b2[l]
−−→ R′′. Since Q

a1[k]
−−−→ Q′ and

Q
b1[l]
−−→ Q′′ by the inductive hypothesis it follows that there is an

N so that Q′
b1[l]
−−→ N and Q′′

a1[k]
−−−→ N and since R

a2[k]
−−−→ R′ and

R
b2[l]
−−→ R′′ there is an N ′ so that R′

b2[l]
−−→ N ′ and R′′

a2[k]
−−−→ N ′.
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By rule rev par it follows that P
a[k]
−−→ Q′ | R′ b[l]

−−→ N | N ′ and

P
b[l]
−−→ Q′′ | R′′ a[k]

−−→ N | N ′. Let M ≡ N | N ′ as required.

(d) cases P ≡ R \ L and P ≡ S with S
def
= R follow in a standard way

by using rules rev res and rev con in Figure 4, respectively, and the
inductive hypothesis.

Before we show that coinitial forward transitions are concurrent if they result
in cofinal computations, we introduce traces. A trace is a sequence of com-
posable forward and reverse transitions over CCB. Traces are ranged over by
σ, σ′, σ1, . . .. Two transitions are composable if the target of the first transition
is the source of the second transition. The composition of transitions and traces
is denoted by ‘;’. The source of a trace is the source of the first transition of
the trace, and the target of a trace is the target of the last transition in the
trace. As with transitions, two traces are coinitial if they have the same source,
and they are cofinal if their targets are identical. The syntactical equality of
transitions is also denoted by ≡.

Proposition 3 (Forward Diamond). If P is a consistent process and t1 ≡

P
a[k]
−−→ P ′, t2 ≡ P

b[l]
−−→ P ′′, with l 6= k, and P ′ →∗ R and P ′′ →∗ R, for some

R, then there is M 6≡ P such that P ′ b[l]
−−→ M , P ′′ a[k]

−−→ M and M →∗ R.

Proof. By induction on the depth of the inference tree for transition of P .

1. Base case: obvious.

2. Inductive hypothesis: We assume that Proposition 3 holds for all sub-
processes R of P and all c[m], d[n], namely if R is a consistent process,

t′1 ≡ R
c[m]
−−−→ R′ and t′2 ≡ R

d[n]
−−→ R′′ with m 6= n, and t′1;σ

′
1 and t′2;σ

′
2,

for some σ′
1 and σ′

2, are cofinal then there is an N so that R′ d[n]
−−→ N ,

R′′ c[m]
−−−→ N and N →∗ N ′ is cofinal with σ′

1 and σ′
2.

3. Induction step: We assume t1 ≡ P
a[k]
−−→ P ′ and t2 ≡ P

b[l]
−−→ P ′′, and

consider cases depending on the structure of P :

(a) P ≡ (s; b).R with s containing two or more fresh actions: This hap-
pens by rule act1. s is of the structure a, b, s′ with k, l /∈ keys(s′) so

that P ≡ (a, b, s′; b).R. So we have t3 ≡ P ′ b[l]
−−→ (a[k], b[l], s′; c).R

and t4 ≡ P ′′ a[k]
−−→ (a[k], b[l], s′; c).R. With M ≡ (a[k], b[l], s′; c).R

this gives us the result.
(b) P ≡ Q | R:

i. P
a[k]
−−→ P ′ by rule par and P

b[l]
−−→ P ′ by rule par.

A. Transitions in the same subprocess: Assume without loss

of generality Q
a[k]
−−→ Q′ and Q

b[l]
−−→ Q′′. By the inductive

hypothesis there is an N so that Q′ b[l]
−−→ N and Q′′ a[k]

−−→ N
and there is a T so that Q′ →∗ T and Q′′ →∗ T implying
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that a1[k] and b[l] do not exclude the execution of each other

in Q. We can conclude, by rule par, that Q′ | R
b[l]
−−→ N | R

and Q′′ | R
a[k]
−−→ N | R. Taking M ≡ N | R gives the result.

B. Transitions in different subprocesses: Assume without loss

of generality that Q
a[k]
−−→ Q′ and R

b[l]
−−→ R′. By rule par

Q | R
a[k]
−−→ Q′ | R

b[l]
−−→ Q′ | R′ and Q | R

b[l]
−−→ Q | R′ a[k]

−−→
Q′ | R′ are valid. These form the required forward diamond
with M ≡ Q′ | R′.

ii. P
a[k]
−−→ P ′ by rule com and P

b[l]
−−→ P ′ by rule par: Without

loss of generality this covers all cases with one par and one
com transition. We assume that a[k] happens by rule com, that
γ(a1, a2) = a and that b[l] happens by rule par. We also assume

that b happens in Q, so that Q
b[l]
−−→ Q′ and fsh[l](R), and that

Q
a1[k]
−−−→ Q′′ and R

a2[k]
−−−→ R′. Also there is a T so that Q′ →∗ T

and Q′′ →∗ T implying that a1[k] and b[l] do not exclude the
execution of each other in Q. By the inductive hypothesis there

is an N so that Q′ a1[k]
−−−→ N and Q′′ b[l]

−−→ N . By com we deduce

that P
a[k]
−−→ Q′′ | R′, P

b[l]
−−→ Q′ | R, Q′′ | R′ b[l]

−−→ N | R′ and

Q′ | R
a[k]
−−→ N | R′. With M ≡ N | R′ this gives us the result.

iii. P
a[k]
−−→ P ′ by com and P

b[l]
−−→ P ′′ by com: Without loss of

generality this covers all cases with two com transitions. We

assume that γ(a1, a2) = a and γ(b1, b2) = b. Also Q
a1[k]
−−−→ Q′,

Q
b1[l]
−−→ Q′′, R

a2[k]
−−−→ R′ and R

b2[l]
−−→ R′′. Since Q

a1[k]
−−−→ Q′ and

Q
b1[l]
−−→ Q′′ by the inductive hypothesis it follows that there is

an N so that Q′ b1[l]
−−→ N and Q′′ a1[k]

−−−→ N and since R
a2[k]
−−−→ R′

and R
b2[l]
−−→ R′′ there must be an N ′ so that R′ b2[l]

−−→ N ′ and

R′′ a2[k]
−−−→ N ′. Also there is a T so that Q′ →∗ T and Q′′ →∗ T

implying that a1[k] and b1[l] do not exclude the execution of each
other in Q and there is a T ′ so that R′ →∗ T ′ and R′′ →∗ T ′

implying that a2[k] and b2[l] do not exclude the execution of

each other in R. By par P
a[k]
−−→ Q′ | R′ b[l]

−−→ N | N ′ and P
b[l]
−−→

Q′′ | R′′ a[k]
−−→ N | N ′. We let M ≡ N | N ′ as required.

(c) cases P ≡ R \ L and P ≡ S with S
def
= R follow a standard way.

The next subsection explores some properties of concerted transitions.

3.1. Concerted transitions

The properties of keys corresponding to those in parts 1 and 2 of Proposi-
tion 1 hold also for the concerted transitions in CCB.
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Proposition 4. Let P be consistent. If P
{µ[k],ν[l]}
−−−−−−→ Q then k /∈ keys(P ),

l ∈ keys(P ) and keys(Q) = (keys(P ) ∪ {k}) \ {l} for all Q.

Proof. See Appendix.

The property corresponding to part 3 of Proposition 1, namely P
{µ[k],ν[l]}
−−−−−−→

P ′ if and only if P ′
{ν[l],µ[k]
−−−−−−→}P does not hold in general but only in certain

circumstances, which we now describe. Consider (a[k]; b).Q | R and c, d, for any

Q,R, such that γ(a, c) = d = γ(b, c) with R
c[l]
−−→ R′ and R′ c[k]

−−→ R′′. We obtain,
by concert and prom rules,

(a[k]; b).Q | R
{d[l],d[k]}
−−−−−−→ (a; b[l]).Q | R′′ ⇒ (a[l]; b).Q | R′′

Since R′′ c[k]
−−→ R′ c[l]

−−→ R, we get, again by concert and prom rules

(a[l]; b).Q | R′′ {d[k],d[l]}
−−−−−−→ (a; b[l]).Q | R ⇒ (a[k]; b).Q | R

Assume that R is (c, c[k]).R1 for some R1. If we take S as (a[l]; b).Q | R′′, then
the following result could be seen as corresponding to part 3 of Proposition 1:

Proposition 5. Consider (a[k]; b).Q for any Q and c, d such that γ(a, c) = d =

γ(b, c). There exist R,S and l such that (a[k]; b).Q | R
{d[l],d[k]}
−−−−−−→ S if and only

if S
{d[k],d[l]}
−−−−−−→ (a[k]; b).Q | R.

4. CCB without weak actions

In this section we discuss the main properties of the sub-calculus of CCB
that uses no weak actions. Our prefix operator is thus (s).P , where s contains
only strong actions. We call this calculus CCBs. Its SOS rules are as for CCB
except that the rules in Figure 5 do not apply as there are no weak actions. The
congruence rules prom, move-r and move-l also do not apply since there are no
weak actions. We shall use µ, ν to denote strong actions in this section.

We shall also consider the forward-only version of CCBs called CCBf . The
syntax of CCBf is

P ::= S | (s).P | P | Q | P \L

and the SOS rules are given in Figure 8; we also have the reduction rules from
Figure 7 (without prom, move-r and move-l) which, together with rules in Fig-
ure 8, generate the transition relation −→f for CCBf . Note that we do not record
past actions (actf rule); hence CCBf is similar to the core of ACP. We note
that CCBs is different from CCSK [25, 26] as it uses multiset prefixing (very
much like in [8, 29]) and ACP-like communication.

We show firstly that → for CCBs is essentially conservative over −→f . A
process of CCBs is converted to a CCBf process by “pruning” past actions:
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actf
(s, a, s′).P

a
−→f (s, s′).P

parf
P

a
−→f P ′

P | Q
a
−→f P ′ | Q

comf

P
a
−→f P ′ Q

b
−→f Q′

P | Q
c
−→f P ′ | Q′

(∗) resf
P

a
−→f P ′

P\L
a
−→f P ′\L

a /∈ L

conf

P
a
−→f P ′

S
a
−→f P ′

S
def
= P sc

P ⇒∗ Q Q
a
→f Q′ Q′ ⇒∗ P ′

P
a
→f P ′

Figure 8: SOS rules for CCBf . We have a, b, c ∈ SA and (*) is γ(a, b) = c.

Definition 6. The pruning map π : ProcCCBs
→ ProcCCBf

is defined as fol-
lows, where t ∈ AK∗ and s, s′ ∈ A∗:

π(0) = 0 π((s, t, s′).P ) = (s, s′).π(P ) π((t).P ) = π(P )

π(P | Q) = π(P ) | π(Q) π(P \ L) = π(P ) \ L π(S) = π(P ) if S
def
= P

Theorem 1 (Conservation). Let P ∈ ProcCCBs
.

1. If P
µ[k]
−−→ Q then π(P )

µ
−→f π(Q).

2. If π(P )
µ
−→f Q, then for any k ∈ K\keys(P ) there is Q′ such that P

µ[k]
−−→ Q′

and π(Q′) = Q.

Proof. 1. We use induction on the depth of the inference tree of P
µ[k]
−−→ Q.

(a) Base case: obvious.
(b) Inductive hypothesis: We assume that for all subprocesses R of P

and all ν[l], if R is a consistent process and if R
ν[l]
−−→ R′ for some R′

then π(R)
ν
−→f π(R′).

(c) Induction step: We consider cases depending on the structure of P .

Assume that P is consistent and P
µ[k]
−−→ P ′ in all cases.

i. P ≡ (s; b).R: There are two cases:

A. P
µ[k]
−−→ P ′ by act1 in Figure 3: Assume s = µ : s′, t where

s′ ∈ A∗ and t ∈ AK∗. Then (µ : s′, t; b).R
µ[k]
−−→ (µ[k] :

s′, t; b).R. We can apply π to the processes: π((µ : s′, t; b).R) =
(µ : s′).R = π(P ) and π((µ[k] : s′, t; b).R) = (s′).R = π(P ′).

The transition (µ : s′).R
µ
−→f (s′).R is by act1 and we get

π(P )
µ
−→f π(P ′).

B. P
µ[k]
−−→ P ′ by act2 in Figure 3: We deduce that P ≡ (t; b).R,

fsh[k](t) and P ′ ≡ (t; b).R′. Recall that t contains only past

actions. The transition must be (t; b).R
µ[k]
−−→ (t; b).R′, and
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we get by act2 R
µ[k]
−−→ R′ and fsh[k](t). Applying π to the

processes we get π((t; b).R) = π(R) and π((t; b).R′) = π(R′).

Since R
µ[k]
−−→ R′, by the inductive hypothesis, we obtain

π(R)
µ
−→f π(R′). The last implies π((t; b).R)

µ
−→f π((t; b).R′)

which is π(P )
µ
−→ π(P ′).

ii. P ≡ R | Q: There are two cases:

A. This happens by par in Figure 3. Since P
µ[k]
−−→ P ′, by rule

par, R
µ[k]
−−→ R′ and fsh[k](Q) must hold. By the inductive hy-

pothesis π(R)
µ
−→f π(R′) is true. By rule par π(R) | π(Q)

µ
−→f

π(R′) | π(Q) holds, which means π(R | Q)
µ
−→f π(R′ | Q) and

π(P )
µ
−→S π(P ′) as required.

B. This is by com in Figure 3. The inductive hypothesis in this
case is not only true about R, but also about Q, so that

if Q is consistent and Q
µ1[k]
−−−→ Q′ then π(Q)

µ1

−→f π(Q′).

Assume P is consistent, P
µ[k]
−−→ P ′ and γ(µ1, µ2) = µ.

We can calculate π(P ) = π(R | Q) = π(R) | π(Q) and

π(P ′) = π(R′ | Q′) = π(R′) | π(Q′). Since π(R)
µ
−→f π(R′)

and π(Q)
µ
−→f π(Q′) it follows that according to rule com

π(R) | π(Q)
µ
−→f π(R′) | π(Q′) which means π(P )

µ
−→f π(P ′)

as required.

iii. Cases for P ≡ R\L and P ≡ S with S
def
= R are straightforward.

2. We prove Theorem 1.2 by using induction on the definition of π(P ), which
means on the structure of P .

(a) Base case: obvious.
(b) Inductive hypothesis: We assume that for all subprocesses R of P

and all ν, if π(R)
ν
−→f R′, then for any l ∈ K\keys(R) there is R′′

such that R
ν[l]
−−→ R′′ and π(R′′) = R′.

(c) Induction step: We show the result for π(P ) as well. we consider
cases depending on the structure of P . Assume that P is consistent

and π(P )
µ
−→f Q for some Q in all cases.

i. P ≡ (s, s′; b) and π((s, s′; b).R) = (s′).π(R): Here rule actf
applies with s′ being of the structure ν, s′′. The transition is
(ν, s′′).R

ν
−→f (s′′).R). Then with k ∈ K \ keys(P ) we have

(ν, s′′).R
ν[k]
−−→ (ν[k], s′′).R and we let Q′ ≡ (ν[k], s′′).R with

π(Q′) ≡ (s′′).R.
ii. P ≡ (t; b).R and π((t; b).R) = π(R): Here the transition is in R

by π(R)
ν
−→f R′. By the inductive hypothesis R

µ[k]
−−→ R′′ and

π(R′′) = R′ for some R′′. We deduce that π(P )
ν
−→f R′ and

P
µ[k]
−−→ R′′. Let Q′ ≡ R′′ with the required properties.

iii. P ≡ R | T and π(P ) = π(R | T ): There are two cases:
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A. The transition is by parf . Assume π(R | T )
µ
−→f Q for some

Q. So π(R | T )
µ
−→f Q implies without loss of generality

π(R)
µ
−→f R′ for some R′ and Q ≡ R′ | π(T ) since π(P ) =

π(R | T ) = π(R) | π(T ). Since π(R)
µ
−→f R′ by the inductive

hypothesis there exists a U and a k ∈ K\ (keys(R)∪keys(T ))

such that R
µ[k]
−−→ U and π(U) = R′. Since R

µ[k]
−−→ U and

since fsh[k](T ) we obtain by rule par R | T
µ[k]
−−→ U | T . Now

we calculate π(U | T ) = π(U) | π(T ) = R′ | π(T ) = Q. Let
Q′ ≡ U | T with the required properties.

B. The transition is by comf . Since π(P )
µ
−→ P ′, by rule comf ,

R
ν1−→ R′, T

ν1−→ T ′ and γ(ν1, ν2) = µ for some R′, T ′ must
hold without loss of generality. The inductive hypothesis in
this case is not only true about R, so there is an R′′ such that

R
ν1[k]
−−−→ R′′ and π(R′′) = R′ and a T ′′ such that T

ν2[k]
−−−→ T ′′

and π(T ′′) = T ′. We can deduce that R | T
µ[k]
−−→ R′′ | T ′′.

Also π(R′′ | T ′′) = π(R′′) | π(T ′′) = R′ | T ′ = P ′. Let
Q′ ≡ R′′ | T ′′. This has the required properties.

iv. Cases for P ≡ R\L and P ≡ S with S
def
= R are straightforward.

We now consider the causal consistency property, first defined and discussed
in [7, 19], for CCBs. We define when a set of keys is a cause for another key:

Definition 7. The set of causes of a key k in P is defined as follows:

cau(0, k) = ∅ cau(P \L, k) = cau(P, k)

cau((s).P, k) = k(s) ∪ cau(P, k) if k ∈ keys(P ) cau((µ[k] : s).P, k) = ∅

cau((s).P, k) = ∅ if k /∈ keys(P ) cau(S) = cau(P ) if S
def
= P

cau(P | Q, k) = cau(P, k) ∪ cau(Q, k)

If one of two coinitial transitions is forward and the other reverse, either they
are concurrent or the forward transition depends causally on the reverse one.
The following result holds by induction on the depth of the inference tree for
transition of P : see Appendix.

Proposition 6. If t1 ≡ P
µ[k]
−−→ P ′ and t2 ≡ P

ν[l]
−−→ P ′′, then either t1 and t2

are concurrent or k ∈ cau(P ′′, l).

Next we introduce further notation on traces. We denote the reverse transition
corresponding to a forward transition t (and the forward transition correspond-
ing to a reverse transition t) as t•. Similarly to denoting the reverse transitions
by •, we denote the reverse trace of σ as σ•. The empty trace with a process P is
written as ǫP , and when the process is the source or the target of the transition
t, we write ǫsource(t) respectively ǫtarget(t). Similarly as with forward and reverse
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transitions, we shall use forward traces (traces composed of forward transitions
only) and reverse traces (traces composed of reverse transitions only).

We can now define causal equivalence between traces.

Definition 8. Causally equivalent traces are defined by the least equivalence
relation ≍ which is closed under composition and obeys the following rules,

where t1 is P
a[k]
7−→ Q, t2 is P

b[l]
7−→ R, d1 is Q

b[l]
7−→ S and d2 is R

a[k]
7−→ S:

t1; d1 ≍ t2; d2 t; t• ≍ ǫsource(t) t•; t ≍ ǫtarget(t)

The first relation states that the concurrent transitions t1 and t2 are causally
independent, hence they can happen in any order. The trace t1; d1 forms a dia-
mond with t2; d2, so the traces are causally equivalent. The remaining relations
state that doing a transition and its reverse version is the same as doing nothing.

The next two results are needed to prove causal consistency for CCBs; they
follow closely [7, 19]. The first states that any computation has a causally
equivalent version in which we first compute in reverse for a while and then
we only compute forwards. The second result says that a trace which has a
forward-only coinitial and cofinal and causally equivalent trace can always be
shortened to a forward-only trace. The proofs are provided in Appendix.

Proposition 7 (Rearrangement). If σ is a trace then there exist forward
traces σ1 and σ2 such that σ ≍ σ•

1 ;σ2.

Proposition 8 (Shortening). If σ1 and σ2 are coinitial and cofinal traces,
with σ2 a forward trace, then there exists a forward trace σ′

1 of length at most
that of σ1 such that σ′

1 ≍ σ2.

Next we have the second important result for CCBs.

Theorem 2 (Causal consistency). Let σ1 and σ2 be traces. Then σ1 ≍ σ2

if and only if σ1 and σ2 are coinitial and cofinal.

Proof. The statement, if σ1 ≍ σ2 then σ1 and σ2 are coinitial and cofinal,
follows directly from the construction of ≍ in Definition 8.

Next we show that if σ1 and σ2 are coinitial and cofinal then σ1 ≍ σ2.
We use induction on the sum of the lengths of σ1 and σ2 and on the distance
between the end of σ1 and the earliest pair of transitions t1 in σ1 and t2 in σ2

which are not equal. The coinitial and cofinal traces σ1 and σ2 are rewritten as
compositions of reverse and forward traces by Proposition 7. There are three
cases:

1. t1 is forward and t2 is reverse: We can assume that σ1 = σ•; t1;σ
′ and

σ2 = σ•; t•2;σ
′′ by Proposition 7. Since t1 is forward t1;σ

′ must be forward,
whereas t•2;σ

′′ must start with at least one reverse transition. Since σ1

and σ2 are coinitial and cofinal t1;σ
′ and t•2;σ

′′ are also coinitial and
cofinal. We notice that the assumption of Proposition 8 is valid for t1;σ

′

and t•2;σ
′′, hence there is a forward trace σ′′′ shorter than t•2;σ

′′ such that
σ′′′ ≍ t•2;σ

′′. So the trace σ•;σ′′′ is shorter than σ2 = σ•; t•2;σ
′′, and the

result follows by induction.
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2. t1 and t2 are forward: Assume t1 ≡ R
µ[k]
−−→ R′ and t2 ≡ R

ν[l]
−−→ R′′ for

some R, R′, R′′. Transitions t1 and t2 must be be concurrent according
to Proposition 3. Since σ1 and σ2 are cofinal there must be transitions

t′1 ≡ P
ν[l]
−−→ P ′ and t′2 ≡ Q

µ[k]
−−→ Q′ for some P , P ′, Q, Q′ at some later

stage in σ1 and σ2. We look at the case of t′1 ≡ P
ν[l]
−−→ P ′ in σ1 here,

the other case follows in the corresponding way. All transitions from t1
to t′1 are concurrent since we can do µ[k] either as the first transition

R
µ[k]
−−→ R′ of σ1 or as the last transition in the sub-trace t2; t

∗; t′2. Hence
we can rearrange the transitions by the technique used in the proof of

Proposition 7 so that R
ν[l]
−−→ R′′′ comes first. This transition is identical

to t2. So we have moved the first non-matching pair of transitions in σ1

and σ2 to the right, and the result follows by induction.

3. t•1 and t•2 are reverse: Transitions t•1 ≡ R
µ[k]
−−→ R′ and t•2 ≡ R

ν[l]
−−→ R′′, for

some R, R′ and R′′, are undoing different actions. Since σ1 and σ2 are

cofinal there is either a transition t′•1 ≡ P ′′
µ[k]
−−→ P ′′′, for some P ′′ and P ′′′

in σ2, or a transition t′1 ≡ P
µ[k]
−−→ P ′, for some P and P ′ in σ1, redoing the

action undone in t•1. For t
•
2 there is either a transition t′•2 ≡ S′′

µ[k]
−−→ S′′′,

for some S′′ and S′′′ in σ1, or a transition t′2 ≡ S
µ[k]
−−→ S′, for some S and

S′ in σ2, redoing the action undone in t•1. We treat these cases separately:

(a) t′•1 ≡ P ′′
µ[k]
−−→ P ′′′ in σ2 or t′•2 ≡ S′′ ν[l]

−−→ S′′′ in σ1: We consider

t′•1 ≡ P ′′
µ[k]
−−→ P ′′′ in σ2, the other case follows correspondingly.

The traces t•1 and t•2 are concurrent according to Proposition 2. All
transitions from t•2 to t′•1 must be concurrent since from R we can do
µ[k] either as the first transition as in σ1 or as the last one in this
sub-trace. So we can rearrange the transitions by a similar technique

of “swaps” as used in the proof of Proposition 7 so that R
µ[k]
−−→ R′′′

comes first. This transition is identical to t•1, and we have moved the
first non-matching pair of transitions in σ1 and σ2 to the right, hence
the case follows by induction.

(b) t′1 ≡ P
µ[k]
−−→ P ′ in σ1 and t′2 ≡ S

ν[l]
−−→ S′ in σ2 and P ′′

µ[k]
−−→ P ′′′ not in

σ2 and S′′ ν[l]
−−→ S′′′ not in σ1: We consider t′1 ≡ P

µ[k]
−−→ P ′ in σ1 only,

the case t′2 ≡ S
ν[l]
−−→ S′ in σ2 follows correspondingly. We show that

the transitions from t•1 up to t′1 are concurrent. In fact, we show that
t•1 and t′′, the next transition on the way to t′1, are concurrent. If they
are concurrent we can swap them thus moving t•1 to the right towards
t′1. If we follow this approach we will eventually have t•1 immediately
to the left of t′1, and we can remove t•1; t

′
1 according to Definition 8.

What remains to be done is to prove that t•1 and t′′ are concurrent.
There are two cases: If t′′ is forward then we have a situation as
in the proof of Proposition 8, where we show that the transitions
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are concurrent. The second case is for t′′ being reverse. Assume

t′′ ≡ R′ α[n]
−−→ R′′. Hence by Proposition 1.3 we have R′ µ[k]

−−→ R. So

we have R′ α[n]
−−→ R′′ and R′ µ[k]

−−→ R. This matches the assumptions
of Proposition 6 (where R′ is P ). If we show that n /∈ cau(R, k) then

they are concurrent. The transitions R
µ[k]
−−→ R′ α[n]

−−→ R′′ show that
µ[k] is undone before α[n], so n cannot be one of the causes of k in R.
Hence the transitions t•1 and t′′ are concurrent, and the result follows
by induction.

One of the consequences of causal consistency for CCBs concerns reachability:
any state that can be reached from a standard process during an arbitrary
computation can be reached by computing forwards alone. This property is
not valid in the full calculus CCB as can be seen in the Introduction and in
Example 6.

5. The hydration of formaldehyde in water

In this section we describe in detail the hydration of formaldehyde in water 1

Formaldehyde is a good preservative and is well known for its use in preserving
specimen samples. It also serves as an important building block in industrial
processes and is therefore produced in large quantities. At room temperature,
formaldehyde forms a colourless and smelly gas. Formaldehyde reacts with wa-
ter molecules to form methanediol. The reaction is shown in Figure 9. It is
reversible but it is much faster towards the methanediol, so the equilibrium
contains mostly methanediol. It should be noted that other reactions are taking
place in a solution of formaldehyde in water, however we consider only the inter-
action of formaldehyde with water molecules. The carbon atom of formaldehyde
is not shown in Figure 9 in line with a common convention. It resides at the
point where the lines from the oxygen and the hydrogens meet; we follow this
convention in all other reaction diagrams. We use single lines to represent single
bonds in all our reactions, and we use double lines for double bonds, where two
electron pairs are shared between atoms.

O       

H       

H       

O       

H       H       

H       

HO       OH    

H       

+       

Figure 9: Hydration of formaldehyde in water into methanediol

1Detailed description of the reaction is given in [4]. The main path is on page 143, the
base-catalysed reaction is on page 713, and the acid-catalysed reaction in on page 343 of [4].
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5.1. The most common mechanism of the reaction

A closer look at the reaction in Figure 9 shows that the most common
sequence of intermediate reactions leading to methanediol is the one given in
Figure 10. We now describe carefully its steps. The oxygen atom in one of
the water molecules attacks the central carbon in the formaldehyde to form
the intermediate 2 in Figure 10. Then one of the hydrogens of the positively
charged oxygen is taken away by another water molecule in a proton transfer.
This gives the intermediate 3. Finally, a proton is donated to the other oxygen
in the intermediate 3 to give the final configuration 4.
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OHOH HO
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Figure 10: The most common path through the hydration of formaldehyde

In order to model this reaction we need to understand what it is that makes
it happen. The main factor is that the oxygen in the water is nucleophilic: it
tends to connect to another atomic nucleus. In the formaldehyde the oxygen
attracts electrons towards itself, so the carbon has a positive charge. Now the
oxygen in the water is attracted by this carbon and, due to its nucleophilicity,
it forms a bond to the carbon. This bond is formed out of the electrons of
one of the electrons in the oxygen so far not involved in bonding, so-called
lone electron pairs. Since the carbon cannot have more than four bonds this
reaction is compensated by the double bond in the formaldehyde becoming a
single bond and the electrons from the double bond forming a lone pair on
the oxygen, which now has three lone pairs. These movements are concerted,
namely they happen together without a stable intermediate state and cannot be
separated. So we have a continuous change between two tetracoordinate species
through a pentacoordinate intermediate. We have now reached the intermediate
2 in Figure 10.

Looking at the intermediate 2, we can see that this has one oxygen which is
negatively charged, because it has three lone pairs and a surplus of one electron.
The other oxygen is positively charged, since it has three bonds and only one
lone pair, therefore is missing an electron. The intermediate 2 reacts then with
a water molecule. The water molecule is nucleophilic and has lone pairs for
a bonding. It therefore can abstract one of the hydrogens on the positively
charged oxygen. This leads to the intermediate 3 and a H3O molecule, a water
with an additional hydrogen and a positively charged oxygen.

Finally, a hydrogen can be re-donated to the negatively charged oxygen.
Note that the re-donated hydrogen may not be the one which was originally
attached to the oxygen. This transfer is possible since the oxygen in the H30 is
electron-deficient and the negative oxygen is rich in electrons. We then get the
substrate 4 which contains the final product methanediol, and water.
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5.2. Other paths through the reaction

There are other paths through the reaction of formaldehyde and water. We
assume that we now have a mixture of three water molecules and one formalde-
hyde molecule. This shall allow us to explore all other water-formaldehyde
interactions. Two water molecules can interact to form H3O and HO. This is
known as autoprotolysis of water and is described in detail in [16]. These two
molecules can be considered an acid and a base respectively2. Both bases and
acids can interact with formaldehyde and thus produce methanediol by different
mechanisms than those in the previous section.
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Figure 11: Acid-catalysed hydration of formaldehyde in water.

The acid-catalysed reaction is described in Figure 11. Here the H3Omolecule,
which was formed during the autoprotolysis serves as the acid as it easily do-
nates a proton. This proton can be donated to the oxygen in the formaldehyde,
since this is slightly negatively charged, as we have seen. We then get the in-
termediate 6 in Figure 11. The charge on the oxygen can “move” to the carbon
by the electrons forming the bonds a lone pair on the oxygen. The real charge
distribution is somewhere in between. We shall assume that the intermediates
6 and 7 are somewhat different structures, and we shall model the transition
from 6 to 8 as a pair of concerted actions. Once the intermediate 8 is reached
one of the protons from the oxygen in the intermediate 8 can be abstracted by
one of the water molecules, giving H3O and making it a catalytic process.
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Figure 12: Base-catalysed hydration of formaldehyde in water.

The base-catalysed reaction in Figure 12 starts with a water and a HO−

molecule, the base, which tends to accept protons very strongly. It can therefore

2There are slightly different definitions of acids and bases in the literature, we use the
general Bronsted-Lowry acid-base theory, which defines a base as a proton acceptor and an
acid as a proton donor.
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interact with the carbon in the formaldehyde, which is similar to the water
attacking the carbon. One of the bonds of the carbon-oxygen double bond is
broken and the oxygen becomes negatively charged. This gives the intermediate
11 which is in fact the same as the intermediate 3 in Figure 10. Then one of
the protons of the water can be abstracted, and we obtain the methanediol and
an HO molecule. Although this is the same structure as the original acid, it is
made up from different atoms. The process is considered catalytic since the HO
molecule is retrieved at the end of the process.
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Figure 13: Other compounds possible in the reaction of formaldehyde with water.

There are other ways that several molecules of water can react with formalde-
hyde to produce methanediol and other byproducts. For example the base, HO,
could directly interact with intermediate 7 to form methanediol and two wa-
ter molecules. Also, the two compounds given in Figure 13 can be created as
intermediate products in the reaction.

All possible reactions of a system of one formaldehyde and three water
molecules are shown in Figure 14. Although the direction of reactions are de-
noted with arrows, all reactions are reversible; the arrows merely indicate the
direction to the final product. We write FA for formaldehyde, W for water and
MD for methanediol. Many of the intermediate compounds are denoted by iX
where X ∈ {2, 3, 6, 7, 8, 13, 14}. Figure 14 includes all intermediates from Fig-
ure 11 and Figure 12. The compounds in Figure 13 have only one path leading
to them, and we could only move away from them by reverting these actions.
This is because these compounds are the “extreme” states where there is ei-
ther no hydrogen on an oxygen or both oxygens are fully saturated with two
hydrogens. The resonance between the intermediates i6 and i7 in Figure 11 is
represented by a dashed arrow.

6. A CCB model of the hydration of formaldehyde in water

We are now ready to model our reaction in CCB. Figure 15 shows in more
detail the three main paths through our reaction that we described in the last
section; these paths have been highlighted in bold in Figure 14.

The initial state of the reaction is modelled by the composition of one
formaldehyde FA three waters, written as FA | W | W | W. The final products
are methanediol MD and two waters, written as MD | W | W. The path via the
intermediate molecules 2 and 3 in Figure 10 is via the nodes denoted by i2 and
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FA | W | W | W FA | W | HO | H3O i6 | W | HO | W

i8 | HO | W

MD | HO | H3O

i2 | W | W i3 | H3O | W MD | W | W

i6 | HO | HO | H3O

i7 | HO | HO | H3O

i7 | W | HO | W

i14 | HO | HO

i13 | H3O | H3O i2 | H3O | H3O

Figure 14: All possible reactions in a system of formaldehyde and three water molecules. The
reactions displayed in more detail in Figure 15 are denoted here by bold arrows.

i3 in Figure 15. The FA | W | HO | H3O node is the result of an autoprotolysis.
The base-catalysed and acid-catalysed reactions are put into the same diagram,
again the intermediates i6 and i8 correspond to molecules in Figure 11. As we
can see in Figure 15 the reactions are driven completely by concerted actions.

We model the formaldehyde molecule CH2O and the three water molecules
H2O as appropriate compositions of their atoms, namely hydrogen, oxygen and
carbon. We use our general prefixing operator to define these atoms:

H
def
= (h; p).H ′

O
def
= (o, o, n).O′

C
def
= (c, c, c, c; p).C′

Carbon has four strong actions c, representing the potential for four covalent
bonds, and a weak action p, standing for a positive partial charge. The oxygen
can have up to three bonds. Normally is has two bonds, however, if a suitable
reaction partner is close, an additional weak bond is available. We use therefore
the simple prefixing operator to model it, with one weak action n standing for
the potential for a negative partial charge. A partial charge means that a part or
parts of a molecule have an electric charge, even though the molecule as a whole
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{np[11],c4o2[4]}

{np[12],h3o3[5]} {np[13],h5o5[12]}

{np[12],h3o3[5]}

{np[11],c4o2[4]}

{np[13],h5o5[7]}

{np[11],c4o2[4]}

{np[14],h6o6[8]}

{np[5],h8o8[14]}

FA | W | W | W FA | W | HO | H3O i6 | W | HO | W

i8 | HO | W

MD | HO | H3O

i2 | W | W i3 | H3O | W MD | W | W

Figure 15: The three main reaction paths in the hydration of formaldehyde.

is neutrally charged. These uneven charge distributions enable many reactions
by allowing another molecule to attack a partially charged part. The hydrogen
has one strong bond, and we use additionally a weak action p to represent that it
can become positively charged. Processes H ′, O′, and C′ represent unspecified
further behaviour of the respective atoms.

Since our reaction involves multiple copies of H and O we shall adopt a
subscript notation to denote distinct copies of the same process. Both action

labels and process names will be subscripted. For example, H1
def
= (h1; p).H

′
1 and

H2
def
= (h2; p).H

′
2 are two copies of hydrogen H . We shall abstract away these

subscripts in Section 6.5, where we introduce informally chemical equivalence.
Also, the copies of actions c of carbon will also be subscripted.

The synchronisation function γ is defined on subscripted actions as follows:

γ(ci, hj) = cihj i ∈ {1, . . . , 4}, j ∈ {1, . . . , 8}
γ(hi, oj) = hioj i ∈ {1, . . . , 8}, j ∈ {1, . . . , 6}
γ(ci, oj) = cioj i ∈ {1, . . . , 4}, j ∈ {1, . . . , 6}
γ(ci, n) = cin i ∈ {1, . . . , 4}
γ(hi, n) = hin i ∈ {1, . . . , 8}
γ(n, p) = np

Now we are ready to model H2O and CH2Omolecules. A water molecule is mod-
elled simply as a composition of two copies of the hydrogen process with one
copy of oxygen; see below. The restriction of actions hi and oi, for i ∈ {3, 4},
ensures that actions such as h3[5] cannot be undone alone but only together
with their partners o3[5]. This happens via undoing of h3o3[5] bond. Corre-
spondingly, when any of these actions is fresh they can only happen together
with their partners (as prescribed by the communication function γ), and not
alone. We also restrict np to stop self-bonding of water’s hydrogens with its
oxygen.

((h3[5]; p).H
′
3 | (h4[6]; p).H

′
4 | (o3[5], o4[6], n).O′

2) \ {h3, h4, o3, o4, np}
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The formaldehyde molecule is modelled by

(((c1[1], c2[2], c3[3], c4[4]; p).C
′ | (h1[1]; p).H

′
1 | (h2[2]; p).H

′
2 | (o1[3], o2[4], n).O′

1)
\{c1, c2, c3, c4, h1, h2, o1, o2, np, c1h1, c2h2, }

We restrict the appropriate versions of the ci, oj and hk actions, for all i, j and
k, meaning that we do not allow the creation of new bonds (involving these
actions) between different molecules as single acts of synchronisation. Such new
bonds will be created via concerted actions and (almost) always via the weak
np bonds which will then get promoted to strong bonds.

We also restrict cihi for i ∈ {1, 2}. It prevents breaking any of the bonds
between C1 and its hydrogens H1 and H2. This serves two purposes. Firstly,
it makes sure that once we have done the p action of the carbon, we will break
one of the bonds between the carbon and the oxygen. This is justified since in
reality it is one of the oxygen bonds which is broken, so this models the reality
closely. Secondly, it also prevents O2 or O3 from abstracting H1 or H2 from the
carbon. Note that hi, oj and n are not restricted in FA and in W: this allows
us to break bonds involving these actions as a part of concerted actions.

The four molecules of the reaction are now composed in parallel:

(CH2O | H2O | H2O | H2O) \ {n, p}

We restrict actions n and p, so that they cannot happen separately from each
other but only together within this system of processes.

The main path through the reaction require only two copies of water so we
start with the following initial state, where keys 1, . . . , 8 specify the existing
initially bonds of formaldehyde and the two waters.

(((c1[1], c2[2], c3[3], c4[4]; p).C
′ | (h1[1]; p).H

′
1 | (h2[2]; p).H

′
2 | (o1[3], o2[4], n).O

′
1)

\ {c1, c2, c3, c4, h1, h2, o1, o2, np, c1h1, c2h2}

| ((h3[5]; p).H
′
3 | (h4[6]; p).H

′
4 | (o3[5], o4[6], n).O

′
2) \ {h3, h4, o3, o4, np}

| ((h5[7]; p).H
′
5 | (h6[8]; p).H

′
6 | (o5[7], o6[8], n).O

′
3) \ {h5, h6, o5, o6, np}) \ {n, p}

In order to simplify the display of transitions or rewrites of this process we omit
the four restrictions and write the initial process simply as

(c1[1], c2[2], c3[3], c4[4]; p).C
′ | (h1[1]; p).H

′
1 | (h2[2]; p).H

′
2 | (o1[3], o2[4], n).O

′
1

| (h3[5]; p).H
′
3 | (h4[6]; p).H

′
4 | (o3[5], o4[6], n).O

′
2

| (h5[7]; p).H
′
5 | (h6[8]; p).H

′
6 | (o5[7], o6[8], n).O

′
3

remembering that the restrictions are still there.

6.1. The main path through the reaction

We first consider the reaction steps in Figure 10, following the path via
i3 | H3O | W and i2 | W | W in Figures 14 and 15. The first step is the n, p
reaction between C1 and O2 or O3. Note that there are other n, p reactions that
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are allowed by our model. We could have O2 getting a hydrogen from O3, or
vice versa, which is the autoprotolysis of water which we have mentioned before.
We shall discuss this further later on. Also O1 could pull one of the hydrogens
from one of the water molecules: again we shall discuss it later.

Returning to the first step of our reaction, we have O2 bonding with C with
the key 11. This is followed immediately by breaking of the bond 3 or 4 by the
rule concert. Note that breaking of 1 or 2 is not possible because of the restriction
of c1h1 and c2h2. We break the bond 4 and get a transition by concerted actions:
we create the bond np[11] and break the bond c4o2[4]. Henceforth we shall write
the name of the target of a transition below the transition, using the names that
appear in Figures 14-15. Here, for example, the compound resulting from this
transition is i2 | W but since in general we have an extra water W, we write
i2 | W | W.

{np[11],c4o2[4]}
−−−−−−−−−−→ (c1[1], c2[2], c3[3], c4; p[11]).C

′ | (h1[1]; p).H
′
1 | (h2[2]; p).H

′
2 |

(o1[3], o2, n).O
′
1 | (h3[5]; p).H

′
3 | (h4[6]; p).H

′
4 | (o3[5], o4[6], n[11]).O

′
2

| (h5[7]; p).H
′
5 | (h6[8]; p).H

′
6 | (o5[7], o6[8], n).O

′
3

i2 | W | W
Now the prom rewrite rule must be applied before we derive the next concerted
transition: we promote the weak bond 11 of the carbon to a stronger bond on
c4, which has become available:

⇒ ((c1[1], c2[2], c3[3], c4[11]; p).C
′ | (h1[1]; p).H

′
1 | (h2[2]; p).H

′
2

| (o1[3], o2, n).O
′
1 | (h3[5]; p).H

′
3 | (h4[6]; p).H

′
4 | (o3[5], o4[6], n[11]).O

′
2

| (h5[7]; p).H
′
5 | (h6[8]; p).H

′
6 | (o5[7], o6[8], n).O

′
3) \ L

i2 | W | W
The next step is to form a bond between O3 and either H3 or H4. We bond
with H3 with the key 12 and break the bond 5, producing a pair of concerted
actions. We then move a weak bond 11 on n in O2 to a stronger bond on o3
(which has become available) by rewrite rule move-r. We also promote the weak
bond 12 in H3 to a strong bond on h3 by rewrite rule prom, giving overall this
transition:

{np[12],h3o3[5]}
−−−−−−−−−−→ (c1[1], c2[2], c3[3], c4[11]; p).C

′ | (h1[1]; p).H
′
1 | (h2[2]; p).H

′
2 |

(o1[3], o2, n).O
′
1 | (h3[12]; p).H

′
3 | (h4[6]; p).H

′
4 | (o3[11], o4[6], n).O

′
2

| (h5[7]; p).H
′
5 | (h6[8]; p).H

′
6 | (o5[7], o6[8], n[12]).O

′
3

i3 | H3O | W

The next step is a proton transfer from O3 to O1. We transfer H5 (but we
could have used H6 or H3 since they all have the p action ready). Performing
the transfer of H5 from O3 to O1 (and breaking the bond 12), we obtain the
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following:

{np[13],h5o5[12]}
−−−−−−−−−−−→ (c1[1], c2[2], c3[3], c4[11]; p).C

′ | (h1[1]; p).H
′
1 | (h2[2]; p).H

′
2 |

(o1[3], o2, n[13]).O
′
1 | (h3; p[13]).H

′
3 | (h4[6]; p).H

′
4 | (o3[11], o4[6], n).O

′
2

| (h5[7]; p).H
′
5 | (h6[8]; p).H

′
6 | (o5[7], o6[8], n).O

′
3

MD | W | W
and promoting and moving the bond 13 in H3 and O1, respectively, to strong
bonds we obtain the final product (methanediol CH2(OH)2) and two waters:

⇒ (c1[1], c2[2], c3[3], c4[11]; p).C
′ | (h1[1]; p).H

′
1 | (h2[2]; p).H

′
2

| (o1[3], o2[13], n).O
′
1 | (h3[13]; p).H

′
3 | (h4[6]; p).H

′
4 | (o3[11], o4[6], n).O

′
2

| (h5[7]; p).H
′
5 | (h6[8]; p).H

′
6 | (o5[7], o6[8], n).O

′
3

MD | W | W
Note that the n, p actions are ready again and all the existing bonds are on strong
actions. So we now can reverse the reaction by O3 abstracting a hydrogen from
H4 or H5, and all the way to the initial state. Moreover, let us inspect the bonds
4, 5 and 7 which are broken during the reaction. The bonds were formed during
the initial bonding of the atoms. They are broken as a result of application of
our new general prefixing operator. This operator enables the reaction to work
forwards without external control. Indeed the original order of the formation of
the bonds is completely irrelevant for the reaction to work.

6.2. The base-catalysed path

We now consider the base-catalysed path described in Figure 12. The path
is via FA | W | HO | H3O and i3 | H3O | W to MD | W | W in Figures 14-15.
The path needs three water molecules. We shall show the application of the
promotion or move rules without explaining them in detail. We start with the
initial system (remembering that restrictions are not shown):

(c1[1], c2[2], c3[3], c4[4]; p).C
′ | (h1[1]; p).H

′
1 | (h2[2]; p).H

′
2 | (o1[3], o2[4], n).O

′
1

| (h3[5]; p).H
′
3 | (h4[6]; p).H

′
4 | (o3[5], o4[6], n).O

′
2

| (h5[7]; p).H
′
5 | (h6[8]; p).H

′
6 | (o5[7], o6[8], n).O

′
3

| (h7[9]; p).H
′
7 | (h8[10]; p).H

′
8 | (o7[9], o8[10], n).O

′
4

FA | W | W | W

{np[12],h3o3[5]}
−−−−−−−−−−→ (c1[1], c2[2], c3[3], c4[4]; p).C

′ | (h1[1]; p).H
′
1 | (h2[2]; p).H

′
2

| (o1[3], o2[4], n).O
′
1 | (h3; p[12]).H

′
3 | (h4[6]; p).H

′
4 | (o3, o4[6], n).O

′
2

| (h5[7]; p).H
′
5 | (h6[8]; p).H

′
6 | (o5[7], o6[8], n[12]).O

′
3

| (h7[9]; p).H
′
7 | (h8[10]; p).H

′
8 | (o7[9], o8[10], n).O

′
4
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⇒ (c1[1], c2[2], c3[3], c4[4]; p).C
′ | (h1[1]; p).H

′
1 | (h2[2]; p).H

′
2

| (o1[3], o2[4], n).O
′
1 | (h3[12]; p).H

′
3 | (h4[6]; p).H

′
4 | (o3, o4[6], n).O

′
2

| (h5[7]; p).H
′
5 | (h6[8]; p).H

′
6 | (o5[7], o6[8], n[12]).O

′
3

| (h7[9]; p).H
′
7 | (h8[10]; p).H

′
8 | (o7[9], o8[10], n).O

′
4

FA | W | HO | H3O

{np[11],c4o4[4]}
−−−−−−−−−−→ (c1[1], c2[2], c3[3], c4; p[11]).C

′ | (h1[1]; p).H
′
1 | (h2[2]; p).H

′
2

| (o1[3], o2, n).O
′
1 | (h3[12]; p).H

′
3 | (h4[6]; p).H

′
4 | (o3, o4[6], n[11]).O

′
2

| (h5[7]; p).H
′
5 | (h6[8]; p).H

′
6 | (o5[7], o6[8], n[12]).O

′
3

| (h7[9]; p).H
′
7 | (h8[10]; p).H

′
8 | (o7[9], o8[10], n).O

′
4

⇒ (c1[1], c2[2], c3[3], c4[11]; p).C
′ | (h1[1]; p).H

′
1 | (h2[2]; p).H

′
2

| (o1[3], o2, n).O
′
1 | (h3[12]; p).H

′
3 | (h4[6]; p).H

′
4 | (o3[11], o4[6], n).O

′
2

| (h5[7]; p).H
′
5 | (h6[8]; p).H

′
6 | (o5[7], o6[8], n[12]).O

′
3

| (h7[9]; p).H
′
7 | (h8[10]; p).H

′
8 | (o7[9], o8[10], n).O

′
4

i3 | H3O | W

{np[13],h3n[12]}
−−−−−−−−−−→ (c1[1], c2[2], c3[3], c4[11]; p).C

′ | (h1[1]; p).H
′
1 | (h2[2]; p).H

′
2

| (o1[3], o2, n[13]).O
′
1 | (h3; p[13]).H

′
3 | (h4[6]; p).H

′
4 | (o3[11], o4[6], n).O

′
2

| (h5[7]; p).H
′
5 | (h6[8]; p).H

′
6 | (o5[7], o6[8], n).O

′
3

| (h7[9]; p).H
′
7 | (h8[10]; p).H

′
8 | (o7[9], o8[10], n).O

′
4

⇒ (c1[1], c2[2], c3[3], c4[11]; p).C
′ | (h1[1]; p).H

′
1 | (h2[2]; p).H

′
2

| (o1[3], o2[13], n).O
′
1 | (h3[13]; p).H

′
3 | (h4[6]; p).H

′
4 | (o3[11], o4[6], n).O

′
2

| (h5[7]; p).H
′
5 | (h6[8]; p).H

′
6 | (o5[7], o6[8], n).O

′
3

| (h7[9]; p).H
′
7 | (h8[10]; p).H

′
8 | (o7[9], o8[10], n).O

′
4

MD | W | W
We have reached the final state of the reaction: a methanediol with two wa-
ters. Notice that the methanediol process is identical (including keys) to the
methanediol process in the main path.

6.3. The acid-catalysed path

Next we consider the acid-catalysed path described in Figure 11. The path
is via i6 | W | HO | W and i8 | HO | W in Figures 14–15. The path uses three
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water molecules as in the base-catalysed path. We shall apply the promotion
or move rules as needed. We start with the initial system:

(c1[1], c2[2], c3[3], c4[4]; p).C
′ | (h1[1]; p).H

′
1 | (h2[2]; p).H

′
2

| (o1[3], o2[4], n).O
′
1 | (h3[12]; p).H

′
3 | (h4[6]; p).H

′
4 | (o3, o4[6], n).O

′
2

| (h5[7]; p).H
′
5 | (h6[8]; p).H

′
6 | (o5[7], o6[8], n[12]).O

′
3

| (h7[9]; p).H
′
7 | (h8[10]; p).H

′
8 | (o7[9], o8[10], n).O

′
4

FA | W | HO | H3O

{np[13],h5o5[7]}
−−−−−−−−−−→ (c1[1], c2[2], c3[3], c4[4]; p).C

′ | (h1[1]; p).H
′
1 | (h2[2]; p).H

′
2

| (o1[3], o2[4], n[13]).O
′
1 | (h3[12]; p).H

′
3 | (h4[6]; p).H

′
4 | (o3, o4[6], n).O

′
2

| (h5; p[13]).H
′
5 | (h6[8]; p).H

′
6 | (o5, o6[8], n[12]).O

′
3

| (h7[9]; p).H
′
7 | (h8[10]; p).H

′
8 | (o7[9], o8[10], n).O

′
4

⇒ (c1[1], c2[2], c3[3], c4[4]; p).C
′ | (h1[1]; p).H

′
1 | (h2[2]; p).H

′
2

| (o1[3], o2[4], n[13]).O
′
1 | (h3[12]; p).H

′
3 | (h4[6]; p).H

′
4 | (o3, o4[6], n).O

′
2

| (h5[13]; p).H
′
5 | (h6[8]; p).H

′
6 | (o5[12], o6[8], n).O

′
3

| (h7[9]; p).H
′
7 | (h8[10]; p).H

′
8 | (o7[9], o8[10], n).O

′
4

i6 | W | HO | W
The last rewrite is by rule move-r. The reaction continues as follows:

{np[11],c4o2[4]}
−−−−−−−−−−→ (c1[1], c2[2], c3[3], c4; p[11]).C

′ | (h1[1]; p).H
′
1 | (h2[2]; p).H

′
2

| (o1[3], o2, n[13]).O
′
1 | (h3[12]; p).H

′
3 | (h4[6]; p).H

′
4 | (o3, o4[6], n).O

′
2

| (h5[13]; p).H
′
5 | (h6[8]; p).H

′
6 | (o5[12], o6[8], n[11]).O

′
3

| (h7[9]; p).H
′
7 | (h8[10]; p).H

′
8 | (o7[9], o8[10], n).O

′
4

⇒ (c1[1], c2[2], c3[3], c4[11]; p).C
′ | (h1[1]; p).H

′
1 | (h2[2]; p).H

′
2

| (o1[3], o2[13], n).O
′
1 | (h3[12]; p).H

′
3 | (h4[6]; p).H

′
4 | (o3, o4[6], n).O

′
2

| (h5[13]; p).H
′
5 | (h6[8]; p).H

′
6 | (o5[12], o6[8], n[11]).O

′
3

| (h7[9]; p).H
′
7 | (h8[10]; p).H

′
8 | (o7[9], o8[10], n).O

′
4)

i8 | HO | W
We continue from i8 | HO | W via MD | HO | H3O with concerted actions:

{np[14],h6o6[8]}
−−−−−−−−−−→ (c1[1], c2[2], c3[3], c4[11]; p).C

′ | (h1[1]; p).H
′
1 | (h2[2]; p).H

′
2

| (o1[3], o2[13], n).O
′
1 | (h3[12]; p).H

′
3 | (h4[6]; p).H

′
4 | (o3, o4[6], n).O

′
2

| (h5[13]; p).H
′
5 | (h6; p[14]).H

′
6 | (o5[12], o6, n[11]).O

′
3

| (h7[9]; p).H
′
7 | (h8[10]; p).H

′
8 | (o7[9], o8[10], n[14]).O

′
4
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⇒ (c1[1], c2[2], c3[3], c4[11]; p).C
′ | (h1[1]; p).H

′
1 | (h2[2]; p).H

′
2

| (o1[3], o2[13], n).O
′
1 | (h3[12]; p).H

′
3 | (h4[6]; p).H

′
4 | (o3, o4[6], n).O

′
2

| (h5[13]; p).H
′
5 | (h6[14]; p).H

′
6 | (o5[12], o6[11], n).O

′
3

| (h7[9]; p).H
′
7 | (h8[10]; p).H

′
8 | (o7[9], o8[10], n[14]).O

′
4

MD | HO | H3O
Finally we reach the final state of a methanediol and two waters:

{np[5],h8o8[14]}
−−−−−−−−−−→ (c1[1], c2[2], c3[3], c4[11]; p).C

′ | (h1[1]; p).H
′
1 | (h2[2]; p).H

′
2

| (o1[3], o2[13], n).O
′
1 | (h3[12]; p).H

′
3 | (h4[6]; p).H

′
4 | (o3, o4[6], n[5]).O

′
2

| (h5[13]; p).H
′
5 | (h6[14]; p).H

′
6 | (o5[12], o6[11], n).O

′
3

| (h7[9]; p).H
′
7 | (h8; p[5]).H

′
8 | (o7[9], o8[10], n[14]).O

′
4

⇒ (c1[1], c2[2], c3[3], c4[11]; p).C
′ | (h1[1]; p).H

′
1 | (h2[2]; p).H

′
2

| (o1[3], o2[13], n).O
′
1 | (h3[12]; p).H

′
3 | (h4[6]; p).H

′
4 | (o3[5], o4[6], n).O

′
2

| (h5[13]; p).H
′
5 | (h6[10]; p).H

′
6 | (o5[12], o6[11], n).O

′
3

| (h7[9]; p).H
′
7 | (h8[5]; p]).H

′
8 | (o7[9], o8[10], n).O

′
4

MD | W | W
We return to the transition from the intermediate 6 to the intermediate 8

in Figure 11. Once the hydrogen is bound to the oxygen in the compound 6 we
have a so-called resonance, where the positive charge can be on the oxygen or
the carbon (or in between) and the structure resonates between the intermediate
6 and 7 (indicated by the dashed arrow in Figure 11). We can model this move-
ment between the two intermediates as follows: starting from i6 | W | HO | W
we break bond 4 without forming a new bond at the same time, and perform a
move-r rewrite on O1:

c4o2[4]
−−−−→ (c1[1], c2[2], c3[3], c4; p).C

′ | (h1[1]; p).H
′
1 | (h2[2]; p).H

′
2

| (o1[3], o2[13], n).O
′
1 | (h3[12]; p).H

′
3 | (h4[6]; p).H

′
4 | (o3, o4[6], n).O

′
2

| (h5[13]; p).H
′
5 | (h6[8]; p).H

′
6 | (o5[12], o6[8], n).O

′
3

| (h7[9]; p).H
′
7 | (h8[10]; p).H

′
8 | (o7[9], o8[10], n).O

′
4

i7 | W | HO | W
The movement from i7 to i6 is gotten by creating the bond on c4 and n of O1

with the key 4:

c4n[4]
−−−−→ (c1[1], c2[2], c3[3], c4[4]; p).C

′ | (h1[1]; p).H
′
1 | (h2[2]; p).H

′
2

| (o1[3], o2[13], n[4]).O
′
1 | (h3[12]; p).H

′
3 | (h4[6]; p).H

′
4 | (o3, o4[6], n).O

′
2

| (h5[13]; p).H
′
5 | (h6[8]; p).H

′
6 | (o5[12], o6[8], n).O

′
3

| (h7[9]; p).H
′
7 | (h8[10]; p).H

′
8 | (o7[9], o8[10], n).O

′
4
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Note that the last compound is equivalent chemically to i6 | W | HO | W, and
it is also identical syntactically to i6 | W | HO | W except the keys 4 and 13 are
swapped in O1.

We have noted before that the main path and the base-catalysed path form a
diamond: we can get from FA | W | W | W to i3 | H3O | W either via i2 | W | W
or via FA | W | HO | H3O. We underline that the resulting methanediol pro-
cesses are syntactically identical. However, there is no such tight correspondence
between methanediol in the main path and methanediol in the acid-catalysed
path. In the main path we bind a H2O to the carbon, and then use another
H2O as a proton shuttle to move a hydrogen. The H2O which is used as a
proton shuttle is unchanged. In the acid-catalysed path we bind a hydrogen to
the formaldehyde first, bind a H2O to it and then remove one of these hydro-
gens and put it back on a water. Hence, the two methanediol processes are not
identical but they represent chemically the same compound. We shall explain
later how this equivalence might be formally defined.

6.4. Other paths

We now discuss the remaining reactions in Figure 14.
The compounds 13 and 14 in Figure 13 are of particular interest since

they have only one path leading to and out of them. Firstly we can get from
i3 | H3O | W to i13 | H3O | H3O as follows:

(c1[1], c2[2], c3[3], c4[11]; p).C
′ | (h1[1]; p).H

′
1 | (h2[2]; p).H

′
2 | (o1[3], o2, n).O

′
1

| (h3[12]; p).H
′
3 | (h4[6]; p).H

′
4 | (o3[11], o4[6], n).O

′
2

| (h5[7]; p).H
′
5 | (h6[8]; p).H

′
6 | (o5[7], o6[8], n[12]).O

′
3

| (h7[9]; p).H
′
7 | (h8[10]; p).H

′
8 | (o7[9], o8[10], n).O

′
4

i3 | H3O | W

{np[13],h4o4[6]
−−−−−−−−−→}(c1[1], c2[2], c3[3], c4[11]; p).C

′ | (h1[1]; p).H
′
1 | (h2[2]; p).H

′
2

| (o1[3], o2, n).O
′
1 | (h3[12]; p).H

′
3 | (h4; p[13]).H

′
4 | (o3[11], o4, n).O

′
2

| (h5[7]; p).H
′
5 | (h6[8]; p).H

′
6 | (o5[7], o6[8], n[12]).O

′
3

| (h7[9]; p).H
′
7 | (h8[10]; p).H

′
8 | (o7[9], o8[10], n[13]).O

′
4

⇒ (c1[1], c2[2], c3[3], c4[11]; p).C
′ | (h1[1]; p).H

′
1 | (h2[2]; p).H

′
2

| (o1[3], o2, n).O
′
1 | (h3[12]; p).H

′
3 | (h4[13]; p).H

′
4 | (o3[11], o4, n).O

′
2

| (h5[7]; p).H
′
5 | (h6[8]; p).H

′
6 | (o5[7], o6[8], n[12]).O

′
3

| (h7[9]; p).H
′
7 | (h8[10]; p).H

′
8 | (o7[9], o8[10], n[13]).O

′
4

i13 | H3O | H3O
We can also reverse back to i3 | H3O | W by performing concerted actions fol-
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lowed by a promotion and a move:

{np[6],h4n[13]
−−−−−−−−−→}(c1[1], c2[2], c3[3], c4[11]; p).C

′ | (h1[1]; p).H
′
1 | (h2[2]; p).H

′
2

| (o1[3], o2, n).O
′
1 | (h3[12]; p).H

′
3 | (h4; p[6]).H

′
4 | (o3[11], o4, n[6]).O

′
2

| (h5[7]; p).H
′
5 | (h6[8]; p).H

′
6 | (o5[7], o6[8], n[12]).O

′
3

| (h7[9]; p).H
′
7 | (h8[10]; p).H

′
8 | (o7[9], o8[10], n).O

′
4

⇒ (c1[1], c2[2], c3[3], c4[11]; p).C
′ | (h1[1]; p).H

′
1 | (h2[2]; p).H

′
2

| (o1[3], o2, n).O
′
1 | (h3[12]; p).H

′
3 | (h4[6]; p).H

′
4 | (o3[11], o4[6], n).O

′
2

| (h5[7]; p).H
′
5 | (h6[8]; p).H

′
6 | (o5[7], o6[8], n[12]).O

′
3

| (h7[9]; p).H
′
7 | (h8[10]; p).H

′
8 | (o3[9], o8[10], n).O

′
4

i3 | H3O | W
Furthermore can also get from i8 | HO | W to i14 | HO | HO:

(c1[1], c2[2], c3[3], c4[1]; p]).C
′ | (h1[1]; p).H

′
1 | (h2[2]; p).H

′
2

| (o1[3], o2[13], n).O
′
1 | (h3[12]; p).H

′
3 | (h4[6]; p).H

′
4 | (o3, o4[6], n).O

′
2

| (h5[13]; p).H
′
5 | (h6[8]; p).H

′
6 | (o5[12], o6[8], n[11]).O

′
3

| (h7[9]; p).H
′
7 | (h8[10]; p).H

′
8 | (o7[9], o8[10], n).O

′
4

i8 | HO | W

{np[14],h7o7[9]}
−−−−−−−−−−→ (c1[1], c2[2], c3[3], c4[11]; p).C

′ | (h1[1]; p).H
′
1 | (h2[2]; p).H

′
2

| (o1[3], o2[13], n[14]).O
′
1 | (h3[12]; p).H

′
3 | (h4[6]; p).H

′
4 | (o3, o4[6], n).O

′
2

| (h5[13]; p).H
′
5 | (h6[8]; p).H

′
6 | (o5[12], o6[8], n[11]).O

′
3

| (h7; p[14]).H
′
7 | (h8[10]; p).H

′
8 | (o7, o8[10], n).O

′
4

⇒ (c1[1], c2[2], c3[3], c4[11]; p).C
′ | (h1[1]; p).H

′
1 | (h2[2]; p).H

′
2

| (o1[3], o2[13], n[14]).O
′
1 | (h3[12]; p).H

′
3 | (h4[6]; p).H

′
4 | (o3, o4[6], n).O

′
2

| (h5[13]; p).H
′
5 | (h6[8]; p).H

′
6 | (o5[12], o6[8], n[11]).O

′
3

| (h7[14]; p).H
′
7 | (h8[10]; p).H

′
8 | (o7, o8[10], n).O

′
4

i14 | HO | HO
And we can reverse back to i8 | HO | W in a very much the same way as from
i13 | H3O | H3O to i3 | H3O | W.

The reaction from i6 | W | HO | W to i6 | HO | HO | H3O and its inverse is
the autoprotolysis of water, and work independently of the rest. The corre-
sponding applies to the reaction from i7 | HO | HO | H3O to i7 | W | HO | W
and its reversal.

The step from i6 | HO | HO | H3O to i7 | HO | HO | H3O involves the inter-
mediate i6 and i8 only (as in Figure 11) and no other compounds, so the reaction
is as described before.
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The reaction from i2 | W | W to i2 | HO | H3OW is also an autoprotolysis of
water.

There are seven more reactions possible, all via concerted actions. We only
describe one of them, namely from FA | W | W | W to i6 | W | HO | W:

(c1[1], c2[2], c3[3], c4[4]; p).C
′ | (h1[1]; p).H

′
1 | (h2[2]; p).H

′
2

| (o1[3], o2[4], n).O
′
1 | (h3[5]; p).H

′
3 | (h4[6]; p).H

′
4 | (o3[5], o4[6], n).O

′
2

| (h5[7]; p).H
′
5 | (h6[8]; p).H

′
6 | (o5[7], o6[8], n).O

′
3

| (h7[9]; p).H
′
7 | (h8[10]; p).H

′
8 | (o7[9], o8[10], n).O

′
4

{np[13],h5o5[7]}
−−−−−−−−−−→ (c1[1], c2[2], c3[3], c4[4]; p).C

′ | (h1[1]; p).H
′
1 | (h2[2]; p).H

′
2

| (o1[3], o2[4], n[13]).O
′
1 | (h3[5]; p).H

′
3 | (h4[6]; p).H

′
4 | (o3[5], o4[6], n).O

′
2

| (h5; p[13]).H
′
5 | (h6[8]; p).H

′
6 | (o5, o6[8], n).O

′
3

| (h7[9]; p).H
′
7 | (h8[10]; p).H

′
8 | (o7[9], o8[10], n).O

′
4

⇒ (c1[1], c2[2], c3[3], c4[4]; p).C
′ | (h1[1]; p).H

′
1 | (h2[2]; p).H

′
2

| (o1[3], o2[4], n[13]).O
′
1 | (h3[5]; p).H

′
3 | (h4[6]; p).H

′
4 | (o3[5], o4[6], n).O

′
2

| (h5[13]; p).H
′
5 | (h6[8]; p).H

′
6 | (o5, o6[8], n).O

′
3

| (h7[9]; p).H
′
7 | (h8[10]; p).H

′
8 | (o7[9], o8[10], n).O

′
4

i6 | W | HO | W

6.5. Chemical equivalence

We have seen that the system of FA with three W evolves to MA with
two W via different sequences of concerted actions. Some paths end up at
the same process, others lead to somewhat different syntactically processes.
We have explained that these different processes represent the same chemical
compounds, and we have explained that the difference originates as a side effect
of using subscripted copies of atoms, where both the action names and process
names are uniformly subscripted, and of using keys. Now we present informally
our notion of chemical equivalence of systems of subscripted copies of processes.
This essentially amounts to performing alpha conversion on subscripts and keys
in processes. We leave the precise formulation for future research. Here, we
only demonstrate how the methanediol obtained via the main path is equivalent
chemically to the methanediol gotten via the acid-catalysed path by performing
a number of atom swaps or key changes.

It is clear that a copy H3 of hydrogen can be replaced in a compound by
H5 without changing the chemical meaning of the compound provided that H5

does not appear in the compound in the first place. Also, it is irrelevant what
precise keys are used in a process as we can replace a key by another fresh key
without changing the meaning of the process. Hence, using alpha conversion,
we can define a swap operation of subscripted versions of the same process and
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a swap operation of keys, and employ these swap operations to prove processes
chemically equivalent.

Recall the MD process produced via the main path:

c1[1], c2[2], c3[3], c4[11]; p).C
′ | (h1[1]; p).H

′
1 | (h2[2]; p).H

′
2 | (o1[3], o2[13], n).O

′
1

| (h3[13]; p).H
′
3 | (h4[6]; p).H

′
4 | (o3[11], o4[6], n).O

′
2

| (h5[7]; p).H
′
5 | (h6[8]; p).H

′
6 | (o5[7], o6[8], n).O

′
3

| (h7[9]; p).H
′
7 | (h8[10]; p).H

′
8 | (o7[9], o8[10], n).O

′
4

and the MD process produced via acid-catalysed path:

c1[1], c2[2], c3[3], c4[11]; p).C
′ | (h1[1]; p).H

′
1 | (h2[2]; p).H

′
2 | (o1[3], o2[13], n).O

′
1

| (h3[12]; p).H
′
3 | (h4[6]; p).H

′
4 | (o3[5], o4[6], n).O

′
2

| (h5[13]; p).H
′
5 | (h6[10]; p).H

′
6 | (o5[12], o6[11], n).O

′
3

| (h7[9]; p).H
′
7 | (h8[5]; p]).H

′
8 | (o7[9], o8[10], n).O

′
4

We take the second MD and we swap H3 with H5. This results in H3 becoming
bonded to O1 with key 13, and H5 becoming bonded to O3 with key 12. Note
that the same result is obtained by simply swapping keys 12 and 13 in H3 with
H5. This gives us:

c1[1], c2[2], c3[3], c4[11]; p).C
′ | (h1[1]; p).H

′
1 | (h2[2]; p).H

′
2 | (o1[3], o2[13], n).O

′
1

| (h3[13]; p).H
′
3 | (h4[6]; p).H

′
4 | (o3[5], o4[6], n).O

′
2

| (h5[12]; p).H
′
5 | (h6[10]; p).H

′
6 | (o5[12], o6[11], n).O

′
3

| (h7[9]; p).H
′
7 | (h8[5]; p]).H

′
8 | (o7[9], o8[10], n).O

′
4

Next, we swap O3 (together with H5 which is bonded to O3) with O2 (and H4

which is bonded to O2). This is done by swapping the key 11 on o6 of O3 with
the key 5 on o3 of O2. This gives us

c1[1], c2[2], c3[3], c4[11]; p).C
′ | (h1[1]; p).H

′
1 | (h2[2]; p).H

′
2 | (o1[3], o2[13], n).O

′
1

| (h3[13]; p).H
′
3 | (h4[6]; p).H

′
4 | (o3[11], o4[6], n).O

′
2

| (h5[12]; p).H
′
5 | (h6[10]; p).H

′
6 | (o5[12], o6[5], n).O

′
3

| (h7[9]; p).H
′
7 | (h8[5]; p]).H

′
8 | (o7[9], o8[10], n).O

′
4

Finally we swap H6 and H8, which is the same as swapping keys 5 and 10 in
H6 and H8, producing the following:

c1[1], c2[2], c3[3], c4[11]; p).C
′ | (h1[1]; p).H

′
1 | (h2[2]; p).H

′
2 | (o1[3], o2[13], n).O

′
1

| (h3[13]; p).H
′
3 | (h4[6]; p).H

′
4 | (o3[11], o4[6], n).O

′
2

| (h5[12]; p).H
′
5 | (h6[5]; p).H

′
6 | (o5[12], o6[5], n).O

′
3

| (h7[9]; p).H
′
7 | (h8[10]; p]).H

′
8 | (o7[9], o8[10], n).O

′
4

This is identical to the MD obtained obtained via the main path if we replace
also all the keys 12 and 5 by the keys 7 and 8, respectively, which are fresh.
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6.6. Evaluation

In this subsection we evaluate the suitability of CCB in the modelling of
covalent reactions as exemplified by the hydration of formaldehyde in water.
We first consider if all chemically valid interactions between the compounds of
the reaction can be represented well in our calculus. We have seen in Figure 11
the resonance between the intermediates i6 and i7. We are able to model ap-
propriately the movement between i6 and i7 by transitions that break a bond
or create a bond on its own. What is less clear is why this bond break should
happen at this point and not elsewhere. We are unable to represent the move-
ment from i7 to i8, however, we model appropriately the evolution from i6 to
i8 via a concerted actions transition. Apart from the reaction steps described
above, all other steps can be represented well in our calculus.

The other way of assessing the suitability of CCB for this type of reactions is
to ask if our calculus enables transitions which do not occur in reality. We notice
that some bonds can break on their own as, for example, in water molecules.
Although this does not happen in reality an alternative process exists which
produces the same products H and HO. This is the autoprotolysis of water which
we have described earlier and in [16]. So the breaking of water molecules could
be treated as harmless. Also a bond between carbon and oxygen in methanediol
can break on its own, without being accompanied by a new bond formation. This
is a consequence of allowing the break of the double bond in the compound i6 on
its own. The difference between these two cases is not properly modelled in our
calculus. However, if the carbon-oxygen bond in MD breaks the carbon could
bond immediately afterwards to the water, and we would get the compound i8,
which is a valid intermediate, so this break of the carbon-oxygen bond does not
not cause a problem. Our model also allows the interaction of the methanediol
with a water molecule in the final system MD | W | W. Since the carbon C has
the action p ready, and the oxygen O3 in the water has the action n ready, and
n, p is a part of our synchronisation function, a bond between C and O3 can
be created3. The reason why this type of interaction does not occur in reality
is that the four groups around the carbon shield it from any interaction (as
opposed to the three groups on the formaldehyde, of which two are relatively
small hydrogens). This is a steric effect, the effect due to atoms occupying space
and preventing other atoms from moving. Our calculus does not model spacial
arrangement of atoms well enough; we aim to address this in the future.

Finally we discuss how CCB compares to other calculi used for the modelling
biochemical reactions. We start with the process calculi based on CCS such as
CCS-R [7, 8] or CCSK [25, 26]. One of the advantages of CCB are the concerted
actions transitions. This permits us to represent faithfully that in covalent
reactions some compounds are unstable and cannot exist independently of the
reaction. A double bonded hydrogen is an example: it exists only “during”
concerted actions transition. Other calculi cannot represent this point; a double

3We have used a similar mechanism of C interacting with O to get from the compound 1
to the compound 2 in Figure 10.
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bonded hydrogen is a valid compound in those calculi and two transitions are
used instead of our concerted transition.

Graph-based formalisms such as the κ-calculus [9] use rewrite rules to encode
which bonds can be created, which bonds can be broken, and in which states.
So the designer of the rules influences what reactions can occur and how they
occur. In CCB, however, the processes contain all the information needed to
drive reactions, of course in accordance with the given SOS, without any external
control or guidance.

7. Conclusion

We have introduced a reversible process calculus CCB with a novel prefix-
ing operator which is inspired by the mechanism of covalent bonding. This
mechanism allows us to model locally controlled reversibility. We have given
the calculus operational semantics. The new operator permits us to perform
pairs of concerted actions, where the first element of the pair is a creation of a
(weak) bond and the second element is breaking one of the existing bonds. We
have also proposed rewrite rules that model promotion of weak bonds to strong
bonds. Our prefixing operator provides a purely local control of computation;
there is no need for an extensive memory or global control.

We have shown that the sub-calculus CCBs satisfies conservation and causal
consistency, and the full calculus satisfies several diamond properties. CCB is
more expressive than other reversible calculi as it can also model out-of-causal
order computation. We have shown that biochemical reactions with covalent
bonding can be represented naturally and faithfully thanks to our new prefixing
operator, and via concerted actions transitions and promotion rules. We have
presented a detailed CCB model of the hydration of formaldehyde in water
into methanediol, an industrially important reaction, where the creation and
breaking of some bonds are examples of locally controlled out-of-causal order
computation.
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Appendix

Proposition 4. Let P be consistent. If P
{µ[k],ν[l]}
−−−−−−→ P ′ then k /∈ keys(P ),

l ∈ keys(P ) and keys(P ′) = (keys(P ) ∪ {k}) \ {l} for all P ′.

Proof. By induction on the depth of the inference tree of P
{µ[k],ν[l]}
−−−−−−→ Q.

1. Base case follows for processes with the inference tree of depth 0.

2. Inductive hypothesis: We assume that Proposition 4 holds for all sub-
processes R of P and all ν[l] and all µ[k], namely if R is a consistent

process and R
{µ[k],ν[l]}
−−−−−−→ R′ for some R′ then k /∈ keys(R), l ∈ keys(R)

and keys(R′) = (keys(R) ∪ {k}) \ {l}.

3. Induction step: We show that Proposition 4 holds for P . For this we
consider cases depending on the structure of P :

(a) P ≡ R | Q: There are two cases here:

i. The transition is by the rule concert in Figure 5: Assume P is

consistent and P
{µ[k],ν[l]}
−−−−−−→ P ′ for some P ′. Since P

{µ[k],ν[l]}
−−−−−−→

P ′, by rule concert, we have R
(µ1)[k]
−−−−→ R′, Q

(µ2)[k]
−−−−→ Q′ or

Q
µ2[k]
−−−→ Q′, R′

ν1[l]
−−−→ R′′, Q′

ν2[l]
−−−→ Q′′, γ(ν1, ν2) = ν and

γ(µ1, µ2) = µ must hold without loss of generality. Also, P ′ ≡
R′′ | Q′′. We can calculate keys(P ): keys(P ) = keys(R)∪keys(Q).
Since R and Q can both perform a transition with k we know,
by argument similar to that used in the proof of Proposition 1.1,
that k /∈ keys(R) and k /∈ keys(Q), and therefore k /∈ keys(P ) as
required. Since R′ and Q′ can perform undoing of actions with
the key l, we know that l ∈ keys(R′) and l ∈ keys(Q′) by Propo-
sition 1.2. Transitions of R and Q to R′ and Q′ respectively do
not involve l, so l ∈ keys(R) and l ∈ keys(Q) most hold. Since
keys(P ) = keys(R ∪ Q) we deduce that l ∈ keys(P ) as required.
Because of Proposition 1.1 and Proposition 1.2 we can calculate
keys(Q′′): keys(Q′′) = keys(Q′) \ {l} = (keys(Q) ∪ {k}) \ {l},
keys(R′′): keys(R′′) = keys(R′) \ {l} = (keys(R) ∪ {k}) \ {l}, and
keys(P ′): keys(P ′) = keys(R′′) ∪ keys(Q′′) = (keys(R) ∪ {k}) \
{l} ∪ (keys(Q) ∪ {k}) \ {l} = (keys(R) ∪ keys(Q) ∪ {k}) \ {l} =
(keys(P ) ∪ {k}) \ {l} as required.

ii. The transition is by concert par rule in Figure 5: We assume

without loss of generality R
{µ[k],ν[l]}
−−−−−−→ R′ and fsh[k](Q), and

P ′ ≡ R′ | Q. By the inductive hypothesis we have k /∈ keys(R),
l ∈ keys(R) and keys(R′) = (keys(R)∪{k})\{l}. Since keys(P ) =
keys(R | Q) = keys(R) ∪ keys(Q) and fsh[k](Q) and k /∈ keys(R)
we deduce that k /∈ keys(P ). Also since l ∈ keys(R) and keys(P ) =
keys(R | Q) = keys(R)∪keys(Q) and we deduce that l ∈ keys(P ).
Hence, we have keys(P ′) = keys(R′) ∪ keys(Q) = (keys(R) ∪
{k}) \ {l} ∪ keys(Q). Since l /∈ keys(Q) by concert par, we have
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(keys(R) ∪ {k}) \ {l} ∪ keys(Q) = (keys(R | Q) ∪ {k}) \ {l} =
(keys(P ) ∪ {k}) \ {l} as required.

(b) P ≡ (t; b).R: The transition is by concert act rule in Figure 5. Assume

P is consistent and P
{µ[k],ν[l]}
−−−−−−→ P ′. We deduce that P ′ ≡ (t; b).R′ for

some R′. Recall that t denotes a sequence of past actions, namely an
element from AK∗. The premises of concert act ensure that fsh[k](t)

and R
{µ[k],ν[l]}
−−−−−−→ R′. The processR is consistent since P is consistent.

Since R is consistent and R
{µ[k],ν[l]}
−−−−−−→ R′ then, by the inductive

hypothesis, k /∈ keys(R), l ∈ keys(R) and keys(R′) = (keys(R)∪{k})\
{l}. Since k /∈ keys(R) and fsh[k](t) we obtain k /∈ keys((t; b).R) =
keys(P ) as required. Since l ∈ keys(R) we obtain l ∈ keys((t; b).R) =
keys(P ) as required. It is clear by the rules act2 and concert act that
since l ∈ keys(R) the key l is not among the keys in t in (t; b).R.
We now calculate keys(P ′): keys(P ′) = keys((t; b).R′) = k(t) ∪ k(b) ∪
keys(R′) = k(t)∪k(b)∪(keys(R)∪{k})\{l} = ((k(t)∪k(b)∪keys(R))∪
{k}) \ {l} = (keys((t; b).R) ∪ {k}) \ {l} = (keys(P ) ∪ {k}) \ {l} as
required.

(c) P ≡ R \ L: The transition must be by concert res from Figure 5.

Assume P is consistent and P
{µ[k],ν[l]}
−−−−−−→ P ′. Since P

{µ[k],ν[l]}
−−−−−−→

P ′ by rule concert res we obtain R
{µ[k],ν[l]}
−−−−−−→ R′ and µ, ν /∈ L ∪

(L). Since k /∈ keys(R) by the inductive hypothesis it follows that
k /∈ keys(R \ L) since restriction does not change the keys of the
process by definition of keys. Since l ∈ keys(R) by the inductive
hypothesis it follows that l ∈ keys(R \ L). Also keys(P ) = keys(R)
and keys(P ′) = keys(R′) according to the definition of keys. Since by
the inductive hypothesis keys(R′) = keys(R) ∪ {k} we can calculate
keys(P ′): keys(P ′) = keys(R′\L) = keys(R′) = (keys(R)∪{k})\{l} =
(keys(P ) ∪ {k}) \ {l} as required.

(d) There are no concerted transitions for P ≡ (s; c).R and P ≡ S with

S
def
= R.

Proposition 6. If t1 ≡ P
µ[k]
−−→ P ′ and t2 ≡ P

ν[l]
−−→ P ′′, then either t1 and t2

are concurrent or k ∈ cau(P ′′, l).

Proof. By induction on the depth of inference trees for transition of P .

1. Base case: Obvious.

2. Inductive hypothesis: We assume that for all subprocesses R of P and all

c[m], d[n], if R is a consistent process, t1 ≡ R
c[m]
−−−→ R′ and t2 ≡ R

d[n]
−−→ R′′

then either t1 and t2 are concurrent or m ∈ cau(P ′′, n).

3. Induction step: We show Proposition 6 for P . By Definition 5 there is

either an M such that M 6= P , P ′ ν[l]
−−→ M and P ′′

µ[k]
−−→ M , or k ∈

cau(P ′′, l) holds. We consider cases based on the structure of P :
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(a) P ≡ (s; b).R with s containing at least one past action and at least
one fresh action. The transitions t1 and t2 are by rev act1 respectively
act1. Since there is nothing in the rules giving any of them prece-
dence, the transitions are concurrent as required. With s′ being the
sequence obtained from s by removing actions ν and µ[k] we have t1 ≡

(s′, ν, µ[k]; b).R
µ[k]
−−→ (s′, ν, µ, ; b).R and t2 ≡ (s′, ν, µ[k]; b).R

ν[l]
−−→

(s′, ν[l], µ[k]; b).R. We now deduce M ≡ (s′, ν[l], µ; b).R, and the
properties required for ν and µ[k] being concurrent hold: namely

(s′, ν, µ, ; b).R
ν[l]
−−→ M and (s′, ν[l], µ[k]; b).R

µ[k]
−−→ M .

(b) P ≡ (s; b).R where s contains only fresh actions: We cannot have the
required transition t2. Hence Proposition 6 is vacuously valid.

(c) P ≡ (s; b).R where s contains only past actions: There is R
ν[l]
−−→

R′, and a µ[k] ∈ s so that t2 ≡ (s; b).R
ν[l]
−−→ (s; b).R′ and t1 ≡

(s; b).R
µ[k]
−−→ (s′; b).R for some s′. These transitions are not concur-

rent since doing any action in R prevents undoing of actions in s and
vice versa. Hence k ∈ cau(P ′′, l) holds with P ′′ ≡ (s; b).R′.

(d) P ≡ Q | R: There are three cases:

i. t1 by rule rev par and t2 by rule par. There are two sub-cases:

A. Transitions in the same subprocess: Assume without loss

of generality Q
µ[k]
−−→ Q′ and Q

ν[l]
−−→ Q′′. By the induc-

tive hypothesis these transitions are either concurrent or
k ∈ cau(Q′′, l).
- concurrent transitions: By the inductive hypothesis there is

an N so that Q′ ν[l]
−−→ N and Q′′ mu[k]

−−−−→ N . We can conclude

by using rule rev par that Q′ | R
ν[l]
−−→ N | R and Q′′ | R

µ[k]
−−→

N | R. Letting M ≡ N | R we get the required result.
- k ∈ cau(Q′′, l): Since cau(P | Q, k) = cau(P, k)∪ cau(Q, k)
according to Definition 7 we get cau(Q′′ | R, l) = cau(Q′′, l)∪
cau(R, l). If k ∈ cau(Q′′, l) then k ∈ cau(Q′′, l) ∪ cau(R, l)
must be true as well and, hence, k ∈ cau(Q′′ | R). Since
P ′′ ≡ Q′′ | R it follows that k ∈ cau(P ′′, l) as required.

B. Transitions in different subprocesses: Assume without loss of

generality that Q
µ[k]
−−→ Q′ and R

ν[l]
−−→ R′. These transitions

are concurrent. By rule rev par Q | R
µ[k]
−−→ Q′ | R

ν[l]
−−→

Q′ | R′ and Q | R
ν[l]
−−→ Q | R′

µ[k]
−−→ Q′ | R′ are valid. These

form the diamond required for concurrent transitions with
M ≡ Q′ | R′.

ii. P
µ[k]
−−→ P ′ by rule rev com and P

ν[l]
−−→ P ′′ by rule par: Without

loss of generality this covers all cases with one par and one rev com

or one rev par and one com transition. We assume that P
µ[k]
−−→ P ′
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happens by rule rev com, where γ(µ1, µ2) = µ, and that P
ν[l]
−−→

P ′′ happens by rule par. We also assume that ν happens in Q, so

that Q
ν[l]
−−→ Q′, and that Q

µ1[k]
−−−→ Q′′ and R

µ2[k]
−−−→ R′. We know

that fsh[l](R) because of the preconditions of the par rule and

that l 6= k because fsh[l](R) and R
µ2[k]
−−−→ R′′, a transition which

could not happen if l = k, since according to Proposition 1.2
a key cannot be fresh for a reverse transition to happen with

this key. By the inductive hypothesis transition Q
ν[l]
−−→ Q′ and

Q
µ1[k]
−−−→ Q′′ are either concurrent or k ∈ cau(Q′, l).

A. concurrent transitions: By the inductive hypothesis there is

an N so that Q′
µ1[k]
−−−→ N and Q′′ ν[l]

−−→ N . Using the rev

com rule we can deduce that P
µ[k]
−−→ Q′′ | R′, P

ν[l]
−−→ Q′ | R,

Q′′ | R′ ν[l]
−−→ N | R′ and Q′ | R

µ[k]
−−→ N | R′. Letting

M ≡ N | R′ we obtain the result.
B. k ∈ cau(Q′, l): k ∈ cau(Q′, l) implies k ∈ (cau(Q′, l) ∪

cau(R, l)) according to Definition 7, which is k ∈ cau(Q′ | R, l).
Since P ′′ = Q′ | R we have k ∈ cau(P ′′, l) as required.

iii. P
µ[k]
−−→ P ′ by rev com and P

ν[l]
−−→ P ′′ by com: Without loss of

generality this covers all cases with one com and one rev com

transition. We assume that γ(µ1, µ2) = µ and γ(ν1, ν2) = ν.

Also Q
µ1[k]
−−−→ Q′, Q

ν1[l]
−−−→ Q′′, R

µ2[k]
−−−→ R′ and R

ν2[l]
−−−→ R′′. By

the inductive hypothesis the transitions µ1 and ν1 must be either
concurrent or k ∈ cau(Q′′, l). For transitions µ2 and ν2 the same
holds. So we distinguish three cases:

A. two concurrent transitions: Since Q
µ1[k]
−−−→ Q′ and Q

ν1[l]
−−−→ Q′′

by the inductive hypothesis it follows that there is an N so

that Q′ ν1[l]
−−−→ N , and Q′′

µ1[k]
−−−→ N and since R

µ2[k]
−−−→ R′

and R
ν2[l]
−−−→ R′′ there is an N ′ so that R′ ν2[l]

−−−→ N ′ and

R′′
µ2[k]
−−−→ N ′. By rev par and par it follows that P

µ[k]
−−→

Q′ | R′ ν[l]
−−→ N | N ′ and P

ν[l]
−−→ Q′′ | R′′ µ[k]

−−→ N | N ′.
Letting M ≡ N | N ′ gives the result.

B. k ∈ cau(Q′′, l) and k ∈ cau(R′′, l): Since P ′′ ≡ Q′′ | R′′ we
can calculate cau(P ′′, l) = cau(Q′′ | R′′, l) = cau(Q′′, l) ∪
cau(R′′, l). Since k ∈ cau(Q′′, l) and k ∈ cau(R′′, l) it follows
that k ∈ cau(Q′′, l) ∪ cau(R′′, l) and that k ∈ cau(P ′′, l) as
required.

C. k ∈ cau(Q′′, l), and R
µ2[k]
−−−→ R′ and R

ν2[l]
−−−→ R′′ are concur-

rent: Since P ′′ ≡ Q′′ | R′′ we get cau(P ′′, l) = cau(Q′′ | R′′, l) =
cau(Q′′, l) ∪ cau(R′′, l). Since k ∈ cau(Q′′, l) it follows that
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k ∈ cau(Q′′, l) ∪ cau(R′′, l) and that k ∈ cau(P ′′, l) as re-

quired. This also applies when k ∈ cau(R′′, l), so Q
µ1[k]
−−−→ Q′

and Q
ν1[l]
−−−→ Q′′ are concurrent.

(e) P ≡ R \ L: The transitions R \ L
µ[k]
−−→ R′ \ L and R \ L

ν[l]
−−→ R′′ \ L

are by rule rev res in Figure 4 respectively res in Figure 3. We assume

without loss of generality that R
µ[k]
−−→ R′, R

ν[l]
−−→ R′′ and µ, ν /∈ L.

By the inductive hypothesis R
µ[k]
−−→ R′ and R

ν[l]
−−→ R′′ are either

concurrent or k ∈ cau(R′′, l).

i. concurrent transitions: By the inductive hypothesis there is an

N so that R′
µ[l]
−−→ N and R′′ ν[k]

−−→ N . Consider M ≡ N \L.

Since µ, ν /∈ L by rule rev res respectively res we deduce P
µ[k]
−−→

R′\L
ν[l]
−−→ M and P

ν[l]
−−→ R′′\L

µ[k]
−−→ M .

ii. k ∈ cau(R′′, l): Since cau(P \L, k) = cau(P, k) according to
Definition 7 we calculate cau(R′′ \L, l) = cau(R′′, l). If k ∈
cau(R′′, l) it follows that k ∈ cau(R′′\L, l) as required.

(f) P ≡ S with S
def
= R: similar to the P ≡ R \ L case.

Proposition 7 (Rearrangement). If σ is a trace then there exist forward
traces σ1 and σ2 such that σ ≍ σ•

1 ;σ2.

Proof. We give a constructive proof. We show that any trace can be trans-
formed to the form required by Proposition7. Any trace must be either σ, σ• or
σ•
1 ;σ2 or it must be of the form σ•

1 ;σ
∗
2 ; t1; t

•
2;σ3 where σ, σ1 and σ2 are forward

traces and σ3 is composed of any number of forward and reverse transitions. In
other words this means that we can identify the earliest pair of forward-reverse
transitions. The instructions for the transformation to the required form are in
the algorithm in Figure 16.

We show that the algorithm terminates in all cases with the required result.
Executing the inner while loop (lines 9 to 13) once decreases the length of the
resulting σ2 by 1 and increases the length of the resulting σ3 by 1.

After the inner while loop terminates we have length(σ′
2) = length(σ2).

The trace σ•
1 ; t

• forms a new reverse only trace whose length is increased by 1
compared to σ•

1 .
Executing the outer while loop once decreases the length of the sequence

t•2;σ3, which is the “unprocessed” part of σ•
1 ;σ2; t1; t

•
2;σ3, and changes the

structure of σinput so it is no longer as required by Proposition 7. The se-
quence σ•

1 ;σ2; t1 is of the form required by Proposition 7 and its length is in-
creased by the outer while loop. This is because at the end of the outer while
loop we have σ•

1 ; t
•;σ′

2;σ3. The part σ•
1 ; t

•;σ′
2 of this trace is in the correct

form and its length is increased by one, since t• is added, σ•
1 is unchanged, and

length(σ′
2) = length(σ2). The sequence σ3 is the “unprocessed” part, which has

been shortened by one transition, in comparison to t•2;σ3 since σ3 is unchanged.
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Hence the algorithm terminates once σ3 has been completely processed and the
final σinput has the required form with σ3 being empty.

Proposition 8 (Shortening). If σ1, σ2 are coinitial and cofinal traces, with
σ2 forward, then there exists a forward trace σ′

1 of length at most that of σ1 such
that σ′

1 ≍ σ2.

Proof. By induction on the length of σ1. If σ1 is a forward trace then the
proposition holds. If not, then by Proposition 7 we assume σ1 to be σ′•;σ
for some forward sequences σ and σ′. There is only one sub-trace t•1; t2 in
σ′•;σ where the first transition t•1 is reverse and the second transition t2 is

forward. We assume t•1 ≡ P
µ[k]
−−→ P ′ and t2 ≡ P ′ ν[l]

−−→ P ′′. There is a transition

t′ ≡ R
µ[k]
−−→ R′ in σ1 for some R, R′, otherwise σ1 could not be cofinal with σ2.

Proposition 1.3 implies that there is a transition t1 ≡ P ′ µ[k]
−−→ P . Transitions t1

and t2 are either concurrent, in conflict, or l ∈ cau(P, k) or k ∈ cau(P ′′, l). The
possibility of t1 and t2 being in conflict is excluded since we have t1 and t2 in a

valid trace, namely P ′ ν[l]
−−→ P ′′ →∗ R

µ[k]
−−→ R′. Also k ∈ cau(P ′′, l) is impossible

since we perform ν[l] before µ[k] in the trace P
µ[k]
−−→ P ′ ν[l]

−−→ P ′′ →∗ R
µ[k]
−−→ R′.

Finally, l ∈ cau(P, k) cannot hold because otherwise, since P ′ µ[k]
−−→ P , some

α[l] transition must have happened in P ′ before P ′ µ[k]
−−→ P . This contradicts

P ′ ν[l]
−−→ P ′′ (key l is not fresh in P ′ due to the α[l] action, hence P ′ ν[l]

−−→ P ′′′ is
not possible for any P ′′′). Hence l /∈ cau(P, k) and, overall, the only possibility
is that t1 and t2 are concurrent.

The transitions t•1 and t2 form a diamond with two transitions t3 ≡ P
ν[l]
−−→

P ′′′ and t•4 ≡ P ′′′
µ[k]
−−→ P ′′ for some P ′′′ according to Proposition 2. The trace

t3; t
•
4 can replace t•1; t2 in σ′•;σ since the traces are coinitial and cofinal. We

can repeat this process of “moving” an equivalent version of t•4 to the right
(by following the steps described above) until the resulting t• (with the label

µ[k]) is directly to the left of t′ ≡ R
µ[k]
−−→ R′. These transitions are then

Q
µ[k]
−−→ R

µ[k]
−−→ R′ for some Q (where Q = R). Using Definition 8 we can

remove them. The resulting trace is shorter than σ1 and we can repeat the
process until the trace is forwards only.
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1 Let σinput be our trace

2 while (σinput 6= σ ∧ σinput 6= σ• ∧ σinput 6= σ•
1 ;σ2 for all forward traces

σ, σ1, σ2)

3 σinput is of the form σ•
1 ;σ2; t1; t

•
2;σ3 for some (possibly new)

σ1, σ2, t1, t2, σ3, where σ1, σ2, σ3 are forward traces, t1, t2 are for-
ward transitions (any of σ1, σ2, σ3 could be empty sequences ǫ)

Let length(σ1) = n, length(σ2) = k, length(σ3) = l. Distance
from start to the pair t1; t

•
2 is n+ k

4 Let t1 ≡ P
µ[m]
−−−→ P ′, t•2 ≡ P ′ ν[n]

−−→ P ′′ (so t2 ≡ P ′′ ν[n]
−−→ P ′)

5 if (µ[m] = ν[n]) then

6 Since µ[m] = ν[k] we get P ≡ P ′′ and, by Definition 8,
transitions t1; t

•
2 are replaced by ǫ in σinput

7 σinput is now σ•
1 ;σ2;σ3

8 else

9 while (σ2 6= ǫ)

10 σinput is σ
•
1 ;σ2; t1; t

•
2;σ3 for some (possibly new) σ2,

t1, t2 and σ3, with σ1 and σ2 being forward traces
and t1 and t2 being forward transitions

11 According to Proposition 1.3 there must be a transi-

tion t•1 ≡ P ′
µ[m]
−−−→ P . t•1 and t•2 form a diamond with

two transitions t•3 ≡ P
ν[n]
−−→ M and t•4 ≡ P ′′

µ[m]
−−−→ M

for some M according to Proposition 2. Accord-
ing to Proposition 1.3 there must be a transition

t4 ≡ M
µ[m]
−−−→ P ′′. The trace t•3; t4 replaces t1; t

•
2

in σinput since the traces are coinitial and cofinal

12 σinput is now σ•
1 ;σ2; t

•
3; t4;σ3

13 end while (at this point σ2 is ǫ)

14 σinput is now σ•
1 ; t

•;σ′
2;σ3 for some t, σ′

2 where σ′
2 is for-

wards only

15 end if

16 end while (at this point σinput = σ ∨ σinput = σ• ∨ σinput = σ•
1 ;σ2, for

some forward traces σ, σ1 and σ2)

Figure 16: Rearrangement algorithm.
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