
Adaptive Detection Tracking System for

Autonomous UAV Maritime Patrolling

Alessandro Panico

Flight Test Wing

Italian Air Force

Pratica di Mare, ITA

panicoale@gmail.com

Luca Zanotti Fragonara

Centre for Autonomous and

Cyber-Physical Systems

Cranfield University, UK

l.zanottifragonara@cranfield.ac.uk

Saba Al-Rubaye

Centre for Autonomous and

Cyber-Physical Systems

Cranfield University, UK

s.alrubaye@cranfield.ac.uk

Abstract—Nowadays, Unmanned Aerial Vehicles (UAVs) are
considered reliable autonomous systems suitable for several
autonomous applications, especially for target detection and
tracking. Although significant developments were achieved in
object detection systems over the last decades using the deep
learning technique known as Convolutional Neural Networks
(CNN), there are still research gaps in this area. In this paper,
we present a new object detection tracking algorithm that can
apply on low power consuming processing boards. In particular,
we analysed a specific application scenario in which a UAV patrols
coastlines and autonomously classifies different kind of marine
objects. Current state of the art solutions propose centralised ar-
chitectures or flying systems with human in the loop, making the
whole system poorly efficient and not scalable. On the contrary,
applying Artificial Intelligence (AI) detection system that runs
on commercial Graphics Processing Units (GPUs) makes UAVs
potentially more efficient than humans (especially for dull tasks
like coastline patrolling) and the whole system becomes easily
scalable because each UAV can fly independently and the Ground
Control Station does not represent a bottleneck. To deal with
this task, a database consisting of more than 115.000 images was
created to train and test several CNN architectures. Furthermore,
an adaptive detection tracking system was introduced to make
the whole system faster by optimizing the balance between new
detections and tracking existing targets. The proposed solution
is based on the measure of the tracking confidence and the
frame similarity, by means of the Structural SIMilarity (SSIM)
index, computed both globally and locally. Finally, the developed
algorithms were tested on a realistic scenario by means of a UAV
test-bed.

Index Terms—UAV, CNN, Detection-Tracking System

LIST OF ACRONYMS

ANN Artificial Neural Network
CSRT Channel and Spatial Reliability Tracker - Discriminative

Correlation Filter
CNN Convolutional Neural Network
FPS Frames Per Second
GPU Graphics Processing Unit
HSV Hue, Saturation, Value
IoU Intersection over Union
KCF Kernelized Correlation Filter
mAP Mean Average Precision
ML Machine Learning
R-CNN Region-based Convolutional Neural Network
RoI Region of Interest
ROS Robot Operative System
RPN Region Proposal Network
FPN Feature Pyramid Network
SPP Spatial Pyramid Pooling
SSD Single Shot Detector

SSIM Structural SIMilarity
SVM Support Vector Machine
SW Software
UAV Unmanned Aerial Vehicle
VGG Visual Geometry Group
YOLO You Only Look Once

I. INTRODUCTION

The localization of sharks and other marine targets along

coastlines is a valuable service in those countries in which a

significant number of shark attacks was reported over the last

decades. This phenomenon is mainly related to the population

growth and the increasing number of human activities in

the oceans, having severe social and economic implications

[1]. Conventionally, the approaches to face this problem are

based on marine deterrents (nets, drum-lines) and spotters

(submarine or aerial). The latter method is typically preferred

due to the lower impact on the marine ecosystem. Thus, this

paper aims to design a shark classifier (a spotter) by training

a Artificial Neural Network (ANN) to be executed on a low

performance Graphics Processing Unit (GPU) embarked on a

Unmanned Aerial Vehicle (UAV) that patrols coastlines and

sends alerts to the lifeguards control station if sharks are

detected. Similarly, the same classifier might be used to face

collateral marine problems like mammals preservations, hu-

man activity and pollution monitoring. This paper is organized

as follows. Firstly, an overview of the state of the art solutions

for aerial detection of marine targets (Section II). After that,

the project methodology is described in Section III, showing

how the database was created, the training of the Convolutional

Neural Network (CNN), the implementation of the adaptive

detection tracking algorithm and its integration with a UAV

test-bed. Finally, the analysis of the project results is presented

in Section IV, whereas the final remarks and the future work

proposals conclude the manuscript.

II. LITERATURE REVIEW

Object detectors can be essentially designed by means of

two different approaches. The classic programming schema,

based on image processing techniques, suggests to classify the

objects by using a flowchart with subsequent if-then rules. On

the contrary, innovative machine learning methods are based

on autonomous feature extraction, in which the computer

li2106
Text Box
2020 IEEE 7th International Workshop on Metrology for AeroSpace (MetroAeroSpace)22-24 June 2020, Pisa, Italy. DOI:10.1109/MetroAeroSpace48742.2020.9160214

li2106
Text Box
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

derives the specific characteristics of each class of targets and

learns how to recognize them in new images. The autonomous

marine wildlife classification problem was initially approached

by [2], with the specific aim of detecting dugongs by the use

of imaging systems at an altitude of 1000 feet. Their algorithm

performed a red-ratio threshold in the Hue, Saturation, Value

(HSV) domain to identify possible candidates and morpho-

logical filters to remove bright spots. Final decision on the

object class was carried out by an algorithm that evaluated

the object elongation, relating highly elliptical shapes to higher

probability of facing a dugong. Similarly, in [3] the flowchart

is improved by an adaptive red-ratio threshold in the HSV

domain, allowing slight improvements in the detection accu-

racy, whereas the reduction of false positives was addressed

by the introduction of multi-layer filters in [4]. However, the

detections were not satisfactory in all cases. The exploitation

of multi-spectral products was proposed by [5], in order to

detect and roughly classify different shark species making use

of classical techniques and achieving a classification precision

of 84% with 66 observations, giving promising results even

with different submerging conditions. The second part of

this section focuses on Machine Learning (ML) techniques.

The simultaneous application of image processing and ML

was investigated by [6], in which relevant candidates selected

with conventional techniques were identified by means of a

trained ANN classifier, achieving a Mean Average Precision

(mAP) of 90%. However, the results of this study still depend

on the capacity to identify objects and extract their relevant

features. The introduction of the CNN allowed to by-pass the

initial anomalies detection algorithms, as shown in [7]. These

networks were developed to analyse data that were positionally

related (e.g. in the space/time/frequency domain). Due to this

technique, the feature extraction process becomes an intrinsic

task in the inner layers of the neural network. The goal of

the research was to develop an efficient tool for the automated

and real-time coastline monitoring, specifically tuned for shark

identification. In order to carry out this task, a database of

almost four thousands video frames was used for the training,

validation and testing of a Faster Region-based Convolutional

Neural Network (R-CNN), achieving an average precision of

0.904, distinguishing among four classes. The inner network

architecture that produced these remarkable results was the

Visual Geometry Group (VGG)-16, introduced by [8]. This

network is made of 13 convolutional layers, followed by 3

fully connected layers. However, the project bottleneck was the

processing time: about 7 FPS on high performance HW, being

suitable to be executed on the ground segment only. Therefore,

the UAVs were only responsible to acquire and transmit the

video to the ground station. The same research led to a

second publication, aimed at applying the same architecture to

estimate mammals population in images acquired from higher

altitudes [9]. Despite the configuration was exactly the same

of [7], the achieved results were far below, with an average

precision of 0.28. The authors claimed that the application

of a non-maxima suppression algorithm might have improved

the whole pipeline performance by neglecting the objects

overlapping for more than 75%. However, this post-processing

refinement led to a negligible improvement, with a final mAP

of 0.3.

III. METHOD

This paper took inspiration from [7], moving forward by

exploring the possibility to perform the classification task on-

board a UAV. This step allows to optimise the patrolling

activity, by letting a fleet of UAV to move autonomously, to

get closer to targets not clearly identified or to monitor areas

in which the population density is higher. According to the

project requirements, the detector should be able to distinguish

among ten marine objects: sharks, whales, dolphins, surfers,

swimmers, boats, buoys, rubbish, turtles and rays.

A. Dataset creation, augmentation and filtering

Since no relevant aerial images of marine targets were

available, the best solution was to create a customized database

from scratch, by manually labelling subsequent video frames.

This operation was performed by modifying the code available

at [10]. Essentially, the original script allowed to track an

object (assigning the corresponding label tag) among similar

subsequent frames. However, the original tracker (Kernelized

Correlation Filter (KCF)) was replaced by Channel and Spatial

Reliability Tracker - Discriminative Correlation Filter (CSRT),

because it guaranteed higher precision in terms of both local-

ization and label shape modification [11] and [12]. Moreover,

other smart functionalities were added, e.g. the possibility to

export and convert data in additional formats and to stop the

tracking propagation. Furthermore, the target dimension was

calculated by assuming a pinhole camera model and then

it was compared to the one that would be seen from the

operational UAV altitude (about 25-30 meters). This process

was functional at removing too small targets, that were no

representative of the objects seen in a real case. The final

list of tagged images passed through an augmentation tool,

developed by using a function written with the OPENCV

library, that applied a pipeline of random geometrical (e.g. ver-

tical/horizontal flip, image rotation and shear) and radiometric

(Blur, Noise, modification of image contrast, hue, saturation

and brightness) transformations to the original image. Table

I shows the distribution of the 115.776 images among the

classes. The total number of tags is 183.196 (some images

have more than one object) and 26.548 pictures don’t show

any tag (only background). The dataset was finally split in

three parts: 70% for training (to compute the weights), 10% for

validation (to test the weights and define the update strategy),

20% for testing (to verify the final detector performance).

B. Detector training

Once the dataset has been created, it was used to train the

CNN to learn how to locate and classify the marine objects.

This section analyses at first the main features of the Faster

R-CNN, Single Shot Detector (SSD) and You Only Look Once

(YOLO), that were trained in Tensorflow [13] and Darknet

TABLE I
CLASSES DISTRIBUTION

CLASS ELEMENTS

Shark 23.527
Whale 10.156

Dolphin 48.690
Turtle 16.574
Ray 10.243

Swimmer 9.021
Surfer 39.727
Boat 9.236

Rubbish 307
Buoy 15.715

Background 26.548

environments [14], [15]. Faster R-CNN guarantees better re-

sults in terms of classification precision and object location

accuracy by the use of a two steps algorithm, that first localise

relevant regions of interest (by the use of a Region Proposal

Network (RPN) network that is nested between convolutional

and pooling layers) and then classifies the objects within

them [16]. Nevertheless, it pays the precision in terms of

processing time, despite the huge improvements achieved from

the original version, in which the regions of interest were

identified by a separated Selective Search algorithm [17]. On

the contrary, SSD and YOLO work as single step algorithms,

in which the same neural network performs both localization

and classification at the same time, resulting typically one

order of magnitude faster than the former method, with a slight

precision reduction. In particular, SSD optimises the detection

for different object size, starting from the consideration that

deeper networks analyse features coming from larger areas,

whereas shallow ones are representative of smaller targets.

So that, SSD performs a multi-layer classification [18] by

assuming pre-defined tag shape (the anchors) that have larger

size as the network get deeper. Similarly, YOLO is another

project that shows a great tread-off between accuracy and

speed. As faster R-CNN, it was developed over the years,

dealing with different user requirements and including several

innovations, e.g. the predefined anchor shape, the usage of

1x1 filters (taking inspiration from [19]) and the multi-layer

classification that were used in [18]. However, YOLO is

innovative because it takes the entire image (it is the input

for the CNN) ,but it analyses specific portions that are defined

a-priori with a grid, saving a considerable amount of time

compared to selective search algorithms. In the end, different

YOLO configurations exist. As rule of thumb, the higher the

number of convolutional layers, the better the classification and

localization precision, but the slower the algorithm. YOLO

has three main versions, with 13, 19 and 53 convolutional

layers respectively [20], [21], [22]. Modifications to these core

configurations were developed to deal with specific needs,

e.g. deeper networks that include the Feature Pyramid Pooling

technique to classify very small objects [23], tiny networks to

save computational time [15], Word-Tree approach to handle

hundreds or thousands of classes [21]. In order to compare

different architectures and configurations, the ’Transfer Learn-

ing’ technique from pre-trained networks allowed to enhance

the performance at the beginning of the training, providing

steeper learning slopes and converging sooner and with higher

asymptotes [24]. This methodology allowed to train YOLOv3,

Tiny-YOLOv3, SSD and Faster R-CNN on the same dataset

and to compare the respective performance.

C. Detector-tracking integration

In order to save computational time, a strategy to combine

both detection and tracking was studied. This topic was

initially analysed in [25] and [26], with encouraging results.

The former proposed a detection process carried out after

a fixed number of frames. In between, a tracking algorithm

is responsible to find the new position of the previously

identified object. Additional detections are triggered by the

measurement of the resemblance of the tracked object in

two subsequent frames. The latter compared the bounding

box of two subsequent frames along with a piece of the

surrounding area. By the use of a Matching Filter, if the

principal component changes over the images, a new detection

is carried out to update the saliency map. However, this method

propagates the object position by using an adapted version of

the particle filter, so that the effective speed improvement is

not remarkable. Moreover, any of these techniques takes into

account additional targets, that would not be identified neither

by the tracking algorithm or by the trigger method. Indeed,

UAV scenarios are highly challenging, because of multiple

targets and objects that could suddenly move in or out of

the camera field of view. For these reasons, the proposed

detection-tracking algorithm shall be flexible to different sce-

narios, by measuring:

• A global frame similarity, to take into account significant

changes between two subsequent frames;

• A local frame similarity, to evaluate variations within

small kernels. To deal with the variations induced by

camera motion, scene motion and in general not relevant

motions, the algorithm considers the maximum value of

the local similarity in the frame;

• The bounding box confidence, assessed by the Intersec-

tion over Union (IoU) of two subsequent frames, with

the assumption that both the object motion and its shape

modification have a dynamic that is slower than the

camera frame-rate.

The frames similarity is inspired to the change detection

concept and, specifically, it is implemented by the use of the

Structural SIMilarity (SSIM) described in [27]. This index

compares the variation of the luminance (l), the contrast (c)

and the structure (s) of the reference and the candidate frame.

The following equations describe how the SSIM is computed.

l(x,y) =
2(1+R)

2(1+R)2 + C1

µ2
x

=
2µ

2
y

µ2
x +µ2

y C1
(1)

c(x,y) =
2σxσy +C2

σ2
x +σ2

y +C2
(2)

s(x,y) =
σxy +C3

σxσy +C3
(3)

in which R in Eq. 1 is referred to the luminance change with

respect to the background luminance, the parameters C1,C2

and C3 are tuning constants, σx and σy are representative of

the standard deviation, σxy of the covariance, µx and µy are

the mean values of the reference and new images respectively.

By multiplying the equations together, the SSIM is therefore

defined:

SSIM(x,y) =
(2µxµy +C1)(2σxy +C2)

(µ2
x +µ2

y +C1)(σ2
x +σ2

y +C2)
(4)

The output matrix has hence the same dimension of the

input image and assumes values equal to one if there is a total

similarity, otherwise values smaller than one or even negative.

The global index is computed by taking the mean value of this

matrix. The mean has been preferred to the median because

the latter is less sensitive to outliers. Regarding the local index,

a Max Pooling (32x32-s32) is aimed at neglecting irrelevant

pixel oscillations and returning the most similar point in

the kernel. Figure 1 shows the flowchart of the algorithm

Fig. 1. Adaptive Detection-Tracker Flowchart

that was implemented in order to be independent from the

specific detector (coming from the CNN training) or tracker

(implemented with the OPENCV library). Basically, after the

first frame in which the detector is applied, for the following

frames the OPENCV tracker follows the objects originally

identified. At this point, the pipeline takes advantage of a fixed

step exit strategy (i.e. if no relevant changes in the scenario

are detected, after a fixed number of frames the pipeline

performs a new detection), but for each couple of adjacent

frames, it checks if the targets track is moving too fast or

the target shape is changing during the time (by measuring

the intersection of the bounding boxes) and the local and

global image similarity. The identification of the thresholds

that trigger a new detection, along with the comparison of the

OPENCV algorithms is shown in Section IV.

D. Test-bed integration

The algorithm has been tested on a UAV that was assembled

at Cranfield University with off the shelf equipments. The

flight control was assured by a radio controlled Pixhawk board

(for this specific test no autonomous activities were foreseen).

The video processing was independently performed by a

dedicated GPU, a Jetson NANO, connected to a Raspberry Pi

Camera v2 that provided 1920x720 frames at about 20 FPS.

The whole system was powered by a 6 cells Li-Po battery by

means of a 5V power regulator. The GPU was set up to process

the video steaming in real time, saving relevant data in a text

file for analysis purposes. Since around Cranfield University

no marine environment was available, a specular detector was

trained to identify pedestrians, bikes, cars and other similar

ground targets. Indeed, the aim of this test was only to evaluate

the processing time and therefore the operational feasibility of

this system in a realistic scenario.

IV. RESULTS

The detector evaluation and comparison was carried out

considering the classification precision (mAP), the localization

accuracy (IoU) and the algorithm speed (FPS). All algorithms

were tested on the Deep Learning Training Server Lenovo

Thinkstation P920, equipped with an Intel Xeon(R) Silver

4108 CPU (32 cores at 1.80 GHz), 64 GB of RAM and

2 GPU NVidia GeForce GTX 1080 Ti with 11.264 MB of

available memory for graphical and tensor operations. Each

neural network re-training (with ’Transfer Learning’) took

about 1-3 days, depending on the its architecture, the amount

of memory usage, the amount of parallel processes ongoing

at the same time.

Fig. 2. Learning Curve and mAP Computation - Tiny-YOLOv3

Figure 2 shows the training output of one of the investigated

YOLO configurations, specifically the blue curve represents

the learning curves, i.e. the error computed once the model is

applied on the training dataset, whereas the red discontinuous

curve represents the mAP computed on the validation dataset.

TABLE II
TRACKER COMPARISON

MDNFLOW KCF MOSSE MIL BOOSTING CSRT

FPS 6.86 7.21 7.03 4.31 5.24 5.44
IoU 0.48 0.55 0.52 0.53 0.58 0.59

It is worth to point out that for each detector architecture,

several model configurations were tested by fine-tuning the

hyper-parameters, e.g. the number and the size of the anchors,

batch and subdivision numbers, the learning rate, the input

image resolution, the momentum... Finally, the best candidates

for each architecture were compared on the Test dataset.

Specifically, Figure 3 shows the results achieved for IoU

greater than 0.5. Faster R-CNN and YOLO were similar in

terms of mAP (about 0.90), whereas SSD returned lower

precisions. However, even if the boxes localization was similar,

from a qualitative perspective Faster R-CNN gave results

closer to the real object shape. Finally, Tiny-YOLOv3 outper-

formed speed comparison, being at least 5 times faster than the

any other architecture, with a negligible accuracy degradation.

Moreover, the values shown in Figure 3 were obtained on

a Python pipeline, but Tiny-YOLOv3 could run natively on

Darknet (in C) achieving top speed of 30 FPS.

Fig. 3. CNN Architecture comparison

Regarding the integration with the tracker, the hyper-

parameters described in the previous chapter were tuned in

order to find the best configuration in terms of tracking

accuracy and algorithm speed. The baseline results were

obtained by processing an entire marine video with the Faster

R-CNN detector and it was used to assess the quality of

the proposed algorithm, i.e. without using any tracker, but

only subsequent detections. Table III shows a comparison of

the different OPENCV tracker performance. During each test,

two parameters were measured: the IoU with the “Ground

Truth” (in this case represented by the pure detections) and the

pipeline speed. The video that was used for the test was quite

challenging, since there were several changes of the scene, fast

movements, multiple objects to detect and track. According to

Table III, KCF provides almost the top accuracy (only CSRT

was slightly more accurate), but it is by far the fastest tracker

among the ones implemented in the OPENCV library, so that

it is the best solution for low performance hardware systems.

In Table III, the analysis is focused on the parameters that

were implemented to balance the alternation between detection

and tracking. However, an alternative strategy could be to use

a fixed interval step, but the results with the control logic

implemented show that significant improvements are indeed

possible. Each block represents a test in which only one

parameter changes its value (the first row of each block shows

the values of the Interval Step, Local SSIM Threshold..). The

assessment takes into account the pipeline speed and the over-

lapping with the ”detector-only” case. The first two elements

of the table include the performance comparison with and

without the control low (new detection after a fixed amount

of frames). The proposed strategy allows, with a negligible

speed reduction, to significantly improve the accuracy, because

the detections are performed only when they are effectively

needed. It is worth observing that the control law allows to

keep the interval parameter to 100 Frames Per Second (FPS),

providing an higher IoU with respect to the case in which there

is classic 30 frames interval logic. This can explained because

in most of the cases a new detection is triggered after more

than 30 frames, because the scene is quite stable, but there are

unpredictable conditions in which the scene evolves quite fast

and a fixed strategy is not enough to deal with it. Furthermore,

it is possible to appreciate how sensitive the pipeline is with

respect to the Local SSIM threshold. On the contrary, the

Global SSIM seems to be useless, according to the table

results, because it does not change significantly neither FPS

nor IoU. However, since the video used for the evaluation had

very fast scene changes and various objects coming in the

scene, such a parameter was good to immediately perform a

detection, without waiting for other control laws to trigger it.

Also the IoU threshold plays a significant role in this process,

because it measures how different is the same bounding

boxes in two consecutive frames. However, this parameter

might find beneficial the integration with the carrier motion

data in order to better understand which movements are self

generated, so that it might be possible to better isolate moving

targets from the background or still objects. Hence, future

implementations of the algorithm might take into account this

parameter to perform more accurate balancing. According to

the results in Table III, the parameters chosen by the author

are: IoU=0.5, Interval Steps=50, Local SSIM Threshold=0.55,

Global SSIM Threshold=0.7. By testing this pipeline with

the Tiny-YOLOv3 algorithm we found a speed improvement

of about 44% (7.22 FPS with the Python algorithm). It is

true that similar performance was achieved in [7], but in this

case the number of classes is more than doubled, Faster-

R-CNN detector, that is the CNN architecture implemented

in [7], was 5 times slower than Tiny-YOLOv3. Moreover, as

shown before, the detector only reaches the top speed of 30

FPS in its native C implementation. On-board the test-bed

identified no relevant operational limitation, but the algorithm

speed decreased due to the limited computational power of the

selected computational board, the Jetson NANO. In terms of

numbers, the Python pipeline achieved about 0.5 FPS instead

of 7. However, it is quite encouraging that the C Darknet model

achieved about 3.4 FPS, so that it is essentially a problem

of coding language. These numbers are still non enough for

Real-Time applications, but might be used to analyse low

dynamic targets or lower resolution images (since the lower

TABLE III
ADAPTIVE DETECTION TRACKER - PARAMETERS EFFECTS

No Control Logic

Interval Step 30 50 100
FPS 5.23 5.72 5.89
IoU 0.54 0.45 0.42

Control Logic

Interval Step 30 50 100
FPS 5.12 5.49 5.79
IoU 0.62 0.56 0.55

Local SSIM Threshold 0.8 0.7 0.6
FPS 2.69 4.27 4.97
IoU 0.68 0.62 0.59

Global SSIM Threshold 0.9 0.8 0.7
FPS 5.15 5.13 4.91
IoU 0.60 0.61 0.62

IoU Threshold 0.6 0.55 0.4
FPS 2.15 5.13 5.4
IoU 0.81 0.54 0.49

the resolution, the faster the algorithm). Nevertheless, by using

more powerful processing board (e.g. the Jetson XAVIER) this

limitation might be easily overcome.

V. CONCLUSIONS

This paper demonstrated how the problem of object detec-

tion might be addressed with a decentralized system, in which

a UAV agent flies autonomously recording and processing

video in Real-Time. Current state of the art solutions are based

on human in the loop or centralized system architectures, in

which the ground station represents the bottleneck, since it

has to process video-streaming data coming from one or more

UAV agents. On the contrary, the system presented in this

paper can be integrated on a completely autonomous UAV,

simplifying the data transfer management and making the

system architecture easily scalable. The results achieved are

highly encouraging and the following step of this research

is to forward the target location to higher order intelligence

in order to manage autonomous guidance and navigation.

Moreover, the implementation of the detection-tracking system

in C instead of python shall guarantee better performance.

ACKNOWLEDGMENT

The authors would like to thank the project sponsor,

THHINK, for suggesting the topic and taking part to the initial

brainstorming phase of the research.

REFERENCES

[1] J. G. West, “Changing patterns of shark attacks in Australian waters,”
Marine and Freshwater Research, vol. 62, no. 6, p. 744, 2011.

[2] F. Maire, L. Mejias, A. Hodgson, and G. Duclos, “Detection of dugongs
from unmanned aerial vehicles,” IEEE International Conference on

Intelligent Robots and Systems, no. November, pp. 2750–2756, 2013.

[3] L. Mejias, G. Duclos, A. Hodgson, and F. Maire, “Automated marine
mammal detection from aerial imagery,” IEEE/MTS Proceedings of 2013

OCEANS - San Diego, pp. 1–5, Sep. 2013.

[4] K. Byles, “Automated shark detection using computer vision,” 2016,
university of Southern Queensland - Faculty of Health, Engineering &
Sciences. Bachelor Thesis.

[5] J. Lopez, J. Schoonmaker, and S. Saggese, “Automated detection of
marine animals using multispectral imaging,” IEEE/MTS Proceedings

of 2014 OCEANS - St. John’s, pp. 1–6, 2015.

[6] S. Gururatsakul, D. Gibbins, D. Kearney, and I. Lee, “Shark detection
using optical image data from a mobile aerial platform,” International

Conference Image and Vision Computing New Zealand, pp. 1–8, 2010.
[7] N. Sharma, P. Scully-Power, and M. Blumenstein, “Shark Detection

from Aerial Imagery Using Region-Based CNN, a Study,” in AI 2018:

Advances in Artificial Intelligence, vol. 3339. Springer International
Publishing, 2018, pp. 224–236.

[8] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in International Conference on Learning

Representations, 2015.
[9] M. Saqib, S. Daud Khan, N. Sharma, P. Scully-Power, P. Butcher,

A. Colefax, and M. Blumenstein, “Real-Time Drone Surveillance and
Population Estimation of Marine Animals from Aerial Imagery,” Inter-

national Conference Image and Vision Computing New Zealand, vol.
2018-Novem, pp. 1–6, 2019.

[10] J. Cartucho. (2018) GITHUB Repository - OPEN LABELING. https:
//github.com/Cartucho/OpenLabeling, Accessed on 2019/05/20.

[11] J. A. Torregrosa Olivero, C. Marı́a Burgos Anillo, J. P. Guerrero Barrios,
E. Montoya Morales, E. J. Gachancipá, and C. Andrés Zamora de la
Torre, “Comparing state-of-the-art methods of detection and tracking
people on security cameras video,” in 2019 XXII Symposium on Image,

Signal Processing and Artificial Vision (STSIVA), April 2019, pp. 1–5.
[12] A. Rosebrock. (2018) OpenCV Object Tracking. https://www.

pyimagesearch.com/2018/07/30/opencv-object-tracking/, Accessed on
2019/07/10.

[13] Google Brain Team. (2015–2019) TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems. http://tensorflow.org/, Accessed on
2019/06/01.

[14] J. Redmon, “Darknet: Open Source Neural Networks in C,” 2013–2019,
http://pjreddie.com/darknet/, Accessed on 2019/06/01.

[15] B. Alexey, “GITHUB Repository - Darknet,” 2019, https://github.com/
AlexeyAB/darknet, Accessed on 2019/05/20.

[16] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-
Time Object Detection with Region Proposal Networks,” in Advances

in Neural Information Processing Systems 28. Curran Associates, Inc.,
2015, pp. 91–99.

[17] J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders, “Selective
Search for Object Recognition,” International Journal of Computer

Vision, 2013.
[18] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C.-Y. Fu, and

A. C. Berg, “Ssd: Single shot multibox detector,” in Computer Vision –

ECCV 2016. Springer International Publishing, 2016.
[19] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Computer Vision and Pattern Recognition (CVPR), 2015.

[20] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You only
look once: Unified, real-time object detection,” 2016 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pp. 779–788,
2015.

[21] J. Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger,” 2017

IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 6517–6525, 2016.

[22] Redmon, J. and Farhadi, A., “Yolov3: An incremental improvement,” in
arXiv, 2018.

[23] T.-Y. Lin, P. Dollár, R. B. Girshick, K. He, B. Hariharan, and S. J.
Belongie, “Feature pyramid networks for object detection,” 2017 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pp.
936–944, 2016.

[24] L. Torrey and J. Shavlik, “Transfer learning,” in Handbook Of Research

On Machine Learning Applications and Trends: Algorithms, Methods

and Techniques. Information Science Reference - Imprint of: IGI
Publishing, 2009.

[25] S. P. Bharati, S. Nandi, Y. Wu, Y. Sui, and G. Wang, “Fast and
Robust Object Tracking with Adaptive Detection,” in 2016 IEEE 28th

International Conference on Tools with Artificial Intelligence (ICTAI),
Nov 2016, pp. 706–713.

[26] B. Nemade and V. A. Bharadi, “Adaptive automatic tracking, learning
and detection of any real time object in the video stream,” in 2014 5th

International Conference - Confluence The Next Generation Information

Technology Summit (Confluence), Sep. 2014, pp. 569–575.
[27] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality

assessment: From error visibility to structural similarity,” Transactions

on Image Processing, vol. 13, no. 4, pp. 600–612, Apr. 2004.

