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Abstract The target of this paper is the performance-based diagnostics of a gas turbine for the

automated early detection of components malfunctions. The paper proposes a new combination

of multiple methodologies for the performance-based diagnostics of single and multiple failures

on a two-spool engine. The aim of this technique is to combine the strength of each methodology

and provide a high success rate for single and multiple failures with the presence of measurement

malfunctions. A combination of KF (Kalman Filter), ANN (Artificial Neural Network) and FL

(Fuzzy Logic) is used in this research in order to improve the success rate, to increase the flexibility

and the number of failures detected and to combine the strength of multiple methods to have a more

robust solution. The Kalman filter has in his strength the measurement noise treatment, the artificial

neural network the simulation and prediction of reference and deteriorated performance profile and

the fuzzy logic the categorization flexibility, which is used to quantify and classify the failures. In the

area of GT (Gas Turbine) diagnostics, the multiple failures in combination with measurement issues

and the utilization of multiple methods for a 2-spool industrial gas turbine engine has not been

investigated extensively.

This paper reports the key contribution of each component of the methodology and brief the results

in the quantification and classification success rate. The methodology is tested for constant deteri-

oration and increasing noise and for random deterioration. For the random deterioration and nom-

inal noise of 0.4%, in particular, the quantification success rate is above 92.0%, while the

classification success rate is above 95.1%. Moreover, the speed of the data processing (1.7 s/sample)

proves the suitability of this methodology for online diagnostics.
� 2020 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The performance-based gas path analysis is a topic that has

been studied in the last 40 years since Urban1 defined the pos-
sibility of making diagnostics on the gas turbines components,
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based on the performance parameters. The other consolidated
techniques that had taken place before, were the vibration and
the lube oil diagnostics. The first consists of checking the bear-

ing absolute and relative vibration caused by unbalance, rotor
bow, rotor crack or blade separation and the second of check-
ing if debris, caused for example by erosion, are present in the

lubrication oil circuit. These techniques, especially the vibra-
tion diagnostics, are renowned for malfunction detection and
for prognostics. Instead, the performance-based diagnostics

proposes to detect loss of performances and malfunctions from
the early stages of operation with several clear advantages:
identifying which part of the engine is subjected to shortages,
evaluate different schedules for a certain engine to save its life-

time or reduce maintenance costs, prevent unplanned outages,
extend the lifetime of certain components. Indeed, the mainte-
nance costs on industrial gas turbines and combined cycle

plants can reach 50% of the total O&M (Operation and Main-
teinance) costs2 that represent 7% of the overall project cash
flow. Additionally, statistic studies conducted over 3000 E

and F class engines concluded that the unplanned maintenance
cost can reach 8% of the O&M costs, or 2% of net revenue
income and the loss of revenue can reach the 15% of the

O&M cost or 5% of net revenue income.3

A methodology is intended to offer an easy way to detect
the components deterioration or failure.4 The final set up for
the health monitoring should include the features remarked

by the experts in this field:5 interface with the increasing
amount of data available from the engines; integrate new sen-
sor suites and capabilities; precise modelling of the baseload

and part load conditions; leverage all available information
including user-specific inputs; have a practical design. What
is meant to be detected is the deterioration of every single com-

ponent – single failure – and the combination of components
deterioration – multiple failures. The measurements bias are
omitted since, due to the redundant measurements available

in the industrial gas turbines, have fewer chances to be encoun-
tered. This assumption is also supported by Kerr et al.6 Mea-
surements noise instead, shall also be part of the simulation as
they are relevant in any working engine. For instance, the

detection of the multiple failures in combination with the
detection of measurement noise is a point that has not been
fully investigated in the reference.

Sampath and Singh7 described how to detect multiple fail-
ures including measurements noise and bias. The methodology
was built with an auto-associative neural network used to iso-

late the bias and a combined genetic algorithm, artificial neural
network, employed to detect multiple failures. However, the
methodology resulted in unsuitable for the online diagnostics.

Instead, multiple failures with single or the combination of

multiple techniques have been frequently investigated in the
references. Viharos and Kis8 proposed a comparison of differ-
ent neuro-fuzzy solutions. The authors found that the combi-

nation of the neural network learning, together with the
fuzzy logic, reduces the setup time and improves the quality
of the detection. In addition to that, fuzzy logic can be manu-

ally implemented to include some user-based rules. Wang et al.9

introduced a series of fuzzy logic, which is coupled with the
TOPSIS (Technique for Order of Preference by Similarity to

Ideal Solution) methodology. Dewallef et al.10 proposed a
combination of Bayesian belief with Kalman filter in order
to benefit from their mutual advantages. The Kalman filter is
used to improve the information the Bayesian belief is using
for the prediction of the failure. Verma et al.11 instead, pro-
posed a genetic fuzzy logic with a radial basis function neural

network. The aim of the genetic fuzzy is to automatically tune
the failures based on genetic algorithm analysis while the neu-
ral network is used to isolate the noise. The methodology is

only tested for a single deterioration case scenario. Kumar
et al.12 coupled the fuzzy logic with the support vector machine
not only for the diagnostics but also for the remaining lifetime

estimation. Recent papers, taking advantage of the increasing
knowledge and power of the neural network13 applied it to the
diagnostics of a gas turbine. Finally, Li et al.14 coupled neural
network with support vector machine for the quantification

and classification of the gas turbine failures with standard
white noise.

Comparing the reference review against the objectives sta-

ted at the beginning of the chapter, it can be seen that there’s
no clear answer on the multiple failure detection together mea-
surement noise. This is a primary objective to effort, as all the

turbomachines will encounter both problems at the same time.
In addition to that, the growing computational capabilities

increased the number of resources that can be employed in the

performance-based diagnostics. The ANN (Artificial Neural
Network), in particular, became faster and reliable both for
fault isolation, noise reduction and for performance modelling
prediction. It is a common point, among the papers coupling

multiple techniques, the idea of taking the strength of each
contributor while reducing their limitations. This can lead to
a more robust combination.

Starting from these objectives of detecting multiple failures
in combination with measurement issues and coupling the
strength of multiple techniques a methodology has been built.

The structure is thought in three phases:

(1) The data analytics, where the measurements are cor-

rected by measurement noise.
(2) The key performance parameter prediction starting from

the measurements previously corrected.
(3) The failure diagnostics in terms of quantification and

classification of single and multiple failures.

For each phase, a contributor has been selected resulting in

the combination of KF + ANN+ FL. The Kalman filter has
been selected for the measurement noise correction because of
its performance and simplicity. In fact, as it is conceived to

work with a big amount of data and with online signals, it
has to be robust, fast and adaptable. The Kalman filter has
been successfully used by Lu et al.15 to improve performance
monitoring.

Looking at the second step, the quantification of multiple
failures needs to consider not only the measurement values
but also the gas path parameters (efficiencies). The dedicated

model needs to be accurate in order to calculate these
parameters and its relationship16,17 and the ANN has been
successfully tested by Fast18 and Kanelopoulos19 et al.

Moreover, in the light of increasing of the amount of avail-
able data, the ANN has been tested to be the right model to
provide an enhanced understanding of the relationship

between signal and failure, so far not deeply known or dif-
ficult to detect.20
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The preferred method to perform quantification and clas-
sification of the failure is the fuzzy logic. This technique
offers the possibility of clearly and easily quantifying the fail-

ures and it’s not much affected by the noise. Moreover, it is
flexible enough to be used for quantification purposes or for
classification reasons. Additionally, its adaptability allows

increasing the number of rules, while detecting engine specific
failures or while increasing the generic failure portfolio.
Finally, the quantification done within the fuzzy logic frame

offers the possibility to be used for prognostics purposes.12

The fuzzy logic has been already tested by Eustace 21 and
Palade et al.22

This combination is investigated in this paper and the

objective is to offer a performance-based diagnostics, which
is able to detect, with a high degree of confidence, both sin-
gle and multiple failures with the presence of measurement

noise.

2. Problem formulation

From the introduction, it is meant that the topic is intended to
be investigated is the multiple failure diagnostics with the pres-
ence of measurements noise. The targeted type of failures con-

sidered is the compressor fouling, the turbine fouling and the
turbine erosion, failing with different magnitude Refs. 23–32
The methodology that has been established for this purpose

is divided into three sections (see Fig. 1):

(1) Data filtering to correct for noise.
(2) GT thermodynamic parameters prediction.

(3) GT components single and multiple failure quantifica-
tion and classification.

Considering that no real data are available for the valida-
tion of the methodology, an additional step has been added
at the beginning of the structure and is: GT Performance ref-

erence cycle modelling.
The research is focusing on the study of a new combination

of multiple methodologies consisting of ANN, KF, FL.

The key contributors and their interaction are shown in
Fig. 1. Where X are the measurements, n is the noise, nr is
the remaining noise, Dƞ and DX are the delta efficiency and
measurement, Amb are the ambient conditions and ref is the

reference of the non-deteriorated engine.
Fig. 1 Flowsheet of esta
2.1. Performance modelling

The gas turbine considered is a 2-spool industrial gas turbine
of small size with a pressure ratio of 17:1. The gas turbine
has been modelled with hardware including two compressors

and two turbines (Low Pressure Compressor (LPC), High
Pressure Compressor (HPC), High Pressure Turbine (HPT)
and Low Pressure Turbine (LPT)) in Fig. 2.

The performance values are modelled on Turbomatch the

thermodynamic cycle modeller built and maintained at Cran-
field University. Turbomatch is a software-based Gas Turbine
performance simulation tool developed by the Propulsion

Engineering Centre (formerly department of Power and
Propulsion), at Cranfield University.32 The tool is a 0-D per-
formance simulation code, featuring off design and transient

simulation as well Ref. 33.
The gas turbine is modelled to match the performance of

11.9 MWe with the pressure ratio of 17:1, an inlet mass flow

of 41.6 kg/s and an exhaust temperature of 485 �C. This is
defined as the nominal condition. On top of it, the deteriora-
tion of one or multiple components is simulated (see Table 1).

The deterioration is built taking into account the relation-

ship reported in the literature to make the simulation realistic.
Based on the Refs. 23–32, the ratio of delta efficiency (Dƞ) and
delta air inlet mass flow (Dṁ) deterioration is set to 1:2.

2.2. Kalman filter

The Kalman filter is built to compensate for measurement

noise. It relies on the MM (Multiple Measurements) installed
on the industrial gas turbines. The number of probes used for
each measurement point is five.33,34 Exceptions are on the
TET T6 where the probes increase to 1835 and on the power

P and fuel mass flow ṁfuel, where the probes decrease to 1.
The noise injected is randomly normally distributed around
the mean value. Each probe is noised separately to have differ-

ent values for each sensor.Moreover, as reported by Joly et al.36

the level of noise of the pressure probes, is ¼ of the noise of the
temperature probes. This relation is also applied, and the

resulting reference 0.4% noise is shown in Table 2. The mea-
surements bias, as already reported in Introduction are omitted
since, due to the redundant measurements available in the

industrial gas turbines, have fewer chances to be encountered.
This assumption is also supported by Kerr et al.6
blished methodology.



Fig. 2 Gas turbine measurements location.

Table 1 Efficiency vs mass flow for different types of failure.

Type Dƞ Dm
:

Dƞ: Dm
:

Compressor fouling ; ; 1:2

Turbine fouling ; ; 1:2

Turbine erosion ; " 1:2

Table 2 Noise level.

Definition Parameter Reference noise (%)

LPC inlet pressure p1 0.1

LPC inlet temperature T1 0.4

LPC inlet relative humidity RH1 0.4

LPC exhaust pressure p2 0.1

LPC exhaust temperature T2 0.4

HPC exhaust pressure p3 0.1

HPC exhaust temperature T3 0.4

Fuel mass flow m
:
fuel 0.4

HPTexhaust pressure p5 0.1

HPT exhaust temperature T5 0.4

LPT exhaust pressure p6 0.1

LPT exhaust temperature T6 0.4

Power P 0.4

Shaft 1 speed N1

Shaft 2 speed N2

Fig. 3 Multiple layer linear Kalman filter set up.

Fig. 4 Single layer linear Kalman filter set up.
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The intent of the Kalman filter is to use all the available sin-
gles to make an information fusion at each point of the gas tur-

bine (see Fig. 2) as already tested by Anitha37 and Gülen35

et al. In this way, the prediction is expanded by the number
of measurements located at each measurement point and

results on being more accurate. To apply this procedure two
different types of structures have been built: a multiple-layer
linear Kalman filter, Fig. 3 (The dashed lines show the mea-

surement that is used as initial estimation (xk
–)– Meas 1, Meas

3 and Meas 5 in the first layer, xk1 in the second layer.), and a
SLKF (Single Layer Kalman Filter), Fig. 4. With the MLKF
(Multiple Layer Kalman Filter), the data are processed in
two different layers before calculating the final output. Instead

in the single-layer Kalman filter, the data are processed in a
unique layer and fused to a single output. These two structures
provide the opportunity to compare the additional expansion
of information offered by the multiple layer configuration

and the possible smearing effect associated with it. In fact, if
it’s true that more layers can improve the prediction quality,
it is also true that they can extend the measurements errors.



Table 4 Set of measurements included in the ANN.

Definition Parameter Included in ANN

LPC inlet pressure p1 No

LPC inlet temperature T1 No

LPC inlet relative humidity RH1 No

LPC exhaust pressure p2 Yes
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The output estimate of the Kalman filter is called a-

posteriori state bxk and is determined as

bxk ¼ bx�
k þ Kk zk � bx�

k

� � ð1Þ
where bx�

k is the a-priori state estimate, zk is the measurement

and Kk is the Kalman gain. The initial set up consists of five
measurements33,34 that have to be fused in a single output.

With the multiple layers Kalman filter the measurements 1 to
5 at location 1 to 6 are divided into three sets: {Meas 1, Meas
2, Meas 3}; {Meas 3, Meas 4, Meas 5} and {Meas 5, Meas 3,

Meas 1}. The Kalman filter Eq. (1) is applied to each set of
measurements, considering the first information of the set to

be the initial state estimate bx�
k and the other information the

measurements zk. Once the first iteration is completed, three
new inputs are available for the second layer. Again, the Kal-
man filter Eq. (1) starts and a unique output are computed.

The scheme is slightly different at the TET where 18 measure-
ments are planned.35 The change is on the sets of the first layer
that are divided in three as: {Meas 1, Meas 2,. . ., Meas 6},

{Meas 7, Meas 8,. . ., Meas 12}, {Meas 13, Meas 14,. . ., Meas
18}.

With the single layer Kalman filter one layer is removed

and the Kalman filter Eq. (1) is applied once to all the mea-
surements. Again, with TET the scheme is different than the
one presented in Fig. 4 as 18 measurements are used.

The Kalman filter has been tested for a constant reduction

of 7.4% of the efficiency on the compressors and 3.7% on the
turbines over 200 samples, varying the level of reference noise
from 0% to 2% (see Table 3, Failure injected for the KF test-

ing.). The maximum level of noise is 5 times higher than the
reference noise that is set to 0.4% according to Refs. 36,38.
The type of failure injected in the compressor is the fouling

and the erosion in the turbine.
To check the effectiveness of the KF, the standard devia-

tions have been compared.

r ¼ std xk � xtrueð Þ ð2Þ
where xk is the real measurement after the KF, xtrue is the true
reference without any noise and std is the equation used by
MATLAB for the standard deviation calculation. According
to Fig. A1 in the Appendix A, the MLKF with MM leads to

a maximum reduction of 83% of the measurement standard
deviation. The reduction moves to 76% if the SLKF with
MM is used meaning that the second layer of the Kalman filter

is worth 7% improvement. Instead, if the pressure is consid-
ered, the maximum reduction is 32% for MLKF with MM
and 36% for SLKF with MM (it must be remarked that the

noise level of the pressure is ¼ of the noise level of the temper-
ature). This means that for the pressure the SLKF results in a
higher reduction of the noise. However, the MLKF is better on
Table 3 Failure characterization.

Component Fouling (%) Erosion (%) Noise (%)

LPC 7.4 0,0.4,0.8,1.2,1.6,2.0

HPC 7.4 0,0.4,0.8,1.2,1.6,2.0

HPT 3.7 0,0.4,0.8,1.2,1.6,2.0

LPT 3.7 0,0.4,0.8,1.2,1.6,2.0
overall for all the measurements and at different noise levels

(see Appendix A).

2.3. Artificial neural network

The ANN is used to predict the efficiency of every single com-
ponent and the deterioration parameters associated with it –
mass flow, pressure ratio and efficiency decay. The type of
ANN selected for this study is the cascade forward neural net-

work that is working in a similar way as the feed-forward back
propagation neural network but is adding a connection
between the input and the n+ 1 layer. The neural network

is set up in three layers that proved to be effective while keep-
ing the computational time reasonable. The equation govern-
ing the artificial neural network is:

n ¼ �
R

j¼1
w1jvj � b ¼ WTV� b ð3Þ

where W is the vector weight containing the input of each neu-

ron and V is the vector. b is the bias assigned to each neuron
and R are the number of entries. For a given problem, once
the weight and the bias are established in the learning phase,

the ANN is able to predict the output. The measurements
included in the ANN are listed in Table 4 and are the result
of the optimization performed during the testing phase. If

‘‘No” is specified the measurement is not included, if ‘‘Yes”
is specified the measurement is included

The pressure at the turbine exhaust p6 is not included in the
ANN because of the uncertainty even after the filtering shown

in Fig. A2 in the Appendix A. The measurements of the first
reference point and of the fuel mass flow are also ignored as
they have been found less effective if included in the

simulation.
For the given set of inputs in Table 4, the ANN is tuned to

predict the efficiencies of the gas turbine components (LPC,

HPC, HPT, LPT). The objective is to keep the deviations
below a minor order of magnitude to rely on ANN as a model
and do not affect the diagnostics because of model deviations.

Starting from the same failure characterization of Table 3,

the maximum deviation on the predicted efficiency values,
compared to the reference value of the model is 0.38% abso-
lute at 2% measurement reference noise. The deviation is
LPC exhaust temperature T2 Yes

HPC exhaust pressure p3 Yes

HPC exhaust temperature T3 Yes

Fuel mass flow m
:
fuel No

HPT exhaust pressure p5 Yes

HPT exhaust temperature T5 Yes

LPT exhaust pressure p6 No

LPT exhaust temperature T6 Yes

Power P Yes
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reduced to 0.14% absolute if the MLKF + ANN + FL is
used (see Fig. A3).

2.4. Fuzzy logic

The fuzzy logic is used to quantify the severity of the failure of
each component and to classify the type of malfunction. The

quantification is based on the measurements data filtered in
the KF module and on the efficiencies predicted in the ANN
section. The FL must relate the cause-effect of each compo-

nent to the severity of the failure.37 To establish this relation-
ship, eight cases, representative of single and multiple cases
have been calculated (see Table 5).

The relationship out of the simulation done with the refer-
ence gas turbine presented in Performance modelling is shown
in Table 6. From this matrix, it can be seen the effect the dete-
rioration is playing on the affected components and the inter-

action with the other components. In case 4 for example –
HPT erosion – the efficiency of the HPT decreases. The conse-
quence is an increase of the HPC efficiency and a decrease of

the LPC efficiency.
While establishing a direct cause-effect relationship and

associating a severity level to it, the FL allows faster and

unambiguous detection of the failures. The FL is set up in
two sections: one for the quantification and another for the
classification of the failures. The quantification relates the
deterioration level to a magnitude that is set on a scale from

0 to 100. 0 represents the new engine without failures and
100 stands for the maximum level of deterioration recorded
from the Refs. 23–32 and set up in the simulation. The rela-

tionship between the parameters in Table 6 and the FL magni-
tude is built with a neuro-fuzzy designer as shown in Fig. 5.
The role of the ANN in this section is to tune, by modifying

the weights, the fields of the FL. The classification is done with
the FL and is tuned to classify the six types of failures listed in
Table 5. The discriminant for the failure classification is the

measurement, efficiency and deterioration reference level delta.
This reference level delta, in particular, is the parameter used
by the performance simulator (Turbomatch) to simulate a
deteriorated engine. It includes mass flow, pressure ratio and

efficiency impact, whose relationship varies depending on the
type of failure considered. This information is calculated also
from the ANN in its prediction phase.

The results of the quantification and classification are
merged in a chart showing on the y axis the severity (quantifi-
cation) and on the x axis the type of failure (classification). The
Table 5 Cases base of cause-effect scenario.

Case LPC fouling HPC fouling LPC erosion

1 �
2 �
3 �
4

5

6 � �
7 � � �
8 � �
Note: Eight combinations are, among the others, the most relevant for t
severity is also associated with a colour code (traffic light) to
facilitate the interpretation of the results (see Fig. 6).

3. Results

To test the robustness of the methodology dedicated tests have
been conducted. The base for the test is the simulated engine

described in Performance modelling. The main variables that
are considered with the test are:

(1) Failure of one or multiple components.
(2) Variation of the degradation magnitude.
(3) Variation of the level of noise applied to the

measurements.

To consider all these aspects, two sets of tests have been set:

(1) Constant deterioration with 7.4% degradation on the
compressor and 3.7% on the turbine; multiple failures;
variation of noise level (see Table 3).

(2) Random deterioration with degradation within 0.15%–
7.4%; single, multiple and no failures; noise level 0.4%.

The output of the tests is the success rate. For the quantifi-
cation, the simulated sample is counted if it lies within 3r stan-
dard deviation, while the classification is counted if classified in

the right category (also if outside the 3r standard deviation).
The standard deviation 1r is calculated from a dry run with
nominal noise (0.4%) and constant deterioration of multiple
components. The calculated value is ±2.06 for 1r, therefore,
±6.18 for 3r.

The results of the first test show a quantification above
99.5% for the nominal noise of 0.4% with all the combina-

tions. With the maximum noise level of 2.0%, the success rate
is decreased to 58.8% without the KF block. The rate increases
to 72.4% if also the MLKF is employed and to 73.4% if the

SLKF is used (see Table 7). However, it must be noticed that
the MLKF + ANN + FL is performing better on overall
reaching a maximum quantification success rate, with 2.0%

noise, of 91.0% (see Fig. 7). The improvement after the data
filtering is also visible in the decreased standard deviation seen
in the quantification rate shown in Fig. A4.

The results of the classification with nominal noise (0.4%)

show a success rate above 93.0% without filtering and at
100% with MLKF + ANN + FL (see Table 8). With the
maximum noise, the success rate decreases to 86.0% if no fil-
HPT fouling LPT fouling LPT erosion

�
�

� �
�

� �
his study.



Table 6 Cause-effect for gas path parameters.

Definition Parameter Cause-effect

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

LPC efficiency gLPC ; ; & ; ; ? ; ;
LPC exhaust pressure p2 ; " " " " ; " ;
LPC exhaust temperature T2 & " " " " ; " ?
HPC efficiency gHPC ? ; ; % ? ; ; ;
HPC exhaust pressure p3 ; ? " ; & ? ; ;
HPC exhaust temperature T3 ? " " ? " % " ?
Fuel mass flow m

:
fuel ; ; ; ? ; ? ; ;

HPT efficiency gHPT ? & ; ; ? & ; ;
HPT exhaust pressure p5 ; ? & % " ; ? ;
HPT exhaust temperature T5 ? ? ; % " & % ?
LPT efficiency gLPT ? ? ? ? ; ; ; ;
LPT exhaust pressure p6 ; ? " ; ; " ; &
LPT exhaust temperature T6 " ? & % " " " "
Power P ; ; ; ; ; ; ; ;

Notes: "; Variation above-below 2% relative; %& variation above-below 1% relative; ? variation within ±1% relative.

Fig. 5 Neuro-fuzzy designer structure.

Fig. 6 Chart for quantification/classification of results.
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tering is used and increases again to 92.4% with MLKF +
ANN+ FL. Remarkable results are also achieved with
SLKF + ANN + FL, where the minimum success rate is

90.9% with 2.0% measurement noise (see Fig. 8).
The second simulation performed with random failures and

degradation magnitude leads to a quantification rate above

92.0% (see Table 9). This result is obtained with the nominal
reference noise of 0.4%.

The classification rate leads to a success rate above 95.1%
(see Table 10).
The execution time per each sample point was also tested

for the three combinations: (A) structure without Kalman fil-
ter; (B) structure with SLKF; (C) structure with MLKF. For
the first case, the time per single point processed is 0.97 s, for
the second the time is 1.1 s and for the third is 1.7 s. These

results include the Kalman filter (if applied), the ANN predic-
tion, the calculation of the reference value done with Turbo-
match and the FL. The ANN training is excluded as it is

done at an earlier stage with the previously calculated data.
As the results are within seconds (1.7 s) this methodology
results in being suitable for online diagnostics.

4. Discussion of results

The methodology structure has been clarified in the Problem

formulation and consists of KF + ANN + FL. Each compo-
nent of the methodology has been tested and the contribution
has been measured.

In particular, the KF has been proposed in two ways:
SLKF and MLKF. The SLKF leads to a maximum standard
deviation reduction of 76% for the temperature and 36% for
the pressure. The MLKF leads to a maximum standard devia-

tion reduction of 83% for the temperature and 32% for the
pressure. This difference is reflected in the overall quantifica-
tion where the deterioration level is associated with severity

based on a scale - fuzzy logic. The MLKF leads to a quantifi-
cation success rate of 86.4% for LPC, 82.4% for HPC, 91.0%
for HPT, 72.4% for LPT at 2.0% noise level (maximum rate

considered). The SLKF leads to a quantification success rate
of 82.4% for LPC, 75.4% for HPC, 83.9% for HPT, 73.4%
for LPT at 2.0% noise level. The lower rate recorded is
73.4% and is a better result than the MLKF. However, the

overall success rate is worse. For instance, the HPT is quanti-
fied with a rate of 7% higher with the MLKF. The case with-
out filter leads to a quantification rate of 76.9% for LPC,

58.8% for HPC, 66.3% for HPT, 63.3% for LPT which is
the lower among the three configurations. This behaviour
has been noticed early in the stages of this research and reflects

the fact that for a valuable modelling via ANN and a positive
quantification via FL, the data must be properly filtered.



Table 7 Success rate for failure quantification (unit: %).

Noise (%) 0 0.4 0.8 1.2 1.6 2.0

ANN+ FL LPC 100 100 100 95.5 79.9 76.9

HPC 100 100 95.0 84.9 69.3 58.8

HPT 100 100 100 95.5 77.4 66.3

LPT 100 100 98.0 86.4 65.3 63.3

SLKF+ ANN+ FL LPC 99.5 99.5 98.5 97.0 89.4 82.4

HPC 99.5 99.5 98.0 96.0 88.4 75.4

HPT 99.5 99.5 99.5 98.0 94.0 83.9

LPT 99.5 99.5 99.0 94.0 85.4 73.4

MLKF+ ANN+ FL LPC 99.5 99.5 99.0 94.5 92.5 86.4

HPC 99.5 99.5 98.5 94.0 90.5 82.4

HPT 99.5 99.5 99.5 97.0 96.0 91.0

LPT 99.5 99.5 99.0 92.5 91.5 72.4

Fig. 7 Success rate for failure quantification (Combination

MLKF + ANN + FL).
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Focusing on MLKF (see Fig. 7) a trend can be observed. In

particular, the success rate decreases if the reference noise
increases. This behaviour is expectable as the maximum noise
level, 2.0% is 5 times higher than the nominal at 0.4%. For

instance, 2.0% noise corresponds to 15 K variation of the tur-
bine exhaust temperature T6. The effect of the KF is a reduc-
tion of the slope of this trend obtained optimizing the KF

parameters, so attenuating the noise.
Looking at the random simulation, the quantification suc-

cess rate with 0.4% measurement noise is above 92.0%. How-
Table 8 Success rate for failure classification (unit: %).

Noise (%) 0 0.4

ANN+ FL LPC 100 100

HPC 100 93.

HPT 100 100

LPT 100 100

SLKF+ ANN+ FL LPCp 100 100

HPC 100 100

HPT 100 100

LPT 100 100

MLKF+ ANN+ FL LPC 100 100

HPC 100 100

HPT 100 100

LPT 100 100
ever, this rate increases up to 99.0% on the LPT. With this
simulation, every sample has a different type of failure and a

different magnitude, therefore the high success rate confirms
the robustness of the methodology.

The other parameter used to evaluate the robustness of the
methodology is the classification rate. This parameter evalu-

ates if the type of failure injected in the turbine is classified cor-
rectly meaning falling into the right category. As reported in
fuzzy logic it relies on a standard fuzzy logic rather than the

neuro-fuzzy logic used for the quantification. The minimum
success rate values scored are 86.0% without any filter,
90.9% with SLKF and 92.4% with MLKF. It is clear that

the filter applied improves the classification rate and the
MLKF results on being better than the SLKF. Looking at
Fig. 8 a decreasing trend related to the increase of the measure-
ment noise can be observed. The bending is evident at 2.0%

measurement noise, where the drop is 7% on the HPT and
LPT. The HPC behaviour is an exception and is not strictly
related to the MLKF. A similar attitude in-fact can be

observed in the case without the KF and this is mostly driven
by the ANN uncertainty prediction. The case with MLKF is
better as it’s moving this transition toward the 2% measure-

ment noise.
0.8 1.2 1.6 2.0

100 100 100 99.0

0 93.0 94.5 98.0 97.0

100 99.5 95.5 94.0

100 99.0 92.5 86.0

100 100 100 100

96.0 90.4 92.9 94.9

100 100 99.5 92.9

100 100 99.0 90.9

100 100 100 100

98.5 96.0 97.5 92.4

100 99.5 98.5 92.9

100 99.5 98.5 93.4



Fig. 8 Success rate for the failure classification (Combination

MLKF + ANN + FL).

Table 9 Success rate for failure quantification for random

simulation (combination MLKF + ANN + FL, Noise 0.4%).

Component Success rate (%)

LPC 97.0

HPC 92.0

HPT 98.5

LPT 99.0

Table 10 Success rate for failure classification for random

simulation (combination MLKF + ANN + FL, Noise 0.4%).

Failure type Success rate (%)

LPC fouling 98.3

HPC fouling 97.9

HPT fouling 100

HPT erosion 95.1

LPT fouling 100

LPTb erosion 96.9

132 S. TOGNI et al.
Looking at the second type of simulation, the minimum
classification rate from the random case with nominal noise

0.4% is 95.1%. At every point of this simulation, the type of
failure and the magnitude of the failure varies. It is clear that
such a scenario is more critical than a real one and the success

rate is lower than the single case failure. However, the high
rate confirms the robustness of the methodology. This result
is obtained with the MLKF in combination with MM. How-

ever, the Kalman filter coefficients have been tuned to give a
response suitable for the type of problem. This was necessary
as the Kalman filter is slow reacting if the measurement noise
covariance is set to high values. In fact, being slow reactive it is

advantageous to compensate for high noise with a problem
that is regularly changing but is leading to a loss of informa-
tion in this specific test where the type of failure is changing

rapidly.

5. Conclusions

The scope of this paper has been studying and showing the
results of a methodology for the performance-based diagnos-
tics on a two-spool engine in the presence of measurement

errors.
The research associated with the performance-based diag-
nostics is already extended as shown in Introduction. However,
there are some clear areas of opportunity where this paper

placed its target. The first is the multiple failure diagnostics in
presence of measurement malfunctions. The second is the com-
bination of multiple techniques that could make use of the

mutual benefit providing a methodology that is robust over a
wide range of conditions and flexible, so able to deal with dif-
ferent types of engines and with additional types of failure.

Looking at the significance of this methodology, the combi-
nation that has been proposed in this paper is KF + ANN+
FL which is, as illustrated in Introduction, a methodology
combining the strength of the three contributors.

To validate the methodology a model has been produced.
This model is based on information available in the open liter-
ature. The information used is the key reference values like the

efficiency of the components, power, mass flow and overall heat
rate. In the same fashion, the deterioration profile is the result
of the information available in the literature review and

included in the performance model. On top of it, a reference
noise has been added to each measurement. This set up has
been prepared to make the simulation as realistic as possible.

Based on the objectives set at the beginning, the main
results obtained are:

(1) The first contributor, the KF resulted in being beneficial

reducing the standard deviation by a maximum of 83%.
(2) The ANN reached a very good match compared to the

real value resulting in a maximum standard deviation

of 0.38%.
(3) The data provided by the KF together with the predic-

tion of the ANN set the base for reaching a success rate

above 92.0% in terms of quantification and 95.1% in
terms of classification in case of random simulation with
variable deterioration magnitude and failure type.

(4) While challenged with a noise rate 5 times higher than
the nominal noise 2.0% and constant degradation, the
methodology still reached a quantification rate above
72.4% and a classification rate above 92.4%.

(5) The methodology resulting in being suitable for online
diagnostics since the processing time per sample is 1.7 s.

With this work, scientific points in the performance-based
diagnostics scenario have been investigated. Nevertheless, this
specific methodology gives some additional opportunities for

the research. Specifically, the measurement noise has been
studied, but the measurement bias was not. This is a real sce-
nario that can affect the results of the diagnostics. Moreover,
the type of failures that have been investigated are two – foul-

ing and erosion, leading to six-component failures – LPC foul-
ing/HPC fouling/HPT fouling/HPT erosion/LPT fouling/LPT
erosion. The FL, that has been placed for the classification,

leave the opportunity to add new rules to detect other types
of failure like clearance increase, flow bleeding and foreign
object damage.
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Appendix A
Fig. A1 Temperature absolute standard deviation for difference noise levels 0%–2%.

Fig. A2 Pressure absolute standard deviations for difference noise levels 0%–2%.



Fig. A4 Quantification standard deviation for difference noise levels 0%–2%.

Fig. A3 Efficiency standard deviation for difference noise levels 0%–2%.
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