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Abstracts

Fish aquaculture is the world's fastest growingdfpooduction industry and infectious diseases are a
major limiting factor. Vaccination is the most appriate method for controlling infectious diseases
and a key reason for the success of salmonid atittiv and has reduced the use of antibiotics. The
development of fish vaccines requires the use gfemt number of experimental animals that are
challenged with virulent pathogeris.vitro cell culture systems have the potential to replacévo
pathogen exposure for initial screening and testingovel vaccine candidates/preparations, and for
batch potency and safety tests. PBL contain mayonune cells that enable the detection of both
innate and adaptive immune responsewitro. Fish PBL can be easily prepared using a hypotonic
method and is the only way to obtain large numlzéranmune cells non-lethally. Distinct gene
expression profiles of innate and adaptive immuhaye been observed between bacterins prepared
from different bacterial species, as well as fraffecent strains or culturing conditions of the sam
bacterial species. Distinct immune pathways areated by pathogens or vacciries/ivo that can be
detected in PBLin vitro. Immune gene expression in PBL after stimulatidth waccine candidates
may shed light on the immune pathways involved livd to vaccine-mediated protection. This study
suggests that PBL are a suitable platform forahdtreening of vaccine candidates, for evaluation
vaccine-induced immune responses, and a cheapatlter for potency testing to reduce animal use

in aquaculture vaccine development.

Key words. Rainbow trout Oncorhynchus mykiss, Peripheral blood leucocytedieromonas
salmonicida, Yersinia ruckeri, Bacterin, Vaccine, Cytokine, Gene expression,at@nimmunity,

Adaptive immunity
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1. Introduction

Fish aquaculture is the world's fastest growingustdy within the animal food production sector.
However, infectious diseases not only cost up & 20 production value but also have a significant
impact on individual fish health and welfare, ah@ environment [1-3]. Vaccination is the most
appropriate method for controlling disease problebath from a production and welfare point of
view [4-6]. Vaccination plays an important rolelarge-scale commercial fish farming. It has been a
key reason for the success of salmonid cultivadina has reduced the use of antibiotics [7-9]. Almos
100% of Atlantic salmon are vaccinated with mullévd vaccines prior to sea transfer in Norway, the

largest producer of farmed salmon in the world [10]

Inactivated whole-cell bacterins constitute the nmaacterial vaccines used in aquaculture. The first
commercially licensed vaccine for fish (in 1976) swa formalin-killed bacterin delivered by
immersion againstversinia ruckeri, the causative agent of enteric redmouth dise&&M{ in
salmonids [11-12]. Following the success of thisdoct, vaccines fowibriosis were developed.
Whilst these vaccines are able to induce protedtimmunity by bath/dip vaccination, bacterin
immersion vaccines againéeromonas salmonicida (the causative agent of furunculosis) were not
effective in the field, so oil adjuvant-based baotgaccines were developed despite some sideteffec
[7-8, 13]. Iron-regulated outer membrane proteiROMPs) of A. salmonicida induced under iron-
restricted growth conditions were found importaritective antigens [14]. Anti-IROMPs antibodies
are bactericidal to virulert. salmonicida strainsin vitro and specific anti-IROMP antibody responses
correlate strongly with protection against furumaig [15]. Thus, bacterins prepared frofn
salmonicida grown under iron-deprived conditions are also gwadcine candidates and led to the
non-adjuvanted vaccine against furunculosis AquaVe8IM Plus (Intervet UK Ltd)
(http://www.vmd.defra.gov.uk/productinformationdasse/SPC_Documents/SPC_122154.DOC) that
uses both pathogenic and non-pathogenic strain&. shimonicida, i.e. strain MT423 and strain
MTO004.

Whilst commercial vaccines are available for mahyhe major bacterial diseases and a few viral
diseases of aquaculture, no commercial vaccines bagn produced against fish parasitic infections
[4-6] and more vaccines to emerging diseases argng/do be developed. Furthermore, disease
outbreaks do occur on fish farms from time to tiaven after vaccination with effective commercial
vaccines, e.g. the ERM vaccine prepared from motileuckeri lost its efficacy against non-motile
strains [16-17]. In Denmark, although the majodfyrainbow trout are vaccinated using commercial

vaccines against the most serious bacterial patisofyesalmonicida subsp.salmonicida, Yersinia
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ruckeri andVibrio anguillarum, disease outbreaks requiring treatment with aotiits still occur [18].
These examples highlight the need for continuoysrdvement of vaccines for long-term protection
in aquaculture. The development of fish vaccingsiires thorough efficacy and safety testing before
they can be marketed. All batches of vaccines megéested for potency and safety before use. These
tests are currently reliant upon mortality testimigere fish are exposed to virulent pathogens and
relative percent survival is measured, which rexpuithe use of a great number of experimental
animals [19-21]. Although a clear-cut approach,ddges not unveil the underlying molecular
mechanisms of vaccination-mediated protection @andost- and time-consuming [19-21]. With an
increasing focus on the 3 R's (Replacement, Remuetnd Refinementjn vitro systems using fish
immune cells have the potential to replat®ivo pathogen exposure for initial screening and tgstin

of novel vaccine candidates/preparations, andditstopotency and safety tests.

Fish immune cells can be isolated from major immaorgans (e.g. head kidney and spleen), mucosal
tissues (e.g. intestine and gills), as well as #If#2-25]. Blood is the only source of leucocytiatt
can be obtained easily in a non-lethal way and #fatvs multiple sampling of the same fish to
investigate vaccine-mediated immune responses tme. Peripheral blood mononuclear cells
(PBMC) have been extensively used in mammalianimaabevelopment, to evaluate vaccine efficacy
and for safety testing [26]. We recently optimisexhpid hypotonic peripheral blood leucocyte (PBL)
isolation method in salmonids. As with PBMC isothtey gradient centrifugation, PBL isolated by
this hypotonic method contain the major immune tgles needed to monitor adaptive immune
responses, such as T cells, B cells, monocytesaphages and neutrophils [25]. The PBL prepared

can proliferate, phagocytose and respond to stimulavith PAMPs and cytokines [25, 27].

The current study aimed to investigate if the espi@ of immune genes could be differentially
modulated in PBL by a variety of bacterin vacciaadidates. The bacterins were prepared from the
pathogenidA. salmonicida MT423 grown in iron-replete and iron-depleted nagdne non-pathogenic
MTO004, and a formalin inactivated ruckeri model vaccine as well. We found that immune gemes
differentially modulated in a bacterin- and timgedadent manner. These results are discussed in the
context of immune mechanisms of vaccine mediateateption and potential use as surrogate

biomarkers of vaccine efficacy and safety.
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2. Materials and methods

2.1. Bacterin preparation

The A. salmonicida subsp salmonicida non-pathogenic strain MT004, and pathogenic stvéiid23,
and the pathogeni¥. ruckeri strain MT3072 used in this study were obtained from theriiva
Scotland Science Marine Laboratory, Aberdeen, UKdescribed previously [28-29]. The bacteria
were inoculated into tryptic soya broth (TSB, Sigraa22°C for 18-24 h in a shaking incubator at
100 rpm. The MT423 strain was cultured in normaBT® in TSB supplemented with 100 pm 2,2
bipyridyl (Sigma, UK) to deplete iron (Fe-) to inoki IROMPs expression [14]. After culture, the
bacteria were inactivated by addition of formalolusion (Sigma, UK) to the culture media to 1%.
The bacteria were then incubated overnight ona shagnetic stirrer at room temperature. Bacteria
were collected by centrifugation and washed thigeeg using phosphate buffered saline (PBS,
pH7.4, Sigma, UK). The bacteria were weighed, nesnded in PBS at 10 mg/ml and stored at — 80
C ready for use. The bacterins prepared were pltaiiénl TSA plates and incubated for 48 h at 22°C,

with no bacterial growth confirming complete inaetion of the bacteria.
2.2 PBL preparation and stimulation

Rainbow trout ©ncorhynchus mykiss) purchased from the Mill of Elrich Trout Fishery
(Aberdeenshire, Scotland, UK) were maintained afl1€ in a freshwater recirculation aquarium [27,
30]. The PBL from four fish were prepared as désadipreviously [25]. Briefly, blood was drawn
from the caudal vein using a BD Vacutainer contgjrithium heparin (BD, UK). The red blood cells
were lysed by combining 4 ml blood and 36 ml icédazell culture grade water (GE Healthcare Life
Sciences, UK) for 20 s. Then 4 ml cooled 10x PBfr(fa, UK) was added to revert the medium to
isotonicity. The suspension was left in ice for B8-+hin and filtrated through a 7@m cell strainer
(Greiner Bio One, UK), pelleted by centrifugatic®0Q g, 5 min), and washed once with incomplete
cell culture medium (Leibovitz medium L-15, Life dfenologies, UK) supplemented with 100 1U/ml
penicillin, 100ug/ml streptomycin (P/S), and 1% foetal calf serti@$, Sigma, UK). The PBL were
counted using a Neubauer chamber and 0.5% trypam, bésuspended in complete cell culture
medium (as above except 10% FCS) and distributd@-well cell culture plates at 2x3¢ells/ml, 2
ml/well. The PBL from each fish were then stimuthteith 100ug/ml of inactivated bacterin (1.
salmonicida MT423 (MT423), (2)A. salmonicida MT423 grown in iron-depleted medium (MT423
Fe-), (3)A. salmonicida MT004 (MT004), (4) an equal combination of MT422{& MT004, (5)Y.
ruckeri MT3072 and PBS as control. The cells were incubate20°C for 4 h, 8 h, 24 h and 72 h,
harvested in 1.5 ml TRI reagent (Sigma, UK), adext at —80 °C until RNA extraction.

2.3 RNA extraction, cDNA synthesisand gPCR
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Total RNA extraction, cDNA synthesis and real-tiP€R (QPCR) analysis of gene expression were
carried out as described by Wang et al. [27,31¢ TRI lysates were thawed at room temperature and
total RNA was prepared as per the manufacturessuntions. The RNA was reverse transcribed to
cDNA using RevertAid Reverse Transcriptase (The8uoigntific). The resultant cDNAs were diluted
in TE buffer (10mM Tris-HCI, 1mM EDTA, pH 8.0) (Sitp) ready for use. The gPCR was
performed in duplicate using a LightCycler 480 (Recsystem and 2x SYBR green Master Mix
made with an Immolase DNA Polymerase kit (BiolinEje genes studied included those encoding
the known cytokines, chemokines and chemokine tecgpsuppressor of cytokine signalling (SOCS)
proteins, acute phase proteins (APPs), antimickg@ptides (AMPSs), cellular markers, and master
transcription factors of T cell responses. The prisets were designed with at least one primersacro
an intron, tested to ensure that PCR products conilgl be amplified from cDNA samples and not
from genomic DNA, and are detailed in Supplementaple S1. The data were analysed using the
LightCycler 480 integrated software. The gene esqion level for each sample was normalised to
that of the housekeeping gene, elongation factéi)-(&, and expressed as an arbitrary unit (AU)
where 1 AU = the average expression in the cootlié at 4 h. A fold change for each treatment was

also calculated as the average expression divigélda of time matched controls.

2.4 Datavisualization, clustering and statistical analysis

The fold changes of gene expression were analysiag ClustVis [32] for visualisation of a heatmap

and for Principal Component Analysis (PCA). Theitaaly units of each gene were scaled and log2
transformed to improve the normality of real-timeaqtitative PCR measurements before statistical
analysis as described previously [31]. A pairedam T test was used to determine the level of
difference between the treatments at each timet pwiimg the IBM SPSS Statistics package 25.0
(SPSS Inc., Chicago, lllinois), with differencesismlered significant at p < 0.05. The Spearmaros rh

correlation analysis of gene expression was peddron selected pro-/anti-inflammatory cytokines,

adaptive cytokines, IL-12 family and chemokine poes. The four time points from each bacterin

stimulation was combined for this analysis (n=16).
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3. Results and discussion

In this study, freshly prepared PBL were stimulated4 h, 8 h, 24 h and 72 h with five Gram-
negative bacterin preparations. Bacterin A was fdomuckeri that is an effective vaccine against
ERM [12]. Bacterins B (MT004) and C (MT423) wererft non-pathogenic and pathogeric
salmonicida subsp.salmonicida strains, respectively, but neither are effectivacomes against
furunculosis [13-14]. Bacterin E was from MT423 toukd under iron-depleted condition that
represent an effective vaccine candidate [14] aaxddoin D was an equal mix of bacterins C and E
that represents a vaccine previously used in #id.firhe expression of 93 immune relevant genes
(Table S1) was examined by RT-gPCR and the expresgirmalised to EFel The expression of 18
genes (IL-17A/F1b, IL-17A/F2a, IL-17A/F2b, IL-17A3F IL-17D, IL-23P19, IL-27P28B, IL-
12P35B, IL-20, SOCS2A, SOCS2B, SOCS3A, SOC3B8efensin 1-3, CC4La and CCR6Bable

S1) was low or undetectable in control samples at dnldl thus were excluded from further analysis.
The remaining 75 genes were expressed and moduhaf8lL. The relative expression levels across
different time points (with statistical analysigeapresented ifrigs. S1-14 and the average fold

change at each time point presentediable S2.

3.1. Clustering and principal component analysis

In response to bacterin stimulation PBL gene esmeschanged over time from 4 h to 72 h.
Hierarchical clustering analysis of the fold chamaeross four time points revealed time-dependent
gene expression patterrfad. 1). Three major clusters of genes were apparenstéi 1 contained
several chemokine receptor genes (CCR6A, CCR7A, TBCRCCR9A, CCR9B, CCR4Lc2 and
CXCR3B) that were induced/higher at 4 h and 72 hlbw at 8 h and 24 h as compared to the
unstimulated samples. Cluster 2, mainly consisteatlaptive cytokines, that were gradually induced
and peaked at 8 h or 24 h, and remained elevatéd ko Cluster 3 genes, including mainly pro- and
anti-inflammatory cytokines and APPs, were indueady, peaked at 4 h or 8 h, and returned to
resting levels by 24 h to 72 ki@. 1). The clustering patterns of the different bacigneparations
changed over time but witl. ruckeri always clustering away from the vario#s salmonicida
bacterins at all four time points, suggesting aamajfect of bacterial species, as well as differen

preparations of the same species/strain, on imrgane expression.

PCA analysis of the fold change of 75 genes at4htme points revealed that the first two
components accounted for 85% of the variatibig.(2). The biplot indicates that the bacterin
modulated gene expression can be divided intod@iimct groups based on time, in agreement with
the major effects of stimulation time on gene espi@n seen irFig. 1.  Different bacterin

preparations showed distinct effects/variation @megexpression at each time point. At 4 h, the
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effects of bacterin preparation were well separditech each other, suggesting this gives the most
discriminating power. Thus, the bacterin modulajede expression was analysed further with a focus
at4 h.

3.2. Modulation of the expression of pro- and anti-inflammatory genes by bacterins

Genes involved in the inflammatory response are ufaeld in vivo by vaccination in salmonid
lymphoid organs such as head kidney [33] and splg@j Therefore, we examined first in PBL the
expression of proinflammatory cytokines (IB-134], TNFu [35], IL-6, IL-11 [36], M17 [37] and IL-
34 [38]), chemokines (IL-8 and CXCL11_L1 [39]), mmflammatory cytokines (IL-10 [40], TGB1
[41] and nIL-1Fm [42]), and negative regulatorscgfokine signalling (SOCS) [43]. The expression
of all these genes could be modulated in PBL bydvarcstimulation Figs. S1-3). The expression of
the majority of the genes was rapidly induced &t @nd peaked at 4 h or 8 h, and this modulation
subsided by 24 h or 72 gble S2). The exception was the down-regulation of Hi®fnd TGB1A,
that are highly expressed in PBL (as seen by thal shCP, Table S1). A noticeable difference of
gene expression change was the rapid and strongtiod of gene expression By salmonicida
preparations, compared to a gradual but lastingease induced by thé ruckeri bacterin (e.g. IL-
181, TNFa3, IL-8, Figs. S1-2). Major differences between different paraloguesesponse to bacterin
stimulation were also observed, in terms of magletwf the response (e.g. II3-lparalogues),
response kinetics (e.g. IL-10 paralogues), andstyfigesponse seen (e.g. down-regulation of dNF
but up-regulation of other TNF paralogues) Kigs. S1, S3). Differential responses of cytokine
paralogues have been observed previously [30, 3448541] and may indicate neo- or sub-

functionalisation.

At 4 h post stimulation, the expression of 18112, TNFu3, IL-6, IL-8 and IL-10A showed a similar
pattern, where the highest induction was seen Mitd23, followed by MT423(Fe-), MT423 (Fe-) +
MTO004, MT004, and the lowest (but significant) iestlon seen withY. ruckeri (Fig. 3). This
expression pattern, to a lesser extent, was alsereéd with IL-B3, TNFal, IL-11, M17 and nIL-1F.
Interestingly,Y. ruckeri tended to induce higher levels of the anti-inflaaony gene TGFLB and
SOCSI1A than MT423(Fe-) + MT004 at 4h. These resntigate a stronger inflammatory response
induced byA. salmonicida strains compared 6. ruckeri, and that the expression of a set of immune

genes can distinguish the responses induced inbyRlifferent bacterin preparations.

3.3. Modulation of the expression of genes of adaptive immunity by bacterins.

The expression of signature cytokines for Thl §ER [44]), Th2 (IL-4/13A, IL-4/13B1-2, [45]) and
Thl7 (IL-17A/F1la, [46]) type responses was nextigtll. Thl cytokines were induced at 4 hAy
salmonicida preparations but not by. ruckeri. However, Th17 and Th2 cytokines (IL-4/13B1-2)
were only induced by MT423 at 4 Iri§. 4). The expression of IL-2B [27] and IL-17C1 [47]

8
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followed the pattern of Thl cytokines. The expressif other cytokines (IL-2A, IL-4/13A, IL-17C2,
IL-18, IL-21 and IL-22 [48]) was less responsive.deneral A. salmonicida preparations induced a
relatively early (at 4 h and/or 8 h) adaptive cymekexpression, and. ruckeri induced a late (at 8 h

or later) cytokine responsEgif. $4-6).

The expression of master transcription factorsTof (T-bet), Th2 (GATA3 [49]), Th1l7 (ROR
[50]), and regulatory T cells (FoxP3A/B [51]) was@ examined. At 4 h, T-bet expression was
upregulated by MT004 and. ruckeri, and ROR expression byY. ruckeri only. A small but
significant increase of FOxP3A/B was observed Irst@inulated samples, but GATA3 was refractory
at 4 h Fig. 4). The effects of bacterin stimulation were smallother time pointsKig. S6). The
effects of bacterin-stimulation on T cell marke@D@e, CD4, CD28 and CTLA4) and B cell markers
were also smallRigs. S7-8), with a minor increase in the expression of €28d CD4 at 4 h by all
bacterins Fig. 4). The large increases of proinflammatory cytokoene expression and minor
changes on adaptive genes at 4 h suggest a raptPfktivated response by bacterins that may

trigger later adaptive responses.

3.4. Modulation of the expression of the IL-12 family by bacterins.

The expression of subunits of the IL-12 family éolled the pattern of the major pro- and anti-
inflammatory cytokines, with a rapid induction bfta-subunit of IL-12 (P35A1 and P35A2 [52-53])
and IL-27 (P28A, [54]), and th&subunits of IL-12 (P40B1 and P40B2, [52-53]) atyetime points

(4 h and 8 hFig. S9). The exception was P40C where the induced expreggaked at 8 h or 24 h.
At 4 h, MT423 was a strong stimulator of IL-12 fdynéxpression compared ¥ ruckeri, as seen
with the major inflammatory and Thl cytokingsid. 5). The differential expression of different
subunits suggests that different isoforms of ILedh be induced by different vaccine candidates,

which have the potential to modulate differentiblGell development after vaccination.

3.5. Modulation of the expression of chemokine receptors by bacterins.

The expression of chemokine receptor CXCR3A [55kv@w but highly induced by bacterin
stimulation in PBL, and followed the pattern of thajor inflammatory and Thl cytokingsig. S10).

The changes of expression of other chemokine rereptere small and showed a decrease in
expression at late time points (24 h and 48 hyéweral receptors, e.g. CXCR2, CXCR3B, CXCR4A,
CXCR4B, CCR9A and CCR9B~(gs. S10-11), perhaps due to a decrease of the receptor expges
cells duringin vitro culture [27]. A small transient induction at 4 lasvseen with the majority of
chemokine receptors except CXCR4Rid. S10-12). The expression of CXCR2, CXCR4B, XCR3,
CCRG6A and CCR4Lcl was induced by all the bacteraparations with similar levels. Howevé,
ruckeri bacterin induced a higher expression level of CEBBRCCR7A, CCR7B, CCR9A, CCR9B,
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CCRA4Lc2 and CCRL1 [56], compared to MT423 at 4Hig( 6). In contrastA. salmonicida
preparations induced a higher level of CXCR3A a@B@2 [57] transcripts thari ruckeri (Fig. 6).

Chemokine receptors are present on all leucocyteb their expression can be differentially
modulated to position the right immune cells in tight place [58]. The adaptive immune response is
initiated in the secondary lymphoid organs with #neval of antigen or mature dendritic cells (DCs)
The antigen-loaded DCs and naive T cells must baaized to allow the rare antigen-specific
naive T cells to scan and interact with the DC= Th-localization of immune cells is promoted by
chemokine receptor-mediated migration [58-59]. Gfen mammalian CXCR3, CCR4 and CCR6 are
important for Thl, Th2 and Th17 type adaptive imityrespectively; CCR7 regulates the migration
of DCs, B cells and T cells; and CCR9 regulates GAlevelopment and homing of T cells to gut
[58]. The differential ability of vaccine candidateo modulate early chemokine receptor expression
may provide novel insights into the immune pathwagtvated by vaccination. Interestingly, tfe
ruckeri bacterin that is an effective vaccine inducesrangier expression of CXCR3B, CCR4Lc2,
CCR7, and CCR9, compared to the other vaccine datedi studied. This information could be a

starting point to further dissect the immune patysvactivated by vaccination that provide protection

3.6. Modulation of the expression of APP and AM P genes by bacterins.

Lastly, the expression of several APP and AMP gehasare known to be inducéal vivo

by vaccination and bacterial infection was studigd, 33]. COX2 expression was rapidly
induced at 4 h and followed the expression pattérthe other inflammatory genefig.
S13). The induced expression of SAA, SAP1, CATH1, CATEnd LEAP1/hepcidin was
relatively low at 4 h, peaking at 8 h or 24Higs. S13-14). Such expression kinetics are in
line with thein vivo observation that early induction of proinflammatarytokines by
vaccines and PAMPs induces APPs and AMPs [30,B#jterin stimulation had only minor
effects on the expression of SAP2 ghdefensin 4. At 4 h, MT423 was more potent at
induction of SAA, SAP1, COX-2 and CATHL1 thanruckeri (Fig. 7).

3.7. PBL immune gene expression mimicsthein vivo responseto vaccination

The expression of major pro- and anti-inflammatgeyes (IL-1, IL-6, IL-8, TNE, IL-10 etc.), acute
phase protein genes (SAA, SAP1 and COX-2), antwbiat peptide genes (CATH1, CATH2 and
LEAP1), as well as adaptive cytokine genes ({FM-17A/F and IL-4/13) are increased in PBL by
bacterin vaccine candidates in this study. Thepression is also increaséd vivo by injection
vaccination in rainbow trout [18, 30, 61], Atlansalmon [33, 62] and other fish species [63-65].

However it should be noted that some of the vascingedin vivo include adjuvants that may

10
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contribute to the increased gene expression older@wvever,Y. ruckeri bacterin modulated gene
expression in rainbow trout PBL is similar to th@egn response to injected unadjuvanted vaccine
[30], suggesting thah vitro PBL immune gene expression does indeed largelyigriine immune

response to vaccination vivo.

Despite the similarity, a direct analogy or genisetion of the PBL immune response to vaccine
candidatesn vitro to the responsen vivo should be cautious. Tha vivo vaccine responses are
usually studied in internal organs, such as spleead kidney or liver that are away from the priynar
injection/vaccination site. The response in thegernal organs depends on the degree of immune
activation at the vaccination site, the traffickioigimmune cells (especially antigen presentindsgel
between tissues and the vaccination site, andeelar composition of each organ. Consequently,
immune gene expression in response to vaccinatsarbe different in different tissues [29, 30, 65],
and can even show fish species-specificity [66]r Egample, genes associated with T and B
lymphocyte activity and migration, such as CCR7 @@R9, are decreased in peritoneal cells after
intraperitoneal injection vaccination [63]. Thiscdeased gene expression may be a consequence of
different phenomena, that include a rapid influx rofeloid cells to the peritoneal cavity after
vaccination [67], or exit of leucocytes expresshigh levels of CCR7 and CCR9 that home to

secondary lymphoid tissues to initiate adaptive imenresponses, or the actions of both.

3.8. Correlation analysis of gene expression

To further exploit the differential power of immugene expression in PBL after bacterin stimulation,
the Spearman rank ordered correlation analysispga®rmed on selected genes that showed large
responses. A good positive correlation was obsemwittlin groups of pro-/anti-inflammatory
cytokines (IL-B, IL-6, IL-8, TNFa3 and IL-10), adaptive cytokines (IFN2, 1L-4/13B1-2, IL-
17A/Fla and IL-22), IL-12 family cytokines (IL-123BAl1 and P40B2, and IL-27P28A) and
chemokine receptor genes (CXCR3A, CCR7B and CCR&igr stimulation with each bacterin
preparation as detailed in Tables S3-7. However, dbrrelations between different groups were
complex and largely stimulation-dependent. For gdarin ERM stimulated samples, the expression
of IL-1B81 (and to a large extent IL-8 and IL-10A) was foundbe positively correlated with the
expression of T cell growth factor (IL-2B), Thl Ni1-2), Th2 (IL-4/13B1-2), Th22 (IL-22), and IL-
12 (P35A1 and P40B2) family cytokines, but negdyieorrelated to chemokine receptors (CCR7B
and CCR9A), and there was no correlation with T{L717A/F1a) and Treg (TGFLA-B) cytokines
(Table 1). These correlations were lost in mosesaghen stimulated witA. salmonicida bacterins.
Notably, positive correlations were found betweeo-fanti-inflammatory cytokines (ILfil, IL-6,
IL-8, TNFa3 and IL-10A) and Treg cytokines, and chemokinepéars afteA. salmonicida bacterin

stimulation (Table 1).
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A coordinated activation of proinflammatory gened adaptive cytokines with a negative-correlation
to chemokine receptor expression may retain imnaafie at the injection site after efficacious ERM
vaccination. Although the interpretation of the retations will be context dependent and needs
further investigation, these complex correlatiohgene expression further demonstrate the power of

PBL gene expression to distinguish differentiapmsses to stimulation with vaccine candidates.

3.9. Thevalue of PBL responsesfor vaccine candidate screening and vaccine potency testing

In contrast to vaccine-induced immune respomsesvo, that occur in immune organs usually after
immune cell trafficking, the PBL immune cell compims is relatively constant and the response to
vaccine components is direct. This may allow anslyg subtle changes in gene expression in
response to vaccine antigens to be detectable In P8r instance, a small but significant rapid
induction of chemokine receptor expression (e.gRZ&nd CCR9) was observed in PBL after
bacterin stimulation in this study, that may be etedtable or even decreased as seen in peritoneal
cells in vivo after vaccination [53]. Unlike cell lines that st of a pure cell population, PBL
prepared by the hypotonic method [25] contain mldtimmune cells seeim vivo, that allow both
innate and adaptive immune responses to be analy8tdare the only leucocytes in fish that can be
prepared non-lethally, allowing the same fish to daenpled multiple times. The distinct gene
expression profiles of innate and adaptive immuimitl?BL after bacterin stimulation observed in this
study suggest that PBL are a suitable platformiridral screening of vaccine candidates and for
evaluation of vaccine-induced immune responses.PBlesystem may also be used to evaluate some
adjuvant responses (e.g. PAMPs and cytokines) wbithd be simply added to the cells with the

antigens.

Although a bacterin dose-dependent response waseniarmed in this study, a trend to intermediate
gene expression of many genes in MT423 (Fe-) + MTélinulated cells, compared to MT423 (Fe-)
and MTO004 used individually, was apparent (Figg,).3These three groups contain the same total
amount of bacteria but the first group has halfheat the last two, suggesting a sensitive dose-
response effect on PBL gene expression. As seemimmals [68], vaccine-mediated protection in
fish is also vaccine dose-dependent [10, 69]. Whercorrelates of vaccine dose-response profiles of
PBL gene expression amd vivo protection have been established, PBL will potdiytibe a cheap

alternative for potency tests to reduce animal[Lg8g

PBL may also be used to investigate immunologicaiary, which is a feature of adaptive immune
responses to vaccination. Immunological memorhésability of the immune system to respond more
rapidly and effectively to pathogens due to thestexice of antigen-specific memory T/B cells. The
PBL isolated from vaccinated fish should containmmogy T cells and B cells that are expected to

respond differently compared to PBL from naive fishen culturedin vitro in the presence of
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antigens. However, due to the complexity of PBL #ralrarity of memory cells, pre-isolation of T/B
cells, and homogenous dendritic cells/antigen pt@se cells for presenting antigens may have to be

applied.

3.10. PBL immune gene expression may help shed light on the protective mechanisms induced

by vaccination

Distinct immune gene expression profiles in PBL éndeen induced in this study by bacterin
preparations including those reflecting effectiaceines, such ag. ruckeri and MT423 (Fe-), and
non-effective bacterin candidates. Bacterial sygeh#eve major effects on PBL gene expression with
bacterin preparations frof salmonicida behaving in a more similar way in comparisorytouckeri.

A. salmonicida preparations induce a rapid upregulation of praimfinatory genes whilst the kinetics
of inflammatory gene expression was slower and @eédter withY. ruckeri. These effects have also
been observeth vivo with live bacterial infection. For example, thepeassion of IL-B, TNFo and
IL-10 peaked at 6-12 h aftéx. salmonicida infection in Atlantic salmon [70], whilst ifY. ruckeri
infected rainbow trout the peak occurred after de¥ys [29, 71]. Although a direct comparison
between the two pathogens in terms of dose, kimetia immune genes examined in the same fish
species is lacking, the current PBL response iandvo data in salmonids suggest that distinct
immune pathways are activated by each pathageinvo that can be mimicketh vitro by bacterin

stimulation of PBL.

It is interesting to note that whilst thiveruckeri bacterin is an effective vaccine it induces a wead
relatively slow induction of proinflammatory genés PBL. In addition, the bacterin fror.
salmonicida grown under iron-depleted conditions has a lowapacity to induce pro- and anti-
inflammatory gene expression at 4 h than the MTi&3erin but also represents an effective vaccine
candidate. This suggests that inflammatory potewkiesn’t correlate to protective efficacy of a
vaccine candidate. ThHé ruckeri bacterin induces an early expression of mastestrgtion factors
for Thl, Th2 and Th17 (T-bet, GATA3 and R@Reells as well as chemokine receptors (CXCR3B,
CCR6, CCR7, CCR9 and CCR4Lc2) at 4 h, suggestiagattivation of Thl, Th2 and Thl7 type
adaptive responses that may be essential for #usive mediated immunity. Both MT423 (Fe-) and
Y. ruckeri bacterins induce higher levels of CCR4Lc2 and CER6 72 h, with their mammalian
orthologues important for Th2 and Thl7 type ada&pimmunity [58]. A Th2 and Th17 biased
response was observed in Atlantic salmon vaccinat#dan oil-adjuvanted\. salmonicida bacterin
[72]. The induction of a Th2 type response is ireagent with the fact that antibody titre corredate
with vaccine-mediated protection against infectidth A. salmonicida [10] andY. ruckeri [69]. Thus,
immune gene expression in PBL after stimulatiorhwiiccine candidates may shed light on the

immune pathways involved that lead to protection.
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3.11. Conclusions

PBL can be easily prepared non-lethally and comt@@jor immune cells that enable the detection of
both innate and adaptive immune responses. Digjene expression profiles of innate and adaptive
immunity have been observed between bacterins prégeom different bacterial species, as well as
from different strains or culturing conditions difet same bacterial species. Hence immune pathways
activated by pathogens or vaccin@svivo can also be detected in PBh vitro. Immune gene
expression in PBL after stimulation with vaccinedigates may shed light on the immune pathways
involved in vaccine-mediated protection in fishk&a as a whole, this study suggests that PBL are a
suitable platform for initial screening of vaccimandidates, for evaluation of vaccine-induced
immune responses, and represent a cheap alterrfatiygotency testing to reduce animal use in

aquaculture vaccine development.
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6. Figurelegend

Fig. 1. Hierarchical clustering analysis of immune gene expression modulated by bacterins in
PBL. Freshly prepared PBL from four trout were stimethtvith formalin inactivated bacterins 6f
ruckeri (A), A. salmonicida subsp.salmonicida strains MT004 (B) and MT423 (C), MT423 cultured
under iron-depleted condition (MT423 (Fe-)) (E)daamn equal mixture of MT004 and MT423 (Fe-)
(D) for 4 h, 8 h, 24 h and 72 h. The fold changed&t from 75 genes (Table S2) was inputted to the
CluctVis program for clustering analysis. Threestdus of gene expression patterns, C1, C2 and C3,

are apparent.

Fig. 2. Principal component analysis of immune gene expresson modulated by bacterins in
PBL. Freshly prepared PBL from four trout were stimehtvith formalin inactivated bacterins 6f
ruckeri (A), A. salmonicida subsp.salmonicida strains MT004 (B) and MT423 (C), MT423 cultured
under iron-depleted condition (MT423 (Fe-)) (E)daamn equal mixture of MT004 and MT423 (Fe-)
(D) for 4 h, 8 h, 24 h and 72 h. The fold change d&t from 75 genes (Table S2) was inputted to the

CluctVis program for principal component analysis.

Fig. 3. Modulation of PBL expression of pro- and anti-inflammatory genes by bacterins.
Rainbow trout PBL were stimulated with bacterinsYofruckeri, A. salmonicida strains
MT423 and MT004, MT423 grown under iron-depleteahdibons (Fe-), and a mixture of
MT423 (Fe-) and MTO004 for 4 h, 8 h, 24 h and 72The average (+SEM, N=4) gene
expression was quantified by RT-gPCR. The expradsieel of each sample was normalised
with that of EF-&, and expressed as arbitrary units where one upitle the average
expression level in the control samples at 4 h. fdleechange of expression at 4 h is shown
with the full range of times studied iigs. S1-3. Different letters over the bars indicate

significant differences (p<0.05, paired samplessk)t

Fig. 4. Modulation of PBL expression of cytokines and markers of adaptive immunity
by bacterins. Rainbow trout PBL were stimulated with bacterimel ene expression was
guantified as described Fig. 3. The fold change of gene expression at 4 h is sheith the
full range of times studied iRigs. $4-7. Different letters over the bars indicate sigrafit

differences (p<0.05, paired samples T test).
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Fig. 5. Modulation of PBL expression of IL-12 cytokine family by bacterins. Rainbow
trout PBL were stimulated with bacterins and gexression was quantified as described in
Fig. 3. The fold change of gene expression at 4 h is shawth the full range of times
studied inFig. S9. Different letters over the bars indicate sigraft differences (p<0.05,

paired samples T test).

Fig. 6. Modulation of PBL expression of chemokine receptor genes by bacterins.
Rainbow trout PBL were stimulated with bacteringl ayene expression was quantified as
described irFig. 3. The fold change of gene expression at 4 h is shaith the full range of
times studied irFigs. S10-12. Different letters over the bars indicate sigrfit differences
(p<0.05, paired samples T test).

Fig. 7. Modulation of PBL expression of acute phase protein and antimicrobial peptide
genes by bacterins. Rainbow trout PBL were stimulated with bacteringl gene expression
was quantified as described king. 3. The fold change of gene expression at 4 h is show
with the full range of times studied Figs. S13-14. Different letters over the bars indicate

significant differences (p<0.05, paired samplessk)t
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Table 1 Spearman’s rho correlation coefficient (R) and the 2-tailed significance (* = p < 0.05, ** = p < 0.01) between expression levels of selected pro-/anti-inflammatory
cytokines and adaptive cytokines, IL-12 family and chemokine receptors in PBL stimulated with ERM, MT423 (Fe-), MT004, MT423 (Fe-)+MT004 and MT423 as described
in Fig. 1. The numbers (R) in red indicate a significant and positive Spearman rank ordered correlation, whilst those in blue indicate a negative correlation.

—
|
HI E S ‘c—|U < om <
g o lo |3 |2 |8 e 2|22 |2 |5 |8 |2 |82 |5 /8 |8/|%8/2
i 4 4 5 = 4 2 £ £ 2 2 i i 2 2 2 & 5 S 3 3
IL-1B1
ERM 648" | 024" | 799" | 625" | 864" | 873" | 799" | 620 | .667° | 680" | .304 | 589 | 218 | -156 | 848" | .234 | .883° | -365 | -776" | -792"
NT423 (Fe-) 982" | 641 | -015 | 890" | 921" | A52 | 477 | 433 | 082 | 421 | A09 | 447 | 432 | 632" | 976" | 974" | 391 | 876" | 653 | .715°
MT004 974" | 762" | 262 | 715" | 735" | 675" | 168 | AT | -076 | .038 | .065 | .212 | 088 | 526 | 947" | .782° | 690" | 589 | .135 | .109
MT423(Fe-)*MT004 962" | 809" | A00 | 915" | 767" | 376 | .297 | 168 | -026 | .021 | .306 | .235 | 609 | 500 | 947" | 962° | 518 | 741" | 240 | .482
NIT423 918" | 647" | 0.250 | 938" | 798" | -371 | 185 | .368 | -301 | -338 | 096 | .226 | .633° | 571 | 950" | 947" | 432 | 876" | 774" | 824"
IL-6
ERM 648" 385 | 235 | 188 | 632" | 321 | 35 | -003 | 068 | .047 | -308 | 077 | 499 | -447 | 694" | 653" | 432 | -182 | -386 | -379
NT423 (Fe-) 982 621 | -035 | 887" | 941" | 075 | 452 | 419 | 072 | 129 | 12 | 429 | 476 | 597 | 982" | 962° | 406 | .856° | 632" | .712°
NIT004 974" 724" | 235 | 679" | 788" | 661" | 135 | .156 | -109 | .038 | .079 | 188 | .062 | 515 | 953 | .776° | 674" | 620 | 132 | .126
MT423(Fe-)*MT004 | 962" 706" | 047 | 900" | 702" | 318 | A84 | 085 | -118 | -024 | 188 | 132 | 647" | 336 | 944" | 976" | 450 | 697" | .208 | .468
NIT423 918" 438 | -AT4 | 847" | 758" | -218 | 185 | .250 | -488 | -359 | -066 | .029 | 481 | 541 | 953" | 885" | 424 | 829" | .768° | .765"
IL-8
ERM 924" | 385 921" | 656" | 738" | 962" | 006 | 768" | 835" | 859" | 480 | .764" | 160 | -018 | 762" | -035 | 953" | -412 | -808" | -812°
NMT423 (Fe-) 641" | 621" 700" | 571 | 541 | 539 | 908 | 790" | 648" | 729" | 646" | .726° | -038 | 826" | 504 | 547 | 885" | 447 | 220 | .007
MT004 762 | 124 671" | 429 | 820" | 868" | 674" | 617 | 379 | 424 | 450 | 691" | -206 | 647" | 744" | 420 | 915 | 165 | -332 | -362
MT423(Fe-)*MT004 | 809" | .706" 54T | 6627 | 790" | 650" | 620 | 521" | .382 | 491 | 535 | 571 | 209 | 668 | 788" | 703" | 826" | 441 | -090 | .100
NIT423 647" | 438 M2 | 691" | 327 | -266 | 279 | 403 | 226 | A62 | 549 | 609 | 745" | 644" | 556 | .662° | .468 | 538 | 350 | 512
CXCL11_L1
ERM 799" | 235 | 021 515 | 668" | 944" | 868" | 771" | 771" | 812" | 514 | 784" | A46 | -120 | 700" | -124 | 891" | -515 | -815" | -.806"
NT423 (Fe-) 015 | -035 | 700" 025 | -124 | 508 | 681" | 637" | 796" | 862" | 558 | .550° | -538 | 503 | -021 | -100 | 856" | -168 | -279 | -494
NIT004 262 | 235 | 671" 200 | 582 | 746" | 838" | 805" | .768" | 876" | 821" | 815" | -441 | .344 | 206 | -250 | .745" | -487 | -703° | -726"
MT423(Fe-)*MT004 | 100 | .047 | 547 015 | 322 | 585 | 681" | 724 | 679" | 826" | 553 | 582 | -374 | 458 | 150 | -000 | .794" | -A74 | -496 | -412
NT423 250 | -174 | 112 315 | -255 | 600 | 659" | 497 | 738" | 897" | 400 | 438 | -316 | 474 | -144 | -207 | 550 | -432 | -447 | -553°
TNFa3
ERM .625" 188 .656™ 515 0.476 .568" 553" 315 .382 429 .360 .258 166 182 506 153 .618" 12 =434 =441
NT423 (Fe-) 800" | 887" | 571 | -025 827" | -A72 | 543 | 608 | A75 | A30 | A51 | 537 | 618 | 686" | .893° | 936" | .380 | 918" | 779" | .806"
NIT004 715" | 679" | 429 | -200 209 | 166 | -079 | -106 | -188 | -282 | -318 | -079 | 532 | 582 | 721" | 944" | 389 | 877" | 615 | 615
MT423(Fe-)*MT004 | 915" | 900" | 662" | -015 545 | 062 | 322 | 191 | 009 | -053 | 268 | 209 | 782" | 511 | 821" | 012" | 485 | 874" | 464 | 712
NT423 938" | 847" | 691" | -315 726" | 536 | A97 | .368 | -300 | -306 | 218 | 297 | 824" | 547 | 871" | 920" | 435 | 006" | 821" | .894"
IL-10A
ERM 864" | 632" | .738° | 668 | 0.476 768" | 638" | 494 | 512 | 503 | A78 | 403 | 149 | -326 | .765° | 194 | .753 | -379 | -730° | -759"
NT423 (Fe-) 9217 | 941" | 541 | -124 | 821" 025 | 383 | 350 | 020 | .094 | .050 | .356 | .482 | 585 | .897" | 915" | 303 | 838" | 671" | .715°
MT004 735" | 788" | 820" | 582 | .209 858" | 529 | 501 | A50 | 320 | 465 | 541 | -347 | 379 | .753° | 344 | 730" | A16 | -452 | -423
MT423(Fe-)*MT004 | 767" | 702" | .790° | 322 | .545' 561 | 323 | 275 | 050 | 213 | 312 | 316 | 018 | 547 | 796" | 727" | 475 | 372 | -194 | .035
NIT423 798" | 758" | 327 | -255 | .726" 281 | 365 | 512 | -330 | -275 | 167 | .266 | 338 | .543 | 768" | 750" | 506 | 756" | 755" | 681"
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Highlights

1. PBL contain magor immune cells to adlow the detection of innate and adaptive immune
responses.
Distinct immune gene expression profiles are activated in PBL by bacterin vaccine candidates.

3. A rapid 4 h siimulation gives the most discriminating power of the effects of bacterin
preparations.

4. Immune gene expression in PBL may shed light on the mechanisms of vaccine-mediated
protection.

5. PBL areasuitablein vitro platform to reduce animal use in aquaculture vaccine development.



Resource Source Identifier

2,2'- bipyridyl

EDTA

FCS

Fe-

formalin

iron

lithium

penicillin

phosphate buffered saline

streptomycin

Tris-HCI

trypan blue
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proteins

Reverse Transcriptase




