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Abstract  

The industrial process involving gas liquid flows is one of the most frequently encountered phenomena in the energy 

sectors. However, traditional methods are practically unable to reliably identify flow patterns if additional independent 

variables/parameters are to be considered rather than gas and liquid superficial velocities. In this paper, we reported an approach 

to predict flow pattern along upward inclined pipes (0 ~ 90°) via deep learning neural networks, using accessible parameters 

as inputs, namely, superficial velocities of individual phase and inclination angles. The developed approach is equipped with 

deep learning neural network for flow pattern identification by experimental datasets that were reported in the literature.  The 

predictive model was further validated by comparing its performance with well-established flow regime forecasting methods 

based on conventional flow regime maps. Besides, the intensity of key features in flow pattern prediction was identified by the 

deep learning algorithm, which is difficult to be captured by commonly used correlation approaches. 

Keywords: Flow pattern prediction; Two-phase flow; Deep learning. 

 

1. Introduction 

Accurate predictions of two-phase flow characteristics, including flow pattern identifications, are highly desired in various 

industrial sectors of energy, ranging from onshore/offshore hydrocarbon transportations [1] to water management [2], 

operations of multiphase reactors & boilers [3], heat transfer [4], fuel cells [5,6], geothermal energy extraction [7,8], offshore 

wind turbines [9,10] and photovoltaic cells [11]. The term of flow patterns is widely used to describe the featured spatial 

distribution of phases, occurring during multiphase flow in pipes. Gas-liquid two-phase flow is among the most commonly 

observed multiphase flows, which are often encountered in energy-producing and chemical processing [12]. For example, 

stratified gas-liquid flow is frequently observed in petroleum, natural gas and process industries [13]. In addition to stratified 

flows, in the offshore gas production and transportation systems, gas-liquid flows are transported from the seabed to the near 

surface areas, where the pipelines & risers are often subject to slug flows. These flow patterns require advanced methods in 
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predicting and analysing the interaction between pipes and multiphase flows, which are of great importance for design and 

evaluating failures of the pipes [14]. In the energy-conversion process with multiphase reactor applied, the flow has the feature 

of chaotic bubbles and high turbulence, resulting in difficulties in establishing accurate models for the non-linear multiphase 

flow hydrodynamics [15]. To sum up, flow pattern prediction and identification are one of the fundamental issues in two-phase 

flow studies, which is essential to support industries for healthier economic design, better optimisation of operating conditions 

and enhanced assessment of safety.  

 Numerous experimental studies have been conducted to investigate flow patterns in both vertical and horizontal directions. 

One of the most widely accepted classifications of gas-liquid two-phase flow regimes in upward vertical pipes was suggested 

by Hewitt and Hall-Taylor [16], who categorized the basic flow patterns as bubble, slug, churn, and annular flows. Later, Taitel 

et al. [17] created corresponding models to identify the transition boundaries between the basic flow regimes above. For two-

phase horizontal flows, Barnea et al. [18] classified observed flow regimes into four major categories, named as stratified, 

intermittent, annular, and dispersed bubble. Comparing with vertical and horizontal flow studies, fewer investigations have 

been carried out on inclined two-phase flows. Barnea [19] proposed a unified model for flow pattern identification in inclined 

pipes, where flow regimes were defined for the whole range of upward and downward pipe inclinations. The predictive results 

were compared with experimental observations from Shoham [20], in which satisfying agreements were reached. In this 

investigation, the classifications of gas-liquid two-phase flow were defined into four major categories: stratified (containing 

stratified smooth and stratified wavy), Intermittent (containing elongated, slug and churn), annular (containing annular wavy 

and annular), and dispersed bubble or bubble flow. This is one of the earliest studies that covered flow pattern classification 

from shallow-inclined to near-vertical flows. Besides, Barnea et al. [18] presented experimental observations of flow regimes 

for air-water two-phase flow in pipes with inclination angles of 0.25 ~ 10°. The authors claimed that stratified flow did not 

appear while upward inclinations were higher than 10°. Oddie et al. [21] investigated two-phase flows in large diameter inclined 

pipes under a diameter of 15 cm, where inclined angles varied from 0 (vertical) ~ 92°. Detailed flow pattern maps were 

generated over water/gas, oil/water, and oil/water/gas systems. Zhang et al. [22] proposed a unified model that can be used for 

predictions of liquid holdup, slug characteristics, pressure gradient as well as flow patterns in upward and downward inclined 

pipes, validated by experimental observations [23].  

The nature of the multiphase flow process has determined the challenges in accurate flow pattern identification. Unlike 

traditional methods, in recent years, many researchers have treated machine learning as a potential alternative in flow pattern 

forecasting [24] employing flow regime maps while the physical process of multiphase flows is too complicated [25]. It 

provides potential solutions in nonlinear systems and generates its own rules for learned examples. Deep learning neural 
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network, which is a branch of machine learning, is a system that was inspired by biological neural networks. The structure of 

this type of machine learning model was built on an assembly of connected nodes named neurons, where data were transmitted 

from one neuron to another. These neurons could be aggregated into the input layer, hidden layers, and the output layer, linking 

through defined weights and biases. One of the earliest studies that applied machine learning algorithms on two-phase flow 

regime identification is proposed by Cai et al. [26], where an artificial neural network (ANN) model was tested to determine 

flow patterns in horizontal air-water flows. The ANN model was trained by stochastic features derived from turbulent absolute 

pressure signals under 366 measurements. The authors concluded that flow regimes identified by the network were consistent 

with visual observations. Hernández et al. [27] designed an ANN model to process conductivity probe signals for flow pattern 

classification. The authors claimed that a good agreement was achieved with visual flow regime maps. Rosa et al. [28] trained 

various machine learning models through instantaneous readouts of an electrical resistivity probe for flow pattern identification, 

using probabilistic neural network, radial basis functions, and multiple layer perceptrons. The inputs were taken from 73 vertical 

air-water two-phase flow tests while the output results can be single or multiple. All the tested machine learning algorithms 

performed equivalently with accuracies of 96 ~ 100%. Santoso et al. [29] used Power Spectral Density (PSD) from pressure 

difference data as inputs to train ANN models for predicting flow patterns in horizontal flows, where accuracies of 98 ~ 100% 

were reached. Ghosh et al. [30] evaluated three machine learning models to capture flow regimes in vertical two-phase flow 

tests, where two conductivity probes were installed for input data collections. The authors recommended that the ANN model 

with back-propagation algorithm gives the best performance. Figueiredo et al. [31] suggested using ANN to overcome the 

drawback of present ultrasonic techniques in multiphase flow metering. The authors built an ANN model by extracting acoustic 

attenuation data as inputs from vertical oil-continuous multiphase flows, the accuracies of all observed flow regimes are above 

80%. Abbagoni and Yeung [32] used signals from an ultrasonic Doppler sensor as inputs to train an ANN model. The air-water 

two-phase flow under slug, elongated bubble, stratified-wavy and stratified flow patterns are tested against to a multilayer 

perceptron neural network, scoring accuracies of 87.5 ~ 95.8%. Hanus et al. [33] recommended using signals from scintillation 

detectors in gamma-ray absorption as inputs for creating machine learning models. The two-phase experiments were performed 

through a horizontal pipeline with a diameter of 30 mm. In total, six computational intelligence algorithms were tested, 

including single decision tree, K-means clustering algorithm, multilayer perceptron, probabilistic neural network, support 

vector machine, and radial basic function neural network. All the evaluated algorithms provided well-behaved recognition 

accuracies that are higher than 90%. The experimental setup and the defined machine learning inputs/outputs in the 

investigations above are summarized in Table 1. Though various experimental conditions have been explored, all authors 
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targeted at similar types of flow patterns. Besides, all machine learning models were trained by feeding input features generated 

from signals of advanced measuring instruments.  
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Table 1 – Experimental setups and machine learning inputs/outputs in flow pattern identification from reviewed literature. 

References 
Pipe 

diameter, mm 
Pipe orientation Working fluids 

Superficial gas 

velocity, m/s 

Superficial liquid 

velocity, m/s 
Machine learning inputs Identified flow patterns (outputs) 

Cai et al. [26] 50.8 horizontal air/water 0.19 ~ 10.38 0.71 ~ 3.33 
stochastic features derived from 

turbulent absolute pressure signals 

bubbly, slug, plug, wavy, and 

stratified 

Hernández et al. [27] 50.8 vertical air/water 0.0043 ~ 9.83 0.031 ~ 2.51 conductivity signals 
bubbly, cap-bubbly, slug, churn-

turbulent, and annular 

Rosa et al. [28] 26 vertical air/water 0.1 ~ 30 0.2 ~ 3 
instantaneous readouts of an electrical 

resistivity prob 

bubbly, spherical cap, stable slug, 

unstable slug, semi-annular, and 

annular 

Santoso et al. [29] 24 horizontal air/water 0.085 ~ 3.20 0.016 ~ 1.26 
Power Spectral Density (PSD) from 

pressure difference data 
stratified, plug, and slug 

Ghosh et al. [30] 25.4 vertical air/water 0.20 ~ 5.26 0.0066 ~ 0.14 conductivity probe signals slug, churn, annular, and flooding 

Figueiredo et al. [31] 25.4/50.8 vertical 
oil/air/polyamide/ 

sand/water 
0 ~ 0.37 0.04 ~ 0.3 ultrasonic attenuation data 

dispersed bubbles, intermittent 

flow, churn flow, and annular flow 

Abbagoni and Yeung, 

[32] 
50.8 horizontal air/water 0.05 ~2.75 0.004 ~ 2 ultrasonic signals 

slug, elongated bubble, stratified-

wavy, and stratified 

Hanus et al. [33] 30 horizontal air/water 1.33 ~ 2.67 2.08 ~ 3.56 
signals from scintillation detectors 

through gamma-ray absorption 

slug, plug, bubble, and transitional 

plug–bubble 
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As presented in Table 1, most previous studies only considered cases of fixed flow inclinations in their machine learning 

models, either vertical or horizontal. The impact of varying inclined angles on flow regimes are not often considered. Besides, 

it is common to involve advanced measuring devices in experimental setups to obtain signals that are depending on flow 

regimes, such as scintillation detectors, electrical resistivity probe or ultrasonic transducers (see Table 1). Those signals/data 

have to be measured through certain instruments and are not available in general cases. Furthermore, there have been no 

quantitative evaluations of correlations, linear or nonlinear, between features and the predicted flow patterns. To fill the above 

knowledge gaps, the key contributions of this paper in flow pattern identification were summarised as follows: 

 As flow inclinations can significantly influence flow behaviours, a predictive method without considering inclined 

angles will certainly limit its modelling capacities. Unlike previous studies, the current investigation explored the 

potentials of using deep learning for the gas-liquid two-phase flow pattern prediction with the variable of flow 

inclinations ranged from horizontal to upward vertical. 

 In this study, to avoid using additional measuring instruments, only accessible parameters were considered as 

input features in the predictive model after precise feature selections, namely superficial velocity of water, 

superficial velocity of gas, and inclination angles, which made the proposed model more appropriate in industrial 

applications.  

 Flow patterns have the characteristic of high nonlinearity in multiphase flow loops and are difficult to be signified 

using effortless equations/models. There has been no analysis regarding how different variables quantitatively 

influence flow regime classifications, although this is of great importance for application purposes. To this end, 

the current study directed deep learning algorithms to explore nonlinear correlations between the defined input 

features and the targeted flow regimes. The levels of significance of key flow variables in flow pattern prediction 

were also identified by the deep learning neural networks.  

This paper is united as follows: Section 2 described selected experimental datasets and discussed how input features were 

nominated in designed deep learning neural networks. Also, the linear correlations of those features were explored by Pearson 

product-moment correlation coefficients. Section 3 presented the configuration of the designed deep learning model, including 

how weights, biases, and the activation function were initialized and updated in neural network layers. In section 4, based on 

the selected features and the deep learning structure, the predictive model was trained, tested and validated against experimental 

observations & conventional flow regime maps. Besides, in this section, the nonlinearity correlations between inputs features 

and flow patterns were quantitatively defined by the deep learning model. Finally, conclusions were drawn in section 5.  
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2. Feature Engineering 

The essence of the proposed model in this paper starts from dealing with raw data and transforming the physical meanings 

of flow patter identification into numeric representation, which is often known as features [34]. This is one of the most vital 

steps in building any machine learning predictive model, as effectively selection of features is beneficial to improve the 

accuracy in deep learning and ultimately enhancing the model’s quality [34]. Besides, ineffective features adding into the 

predictive model may lead to a negative impact on the output prediction [35]. Therefore, in this section, a comprehensive 

discussion will be put forward to select the optimal input candidates in deep learning based flow pattern prediction. 

2.1 Feature selection 

Existing experimental studies have proved that flow regimes highly depend on size & orientation of the pipe, fluids’ 

properties, and flow rates of each phase [36]. In this study, the relevant influencing factors of flow patterns are summarised in 

Table 2, which were categorised into independent and dependent parameters. In the independent group, some of those 

parameters are near-constant under a certain operating condition while the temperature is unchanging, such as density & 

viscosity of gas and liquid. Besides, if experiments were carried out in one location and through a certain flow loop, the 

roughness of pipes, pipe diameters, and gravity can be treated as constant values.  

Table 2 – Influencing parameters of flow patterns in two-phase flows. Note that the selected features are highlighted in 

red.   

Independent parameters Dependent parameters 

Density, ��, �� 
Reynolds number, �� 

Viscosity, ��, �� 

Roughness of pipes, � 
Froude number, �� 

Pipe diameter, � 

Inclination, � 
Holdup, ��  

Gravity, � 

Operating temperature, � 
Pressure gradient, �� 

superficial velocity, ��� , ��� 

 

In the dependent group, there are two dimensionless numbers that are often used to describe the characteristics of two-

phase flow, named Reynolds [37] and Froude [38] numbers, respectively. The Froude number deals with the relationship 

between gravity and inertial forces (see Eq. (1)), while the Reynolds number deals with the relationship between frictional and 

inertial forces (see Eq. (2)). In this paper, Reynolds and Froude numbers are not considered as they are the product of the 

superficial velocity of gas or liquid phase in combination with other constant values. Besides, pressure gradient [39] and holdup 

[40] are also dependent parameters of superficial velocities of gas & liquid, which are not considered in this modelling work.  
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�� =  
���(1 − ���� )� 

(1) 

where �� is the Froude number; � is the superficial velocity of gas or liquid phase, m/s; � is the gravitational constant, 

m/s2; �� is the gas density, kg/m3; �� is the liquid density, kg/m3; � is the inside diameter of pipe, m.  

�� =  
����  

(2) 

where �� is the Reynolds number; � is the density of gas or liquid phase, kg/m3; μ is the viscosity of gas or liquid phase, 

Pa∙s.  

Therefore, in the currently proposed deep learning model, only superficial velocities of air, superficial velocities of water, 

and inclination angles were selected as the input features, while flow patterns were chosen as the output variables. The selected 

features are the ones that are accessible and sensitive to flow regimes, avoiding any overfitting or underfitting in the learning 

process.  

2.2 Experimental dataset 

The selected datasets were extracted from the database created by Pereyra et al. [41], which was used to quantify the 

confidence level in air-water two-phase flow pattern prediction. The datasets were originally recorded by Shoham [42] in his 

research regarding flow pattern transition in inclined pipes. The experimental setup consisted of a pipe with a diameter of 50.8 

mm, where the upward inclined angles vary from 0° to 90°. In total, 1952 groups of tests were carried out at atmospheric 

conditions. A more detailed explanation regarding experimental equipment and the procedure can be found in Barnea et al. 

[18].  

Since correlations among selected features have a significant influence on flow patterns, they were graphically presented 

in Fig. 1 with the form of a scatter matrix. The histogram of each feature was displayed along the leading diagonal of the scatter 

matrix in Fig.1 a ~ d, respectively. Variations of upward inclined angles were distributed in the range of 0 ~ 90° (see Fig.1a). 

The water superficial velocities changed in the range of 0.0022 ~ 6.3 m/s while the air superficial velocities varied from 0.016 

to 40 m/s. Most numbers of tests were conducted during the superficial velocity intervals of 0 ~ 1 m/s in water flow (see Fig.1b) 

and 0 ~ 5 m/s in air flow (see Fig.1c), respectively. The classification of flow patterns was defined into dispersed bubble, 

stratified smooth, stratified wavy, annular, intermittent (containing elongated, slug and churn flow), and bubble (see Fig.1d). 

Under various operating conditions, the most commonly observed flow pattern was intermittent flow while the fewest detected 

flow regime was stratified smooth. Besides, as presented in the scatter matrix of Fig.1, it can be observed that flow patterns 

and input features are not simply linear related.  
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Fig. 1 – Scatter matrix of selected features in the experimental datasets, including inclination angles, superficial velocities of 

liquid, superficial velocities of air, and corresponding flow patterns; note that, the observed flow pattern categories were 

digitalized as 1 - dispersed bubble, 2 - stratified smooth, 3 - stratified wavy, 4 - annular, 5 - intermittent, and 6 – bubble in the 

subplot of (d). 

2.3 Correlation coefficients 

It is essential to discover and quantify the correlations between every pair of features in our dataset, which offers an initial 

quantitively analysis for feature reduction [43]. Before looking for correlations, flow patterns are required to be converted from 

categorical attribute to numerical attribute. This was realised through Scikit-Learn (a machine learning library of Python), 

where the observed flow pattern categories were digitalized as 1 - dispersed bubble, 2 - stratified smooth, 3 - stratified wavy, 4 

- annular, 5 - intermittent, and 6 - bubble.  

The Pearson product-moment correlation coefficients [44], which examine the linear relationship between two vectors in 

the form of the covariance matrix of the data [43], were applied in this section. More specifically, if two features of � and � 

are measured on each of � individuals to the database of (��, ��) ~ (�� , ��) ~ (�� , ��), the correlation coefficients (�) can be 

expressed as:  
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� =  
1�����
���  

(3) 

� =  
1�����
���  

(4) 

� =  
∑ ���� − ����� − ��������∑ ��� − ������� �∑ ��� − �������  

(5) 

The Pearson product-moment correlation coefficients provided values between +1 and −1, in which +1 and -1 are 

representing a perfect linear positive and negative correlation, respectively, while 0 indicates no linear relationship between 

variables. The other boundaries in measuring the relationships are divided by 0.3 and 0.7. More specifically, for correlation 

coefficients between 0 and 0.3, a week positive relationship can be concluded, and the assumption of a linear relationship is 

unreliable. Besides, correlation values between 0.3 and 0.7 form a moderate linear relationship while correlations fall into the 

range between 0.7 and 1 revealing that a well-founded linear relationship can be derived [44]. Based on Pearson’s correlation 

and Eqs. (3) ~ (5), values of correlation coefficients between variables are presented graphically for all features in flow pattern 

prediction with the form of the heat map (see Fig. 2). 

As presented in Fig. 2, correlation coefficients of superficial velocities of water and inclination angles to flow patterns are 

negative (-0.07 and -0.13, respectively), indicating that the relationship of these variables are of opposite directions, while the 

correlation coefficient between superficial velocities of air and flow regimes (0.22) is positive, specifying that the values of 

both variables are developing in the same trend. The absolute values of correlation coefficients to flow pattern kept increasing 

in the order of superficial velocities of water, inclination angles, and superficial velocities of gas, indicating the level of 

significance of these features to flow regimes can be ranked in such an order within linear relationships. However, these values 

(between the range of -0.3 and 0.3) measured between flow pattern and input features indicate the linear relation assumption is 

less reliable. In reality, these variables are highly non-linearly related to flow patterns (see Fig. 1). On this account, a feature 

ranking method based on deep learning neural networks will be proposed in section 4.3, taking in to account the nonlinear 

relationship between input features and flow pattern automatically. 
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Fig. 2 – Heat map of features in the experimental datasets; note that, V(gas) is representing the superficial velocity of air and 

V(liquid) is representing the superficial velocity of water. 

3. Deep learning configurations 

One of the earliest studies of deep learning is presented by Hinton et al. [45], where the deep learning neural network 

method was initiated to recognise handwritten digits.  Since then, this state-of-the-art technique is branched as “Deep Learning”. 

Many investigators have concluded that deep learning was not only possible but capable of handling issues that no other 

machine learning algorithms could achieve. It has been widely applied in various energy topics, such as smart energy prediction 

[46], solar potential evaluation [47], and even electricity price forecasting [48]. In this study, a deep learning platform to identify 

flow patterns was realised through TensorFlow,  which allows deep learning configurations to be performed and equipped 

based on large datasets with certain individual features. These features are usually consisting of multi-dimensional arrays, 

which are also considered as tensors in the model. Note that, as described in section 2.3, the observed flow pattern categories 

have been converted to numerical digitals before entering into the predictive model.  

With very few exceptions, the deep learning algorithm wouldn’t perform well while tensors are presented in different 

scales. Therefore, before features from experimental datasets flowing into the designed neural networks, the Min-Max scaler 

was applied to shrink features into the range between 0 and 1. The corresponding formula can be expressed as:  
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������� =
�� − min (�)

max(�) − min (�)
 

(6) 

where ������� is the normalized value; �� is the original value; min (�) and max(�) are the minimum and the maximum values 

in the span, respectively.  

A visualised configuration of the proposed deep learning structure with emphasis on how tensors flow in various 

components is presented in Fig.3. To improve forecasting accuracy, several neural network structures were tested, including 

trials with various layers numbers and different neurons numbers in each layer. The final deep learning neural network consists 

of a five-layer structure ( see Fig.3, Layers 1 ~ 5), creating the relationships between inputs (superficial velocities of water, 

superficial velocities of air, and inclination angles, see Fig.3, Input (a)) and outputs (flow patterns, see Fig.3, Output (g)). Both 

the first and the fifth layer have 50 neurons (see Fig.3, Layer 1 (b) & Layer 5 (f)), while the remaining three layers have 20 

neurons, respectively (see Fig.3, Layer 2 (c) ~ Layer 4 (e)). In the deep learning neural network, all the five layers were 

connected by means of a computational graph, enabling tensors to flow from the first layer to the last one. A description of how 

each hidden layer functioned inside the deep learning model is presented using Layer 4 as an example (see Fig.3, Layer 4 (e)). 

There are three major components in the layer: 

1) Weights for connections between each neuron, including the neurons in the previous layer, which represent the 

strength of the connections (see Fig.3�); weights initialization followed the Xavier algorithm, avoiding any 

overlarge or too small weights [49];  

2) Biases for each neuron, which are realised by TensorFlow’s built-in initializer, are used to regulate the output 

along with the weights to the neuron (see Fig.3�); 

3) An activation function was applied to yield the result of the current layer (see Fig.3�); it multiples the weights by 

input neurons and adds biases for deciding whether a neuron should be activated. In this paper, the Rectified 

Linear Unit (ReLU) were applied as the nonlinear-activation function.  
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Fig. 3 – Visualization of the deep learning configuration.  

The following correlations are implemented in each layer: 

�� = �������
��� + ��  

(7) 

where ��  is the net input of neuron j in the deeper hidden layers or the output; �� is the input of neuron j; ���  is the weights 

that connected neuron i and j; �� is the bias linked with neuron j.  

ℎ = ����(��) = max (0,��)  (8) 

where ℎ is the output of neuron j.  

For any machine learning algorithms, the predictive model not only needs to be trained but also requires a metrics to 

measure the accuracy of forecasting, which is referred to as a cost (or loss) function. To quantitively measure the difference 

between the predicted flow patterns and experimental observations, the Mean Square Error (MSE) forecast error criteria is 

used:  
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��� =  
1��[(����������)� − (�������������)�]��
���  

(9) 

where � is the number of tests; (����������)�  and (�������������)�  denotes  the predicted value of the ��� tensor from the 

deep learning model  and  the measured value of the ��� tensor from the experimental datasets, respectively.  

The experimental datasets were randomly divided into two groups – the training group with 80% data points and the testing 

group with 20% data points. The developed deep learning model follows a train-test-validation framework. First, the training 

phase was conducted by offering both input and output tensors to the predictive model while neural networks learn how to 

correlate input data to produce correct flow pattern forecasting. While the deep learning model has been trained, the independent 

testing data were applied to evaluate its forecasting ability. Once the constructed neural networks have been tested, the deep 

learning model was further validated via the conventional Barnea unified model [19] in the form of flow regime maps. Besides, 

the learning rate in the predictive model is set as 0.01 whereas the training and testing epochs are defined as 4000. 

4. Results and Discussions 

4.1 Training and Testing 

 As shown in Fig. 4, the MSE has displayed a rapid drop once the first a few hundreds of iterations were achieved, starting 

to reach convergency after 1000 around iterations. The stabilized MSE for training and testing data were 0.01497 and 0.01672, 

respectively. The predicted flow patterns by the neural networks are compared with experimental observations recorded by 

Shoham [42] in Fig. 5, where a good agreement was achieved for all tested inclination angles. The performance of predictions 

for each flow pattern in the testing loop is presented in Table 3 in terms of accuracy. The classification accuracies in flow 

pattern prediction of stratified smooth, stratified wavy, annular, intermittent, and bubble flow are all above 90%, with the 

exception of dispersed bubble flow. Dispersed bubble flow occurs while the velocity of water increases, where the bubbles are 

broken up into minor and separated bubbles. In our datasets, dispersed bubble flow arose only during high superficial water 

velocities (see Table 3). Therefore, corresponding data points of dispersed bubble flow only located at the “boundary” of the 

entire database. This may explain why the prediction accuracy of this flow pattern is relatively low (84%).  
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Fig. 4 – Variations of training and testing MSEs along 4000 epochs in the designed neural networks.  

 

Fig. 5 – Comparison of flow pattern predictions between predictive model (dotted points) and experimental observations (full 

lines).  

Table 3 – Accuracies of flow pattern prediction in the deep learning model. 

Flow Pattern  Range of superficial 

water velocities, m/s 

Range of superficial 

air velocities, m/s 

Inclination 

angles, ° 

Accuracy, % 

Dispersed Bubble 2.02 ~ 6.3 0.02 ~ 4 0 ~ 90 84 

Stratified Smooth 0.004 ~ 0.16 0.025 ~ 4 0 91 

Stratified Wavy 0.0025 ~ 0.063 2.5 ~ 25 0 ~ 10 90 

Annular 0.0022 ~ 0.4 8.72 ~ 40 0 ~ 90 98 

Intermittent 0.0022 ~ 4 0.016 ~ 25 0 ~ 90 97 

Bubble 0.0022 ~ 1.54 0.023 ~ 0.26 70 ~ 90 100 

 

4.2 Validation 
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To further validate the reliability of the built deep learning model, it was compared with the predicted results from the 

unified model proposed by Barnea [19], which was designed for identifying flow regimes in the whole range of pipe inclinations 

by solving operative equations and consulting dimensionless maps. The detailed descriptions of the unified model can be found 

in Barnea’s original research work [19]. As presented in Fig.6 ~ 10, comparisons are showed in the form of flow regime maps 

under inclination angles of 0°, 1°, 30°, 80°, and 90°. Flow regime maps generated by the deep learning model are represented 

through dotted points while the results developed from the Barnea unified model are characterized by full lines. A great match 

was achieved between these two models, where the deep learning model happened to have the same point of view with the 

conclusions from Barnea [19]. For instance, in the deep learning flow regime maps, the stratified smooth flow could only be 

observed under inclination angles that are close or equal to 0° (see Fig. 6); dispersed bubble, annular, and intermittent flows 

were observed in the entire range of upward inclinations (see Fig.6 ~ 10); the stratified wavy flow could only be observed in 

horizontal or near-horizontal flows (see Fig. 6 and 7) while bubble flow could only be identified in vertical or near-vertical 

flows (see Fig. 9 and 10). In Fig. 7, there are obvious differentials between the predicted stratified wavy flows from the deep 

learning model and the results from the Barnea unified model. It is encouraging to compare this phenomenon with what was 

found by Barnea [19], where similar differentials were observed when the Barnea unified model was compared with 

corresponding experimental results. This can be another evidence, indicating the predictions of deep learning are closer to the 

actual experimental observations.  

 

Fig. 6 – Comparisons of flow regime maps generated by deep learning model (dotted points) and unified model (full lines) 

for two-phase flow in horizontal (0°) pipe.   
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Fig. 7 – Comparisons of flow regime maps generated by deep learning model (dotted points) and unified model (full lines) 

for two-phase flow in upward inclined (1°) pipe.     

 

 

Fig. 8 – Comparisons of flow regime maps generated by deep learning model (dotted points) and unified model (full lines) 

for two-phase flow in upward inclined (30°) pipe.     
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Fig. 9 – Comparisons of flow regime maps generated by deep learning model (dotted points) and unified model (full lines) 

for two-phase flow in upward inclined (80°) pipe.       

 

 

Fig. 10 – Comparisons of flow regime maps generated by deep learning model (dotted points) and unified model (full lines) 

for two-phase flow in vertical (90°) pipe.       

Conventional correlations used in flow pattern prediction usually required certain factors that are needed to be entered into 

the equations. For instance, in the Barnea unified model, the correlation of stratified and annular flow involved the friction 

factor at the water-air interface. This factor is a typical empirical parameter, which is hard to be measured or recorded. One of 
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the major advantages of the currently proposed methodology is that its input variables are easily accessible, which make it more 

applicable in industries.  

4.3 Feature significance  

The feature importance in the built deep learning model was also examined, ranking the level of significance between input 

features and the predicted flow patterns. The ranking of the top-rated features was determined using the variations of the final 

MSEs in the predictive model. More specifically, at each testing loop, one feature was substituted by its average value, while 

other parameters/structures remained the same in the deep learning model. As only one feature is replaced at one time, this 

assessment will be reiterated on all the three inputs one by one, including superficial velocities of water, superficial velocities 

of gas, and inclination angles. Changes of MSEs along testing loops over each feature are presented in Fig. 11. Comparing with 

the initial circumstance, the values of the final MSEs kept increasing in the order of inclination angles (MSE = 0.03110), 

superficial velocities of gas (MSE = 0.04952), and superficial velocities of water (MSE = 0.08487), indicating the level of 

importance of features in flow pattern prediction can be ranked in such an order. Contrasting to correlation coefficients that 

were presented in section 2.3, the correlations between features and flow patterns have been reset. The current conclusions 

based on feature importance are respected to be more rigid, where non-linear relationships were considered between features 

and the output flow patterns, unlike the linear coefficients. As superficial velocities of water & air govern most flow parameters 

that are of interest to field applications, they are self-evidently significant for flow pattern identification. Therefore, superficial 

velocities took the first two places in the level of significance. Even the impact of inclined angles on flow pattern identification 

is ranked as the third, it still approximately doubled the final MSE values from 0.01672 to 0.03110 when this feature is not 

considered, significantly reducing the accuracy of the predictive model.  
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Fig. 11 – Variations MSEs in the deep learning configuration under varying input features.  

5. Conclusions 

This work contributes to knowledge gaps in flow pattern identification by developing an integrated methodology to identify 

and predict two-phase flow patterns through deep learning neural networks, which were trained, tested and validated through 

experimental datasets and well-established flow regime maps. The key strength of this study is that it represents a 

comprehensive investigation of flow regime transitions in vertical, horizontal, and varying upward inclined pipes through deep 

learning predictive model. Based on the facts above, the findings from this study makes several noteworthy contributions: 

 This paper successfully constructed a deep learning neural network model to predict flow patterns in two-phase 

flows while upward inclined angles varied from 0° to 90°. Unlike traditional correlations, the developed method 

represents a breakthrough in the way of flow pattern identification using accessible parameters of superficial 

velocities of air & water and inclined angles as inputs. The integrated deep learning framework, therefore, assists 

in the design & analysis of flow loops with arbitrary inclination angles in energy systems. 

 The designed deep learning model has been evaluated against experimental observations. The comparison results 

suggested that the present model has high accuracy in flow pattern identification. The accuracies of predictions 

in stratified smooth, stratified wavy, annular, intermittent, and bubble flow are all above 90%. The only exception 

occurred in dispersed bubble flow identification with the accuracy of prediction of 84%, due to most data points 

of this flow pattern were located at the boundary of the datasets.  
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 Flow regime maps that were generated from the deep learning neural networks were further compared and 

validated by the widely accepted Barnea unified model, where a great match was achieved between these two 

approaches. Besides, based on the results of comparisons, the flow regime maps developed from the current study 

fit better with experimental observations.  

 This research has demonstrated, for the first time, the level of significance of input features to quantitively 

evaluate flow patterns via deep learning. This approach expands our understanding of how different features will 

determine the accuracy in flow pattern identification through nonlinear analysis, showing more reliable results 

than the commonly used correlation coefficients. Compared to fixed flow conditions, variations of inclination 

angles have a significant influence on gas-liquid flow patterns in channels of conventional sizes.  
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