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Abstract— Autonomous operations in the proximity of Near 

Earth Objects (NEO) are perhaps the most challenging and 

demanding type of mission operation currently being 

considered. The exceptional variability of geometric and 

illumination conditions, the scarcity of large scale surface 

features and the strong perturbations in their proximity require 

incredibly robust systems to be handled. Robustness is usually 

introduced by either increasing the number and/or the 

complexity of on-board sensors, or by employing algorithms 

capable of handling uncertainties, often computationally heavy. 

While for a large satellite this would be predominantly an 

economic issue, for small satellites these constraints might push 

the ability to accomplish challenging missions beyond the realm 

of technical possibility. The scope of this paper is to present an 

active approach that allows small satellites deployed by a 

mothership to perform robust navigation using only a 

monocular visible camera. In particular, the introduction of 

Non-cooperative Artificial Visual landmarks (NAV-

Landmarks) on the surface of the target object is proposed to 

augment the capabilities of small satellites. These external 

elements can be effectively regarded as an infrastructure 

forming an extension of the landing system. The quantitative 

efficiency estimation of this approach will be performed by 

comparing the outputs of a visual odometry algorithm, which 

operates on sequences of images representing ballistic descents 

around a small non-rotating asteroid. These sequences of virtual 

images will be obtained through the integration of two simulated 

models, both based on the Apollo asteroid 101955 Bennu. The 

first is a dynamical model, describing the landing trajectory, 

realized by integrating over time the gravitational potential 

around a three-axis ellipsoid. The second model is visual, 

generated by introducing in Unreal Engine 4 a CAD model of 

the asteroid (with a resolution of 75 cm) and scattering on its 

surface a number N of cubes with side length L. The effect of 

both N and L on the navigation accuracy will be reported. While 

defining an optimal shape for the NAV-Landmarks is out of the 

scope of this paper, prescriptions about the beacons geometry 

will be provided. In particular, in this work the objects will be 

represented as high-visibility cubes. This shape satisfies, albeit 

in a non-optimal way, most of the design goals.  
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1. INTRODUCTION 

Interplanetary CubeSats are unquestionably still an 
emerging technological field: at the time of writing, less than 
a year has passed from the first, and for now only, mission of 
this type, Mars Cube One (MarCO) [1].  

A CubeSat is a small satellite designed complying with a 
particular standard, defined by Bob Twiggs and Jordi Puig-
Suari in 1999 [2]. The design prescription requires these 
spacecraft to be a small collection of basic “Units” (1U), 
defined as cubes with sides measuring 10.0 �� and a mass 
smaller than 3.00 ���  (1.33 �� ). Typical architectures are 
1U, 2U, 3U, 6U and 12U. This restricted volume limits the 
amount of resources available on board, substantially 
constraining the level of autonomy achievable by these small 
satellites. While this shortcoming might not be a problem 
when orbiting in proximity to the Earth, since human 
controllers or other forms of navigational support might 
compensate for it, it becomes critical for deep space missions.  
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Whereas it might be difficult for a CubeSat to carry out a 
complex mission by itself, a winning paradigm to employ 
these spacecraft might lie in integrating their capabilities with 
either other satellites or some form of infrastructure. This 
could mean either extending the capabilities of CubeSats 
through cooperation or interaction with other entities, or 
further augmenting more complex probes through small 
satellites employed as external subsystems. As an example of 
the latter, the two 6U orbital modules making up the MarCO 
mission, MarCO-A and MarCO-B, were used as an additional 
detached communication subsystem for the InSight lander, 
acting as beyond-LOS orbital relays during its EDL phase [3].  

This work explores this idea of CubeSats operating as part 
of a hybrid distributed system, encompassing the landing 
probe and of a set of passive beacons serving as navigational 
aids. In particular, the hypothesis under test in this work is that 
the addition of artificial features to the surface of the landing 
target enhances the accuracy of optical estimations at a 
medium distance.  

While this argument might sound intuitively true, it is 
necessary to verify it. Moreover, in order to justify the non-
negligible impact of the deployable markers on the critical 
mass budget, their effectiveness must be objectively proved 
and quantified. This paper will do so, focusing on a particular 
target, namely small asteroids. This because their reduced size 
allows for the implementation of a whole-target coverage 
dispersion configuration, in addition to the commonly studied 
pseudo-clustering in the expected landing area.  

A whole-target coverage approach can be regarded as an 
inverse-GPS architecture, with an orbiting receiver and a 
constellation-like infrastructure on the ground. In particular, 
the studied scenario contemplates the ballistic deployment of 
a number � of small markers by a mothercraft, implemented 
before the deployment of a CubeSat lander. While the 
challenges for mission design are not explored in this paper, it 
is assumed that the markers are extendable devices requiring 
little mass and volume to be transported.  

 After discussing the state of the art concerning fiducial 
markers for asteroids proximity operations in Section II, every 
aspect of the simulation design process will be thoroughly 
described and explained in Section III. Section IV briefly 
introduces considerations regarding the possible design 
constraints of the landmarks, while, ultimately, Section V 
defines a specific test case and presents the effect of the 
landmarks on a visual navigation algorithm.  

2. STATE OF THE ART

The key to far-reaching, cost-effective space operations 
lies in warehousing [4]. To establish a warehouse means to 
structure a repository of modular, specialised, solutions which 
can easily be integrated and deployed. The usual approach to 
assemble this collection is to develop and collect sensors and 
algorithms. What is attempted in this work is to investigate a 
paradigm shift. Namely, focusing the warehousing efforts on 
developing a set of infrastructures used to structure the 
environments as default operating spaces. In one of its 
primitive iterations, this architecture would be realized 
through reference guideposts scattered on the target surface of 
interest: these are the NAV-Landmarks found in the title.  

Using artificial markers as an aid while performing visual 
controlled tasks is a rather common strategy for an endless 
range of operations, either manned or autonomous. Indeed, 

typical applications may span from on-orbit proximity 
operations [5] to UAVs landing [6], from navigation of 
terrestrial robots [7] to underwater applications [8]. The 
function of fiducials is to provide consistent, standardized 
information and cues, used to augment the environment or a 
target into a cooperative form. A cooperative entity provides 
to the observing subsystem operative information that need 
little or no processing to be used.  

These features can be either added while designing the 
target (for example, for servicing) or deployed at a later stage. 
This means that the operative methodology can be calibrated 
on operating using principally these elements, known a priori.  

This approach, however, seems to have been mostly 
neglected by the space scholars and engineers for applications 
beyond Earth’s orbit. There, coherently with the rest of the 
computer vision community, the research trends appears to be 
oriented towards highly centralized, marker-less solutions 
(e.g. [9]) or towards high environmental specialization (e.g. 
[10]). The constraints over volumetric and mass budgets are 
rarely as severe as in the space domain, and transporting 
markers would negatively impact them, potentially severely.  

Ultimately, we mainly expect three factors to influence the 
realization of this scheme. These are the mass-to-intelligence 
costs ratio, the trends concerning space exploration strategies, 
and the development of expandable structures [11], [12].  

However, despite the listed constraints, there have been 
two instances in the last few years where this technology has 
been employed in a space missions. Namely, instances of this 
technology have already been used, on the JAXA probe 
Hayabusa [13], and its successor, Hayabusa2 [14]. Both these 
probes carried on board, respectively, three and five highly 
reflective orbs, to enable close-range navigation for a pinpoint 
autonomous landings. More details about the objects 
themselves will be provided in Section V. To further exploit 
the reflectivity of the orbs during camera observations, both 
probes were equipped with a flashlight (FLA instrument) to 
highlight the markers on the surface. The programmed 
markers release altitude had been set to roughly 30 meters in 
both cases [14], [15]. However, the deployment was realized 
at 40 meters for Hayabusa [15] and reported to happen around 
10 meters in subsequent Hayabusa2 sources [16]. The features 
injection strategy envisions them deployed not all at once, but 
iteratively, with the already deployed markers used to increase 
the deployment accuracy of the subsequent ones, ultimately 
forming a pseudo-cluster around the desired landing area. The 
augmentation provided by these objects can then be integrated 
in a wide array of close-range Guidance and Navigation 
strategies [15], [17]. 

3. SIMULATION

The overall navigation analysis is going to be performed 

on a visuodynamical simulation. That is, a simulation 

coupling optical and dynamical effects, constructed 

overlapping and integrating two models generated through 

two different approximations of the same object. Specifically, 

both approximations are constructed from a non-rotating 

(� = 0) object having density and volume identical to the 

asteroid 101955 Bennu, towards which the CubeSat performs 

a ballistic descent. However, whereas the camera output 

simulation is built around an object reconstructed from the 

real Bennu, the descent dynamics propagated in the visual 
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model is generated by approximating the asteroid as a three-

axis ellipsoid with uniform density.  

A. Orbital Mechanics 

Let us assume that the gravity field of Bennu can be well-
approximated by the one induced by a uniform mass 
distribution shaped as a tri-axial ellipsoid. The principal axes 
of the ellipsoid are going to be considered aligned with the 
standard basis defining the Inertial Reference Frame, and 
indicated, respectively, as ��, �� and ��. Using them, every 

point lying on the surface of the ellipsoid can be described by 
the equation ����� + 

����� + 
����� = 1  (1) 

A first naïve choice for these axial extensions could be 
represented by using the real radii of the spinning-top-shaped 
Bennu. However, this would lead to a grossly overestimated 
volume, and given that when using a constant density model 
(� = �����) the mass � varies linearly with the volume �� =  �� (2) 

 Ultimately, through those numbers an overestimation of 
the mass would have been obtained. The logical solution to 
this seem, consequently, to employ a volume-preserving 
equivalence. Such a reduction to an isovolumetric ellipsoid 
can be operated by transforming the object into its DEEVE, 
Dynamically Equivalent Equal Volume Ellipsoid, which adds 
also the useful constraint of dynamical (i.e. inertial) 

equivalence. Values for the  ��������  (� = 1, 2, 3)  of Bennu 

can be found in [18]. Some updated, post-rendezvous, data 
were recently presented in Lauretta et al. [19]. While among 
those data it is not possible to find updated figures for the 
DEEVE axes, it is possible to observe how the values 
measured on-site are reasonably close to the ones presented in 
[18]. Therefore, we feel confident that even by using pre-
encounter values the output model would be satisfactorily 
realistic.  

As a consequence of the � = 0 hypothesis, completing 
the set of parameters used to define the orbital mechanics 
model requires only to define the density. The average bulk 
density can easily be retrieved from [19].  Through equation 
(3) it is possible to observe that using a DEEVE constrained 
by old volumes data, and using an updated value of  � leads 
the mass of the simulated object to be to adequately close to 
the real one. Indeed, the difference between the model’s mass 
and the real one is < 1% of the actual mass. In conclusion, the 
design choices presented lead all the inertial properties to be 
adequately approximated in the virtual model. Therefore, the 
asteroid employed within the Orbital Mechanics simulation 
will have the following characteristics, listed here for 
reference: 

⎩⎪⎨
⎪⎧ � = 0� = 1190 [�����]�� = 259 [�]�� = 251 [�]�� = 234 [�]          (3) 

The resulting ellipsoid can be observed in Fig. 1, textured 
with a map of Bennu’s surface retrieved from [20] for graphic  

Fig. 1. The ellipsoid to which Bennu has been reduced 

purposes. Fig. 2 and Fig. 3 show the way in which this object 
deviates from the high resolution CAD model. 

This set of information is sufficient to model the gravity 
potential emanating from this volume, which can be used to 
propagate the probe trajectory from an initial condition. In 
particular, the descent path will be generated by selecting the 
desired landing configuration, and propagating it back to a 
specific state in space. This state can either be the deployment 
condition or a generic position along the trajectory. The 
parameter controlling the selection of this furthest estimated 
state is the amount of simulated falling time. The 
backpropagation operation is executed by iteratively solving a 
set of ODEs (using the MATLAB function ode45) defining 
the state evolution. Being the attitude of the platform constant, 
the state � at a generic instant � will be defined only by the 

position and the velocity of the platform. This means that �̇̇
contains the probe’s linear velocities and accelerations. The 
potential, function of the distance from the center of the 
ellipsoid, � , will be characterized as an integral and is 

expressed as reported by Scheeres [21] as  ���� =  − ��� ∫ �(�, �)��(�)

��∆(�) (4) 

Where �(�, �) is a rational function and �(�) its largest 

real root in �. The form of the first-order partial derivatives �� , �� and �� descending from this potential, as reported in 

[21], allows their estimation to be performed using Carlson’s 
duplication method [22]. The acceleration induced on the 
platform along any of the axes by the rotating, gravitationally 
attractive body is the sum of the partial derivative of the 
potential along that axis and additional rotational terms.  

Since the constraints imposed in this scenario lead to 
rotational terms identically equal to zero, ultimately the linear 
accelerations map, axis by axis, the partial derivatives of the 
gravitational potential.   

Within the scope of this paper, the propagated landing 
state, let it be the vector ��, can be unambiguously defined 

using six parameters. In particular, these are the three 
components of the landing velocity,  �� , and the three 

components of the landing position, �� .  In short,  �� =��� , ��� = (��� , ��� , ��� , ���, ���, ���).  In particular, a vertical 

landing along the Equator will be studied. 
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Fig. 2. The discrepancy between the DEEVE ellipsoid 
and the CAD model in the X-Z plane (MATLAB, right 

handed frame)

Fig. 3. The discrepancy between the DEEVE ellipsoid 
and the CAD model in the Y-Z plane (MATLAB, right 

handed frame)

The magnitude of �� has to be constrained so as to allow 

the probe not to bounce back into space after the touchdown. 
This upper bound will be defined Critical Landing 
Velocity, ���. Namely, this is the highest velocity with which 

the probe can reach any point on the surface without bouncing 
back into deep space after the impact. This means that 

for ���� < �����, the probe is ideally bound to be on the 

surface of the asteroid after the touchdown. Such a cap, 
coupled with the low gravity of the target will imply a 
consistently slow falling dynamics, with direct consequences 
on the navigation design process. 

Let �  be the local normal Coefficient of Restitution, a 
parameter correlated to the kinetic energy lost in a collision 
event, defined as  

� =  
���� (5) 

By definition, � is the ratio of the components along the 
local vertical of the relative velocities of two masses, before 
and after their collision. . It is possible to consider only the 
velocity of the probe because the asteroid is non-rotational and 
negligibly perturbed by the probe impact, and the landing 
orthogonal to the surface. Therefore ��  is reduced to the 
probe speed before the impact and �� to the probe speed after 
the impact. 

Not taking into account very special cases, � is bound to 
be such that 0 £ � £ 1, with � =  1 representing a perfectly 
elastic impact, with no energy dissipation. Now, let ����� be 
the highest value of � that can be found on the surface. This 
value is deemed critical because a sufficiently high ��  not 
suppressed by an adequate � might lead to losing the probe 
forever.  ��� is obtained by forcing the condition that the velocity 
after the impact has to be less than the lowest value of the 

escape velocity, �����. In this way, the first, most energetic, 
bounce away from the surface does not possess enough kinetic 
energy to climb outside the local gravity well. 

The escape velocity is defined as ����, �� = ����� =   � �������� ���� ��� (6) 

Since the gravitational constant is an universal constant, 

and the mass is a property of the whole object, ����� , is 
realized in the point of the object farthest from its center of 
gravity, let it be ��. Therefore �� <  ����� =  ������ (7) 

And being that  � =  
����   ⟺  ��� =  �� (8) 

Ultimately this condition translates to ��� < ������ (9) 

Thus implying ���  = � ��������� �� (10) 

B. Virtual Reality Development Toolbox 

The first step in modelling a graphical virtual reality is the 
selection of the set of tools used to construct the simulation. 
For this work three equally plausible development alternatives 
were evaluated: PANGU [23], the Simulink 3D Animation 
toolbox [24] and Unreal Engine 4. The choice, ultimately, fell 
on Unreal Engine 4 [25] (specifically, UE4.22.3). At first this 
selection might appear counterintuitive: PANGU is optimized 
for planets and asteroids scene simulation, and the 3D 
Animation toolbox can be easily integrated with the rest of the 
MATLAB-developed code. However, UE4 offers complete 
and direct control over the scenario and the cinematography, 
thus allowing more precise experimental operations. 
Moreover, within the context of this application UE4 is the 
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only software of the three which is completely free. Thus, 
using it to develop tools and models promotes to the rest of 
the community a more accessible and flexible tool to 
construct, improve or expand their own models.  

C. Visual Target and Lander 

As previously mentioned, the visual model representing 
Bennu was constructed starting from a CAD model. This was 
done so as to not propagate in the navigation pipeline a 
distribution of features reconstructed from a mathematical 
model, but, rather, a real one. The CAD was retrieved from 
the material provided by Osiris-Rex teams (NASA-Goddard-
University of Arizona) on the mission website. In particular, 
the file used was the .STL of the model with a resolution of 75 
centimeters [26].  

It was deemed superfluous to model the background stars, 
as within the scope of this work, given the closeness to the 
surface, the magnitude of the target dominates the visual field, 
masking all the other, faint, objects. 

Lighting, however, plays an important role in this 
simulation. Since the Sun can be considered a light source at 
infinity, it can represented as a bundle of parallel light beams, 
and modeled within the simulation as a Directional Light.  

The direction of this light will be chosen parallel to the ��� axis – the � axis defined in the Unreal Engine reference 
frame, and originating at −∞. Therefore the terminator will be 
oriented along  ��� , with the sunlit area belonging to the 
negative �  region. The light intensity, will be selected, 
heuristically, concurrently with some characteristics of the 
asteroid surface, trying to keep the target chromatically and 
visually similar to the one observed in pictures. Lastly, to 
obtain the colour of the light, the concept of colour 
temperature, mapping the temperature of a black-body 
expressed in � into the RGB colour space, will be employed. 
The effective temperature of the Sun 5780 �  [27]. A table 
listing K to RGB conversions [28] lists the hex value #fff0e9 
as the colour associated to 5800 � , the temperature in the 
table which better approximates the Sun’s  5780 � . By 
representing #fff0e9 in RGB we obtain the triplet (255, 240, 
233), shown in Fig. 4.   

At the moment there does not seem to exist a 
comprehensive package validated by the community mapping 
surface properties. Therefore, they will be treated as a set of 
smaller heuristic problems.  

Let us start from defining the surface radiative properties. 
From [19] it can be observed that the geometric albedo of 
Bennu is extremely low, having a value of  4.4% (0.04) . 
Therefore, the surface will be modelled as a matte material 
(Roughness factor  =  1 ), completely lacking specular 
reflections (Specular factor = 0). The albedo value, moreover, 
offers an important information to heuristically constraint the 
colour.  The value of 0.04  is in fact roughly that of fresh 
asphalt [29]. This suggests a very low grayscale value, which 
was selected as 1 16⁄  of the 8-bit scale. This is the RGB value 
of (15, 15, 15), corresponding to a normalized RGB triplet 
of (0.058, 0.058, 0.058), which can be observed in Fig. 5. 
Ultimately, the visual result is as seen in Fig. 6.  

The landmarks will require a similar process to be visually 
characterized. In particular, they will be assumed to be 
expandable structures with an aluminium coating. From an 
online colour repository [30] it was possible to retrieve a RGB 
value associated to Aluminium, equal to  (214, 214, 214) , 

which, normalised, results in (0.839, 0.839, 0.839), seen in 
Fig. 7. This material will be characterized as metallic (Metallic 
factor = 1) with Specular and Roughness factors = 0.5. 

Fig. 4. The colour chosen for Sun illumination – RGB 
(255, 240, 233) 

Fig. 5. The colour chosen for the asteroid surface – 
RGB (15, 15, 15) 

Fig. 6. The look of the asteroid in the simulation 

Fig 7. The colour chosen for the landmarks – RGB  
 (214, 214, 214) 

This infrastructure approach is believed to be particularly 
relevant for CubeSats for two main reasons. The first 
argument is that non-algorithmic optimizers would have a 
much more profound impact on low-budget objects, capable 
of reaching the desired accuracy only through additional 
assistive technology. The second argument is that a deploying 
mechanism for CubeSat could be reused for features, if their 
size has a comparable order of magnitude: therefore the 
technological complexity of the mission is not excessively 
increased.   
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A lower bound to the dimension of these object within the 
simulation is, however, provided by the model resolution, 
which, again, is 0.75 �  in this case. This because it is of 
interest that a landmark always correlates to structure rather 
than noise.  

Concerning the landmarks’ position, Çelik et al. [31] have 
investigated, albeit for a 3 body system, the deployment 
accuracy for passive ballistic landings on small asteroids. In 
that study the same landing conditions (vertical, equatorial) 
and backpropagation method led to a “butterfly”-like pattern, 
characterized by a central dispersion ellipse and two slightly 
asymmetric “wings”. The region covered by this pattern is 
roughly of the same order of magnitude of the asteroid’s 
radius itself. In particular, this field stretches for 120° along 
the longitudinal axis and 20°  along the latitude extension. 
This distribution is approximately centered on the nominal 
landing position, with the spread along the latitude increasing 
with an increase in longitudinal distance. As the values are 
generally comparable in both instances these angular 
diameters will be imported to simulate a landing distribution.  

The characterization process of the selected position for 
the landmarks is thoroughly characterized in Appendix A. In 
short however, considering the worst case and thus tignoring 
the central build-up, landing spots for markers are constrained 
to lie in one of the “wings”, approximated as isosceles 
triangles with angular size equivalent to the one mentioned 
above. 10 random markers positions have been extracted from 
equivalent planar triangles and then projected on the surface, 
obtaining the results seen in Fig. 8.  

The simulated sensor will be a camera with a focal length 
of  � = 9.6 �� . The simulated sensing plane will be 
constructed to be equivalent to a 1240�1080  one (1.3 ����) , with square pixels with a  5.3 ��  side. 
Therefore, the sensor height will be set to ℎ =  6.05 �� and 
the sensor width to � = 6.94 �� . The effective pixel 
number of the generated images is, however, 664 × 578 ���. 
The above values have been modeled, with some slight 
difference, upon the C3D CubeSat Camera, which has already 
flown on CubeSat missions [32].  

From all these data it is possible to define a vertical and a 
horizontal FOV, respectively of  ℎ��� =  2������( ���)  = 39.75°    (11) ���� =  2������( ���)  =  34.98°    (12) 

Fig. 8. The landmarks (� =  �. �� �) as they appear on 
the asteroid.  

4. LANDMARK DESIGN

The design process of the landmarks is mainly driven by 
mediating between two competing constraints: optical 
reliability and budget constraints.  The former is the factor of 
merit in improving navigational performance and pushes for 
larger feature size; the latter takes into account the additional 
load on the mass and the volume budget by the features, and 
calls for smaller dimensions.  

The scope of optical reliability is to provide consistent 
navigational information. It can be broken down into a number 
of secondary requirements. In particular:  

� Restricted symmetry: this is important so as to avoid 
ambiguity. A certain degree of symmetry is, however, 
desirable as it reduces the need for active control to handle the 
sub-optimality or ineffectiveness of some configuration of an 
asymmetrical object. Nevertheless, neglecting for now the 
presence of surface patterns, as the degree of symmetry of an 
object increases, keeping its volume constant, the length of its 
sides (features in themselves) generally decreases, generating 
ambiguity;  

� High visibility: this can be achieved both in active 
and passive ways. The former requires mechanisms capable 
of generating light, or changing the colour or shape of the 
landmark in reaction to environmental effects reducing 
visibility; the latter is achieved through robust design. High 
visibility does not necessarily equal reflectivity: for example, 
on a pale-tinted asteroid a VANTAblack [33] feature might be 
the best solution;  

� Stability to displacing perturbations: to be effective 
as a navigational feature, the landmarks have to move as little 
as possible with respect to the surface when perturbed. The 
parameters controlling this are the contact surface at a given 
instant and the distance between the center of mass and the 
edge of said surface; 

� Convexity: these shapes are helpful because they 
both reduce the amount of dark, shadowed, zones and avoid 
the accumulation of surface material which could 
“camouflage” the landmark; 

� Shape Retention: it is not desirable to have features 
affected by the impact with an unpredictable change in their 
appearance, as this would lead template matching or scale 
reconstruction algorithms to failure. 

Budget constraints require more advanced solutions to be 
properly addressed: for example the expandable structures 
mentioned in Section II. It is however out of the scope of this 
paper to discuss them.   

Aside from having been used at a different range and for a 
completely different scope, Hayabusas’ target markers deviate 
from the above conditions because they do not seem to possess 
easily observable sides or features. Therefore, while at the 
distance at which they are used they could be employed for 
optical scale reconstruction, their gibbous globe-like form 
might generate ambiguity in this process. Cubes, on the other 
hand, satisfy all the above mentioned constraints. Being 
Bennu a B Tholen type asteroid [19] to achieve high-visibility 
reflectivity is to be preferred to patterning or colouring. 
Therefore, the simulated features will be highly reflective 
cubes. The can be observed in Fig. 9 and Fig. 10. 
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Fig. 9.  A �. � � cube on the surface 

Fig. 10. Close-up of cube on the surface with its 
shadow. For this example, the light has been directed so 

as not to hit any face along its normal.  

5. RESULTS

It is now worth noting that the reference frame defined 
within MATLAB differs from the one defined within Unreal 
Engine: namely, whereas the former is right handed, the latter 
is left handed. The discussion below refers to quantities 
constructed to be used in Unreal Engine, therefore implicitly 
refers to a LH system.  

The landing condition of interest is a vertical, equatorial 
landing. The first set of parameters of the landing state to be 
constrained is the desired landing position of the probe, let it 
be  �� =  (��� , ��� , ���) . Since ��  lies on the equator, it is 

possible to write ��� = 0. 

Being both ��� and ��� belonging to the equatorial ellipse, 

i.e. the intersection of the equatorial plane and the ellipsoid, it 
is not possible to set them independently. In other words, there 
is only one Degree of Freedom left. This DoF can be 
interpreted as the angle, let it be �, of an ellipse in a classic 
parametric form.   

As shown in Fig. 11, since the directional light is coming 
from the – � direction, the terminator is aligned with the �
axis. So as to observe the whole sunlit surface, an angle of � =
180° was chosen.  

In these conditions the problem ultimately reduces itself to 
a one-dimensional motion, fully described by the behaviour 
along the �-axis. The equations provided, however, are not 
derived through this assumption, and can therefore be used for 
a more general case.  

Ultimately ���� =  ��cos(�) = −259 ���� =  ��sin(�) = 0 � (13) 

Fig. 11. The sun direction as defined within the visual 
simulation 

Leading to �� = (−259, 0, 0). 

To complete the landing state, the landing velocity has to 
be selected. This will be characterized by a direction and a 
magnitude – the speed. To perform a vertical landing the 
velocity vector has to be aligned with the local normal, which 
has a general form  �(�, �, �) = (

����� ,
����� ,

�����)        (14) 

And be oriented in the opposite sense.  

Which, with the data presented before, the local normal 
has components ����� , ��� , ��� = 0� = (������(�)��� ,

������(�)��� , 0)   (15) ����� , ��� , ��� = 0� = (����(�)�� ,
����(�)�� , 0) (16) 

Thus  � = (−0.008, 0, 0) is obtained. Normalized with 

respect to its norm, � becomes, trivially,  � � = (−1, 0, 0) .  

Changing sign so as to be moving towards the target, 
ultimately ��  = (0.008, 0, 0)  and � � � = (1, 0, 0)  are 

obtained. 

At this point, the speed might still seem a completely open 
parameter. However, as noted before, ��� must not be 
exceeded if the probe has to stay on the surface. Thus a 
reduction factor �  is added so as to not operate with  ��
values too close to the critical ones, and   �� =  ��� , � ∈ ℝ�, � < 1. Additionally, it has been observed that the more 
time a trajectory takes to bring the probe to its designated 
target, the more the error committed by the on board 
estimations grows. Ultimately, � = 0.67  - roughly (2/3) - 
seems a good compromise between estimation stability and 
the presence of a safety margin, therefore the selected landing 
speed is �� = (0.67)���.  
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With reference to Eq. 10, we can see that using the values 
of �� =  282.36 �  [19] (the equatorial semi-extension for 
the asteroid – its largest dimension), � =  7.329 × 10�� ��
retrieved from [19], and ����� = 0.6 [34] ���  = � ��������� �� =  ��×(�.��×�����)×�.��×����

(�.�)�×���.��
Performing all the operations it is possible to find 

that ��� = 0.310 ���� . Therefore �� =  0.67(0.310) =
0.208 ����.  �� = ���� � =  (0.208, 0, 0) (17)

Hence the landing state is: 

⎩⎪⎪⎨
⎪⎪⎧ ��� =  −259 ���� = 0 ���� = 0 ���� =  0.208 ������� = 0 ������� = 0 ����

(18) 

These conditions lead to an extremely slow descent: it 
takes roughly 8 hours to move from about 3 kilometers away 
from the center of the asteroid to its surface.  

The motion of the capsule will be followed from  ��� =

 2021.75 �  to ��� =  1107.40 �, for a total time, �� , of, 

roughly, 2  hours and 35  minutes ( �� =  9257 � ). This 
segment of the trajectory has been highlighted in Fig. 12. The 
time step between two contiguous acquisitions is, therefore, �� = 1028 � = �� (����� − 1)⁄ .  Every image �  in the 
discrete sequence is uniquely identified by a natural number, �, and indicated as ��. As a total of 10 images will be acquired 
through the sequence, the indexes will range from �� to ���, 
with �� being the image acquired in the furthest position.  

Fig. 12. The portion of the trajectory highlighted in red is 
the one over which VO has been performed. 

Coherently with what was said before, cubes of two sizes, 
limited at � =  1.50 �, will be tested: respectively, cubes with 
a � = 1.00 � side (test condition “� �”) and cubes with a � =
1.50 � side (test condition “� �”). The amount of landmarks 
employed during these simulations will be 4 in one 
characterization, and 6 in another. To this, a condition with 0 
cubes will be added, as a form of control experiment. 
Ultimately, this leads to 5  possible combinations of 
conditions to be tested, namely �� = {�0, �4, �4, �6, �6}. It 
is worth noting that albeit experiments with � = 1.50 �

might not be realistic, they provide important information to 
understand the effect of the cubes on navigation. 

The Visual Odometry part has been performed using a 
standard implementation [35]. When the images are fed to the 
processor, Harris corners [36] are detected and matched over 
subsequent images. Homologous points in consecutive images 
are then used to construct the fundamental matrix [37] through 
the normalized eight-point algorithm [37]. The robustness of 
this process is further increased by introducing a RANSAC 
(RANdom SAmple Consensus) routine, so as to remove 
irregular points. Lastly, the fundamental matrix is used to 
estimate the unscaled relative translation (and rotation) 
between the two views. These are left as they are, and not 
refined through neither a local nor a global optimizer. This 
process, iterated sequentially, provides an estimation of the 
complete trajectory of the platform. It is worth noting that 
introducing the RANSAC makes the process non-
deterministic.  

The output of each step of this process is, within the scope 
of this work, a unit vector representing the direction of the 
estimated displacement, and a rotation matrix. This is because 
the scaling problem has been for now neglected. As noted 
before, the simulated motion profile is one-dimensional, 
evolving only along the � axis. Hence, a perfect estimation 
from the time-step �  to the time-step � + �  would return a 
displacement only along �, with a value equal to (� + �) −� = �. For an example of a global result, see Fig. 13. 

This means that in any estimation within this model and 
reference frame, components along the � axis and the � axis 
are entirely spurious. Hence, estimation errors in translation 
can be associated to these components: if they are present, the 
estimator is not behaving as it should. Moreover, non-roll 
rotations propagate on the same components when 
constructing the global estimation, which can therefore be also 
seen as indicators of rotational errors. From these 
considerations, it is possible to define an error metric, 
named ∆�� , and characterized as (see Appendix B for more 
details) ∆��= (� − �) −  ��������      (19) 

Where �  and �  are the indices of the first and the last 

image of the sequence taken into account, and ��������  is the 
cumulative � value of the sequence, with the zero placed in 
the �� condition.  �∆��  is an indicator of the effective error components; 

therefore normalizing �∆��  by (� − �)  would return the 

percentage uncertainty in estimation over the trajectory of 
interest. 

Assuming implicitly � =  1, the values ∆� (� =  5) and ∆�� (� = 10)  will be presented for each case. Since, as 
already observed, the process contains source of randomness, 
it would be misleading to simply present the outputs for one 
instance: rather, statistical descriptors must be introduced. 
Namely these will be the mean, the average and the standard 
deviation of these parameters, computed over populations 
containing 300 samples. The results for {�0, �4, �4, �6} are 
shown respectively, in Table I and Table II. Additionally, 
these values will be ordered in ascending order and plotted in 
Fig. 14 and Fig. 15.   
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Fig. 13. Comparison between an estimated trajectory 
(Red) and a real one (Black) 

TABLE I. 

Test 

Case 

∆5

Mean Median Standard Deviation 

S0 0.3235 0.0467 0.5317 

s4 0.2531 0.0527 0.4388 

S4 0.1769 0.0285 0.3686 

s6 0.2530 0.0351 0.4572 

Fig. 14. Ordered distribution of ∆� values 

TABLE II. 

Test 

Case 

∆10

Mean Median Standard Deviation 

S0     0.5564     0.1529     0.7179 

s4     0.5878     0.2685     0.6597 

S4     0.3970     0.1125     0.5524 

s6     0.5726     0.2106     0.6359 

Fig. 15. Ordered distribution of ∆�� values 

The nontrivial shape of the curve with a sharp step around 
a ∆�, ∆��=  1 value can be explained by analyzing the various 
errors affecting the estimation. The most common type of 
large scale errors for this process appears to be not estimating 
at all a translation along the � axis. A single missed estimation 
of this type induces a unitary ∆ error; these, developing over 
multiple tests form the observed plateau. Therefore, the 
extension of this region roughly indicates the likelihood of a 
single non-detection event to happen. Its onset, instead, relates 
to the general probability of this phenomenon happening at 
least once.  

From the above figures the consistency of this profile, and 
a comparable distribution of extreme values, can be observed. 
This means that the algorithm is behaving consistently in 
every test case. However, the various curves do not collapse 
to a single profile, but, rather, present the same shape 
translated horizontally. The translation is induced by the 
increase or the reduction of the number of test cases achieving 
at least an error of ∆. The more results have a higher error, the 
more the curve appears to the left. Thus the position along the 
abscissae of the first onset of an exponential behavior is a good 
indicator of the performance of the algorithm. In other words, 
the more a curve is to the right, the better the algorithm is 
performing.  

As it can be inferred from both the tables and the curves, 
the �4 landmarks provide the best improvement from the �0
case, both for ∆�  and  ∆�� . On the other hand, �4  and �6
appear to induce an identical improvement for ∆� , halfway 
between the �0 and the �4 test case, but then present a worse 
performance than �0 for the ∆�� case.  

The test case S6 has not been shown above because using 
the algorithm with the same parameters, would, inevitably, 
make the program unable to operate, and lead to crashes. This 
most likely happens because the stark grayscale difference 
between the markers and the background, coupled with a 
higher number of them, skews the Harris corners quality 
distribution. This, in turn, implies that for a broad range of 
min. quality values, there are fewer features having a quality 
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above the acceptance threshold. In turn, this leads the 
cardinality of the features to be tracked is critically low, close 
to the minimum amount of points necessary as inputs to the 
algorithm. If this is coupled with a, for any reason, 
perceptionally troublesome points distribution, ultimately not 
enough features are able to be matched between consecutive 
views to estimate the fundamental matrix. This problem, 
however, might be addressed using a controller operating on 
the required features quality.  

Let us for now, however, manually reduce the minimum 

quality parameter from 10��   to 10�� . This means that the 
lowest score for a feature to be accepted by the algorithm is at 

most 10��  of the best feature’s score. This case will be 
defined �6�  and compared to �0�  and �4� . These are, 
respectively, �0  and �4  with the same reduced value of 
minimum feature quality. The results are presented in Table 3 
and 4 and figures 18  and 19.  

To more easily bridge the two sets of results, figure 16 and 
17 show how the �0�  and �4�  set perform, respectively, 
against �0 and �4.  

While implicitly written in the tables, it is worth observing 
how reducing the min. quality parameters improves the ∆�
behaviour of the marker-less case to a �4/�6  level. This 
advantage, however, is entirely lost in the ∆�� case. 

In general, what can be observed from these tests is that 
using lower quality features greatly reduces the effect of 
NAV-Landmarks on navigation performances.    

TABLE III. 

Test 

Case 

∆5

Mean Median Standard Deviation 

S0-     0.2649 0.0452 0.4387 

S4- 0.2362 0.0344 0.4766 

S6-     0.2626 0.0412  0.4738 

Fig. 16. Comparison of �� and ���

Fig. 17. Comparison of �� and ���

Fig. 18. Ordered distribution of ∆� values  

TABLE IV. 

Test 

Case 

∆10

Mean Median Standard Deviation 

S0-     0.5555 0.1997 0.6979 

S4- 0.4925 0.1305 0.7305 

S6-     0.4832 0.1397 0.6488 
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Fig. 19. Ordered distribution of ∆�� values 

6. CONCLUSIONS

Landing on the surface of distant celestial bodies requires 
an elevated degree of autonomy. Augmenting the environment 
to a cooperative state might enable additional, more complex 
operations even for probes with limited on-board capabilities, 
like CubeSats. 

In particular, within the scope of this paper, this idea has 
been explored by analyzing the effect of the introduction of 
artificial visual landmarks on the surface of a small asteroid 
on the visual odometry performance of the landing probe. The 
probe is at a medium-far range, and employs only a visible 
camera to navigate. In this regard, this study can be intended 
also as a pilot work in visual semiotics for space robots. 

This has been done by developing a simulation package 
coupling the dynamics and the visual aspect of the problem. 
The visual portion has accommodated the introduction of the 
markers on the surface of an asteroid model. The dynamics 
part has been pivotal in generating a trajectory associated to a 
precise landing spot, and in retrieving the position of the probe 
with a consistent temporal frequency. 

The results are definitely promising, as it has been 
observed that the landmarks improve the unscaled results in 
most cases.  More research on the topic is however needed to 
clarify and explain some unexpected behaviour that arose. 
Moreover, issues related to perception, as the influence of 
extreme values in the scene were highlighted. Future work 
will therefore focus on dealing with these issues, on evaluating 
the optimal feature detector, on trying to implement scale 
reconstruction, and on comparing the performance of these 
“physical” optimizers with computational optimizers. 

APPENDICES

A. DEFINING THE LANDMARKS POSITION

Since distortions and projection issues would ultimately 
render prohibitive treating this problem analytically or 
numerically on the real Bennu surface, an approximation has 
been employed. The points were defined within a region of a 

planar rectangle with dimensions �� × ��  centered in the 
point (−�� , 0, 0) and parallel to the �– � plane. The size in 
meters of both sides has been obtained using again the 
DEEVE approximation. In particular, �� is the chord along 
the equator defined by an arch having an angular diameter of 

120° and centered on the � axis; �� is the chord defined on 
the meridian characterized by � ≡ 0  by points having a 

latitude of ±10°. Let the points defining the chord �� be ��
and ���, and let the points defining the chord �� be �� and ���. 
Graphically, the construction of these objects is represented in 
Fig. 1a; Eq. 1a and 1b, on the other hand, provide a 
mathematical description of these objects �� =  �� −  ��� = �� (sin(120°) − sin(240°)) =  435 � (1a) �� =  �� − ��� = ��(sin(10°) −  sin(−10°)) = 81 �     (2a) 

Fig. 1a. A visual definition of ��
To maintain consistency with the reference frame utilized 

within Unreal Engine, this ellipsoid has been defined in a left 
handed reference frame (superscript “LH”).  

The initial markers parameters (‖�‖, ����(�),‖�‖, ����(�))� have been be extracted from uniform 

distributions and accepted only and only if they would satisfy 

the geometric constraint of belonging to the triangles. The 

results obtained for the 10 extractions defining the 4 and the 

6 landmarks case is shown in Fig. 2a. Subsequently, to place 

the landmarks on the target, the plane is translated along the �-axis and landmarks are introduced in the point where they 

first intercept the surface. 
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Fig  2a. The point distribution for 6 cubes (circled 
dots) and for 4 cubes (simple dots) 

B. SELECTING AN ERROR METRIC

The output of the monocular visual odometry algorithm is 
a unit vector with components {�, �, �} representing the 
estimated direction of motion.  √�� +  �� + �� = 1 (1b) 

Scale can eventually be introduced at a later stage using 
the information provided by a secondary source. 

By squaring both terms of the equation, it is possible to 
rewrite Eq. (1b) as  �� +  �� +  �� = 1 (2b) 

Now, let us represent this vector as the composition of two 
components. Namely, a transversal circle of radius �� placed 
at a longitudinal distance �  from the origin of the vector. 
Therefore, �� can be written as ��� =  �� +  �� =  � (3b) 

Being � ∈ [−1; 1] , ��  is bound to have values such 
that �� ∈ [0; 1]. Therefore, being �� = 1 −  � (4b) �  has to be a non-negative quantity; specifically � ∈
[0; 1]. Without loss of generality, ∀ � ∈ [0; 1] it is possible to 
find an ancillary value � ∈ [0; 1] such that � = 2� − �� (5b) 

Introducing Eq. (5b) in Eq. (4b) it is possible to obtain �� = 1 +  �� − 2� =  (1 −  �)�             (6b)  

Taking the square root of both terms ultimately returns the 
form 

|�| =  |1 −  �| (7b) 

Let us now define the estimation error on the longitudinal 
component, let it be ���. The �-th estimation will be the one 

describing the motion from the (� − 1)-th frame (����) to the 

k-th frame ( ��) . ���  will be the difference between the 

projection of the effective motion on the �-axis, ����, and the � component estimated by the Visual Odometry routine, ����� = ����� − ��� (8b) 

By summing over the complete trajectory  ∆� =  ∑ ������� (9b) 

The right side of Eq, (9b) can be expanded by distributing 
the sum, thus obtaining 

∆� =  ∑ ��������� −  ∑ ������� (10b) 

Let us now go back to the effective motion profile. Again, 
given all the constraints introduced in the paper the motion 
reduces itself to a positive translation along the � axis. This 
means that a perfect VO estimation would return, for every 
step  ���� =  (1 −  �)�≡� = 1 (11b) 

Leading to the simplification of the first term of the right 
side of Eq. (10b) to  ∑ 1�� � � = � − � +  1 (12b)  

It must now be remembered that ���  is defined between 
two camera acquisitions, �  being the second of them. 
Therefore, if the sum necessarily begins from the 
displacement � = � , the actual first frame of the sequence 
is� =  � –  1 ⇔ � = � + 1. By rewriting Eq. (12b) in term of 
frames ultimately it is possible to obtain ∑ 1�� � � = � − (� + 1) + 1 = � − �         (13b) 

Let us now focus on the sum containing �. It is deemed 
highly unlikely, given how clear the expansion is within this 
study, that the VO algorithm would ever estimate a negative � translation. Therefore, it is possible to remove the absolute 
value and select only the positive values of (1 −  �) . By 
distributing also this sum it is possible to obtain ∑ (1 −  �)�� � � = (� − �) + ∑ (− �)�� � �           (14b) 

By substituting Eq. (13b) and Eq. (14b) in Eq. (10b) 
ultimately it is proven that ∆� is a function exclusively of �∆� =  −(∑ (− �)�� � � ) (15b) 

Therefore, ∆�  depends only on a sum of functions of the 
erroneous components of the estimation, � and �. Moreover, 
using the definition provided in Eq. (10b) it is possible to see 
that Eq. (15b) is also the ∆��  defined in the paper. As seen 
before, retrieving its value is rather straightforward, and as just 
shown it effectively provides a metric on the behaviour of the 
erroneous components. Specifically, the order of magnitude of 

the spurious components goes roughly as √∆�. 
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