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Introduction 

Spinal cord injury (SCI) causes permanent impairment of motor and sensory functions. About 70-80% 

of SCI patients suffer from different types of pain [21; 52], among which central neuropathic pain (CNP) 

is present in about 50% of patients [7; 21; 52]. At- and below-level SCI-CNP manifests as spontaneous, 

burning, stabbing, and/or electric shock-like sensation, stimulus-evoked allodynia and hyperalgesia, and 

often associates with paraesthesia and dysesthesia [20]. SCI-CNP is difficult to treat and significantly 

impacts on daily functioning/rehabilitation, often leading to depression [57]. No treatments in tolerable 

doses reliably produce satisfactory relief for a majority of SCI-CNP patients [20]; therefore, new 

therapeutic approaches are urgently needed. 

Microglia and astrocytes contribute to the neuroinflammation underpinning SCI-CNP pathogenesis [25; 

33]. They are activated chronically both at the injury site and in areas remote to injury, e.g. the lumbar 

L5 spinal cord, and are responsible for the development and maintenance of SCI-CNP [25]. They release 

glia-transmitters that activate receptors and ion channels in the neuronal membrane [25], and 

proinflammatory mediators including cytokines, chemokines, inducible nitric oxide synthase (iNOS), 

and prostaglandin E2 (PGE2) that induce CNP [17; 28; 40; 60; 61]. Collectively, these substances initiate 

and maintain the activation of a positive feed-forward cycle between neurons and glia at spinal and supra-

spinal regions, enabling persistent neuronal hyperexcitability post-SCI [25]. Therefore, targeting the 

activation of these cells presents a potential therapeutic strategy for SCI-CNP. 

Docosahexaenoic acid (DHA), an omega-3 fatty acid crucial for the development and functioning of the 

nervous system, inhibits proinflammatory cytokine production in microglial cell lines [37]. When given 

as a single bolus intravenous (i.v.) injection combined with dietary supplementation, DHA conferred 
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neuroprotection and improved locomotor function in rodent models of SCI [32; 36]. Other research 

showed that prophylactic dietary supplementation containing DHA and other fatty acids reduced thermal 

hyperalgesia in rats with SCI [19]. However, the therapeutic potential of DHA to prevent and treat SCI-

CNP has yet to be clarified. 

Here, we hypothesized that systemic DHA treatment would prevent SCI-CNP development when given 

(i.v.) immediately after SCI and followed by repeated i.v. administrations (acute regimen); and that it 

would abolish already developed CNP when given as repeated i.v. administrations at a chronic SCI 

(delayed regimen). By using a novel sensory profiling, including pain-related spontaneous and/or natural 

rodent behaviours [burrowing (affective), thigmotaxis (affective) and place escape/avoidance paradigm 

(PEAP, cognitive)] to mimic clinical practice to estimate human SCI-CNP, we showed that the acute 

regimen prevented the development of spontaneous/affective and cognitive pain behaviours coupled with 

significantly attenuated at-level mechanical hypersensitivity in a clinically relevant rat contusion SCI 

model [3]. We showed also that the delayed regimen partially abolished SCI-CNP. Using neurochemical 

and flow cytometry techniques, we showed that the mechanisms by which DHA prevents SCI-CNP 

include reduced microglial and astrocyte activations at both spinal and supra-spinal regions. Finally, we 

used quantitative real-time PCR (qPCR) to reveal the potential roles of the peroxisome proliferator-

activated receptor (PPAR), retinoid X receptor (RXR), and docosahexaenoyl ethanolamide (DHEA - 

DHA’s metabolite) in modulating microglial activation. 
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Materials and Methods 

 

Ethical statement  

Experiments involving live animals were performed following UK Regulations (Animals Scientific 

Procedures Act, 1986) as well as IASP and NIH guidelines for using laboratory animals. Animal studies 

were approved by the local Ethics Committee of the University of Aberdeen. The ARRIVA guidelines 

were followed and an ARRIVA checklist was attached as a supplementary material. 

 

Study design 

Male Wistar rats (180-200 g; Charles River, UK) were housed (2-3 per cage) in a temperature/ 

humidity/noise-controlled environment, kept on a 12:12 hour light-dark cycle, and allowed to acclimatize 

for 48 hours after delivery. Standard rat chow and tap water were available ad libitum. The numbers of 

experimental groups and timelines for behavioural tests are detailed in Supplementary Table 1. Good 

laboratory practice [39; 47] were followed to minimise bias (Supplementary Table 2). Sample size 

estimation is described in Supplementary Table 3. Behavioural tests were performed during day phase. 

Batches of subset behavioural experiments (2-3 per group) were used due to limited laboratory capacity 

and to achieve comparable timings between test animals.  

 

Contusion SCI surgery 

An established rat contusion model of SCI-CNP was adopted [2]. 2% isoflurane (Abbot Laboratories, 

UK) was used for general anaesthesia. Buprenorphine (0.3 mg/kg for post-surgery acute pain; Alstoe 

Animal Health, UK), Carprofen (50 mg/kg for post-surgery inflammation; Pfizer, UK), and Baytril (5 

mg/kg for post-surgery infection; Bayer Plc, UK) were administered subcutaneously (s.c.) before 

surgery. A T10 and partial T9 laminectomy was performed and followed by stabilising T8 and T11 

spinous processes with a clamping apparatus and transferring the rat with the apparatus to the MASCIS 
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impactor (rat model III; software 1.32.6; Rutgers University, USA). Next, a 10 g rod was released from 

a 12.5 mm height onto the exposed spinal cord and generated a vertical compression of the cord [2]. 

Finally, muscle and skin layers were sutured and rats were allowed to recover from anaesthesia before 

returning to home cages. Sham-operated animals underwent the same laminectomy procedure without 

contusion injury. Saline was given for 5 days (5 ml/day, s.c.) post-surgery. Bladders were manually 

expressed twice daily until self-voiding was resumed. Baytril was given during the first 5 days to 

minimize urinary infection.   

 

In vivo DHA administration 

DHA stocks (1 M; Sigma, UK) were prepared and stored at -80°C [32]. For in vivo treatment, stocks 

were diluted with sterile 0.9% saline to desired concentrations immediately before intravenous (i.v.) tail 

vein injections. For the acute regimen study, DHA (250 nmol/kg) was administered 30 minutes post-

surgery and thereafter every 3 days lasting for 6 weeks (Fig. 1A). The dosage choice was based on our 

previous studies [32]. For the delayed regimen study, DHA (250 nmol/kg) was administered at the 

beginning of week 4 post-surgery and thereafter every 3 days lasting for 4 weeks (Fig. 1B). For positive 

controls, Pregabalin was administered intraperitoneally (30 mg/kg; Pfizer, UK) 45 minutes before pain-

related behavioural assessment [2] at week 3 and week 6 for the acute regimen study and at week 6 for 

the delayed regimen study. 

 

A novel sensory profiling approach to assess SCI-CNP 

The approach consists of evoked mechanical hypersensitivity measurement at- and below-injury level 

(sensory component of pain). It also consists of pain-related spontaneous and/or natural rodent 

behaviours i.e. burrowing (affective component of pain), thigmotactic (affective component of pain) and 

PEAP (cognitive component of pain) behaviours, which were previously reported by us [2; 3; 30; 31].  
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Spinal reflex-based below-level mechanical hypersensitivity 

Below-level mechanical hypersensitivity was measured using an electronic von Frey device with 0.5 

mm2 probe tip area (Somedic Sales AB, Sweden) as previously described [31]. In three consecutive days 

rats were acclimatized to the testing room for 45 minutes and then habituated to Plexiglas boxes for 60 

minutes until exploratory behaviour ceased. The same Plexiglas box was used for the same rat throughout 

the duration of the study. Two consecutive baseline measurements were taken before surgery. The probe 

was applied to the mid-lateral plantar surface of the hindpaw, delivering an increasing force (8-15 g/s) 

until active paw withdrawal. Both hindpaws were tested 5 times with a one-minute interval and results 

were pooled. An average of data from 10 trials per rat was calculated as the withdrawal threshold in 

response to punctate static mechanical stimulation. 

  

Brainstem response-based below- and at-level mechanical hypersensitivity 

Brainstem responses (licking, guarding, vocalizing, jumping or biting) to below- and at-level mechanical 

stimuli were measured as previously described [2; 3]. Acclimatization, habituation, and baseline 

assessments were performed as above. For at-level brainstem responses, nylon von-Frey filaments 

(Bioseb, USA) with increasing diameters exerting different forces - 0.07, 0.16, 0.4, 0.6, 1.4, 2, 4, 6, and 

8 g (cut off) were applied 2cm laterally to the SCI site, starting with 1.4 g filament. A total of 9 filament 

applications, 30 seconds apart, were performed per rat. For below-level brainstem responses, nylon von-

Frey filaments ranging 1, 1.4, 2, 4, 6, 8, 10, 15, 26 g (cut off) were used. The filaments, starting with 6 

g, were applied to the mid-lateral plantar surface of both hindpaws for 5 times each; a total of 10 filament 

applications, 30 seconds apart, were performed per hindpaw and bilateral results were pooled. An ‘up-

down’ method [9] was used to calculate the 50% withdrawal threshold in response to at- and below-level 

mechanical stimulations. 
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Spontaneous and natural burrowing behaviour 

Burrowing, an evolutionally conserved rodent behaviour, is easy to measure objectively by weighing the 

amount of gravel left in the burrow after testing. Plastic tubes were custom-made (32-cm-long and 10-

cm-diameter) with one end sealed and the other opened as entrance [raised by 6 cm to prevent gravel (5 

mm pea shingle; B&Q, UK) loss]. Before each burrowing training or assessment, rats were habituated to 

the testing room and cages (30 minutes each) with dim lighting (5 lux). Before baseline measurements, 

rats were trained to burrow in pairs in one cage with a tube containing 2500 g of gravel for 2 hours. The 

next day, rats that performed well were re-grouped with those that performed less well in the first training, 

to facilitate peer learning. Two baseline assessments were conducted per rat in two consecutive days. 

Burrowing was assessed weekly post-surgery starting from the second week, when plantar stepping was 

re-established (Supplementary Fig. 1). 

 

Spontaneous and natural thigmotactic behaviour 

This is based on natural behaviours of rodents when they enter an open field to which they have not 

previously been exposed. Thus, rats were introduced for first time to an open field arena (100-cm-long 

and 100-cm-wide) in dim lighting (12 lux) at week 6 and week 7 post-surgery for the two regimen studies 

respectively. Spontaneous movement of each rat in the arena was recorded for 15 minutes with a highly-

sensitive camera (Tracksys Ltd., UK) and movement tracks were analysed using EthoVision XT (v10, 

Noldus, The Netherlands). The duration spent in and frequency of entry to the virtual inner zone (40-cm-

long and 40-cm-wide) were calculated.   

 

Natural PEAP behaviour 

This is based on natural behaviours of rodents in which they prefer hiding in the dark than exposing to 

bright conditions. The paradigm was custom-made with acrylic box (60-cm-long, 30-cm-wide, 30-cm-

high; painted into half white and half black; 12 lux lighting). Rats were allowed to acclimatize in the 
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testing room for 30 minutes before testing. Then each rat was introduced to the centre of the box and 

allowed a 5-minute habituation. A von Frey filament (2 g), a choice based on our previous studies [2; 3], 

was next applied every 15 seconds either on the dorsal thorax (2 cm laterally to the injury site) when the 

rat was in the black zone or on skull vertex when it was in the white zone, for 30 minutes during which 

free movement was allowed. Free movements of each rat were recorded using EthoVision, enabling the 

calculation of the cumulative time spent in and number of crossings to the white zone.  

 

Immunohistochemistry and quantitative analysis  

At the end of the behavioural studies, animals (n=5-6 per group) were perfused with 4% 

paraformaldehyde. Brains and spinal cords (L5 and injury epicenter) from SCI rats and naïves/shams 

(cords with equivalent level to injury epicenter) were collected. Tissues were post-fixed, cryoprotected 

in 30% sucrose in phosphate-buffered saline (PBS), and embedded in OCT. Cryostat transverse sections 

(14 µm) were cut, thaw-mounted onto Superfrost glass-slides, and incubated with primary antibodies: 

rabbit anti-Iba-1 (1:700; Wako, Japan), mouse anti-GFAP (1:1000; Merck Millipore, Germany) or rabbit 

anti-laminin (1:400; Abcam, UK). Sections were then incubated with appropriate secondary antibodies: 

goat/donkey anti-rabbit Alexa Fluor488 or anti-mouse Alexa Fluor568 (all 1:400; Fisher Scientific, 

UK). Phospho-p38 (pp-38) expression in microglia was investigated as previously reported [30; 31]. 

Sections were incubated with rabbit anti–pp-38 primary antibody (1:500; Cell Signalling, USA) followed 

by incubation with goat anti-rabbit biotin (1:400; Vector Laboratories, USA), which was then amplified 

using ABC Kit (Vector Laboratories, USA) and TSA Biotin System (Perkin Elmer, UK). Sections were 

then incubated with Extra-Avidin FITC (1:500; Fisher Scientific, UK), followed by incubations with 

rabbit anti–Iba-1 (1:700) and goat anti-rabbit Alexa Fluor568 (1:400). All sections were triple-washed 

with PBS following any antibody incubation (primary - overnight, secondary - 2 hours, all at room 

temperature) and had a final nuclei-staining with DAPI before mounting in PBS-glycerol (1:8).  
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Staining was visualized using a Nikon Ti-E fluorescence microscope. Images were taken at 20x objective 

magnification from 4 randomly selected areas in L5 and epicenter dorsal horns and the anterior cingulate 

cortex (ACC), from 5 serial sections per tissue type. Microglial activation was analysed as we previously 

described [30; 31]. Iba-1 immunoreactive cells with ‘reactive’ morphology (the process length is twice 

shorter than that of the soma diameter) were counted and expressed as the number per 50,000 µm2. 

Double-immunoreactive (pp-38+/Iba-1+) cells were counted and expressed as a percentage of the total 

of Iba-1+ microglia. Astrocyte activation was determined by analysing the intensity of GFAP 

immunoreactivity: images were converted into 8-bit using ImageJ and a threshold was applied to render 

the staining as a binary image in black and empty spaces in white; then the area occupied by GFAP 

staining was calculated. Images from the ACC were also analysed for the numbers of Iba-1 

immunoreactive cells and GFAP intensity. The person who conducted these analyses was blinded to 

treatment groups. 

 

For the spinal cord histology, we used transverse sections from a 5-mm long spinal cord segment which 

contained the lesion epicenter in the middle.  Thus, a series of transverse sections with 14 µm thickness 

were cut from the rostral end of this segment towards caudal until the finish of sectioning. Due to the 

cavity formation in the lesion epicenter which destroyed the dorsal horn, we selected transverse sections 

approximately 2000 µm both rostral and caudal to the middle of the segment. In these sections, despite 

still having small cavities, the superficial dorsal horns were largely intact thus allowing us to conduct 

imaging and image analysis for microglia and astrocytes. The right and left dorsal horn data were 

averaged per section. The rostral and caudal histological measurements were then averaged per rat. 

 

Eriochrome-cyanine staining and analysis 

Eriochrome cyanine (EC) staining was used to analyze the amount of tissue sparing i.e. spared white 

matter myelin from the spinal cord tissue of injured animals (n=4-5 per group). Transverse 14 µm thick 
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cryostat sections approximately 2000 µm away from the epicenter in both rostral and caudal directions, 

were selected for this purpose. Staining procedures were previously described [53]. Briefly, sections were 

dried overnight at room temperature, and then were placed in fresh acetone for 5 minutes, removed, and 

air dried for 20 minutes. Sections were incubated in EC solution (0.2 g eriochrome cyanine R, 0.5 ml 

concentrated H2SO4, 96 ml ddH2O, and 4 ml of 10% ferric ammonium sulfate solution; all from Sigma, 

UK) for 30 minutes at room temperature and then washed in ddH2O. The sections were then differentiated 

in 5% iron alum (Sigma, UK) for around 15 minutes until the grey matter became visible. This was 

followed by differentiation in a borax-ferricyanide solution (1 g disodium tetraborate decahydrate, 1.25 

g potassium ferricyanide, and 100 ml ddH2O; all from Sigma, UK) for 10 minutes. The slides were 

dehydrated by graded 70%, 95% and 100% ethanol, cleared through xylene and mounted by Neo-mount 

(Sigma, UK). To calculate the area of spared myelin, bright-field images of three EC-stained sections 

per rat (rostral, epicenter and caudal) were taken by a Nikon DS-U3 camera. Tissue sparing was 

quantified by outlining areas with light and dark blue staining, analyzed by ImageJ, and calculated by 

dividing the spared white matter area (WMA) by the spinal cord transverse cross-sectional area (CSA). 

 

Glial cultures, in vitro DHA treatment and immunocytochemistry 

Wistar rat pups (postnatal days 3-5) were used and mixed microglial and astrocyte cultures were prepared 

as we previously described [22]. Briefly, isolated cortical tissue was mechanically and chemically 

dissociated and then cells were seeded onto 60 mm poly-D-lysine (PDL; Sigma, UK) coated culture 

dishes in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 15% heat inactivated foetal 

bovine serum (FBS) (Invitrogen, UK). After 4 days in culture, microglia were harvested and plated onto 

uncoated glass coverslips. The astrocyte layer was left to incubate for another 48 hours and then cells 

harvested by incubation with 0.25% Trypsin-EDTA solution (Sigma, UK). Once astrocytes were 

detached, the cell suspension was centrifuged at 1500 rpm for 10 minutes, and then cells were counted, 

resuspended and plated onto PDL-coated coverslips. 
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DHA stock was diluted with 25 ml serum free DMEM to obtain 200 µM stock solution for in vitro 

simultaneous treatment or delayed treatment (ST vs DT). For ST experiments, cultured cells were co-

treated with DHA and Lipopolysaccharides (LPS, 10 g/ml; Sigma, UK) for 4 hours. For DT 

experiments, cells were pre-activated by LPS for 4 hours and then DHA was given for another 4 hours. 

To determine the optimal DHA concentration, cultured cells were first treated with 0.8, 4, 8 or 32 M 

DHA [48] during the ST experiments. 0.8 M was found as the optimal concentration and was used in 

subsequent ST/DT experiments. Cells were either fixed with 4% PFA for immunocytochemistry, lysed 

with RLT buffer (Qiagen, UK) for q-PCR, or processed for flow cytometry. Culture media were collected 

for the Greiss assay analysis (Supplementary Methods).  

 

For immunocytochemical analysis, cells were incubated with primary antibodies: rabbit anti-Iba-1 

(1:1000), mouse anti-GFAP (1:1000) and mouse anti-iNOS/NOS type II (1:200; BD Bioscience, UK), 

followed by incubation with goat/donkey secondary antibodies: anti-rabbit Alexa Fluor488, anti-mouse 

Alexa Fluor568, or anti-mouse IgG2a Alexa Fluor®555 (all 1:400; Fisher Scientific, UK). Images from 

five random areas per coverslip were taken at 20x objective magnification. Microglial and astrocyte 

morphologies were qualitatively assessed using bright-field images. Microglial/astrocyte culture purity 

was determined by calculating the percentage of Iba-1 or GFAP immunoreactive cells in the total of 

DAPI-stained cells. Coverslips with purities less than 95% were excluded from analysis. iNOS 

expression was determined by calculating the percentage of iNOS/Iba-1 double-immunoreactive cells in 

the total of Iba-1 immunoreactive cells. We analysed the GFAP staining intensity as described above. 

The person who performed the analyses was blinded to treatment groups. 

 

Flow cytometry analysis 

In vivo flow cytometry 
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Fresh-frozen cord tissues were collected at the end of behavioural studies and assessed for microgliosis, 

known to be correlated with neuropathic pain behaviours, using flow cytometry as previously reported 

[5]. Segments of L5 and epicenter cords (n=4-5 per group) were immediately frozen on dry ice after 

harvesting and stored at -80ºC. Samples were thawed on ice, weighed (mg), and then enzymatically 

digested with collagenase type IV (1 ml; 0.5 mg/ml in PBS; Sigma, UK) for 30 minutes at 37°C. The cell 

suspension was passed through a 40 µm cell strainer (BD Falcon, UK), followed by centrifuging at 400 

rpm for 10 minutes and resuspending in 10% normal goat serum and 1% 2 µM EDTA for 15 minutes. 

Each sample was diluted in FACS buffer to contain a minimum of 5x106  cells and incubated with: 

CD172a-FITC (clone-ED9; microglial marker; Bio-Rad, UK), CD11b/c-APC (clone-REA325; 

microglial marker; Miltenyi Biotec, UK), CD45-Vioblue (clone-REA504; general macrophage marker; 

Miltenyi Biotec, UK), all at 1:10 dilution for 45 minutes at room temperature. Samples were then washed 

and resuspended with FACS buffer, followed by analysis using flow cytometry machine BD Fortessa 

(BD, UK) (5x105 events per sample) and FlowJo software (FLOWJO, USA). Data were presented as 

numbers of ED9+/CD11b/c+ cells per mg of spinal cord tissue. 

 

In vitro flow cytometry 

We also assessed microglial activation in vitro using flow cytometry. Cells from the ST/DT experiments 

were detached using StemPro Accutase Cell Dissociation Reagent (Fisher Scientific, UK), and then fixed 

with 2% PFA for 10 minutes. Cell suspension was then centrifuged at 1500 rpm for 10 minutes. Cell 

pellet was washed with PBS, spun twice, and resuspended in 100 µl FACS buffer. Cells were incubated 

with CD11b/c-FITC (clone-REA325) and CD86-PE (clone-24F) (Miltenyi Biotec, UK) at 1:10 dilution 

(106 cells/50 µl) for 45 minutes at room temperature. Samples were analysed using BD Fortessa (a 

minimum of 10,000 events) and FlowJo software. Data were expressed as percentages of 

CD11b/c+/CD86+ cells in total CD11b/c+ cells.  
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q-PCR analysis 

In vivo qPCR for spinal cord dorsal horn tissues  

To assess relative mRNA expression levels of proinflammatory mediators iNOS, tumour necrosis factor-

α (TNF-α), interleukin-1 (IL-1β), and IL-6 in vivo, spinal cord dorsal horn tissues at L5 level and from 

lesion site segment containing the epicenter (n=4-5 per group) were freshly dissected out using the open 

book method that we previously reported [15] and processed for q-PCR as we previously described [43]. 

Tissues were dissected approximately 1.5-2 mm away both rostral and caudally to the epicenter, where 

dorsal horns were relatively preserved. Left/right and rostral/caudal tissues from each animal were 

pooled. Tissues were immediately frozen on dry ice after harvesting and stored at -80ºC until use. Frozen 

spinal cord tissue was homogenized in 1 ml Trizol (Fisher Scientific, UK) and separated into phases by 

using 200 μl chloroform (Sigma, UK). The aqueous phase was transferred in a fresh tube and cleaned up 

by using RNeasy Mini Kit (Qiagen, UK), following the manufacturer’s instructions. The concentration 

of eluted RNA was quantified using Nano Drop 1000 spectrophotometer (Fisher Scientific, UK). The 

qScript cDNA SuperMix (VWR, UK) was used to synthesise cDNA from RNA samples. A mixture of 4 

μl cDNA SuperMix and 16 μl RNA samples was prepared for cDNA synthesis. RNA samples were 

diluted to a final concentration of 100 ng/μl RNA with RNA-free water. cDNA synthesis was performed 

by a thermal cycler according to the manufacturer’s instructions and the samples were stored at -20°C 

until further use. All used primers (Sigma, UK) used are listed in Table 1 [43]. A total of 15 μl reaction 

solution, including 3 μl cDNA sample and 12 μl gene-specific master mix, was loaded in triplicates for 

each biological sample in 384 well plate. cT values were obtained by Light Cycler 480 II thermal cycler 

and Cycler 480SW1.5.1 software (Roche, UK). The relative mRNA expression of each gene was 

calculated and expressed as fold change using the 2-∆∆CT method [50]. Data were normalized against the 

reference gene YWHAZ. 
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In vitro qPCR 

To assess relative mRNA expression levels of proinflammatory mediators iNOS, TNF-α, IL-1β, and IL-

6 in microglia and astrocytes from the ST/DT experiments, q-PCR was performed, as previously 

described [43]. Following a sterile PBS wash, a total of 500 ng RNA from individual samples was 

extracted using RNeasy Mini Kit (Qiagen, UK), following manufacturer’s instructions. The RNA 

concentration was confirmed using Nano Drop 1000 spectrophotometer. cDNA synthesis, qPCR 

methods and the relevant analysis were performed in the same manner, as described above.  

 

PPAR and RXR antagonist treatment of microglia in vitro  

DHA is a well-known natural ligand of the PPAR and RXR receptors [12; 14; 24; 35; 63], which have 

been previously shown to have a regulatory role in various inflammatory- and immunity-related 

processes [29; 54; 58]. To investigate the potential mechanisms through which DHA attenuates the 

activation of microglia in vitro, we treated the microglial cells with potent PPAR and RXR antagonists 

prior to simultaneous treatment with LPS and 0.8 µM DHA. PPARγ antagonist GW9662 (10 mM; Sigma, 

UK) and RXR antagonist HX531 (2 mM; Tocris, UK) initially reconstituted in dimethyl sulfoxide 

(DMSO) (Sigma, UK) were prepared to final working concentration of 10 µM in serum free DMEM 

medium, as described previously [23; 59].  After the cells were pre-treated for 4 hours with one of the 

antagonists or a combination of both, the culture medium was replaced with a combination of 10 μg/ml 

LPS and 0.8 µM DHA treatment for 4 hours as described previously. At the end of the treatments the 

cells were processed for the analysis of gene expression profiles of proinflammatory mediators, as 

described in the main methods section.  

 

DHA ethanolamide treatment of microglia in vitro   

To gain further insight of the mechanisms of DHA effects on microglial modulation, we investigated 

whether treatment with the DHA metabolite DHEA would also lead to a decrease in the activation of 
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microglia in vitro. The rationales behind assessing the effects of DHEA are that firstly, the levels of this 

downstream substrate have been shown previously to be increased in the brain and the spinal cord 

following consumption or administration of omega-3 fatty acids [19], secondly DHEA also possesses 

anti-inflammatory properties and enhances the beneficial effect of DHA [4; 19; 41], and finally DHEA 

also binds to the PPAR, RXR and CB1/2  cannabinoid receptors expressed by microglia [4; 6; 19; 41]. 

DHEA (Cayman Chemicals, Cambridge Bioscience, UK) was diluted to stock concentration of 10 mM 

in the same way as described in the main text for DHA and further prepared in serum free DMEM to a 

working concentration of 5 µM or 10 µM. The choice of these concentrations was based on previous 

studies [6]. The microglial cells were treated for 4 hours with either LPS 10 μg/ml, a combination of LPS 

with 5µM DHEA, or LPS and 10 µM DHEA, following which the cells were processed for the analysis 

of gene expression profiles of proinflammatory mediators, as described in the main methods section. 

 

Statistical analysis 

Statistical analyses were performed using Prism7 Software (La Jolla, USA) and SPSS Version 25 (IBM, 

USA). All data were expressed as mean ± standard error of the mean (SEM). The primary outcomes for 

behavioural experiments are shown in Supplementary Table 1. For below- and at-level mechanical 

hypersensitivity, burrowing, and locomotor function assays, a two-way repeated-measures (between- and 

within-subjects) ANOVA was used to determine the main effects of independent variables namely 

“treatment” (DHA vs vehicle) and “time” (weeks post-injury). “Treatment” is a between-subjects 

variable, while “time” is a within-subjects variable. Since naïve animals and shams did not receive DHA 

or vehicle treatment, we did not include the naïve/sham groups in the two-way repeated-measures 

ANOVA analysis. However, we used one-way ANOVA for the naïve, sham, vehicle, DHA and 

pregabalin groups at each individual time (week), followed by the Tukey–Kramer post hoc multi-

comparison adjustment to calculate the significant levels. For thigmotaxis and PEAP, one-way ANOVA 

followed by the Tukey–Kramer post hoc multi-comparison adjustment were used to determine the main 
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effect and significance levels. The box/scatter plots for thigmotaxis/PEAP data were prepared using 

OriginPro 2018 (OriginLab, USA).  

 

Histological data were tested for normality first as we previously described [30; 31]. Parametric (two 

tailed unpaired student t-test) and nonparametric (Mann–Whitney test) tests were then used accordingly. 

For immunocytochemical, flow cytometry, and nitrite release analyses, unpaired student t-test was used. 

One-way ANOVA was used to determine the effect of DHA concentration on cultured microglia and 

astrocytes. For qPCR, statistical significance was calculated as we previously described, i.e. by t-tests in 

R (two-sided, Welch’s t test) on the Ct values, followed by adjusting the p values using the false 

discovery rate correction [43]. We considered differences to be statistically significant when p<0.05.   
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Results  

 

 

Information for group sizes and primary outcome measures of the in vivo experiments is detailed in 

Supplementary Table 1. Animal exclusion from the in vivo experiments is detailed underneath 

Supplementary Table 2.  

 

Systemic DHA treatment attenuates spinal reflex-based below-level mechanical hypersensitivity 

We measured the left and right hindpaw withdrawal thresholds in response to mechanical stimuli, which 

were then averaged for each rat. Our analysis showed significant main effects of treatment on hindpaw 

mechanical hypersensitivity in both studies (acute regimen: F(1,27)=75.735, p=0.0001, Fig. 1C; delayed 

regimen: F(1,26)=57.221, p=0.001, Fig. 1D; two-way repeated-measures ANOVA). We did not find 

significant main effects of time on hindpaw mechanical hypersensitivity in both studies (acute regimen: 

F(4,108)=1.941, p=0.109; delayed regimen: F(3,78)=1.157, p=0.332). However, there were significant 

treatment with time interactions in both studies (acute regimen: F(4,108)=5.323, p=0.001, delayed regimen: 

F(3,78)=10.513, p=0.0001). Significant increases in withdrawal thresholds were observed in DHA-treated 

rats when compared to vehicle-treated rats (acute regimen/weeks 2-6: p<0.0021; delayed regimen/weeks 

5-7: p<0.0062; Tukey-Kramer post hoc). However, the increased withdrawal thresholds of DHA-treated 

rats didn’t reach to those of naïves (Fig. 1C, 1D).  

 

Systemic DHA treatment attenuates brainstem response-based mechanical hypersensitivity 

Our analysis revealed significant main effects of treatment on brainstem response (licking, guarding, 

vocalizing, jumping or biting)-based at-level mechanical hypersensitivity in both studies (acute regimen: 

F(1,27)=52.031, p=0.00001, Fig. 1E; delayed regimen: F(1,26)=21.707, p=0.0001, Fig. 1F; two-way 

repeated-measures ANOVA). We also found significant main effects of time on brainstem response in 
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both studies (acute regimen: F(4,108)=2.405, p=0.045, delayed regimen: F(3,78)=11.782, p=0.001; two-way 

repeated-measures ANOVA). Moreover, there were significant treatment with time interactions in both 

studies (acute regimen: F(4,108)=6.385, p=0.0001, delayed regimen: F(3,78)=17.28, p=0.0001). The mean 

at-level 50% pain thresholds were significantly higher in DHA-treated rats than vehicle-control rats 

(acute regimen/weeks 2-6: p<0.022; delayed regimen/weeks 5-7: p<0.028; Tukey-Kramer post hoc), but 

lower than naïves (Fig. 1E, 1F). Pregabalin-controls showed comparable (no statistical difference) 

brainstem responses to at-level mechanical stimulation to DHA-treated rats (Table 2). The result showing 

no difference in brainstem responses to hindpaw mechanical stimulation (Fig. 1G, 1H) was consistent 

with our previous findings [2].  

 

It is important to note that we assessed brainstem response-based at-level mechanical hypersensitivity 

one day before burrowing, thigmotaxis, or PEAP testing throughout the two regimen studies. We 

observed at-level mechanical hypersensitivity in all SCI rats (versus naïves, Fig. 1) before they were 

assessed next day for one of the three complex behaviours. However, at-level mechanical 

hypersensitivity was attenuated in rats receiving systemic DHA treatments (versus vehicle-controls; 

weeks 2-6/Fig. 1E and weeks 5-7/Fig. 1F) in the two regimen studies one day before testing for the 

complex behaviours. 

 

Systemic DHA treatment prevents deficit in pain-related spontaneous burrowing behaviour 

Burrowing is an ethologically relevant pain-related behaviour, reproducible in different lab settings [1; 

30; 49; 56]. The behavioural construct is that pain would interfere with a rat’s motivation to burrow, 

which can be measured by the amount of gravel displaced from a tube. At baseline, no difference was 

measured in gravel displacement in the two regimen studies (Fig. 2A, 2B). We first demonstrated a 

significant main effect of treatment on burrowing performances by the acute regimen (weeks 2-6: 

F(1,27)=109.338, p=0.000001, two-way repeated-measures ANOVA, Fig. 2A). There was also a 
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significant main effect of time on burrowing performances by the acute regimen (F(4,108)=5.214, 

p=0.001). However, there was no significant treatment with time interaction (F(4,108)=0.957, p=0.434). 

Compared to naïves, vehicle-treated rats developed significant burrowing deficits from week 2 which 

were maintained up to week 6 post-surgery (Fig. 2A). In contrast, DHA-treated rats displaced 

significantly more gravel than vehicle-treated rats (e.g. week 4: 1696.2  5.8 g vs 840.6  7.8 g, 

p=0.00044, Tukey–Kramer post hoc, Fig. 2A). Strikingly, DHA-treated rats and naïves in the acute 

regimen study demonstrated comparable burrowing performances (p=0.18 to 0.99, Tukey–Kramer post 

hoc). Next, our analysis revealed a significant main effect of treatment on burrowing performances by 

the delayed regimen (weeks 4-7: F(1,26)=455.212, p=0.0001, two-way repeated-measures ANOVA, Fig. 

2B). However, there were no significant main effects of time on burrowing performance (F(3,78)=2.492, 

p=0.066), nor any significant treatment with time interaction (F(3,78)=0.467, p=0.706). Vehicle-control 

maintained significant burrowing deficits during this period when compared to naïves. Delayed DHA 

treatment significantly attenuated the reduced burrowing performances developed before treatment when 

compared to vehicle-control (e.g. week 6: 1366.8  5.4 g vs 891.3  6.1 g, p=0.032, Tukey–Kramer post 

hoc, Fig. 2B), but such attenuated performances were still lower than naïves (p=0.026 to 0.0042, Tukey–

Kramer post hoc). Pregabalin-controls produced comparable burrowing performances in both studies to 

DHA-treated rats (Table 2). These data establish that systemic DHA treatment prevents the development 

of affective/motivational aspects of SCI-CNP shown by burrowing behaviour.  

 

Systemic DHA treatment prevents pain-related spontaneous thigmotactic behaviour 

We next tested thigmotaxis – another ethologically relevant pain-related rodent behaviour [5; 30; 31; 42]. 

As prey animals, rats prefer to adhere to the perimeter of a novel arena, conflicting with their drive to 

explore arena centre [30]. The behavioural construct is that if a rat is in pain it would be in its survival 

interest to decrease its exposure to predators. We assessed thigmotaxis by analyzing spontaneous free 
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movements of rats in an open-field arena. Since this is a novel test that could be affected by repeated 

testing [11], rats were only tested once at week 6 and week 7 for the two studies respectively. In the acute 

regimen study, we found significant treatment effects on inner zone cumulative time and entry frequency 

(time: F(2,36)=39.8, p=0.0075, Fig. 3A, 3B, 3C, 3D; frequency: F(2,36)=11.8, p=0.0050, Supplementary 

Fig. 2a; one-way ANOVA). Vehicle-control rats had significantly reduced cumulative time and entry 

frequency at week 6 post-surgery versus naïves (time: p=0.00042, Fig. 3A, 3B, 3D; frequency: p=0.0002, 

Supplementary Fig. 2a; Tukey–Kramer post hoc). DHA treatment starting immediately post-surgery 

caused significant increases in cumulative time and entry frequency at week 6 when compared to vehicle-

treated rats (time: 37.2  7.2 s vs 11.2  3.4 s, p=0.0025, Fig. 3B, 3C, 3D; frequency: p=0.003,  

Supplementary Fig. 2a; Tukey–Kramer post hoc); cumulative time by DHA treatment was markedly 

similar to naïves (p=0.199, Fig. 3A, 3C, 3D, Tukey–Kramer post hoc). We also found significant 

treatment effects on thigmotactic behaviour by the delayed regimen (time: F(2,35)=25.21, p=0.014, Fig. 

3E, 3F, 3G, 3H; frequency: F(2,35)=7.1, p=0.0029, Supplementary Fig. 2b; one-way ANOVA). Rats 

receiving vehicle treatment had significantly reduced cumulative time and entry frequency at week 7 

post-surgery versus naïves (time: p=0.0090, Fig. 3E, 3F, 3H; frequency: p=0.0041, Supplementary Fig. 

2b; Tukey–Kramer post hoc). DHA treatment starting week 4 post-surgery significantly improved 

cumulative time and entry frequency at week 7 in contrast to vehicle-control (time: 33  5.3 s vs 16.2  

4.5 s, p=0.038, Fig. 3F, 3G, 3H; frequency: p=0.042, Supplementary Fig. 2b; Tukey–Kramer post hoc); 

however, the attenuated cumulative time following DHA treatment was less than naïves (p=0.013, 

Tukey–Kramer post hoc). There was no significant difference in the total distance travelled in the open 

field among different experimental groups in both studies (data not shown). Pregabalin-controls in both 

studies had comparable thigmotactic behaviour to DHA-treated rats (Table 2). These data suggest that 

systemic DHA treatment can prevent SCI-CNP at affective/decision-making levels shown by 

thigmotactic behaviour. 
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Systemic DHA treatment prevents pain-related PEAP behaviour 

We previously assessed cortical processing of SCI-CNP using PEAP [2; 3], where rats naturally prefer 

to hide in the dark (non-aversive) and avoid exposure to bright conditions (aversive). The behavioural 

construct is that if a rat feels pain (e.g. due to painful stimulation received at the injured area) in a dark 

arena, it would rather choose to enter a bright arena to avoid that stimulation. As a novel test [2; 3], PEAP 

behaviour was only assessed at week 6 and week 7 for the two studies respectively, by analysing free 

movements of rats between the white/black zones of PEAP. We found significant treatment effects on 

white zone cumulative time and crossing number by the acute regimen (time: F(2,36)=30.61, p=0.0026, 

Fig. 4A, 4B, 4C, 4D; number: F(2,36)=5.78, p=0.0083, Supplementary Fig. 3a; one-way ANOVA). 

Compared to naïves, cumulative time and crossing number at week 6 post-surgery were significantly 

increased in vehicle-treated rats (time: p=0.0017, Fig. 4A, 4B, 4D; number: p=0.0010, Supplementary 

Fig. 3a; Tukey–Kramer post hoc). Strikingly, rats receiving DHA treatment starting immediately post-

surgery significantly reduced their cumulative time (47%) and crossing number (35%) when compared 

to vehicle-control (time: p=0.0028, Fig. 4B, 4C, 4D; number: p=0.0059, Supplementary Fig. 3a; Tukey–

Kramer post hoc); their cumulative time was markedly similar to naïves (p=0.93, Tukey–Kramer post 

hoc, Fig. 4A, 4C, 4D). We also found significant treatment effect on PEAP behaviour by the delayed 

regimen (time: F(2,35)=37.65, p=0.0027, Fig. 4E, 4F, 4G, 4H; number: F(2,35)=8.04, p=0.0013, 

Supplementary Fig. 3b; one-way ANOVA). As expected, we observed significantly affected PEAP 

behaviour in vehicle-control versus naïves at week 7 post-surgery (time: p=0.00019, Fig. 4E, 4F, 4H; 

number: p=0.0010, Supplementary Fig. 3b; Tukey–Kramer post hoc). Rats receiving delayed DHA 

treatment significantly improved cumulative time (26%) and crossing number (23%) compared to 

vehicle-control (time: p=0.0011, Fig. 4F, 4G, 4H; number: p=0.0080, Supplementary Fig. 3b; Tukey–

Kramer post hoc), but their cumulative time was more than naïves (p=0.030, Tukey–Kramer post hoc). 

Pregabalin-controls in both studies showed comparable PEAP behaviour to DHA-treated rats (Table 2). 
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These data indicate that systemic DHA treatment can prevent SCI-CNP at cognitive level shown by 

PEAP behavior. 

 

DHA significantly reduces microglial activation in vivo 

With immunohistochemistry, we revealed the effect of systemic DHA treatment on activated microglial 

morphology in L5 dorsal horns versus vehicle-control in the acute regimen study (p=0.0003, Fig. 5A(i), 

A(ii), A(iii), Mann–Whitney test). We next measured the expression of pp-38, a hallmark for SCI-CNP. 

Compared to vehicle-control, pp-38+/Iba-1+ microglial numbers in the dorsal horns were significantly 

reduced by DHA treatment in the acute regimen study [L5 (p=0.00019, Fig. 5B(i), B(ii), B(iii)); lesion site 

(p=0.00041, Supplementary Fig. 9a-c); Mann–Whitney test]. Microgliosis, a key process in neuropathic 

pain pathogenesis, was significantly inhibited by DHA treatment versus vehicle as shown in the numbers 

of ED9+/CD11b/c+ microglia per mg cord tissue by flow cytometry [5] in the acute regimen study [L5 

(p=0.048, Fig. 5C(i), C(ii), C(iii)); lesion site (p=0.038, Supplementary Fig. 9d-f); student t-test]. In the 

lesion site dorsal horns, we also found significant effect of the acute DHA regimen on activated 

microglial morphology (p=0.00041, Fig. 5D(i), D(ii), D(iii), Mann–Whitney test). We also saw a 

significant reduction in Iba1-immunoreactive microglial numbers in the ACC by the acute DHA regimen 

compared to vehicle-control (p=0.0006, Fig. 5E(i), E(ii), E(iii), Mann–Whitney test). In the delayed DHA 

regimen study, we found that in the dorsal horns activated microglial morphology [L5 (p=0.0005, Fig. 

5F(i), F(ii), F(iii)); Mann–Whitney test] and pp-38+/Iba-1+ microglial numbers [L5 (p=0.00065, Fig. 

5G(i), G(ii), G(iii)); lesion site (p=0.00048, Supplementary Fig. 9a-c); Mann–Whitney test] were 

significantly reduced by DHA treatment compared to vehicle-control. We also found significantly 

reduced numbers of ED9+/CD11b/c+ microglia per mg cord tissue [L5 (p=0.037, Fig. 5H(i), H(ii), H(iii)); 

lesion site (p=0.048, Supplementary Fig. 9d-f); student t-test], activated microglial morphology in the 

lesion site dorsal horns (p=0.00032, Fig. 5I(i), I(ii), I(iii); Mann–Whitney test), and Iba1-immunoreactive 

microglial numbers in the ACC (p=0.009, Fig. 5J(i), J(ii), J(iii); Mann–Whitney test) by the delayed DHA 
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regimen compared to vehicle-control. We noted that the proportion of pp-38+/Iba-1+ microglia in rats 

receiving DHA treatment in the acute regimen study was much lower than that seen in the delayed 

regimen study: 5% (Fig. 5Biii) vs 20% (Fig. 5Giii). These data establish that systemic DHA treatment 

reduces spinal and supra-spinal microglial activation. 

 

DHA significantly spares white matter in vivo 

To assess the severity of the contusion SCI used in our studies and also to investigate the possible effects 

of systemic DHA treatments on tissue sparing that might underlie changes observed in pain-related 

behaviours, transverse cryostat sections from the lesion site segments were stained for myelin and white 

matter sparing was quantified at rostral, epicenter and caudal locations of the segments (Fig. 6A-6R). In 

the acute regimen study, large percentages of white matter were lost at the rostral, epicenter, and caudal 

sections of vehicle-treated animals when compared to naïve (Fig. 6A-6I). However, no difference in 

white matter sparing at three locations was observed between vehicle- and DHA-treated animals in the 

delayed regimen study (Fig. 6J-6O). Strikingly, systemic DHA treatments starting immediately following 

surgery significantly increased the percentages of white matter at three locations when compared to 

vehicle control (p=0.0000015 to 0.0000048; Fig. 6Q; Mann–Whitney test) at week 6 post-SCI.  

 

DHA significantly reduces proinflammatory mediators in vivo 

To further verify the effects of DHA treatment on proinflammatory and algogenic mediators iNOS, TNF-

α, IL-1, and IL-6 in the spinal cord dorsal horns at lesion site and L5 levels, we carried out qPCR 

analysis of relative mRNA expression of these mediators. We found that at week 6 post-SCI, the acute 

DHA treatment regimen significantly reduced mRNA expression levels of iNOS, TNF-α, IL-1, and IL-

6 at both lesion site and L5 dorsal horns compared to vehicle control (p=0.0002-0.032; t-tests in R, Fig. 

7A-7H). Moreover, we also found that delayed DHA treatment regimen starting week 4 post-SCI 
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significantly reduced mRNA expression levels of these mediators at both dorsal horn levels at week 7 

when compared to vehicle control (p=0.004-0.048, t-tests in R, Fig. 7I-7P).  

 

DHA significantly reduces microglial activation in vitro 

We also investigated the effects of DHA on modulating microglial activation in vitro. In experiments 

where cells were co-treated with activation agent Lipopolysaccharides (LPS) and DHA (0.8, 4, 8 or 32 

M) for 4 hours, we found 0.8 M as the optimal concentration to reduce iNOS-immunoreactivity 

(F(5,50)=76.15, p=0.00024, one-way ANOVA, Supplementary Fig. 4a) (Fig. 8A(i), A(ii), A(iii), B(i), B(ii), 

B(iii)). With qPCR, we found that DHA significantly reduced microglial mRNA expression of algogenic 

mediators iNOS, TNF-α, IL-1, and IL-6 compared to control (p=0.0091, 0.0006, 0.024, and 0.026; t-

tests in R, Fig. 8C(i), C(ii), C(iii), C(iv)). Using the more sensitive flow cytometry, we confirmed the ability 

of DHA to reduce microglial activation, i.e. number of CD86+/CD11b/c+ microglia (p=0.028, student t-

test; Fig. 8 D(i), D(ii), D(iii), D(iv)) versus control (LPS only). We also found significantly reduced 

numbers of iNOS+/Iba1+ microglia (Fig. 8E) and nitrite release by microglia (Fig. 8F) when cells were 

co-treated with LPS and DHA. Further experiments where cells were pre-activated by LPS for 4 hours 

and followed by DHA (0.8 M) treatment for another 4 hours showed similar effects on iNOS expression 

(Fig. 8G(i), G(ii), G(iii), H(i), H(ii), H(iii)), mRNA expression of iNOS, TNF-α, IL-1, and IL-6 (Fig. 8I(i), 

I(ii), I(iii), I(iv)), and CD86+/CD11b/c+ number (Fig. 8 J(i), J(ii), J(iii), J(iv)), further validating the ability 

of DHA to modulate microglial activation. 

 

In vitro evidence of potential mechanisms of DHA on microglial activation   

Microglia express PPAR and RXR receptors, which are known to involve in inflammation and can be 

bound by DHA [12-14]. Therefore, we used antagonists to pre-block PPAR or RXR or both for 4 hours 

in cultured microglia, which were then co-treated with LPS and DHA (0.8 M) for 4 hours. With qPCR, 
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we found that pre-antagonism of each receptor alone caused significantly higher mRNA expression of 

iNOS, TNF-α, and IL-1 in microglia compared to without pre- antagonism (PPAR: p=0.003-0.0006; 

RXR: p=0.00058-0.02; t-tests in R; Fig. 9A, 9B, 9C). When both receptors were pre-antagonised, we 

saw significantly higher microglial mRNA expression of iNOS, TNF-α, and IL-6 (p= 0.0012-0.0020; t-

tests in R; Fig. 9A, 9B, 9D). These data suggest that DHA could act via these receptors to manifest its 

effects on reducing microglial activation. We finally investigated DHEA, a known DHA metabolite [19] 

that can bind to PPAR and cannabinoid receptors on microglia [4; 6; 19; 41], by co-treating cultured 

microglia with LPS and DHEA for 4 hours. We saw a significant decrease in microglial mRNA 

expression of iNOS, TNF-α, IL-1, and IL-6 by DHEA (5 M) when compared to control (p=0.0001-

0.026; t-tests in R; Fig. 9E, 9F, 9G, 9H), suggesting that DHEA could partially mediate the effects of 

DHA on microglial activation. 
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Discussion  

 

 

SCI-CNP is a debilitating complication without effective treatments [21; 52]. Novel strategies to 

effectively and safely manage SCI-CNP are needed urgently. Here we reported that systemic 

administrations of the natural compound DHA, starting immediately post-injury and then maintained for 

6 weeks, successfully prevented the development of pain-related spontaneous/affective and cognitive 

behaviours coupled with significantly attenuated at-level mechanical hypersensitivity in a clinically 

relevant rat model of SCI-CNP. Similar DHA treatment, given at a chronic SCI stage when CNP had 

already been established, partially abolish pain-related spontaneous/affective and cognitive behaviours. 

Because our data were obtained using a novel sensory profiling approach combining evoked pain 

measures and non-evoked pain-related spontaneous and/or natural rodent behaviours to mimic the 

clinical practice, they have significant implications for clinical translation.  

 

DHA reduces neuroinflammation that underpins SCI-CNP pathogenesis 

Neuroinflammation plays a crucial role in SCI-CNP [25; 33]. Microglia become chronically activated in 

the lesion site and L5 dorsal horns as well as supraspinal areas [26; 28],  subsequently activating ERK1/2, 

p-38 MAPK and CAMII pathways [25; 33] that are known to be important for SCI-CNP development. 

The activation of p-38 MAPK, a hallmark for SCI-CNP [10; 17], causes the release of proinflammatory 

mediators, including iNOS, TNF-, IL-1, IL-6, PGE2, and cysteine chemokine ligand 21, producing 

neuronal hyperexcitability [17; 25; 44; 60-62]. Moreover, astrocytes are also documented for their 

contribution to SCI-CNP [25; 33]. Here, we showed that DHA in both regimen studies significantly 

decreased activated microglial/astrocyte morphologies, microgliosis, and GFAP immunoreactivity in 

lesion site/L5 dorsal horns. DHA significantly reduced microglial pp-38 MAPK expression in lesion site/ 

L5 dorsal horns, with the acute regimen having 4-fold more reduction than the delayed regimen. We also 
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observed significantly reduced microglial/astrocyte numbers in the ACC of DHA-treated animals from 

both studies. Furthermore, mRNA levels of proinflammatory mediators in lesion site/L5 dorsal horns 

were significantly reduced by DHA treatments. DHA also reduced mRNA levels of proinflammatory 

mediators in LPS-activated microglia in vitro. Thus, the effects on CNP prevention in the acute regimen 

study and on ameliorating CNP partially in the delayed regimen study are likely due to significantly 

attenuated microglial/astrocyte activation at both spinal and supra-spinal levels.  

 

DHA’s effects on dorsal horn neuronal hyperexcitability 

Electrophysiological studies show that SCI results in neuronal hyperexcitability in the dorsal horns at 

and below the injury level, which mediates enhanced nociceptive processing in pathological pain states 

[10; 27; 28]. Particularly, pp-38 MAPK plays a pivotal role underlying dorsal horn neuronal 

hyperexcitability as discussed above. Thus, increased microglial pp-38 MARK levels corelate with dorsal 

horn neuronal hyperresponsiveness and CNP following contusion SCI in adult rats [10; 28]. Moreover, 

minocycline and pp-38 inhibitor SB203580 significantly reduce dorsal horn microglial pp-38 MAPK, 

which results in  attenuated dorsal horn neuronal hyperexcitability. The downstream pathways activated 

by microglial pp-38 MAPK lead to the release of numerous proinflammatory mediators that can bind to 

and activate dorsal horn neuronal membrane receptors and/or ion channels, triggering neuronal pp-38 

MAPK-CREB-ERK pathway that causes persistent neuronal hyperexcitability [25]. Among those 

mediators, TNF-, IL-1 and IL-6 produced by microglia after SCI are known to produce hyperactivity 

of dorsal horn neurons and contribute to CNP development and maintenance [17; 40]. Our results 

demonstrated that DHA significantly reduced microglial pp-38 MAPK immunoreactivity in lesion 

site/L5 dorsal horns, which is mirrored by a significant reduction of mRNA levels of iNOS, TNF-, IL-

1 and IL-6 in lesion site/L5 dorsal horns. These data strongly suggest that DHA might have stopped the 

positive feedforward cycle between microglia and dorsal horn neurons that maintains persistent neuronal 
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hyperexcitability, leading to the prevention of CNP seen in the acute study and partial reversal of CNP 

seen in the delayed study. Here, we did not assess neuronal/astrocyte pp-38 MAPK expressions, which 

also contribute to dorsal horn neuronal hyperexcitability after SCI [10; 25]. Because DHA could interact 

with receptors and ion channels on dorsal horn neurons and astrocytes as discussed below, we suggest 

that DHA treatments may have also reduced neuronal/astrocyte pp-38 MAPK levels in lesion site/L5 

dorsal horns. 

 

Mechanisms of DHA’s action in reducing neuroinflammation 

Recent evidence shows that dietary DHA supplementation for 60 days leads to increased DHA levels in 

retina, cortex, hypothalamus and hippocampus in adult rats [16]. Other evidence shows the incorporation 

of intravenously injected radiolabeled DHA into the rat brain [45]. Therefore, we are confident that DHA 

in our studies would have reached the spinal cord of SCI rats. DHA’s effects on attenuating 

microglial/astrocyte activation are likely mediated by DHA binding to and activating PPAR and RXR 

receptors as their natural ligand [12-14], since these receptors are expressed by microglia [38; 51] and 

astrocytes [18; 51]. This is supported by our evidence demonstrating that pre-inhibiting these receptors 

reduced DHA’s ability to decrease mRNA levels of pain-producing proinflammatory mediators in 

cultured microglia co-exposed to LPS. It is possible that DHA’s effects on microglial activation could 

be via its metabolite DHEA [19], an endocannabinoid, which can bind to PPAR and cannabinoid 

receptors [4; 6; 19; 41] on microglia. This notion is supported by our data showing that DHEA 

significantly reduced mRNA levels of proinflammatory mediators in cultured microglia co-exposed to 

LPS. Future studies are needed to measure DHA/DHEA levels in the spinal cord and explore the full role 

of DHEA on microglial activation which is beyond the scope of current studies.   

 

DHA’s unique potential to target multiple mechanisms underlying SCI-CNP 
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We suggest that DHA’s effects on SCI-CNP could be attributed to its neuroprotection of neurons and 

oligodendrocytes [32], which was supported by improved locomotor function in both regimen studies 

and increased white matter sparing in the acute regimen study. Thus, DHA may interact with glutamate 

receptors [32] and voltage-gated sodium/calcium channels [55] on dorsal horn neurons, which are known 

to play roles in neuronal hyperexcitability. This makes DHA a promising treatment for SCI-CNP, as it 

can target multiple mechanisms underlying SCI-CNP.  

 

A novel sensory profiling approach mimics clinical practice 

Our work is timely in addressing a recent call for the use of sensory profiling in animal models [46]. The 

preclinical literature on SCI-CNP mainly relies on spinal reflex-based withdrawal paradigms, which 

hardly reflect the affective, cognitive and spontaneous aspects of pain and have minimal clinical validity. 

Our previous and current work showed that below-level SCI-CNP in rats, measured by mechanically 

evoked hindpaw withdrawal thresholds, did not involve brainstem responses, which is likely due to the 

presence of spastic syndrome [3]. Here we combined at-level mechanical hypersensitivity basing on 

brainstem responses with pain-related spontaneous and/or natural rodent behaviours addressing the 

motivational, affective and cognitive components of pain. These pain-related behaviours included 

burrowing, thigmotaxis, and PEAP, which are ethologically relevant and reproducible in different 

laboratory settings. Most importantly, they mimic those used for measuring the impact of pain and 

spontaneous component of pain in clinical settings. Such an approach would significantly add 

translational benefit for new drug development for SCI-CNP.  

 

Consistent with our previous reports [2; 3], we observed that all rats with the injury severity adopted here 

developed brainstem response-based at-level mechanical hypersensitivity. Therefore, our SCI-CNP 

model does not reflect SCI-CNP prevalence seen in human patients. It is known that different injury 

severities and injury devices used can influence SCI-CNP prevalence in animals [33]. Similar situations 
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also exist in common preclinical models of peripheral nerve trauma-induced neuropathic pain and drug-

induced peripheral neuropathies, all of which are instrumental in understanding the pathophysiological 

mechanisms and developing novel analgesics for neuropathic pain. 

 

DHA’s translational potential for SCI-CNP management 

We suggest that the two DHA regimens could be readily translated to the clinic, because DHA’s clinical 

safety and tolerability is well documented. DHA-containing fish oil capsules are available for public 

consumption. Other DHA-containing preparations are already used in clinical settings involving surgical 

and critically ill patients [8]. A recent 14-month trial with consumption of DHA-containing capsules in 

chronic SCI patients did not find neuroprotective effects, but proved DHA’s long-term patient safety 

[34]. In our studies, burrowing behaviour, which is conserved in rodents and reflects their general well-

being, was significantly improved in DHA-treated rats, further demonstrating the safety and translational 

potential of DHA for SCI-CNP management in the clinic. We suggest that future studies should 

investigate the pharmacokinetics of DHA, the optimal dose, best administration route (e.g. i.v. vs dietary 

supplementation) and formulation (e.g. free fatty acid format used here vs lipid emulsions) for systemic 

DHA treatment for SCI-CNP and to establish if the effects on SCI-CNP by the two DHA regimens would 

continue if treatments stop, which are beyond the current scope. Further discussion on DHA’s preclinical 

translation addressing pharmacokinetics and relevance of concentrations to target pharmacology can be 

found in Supplementary Discussion Section.  

 

In summary, our studies using clinically relevant animal modelling, revealed huge potential of systemic 

DHA treatments for not only preventing SCI-CNP but remarkably also for treating already established 

SCI-CNP. Considering the unmet clinical need for SCI-CNP, our strategies involving systemic DHA 

treatments represent one of the most promising approaches available for SCI-CNP management. These 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

 

 

30 

strategies also could benefit millions of patients who suffer from CNP following other CNS injuries and 

diseases including brain trauma, stroke, and multiple sclerosis.  
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Figure legends 

 

Fig. 1: Effects of systemic DHA treatments on below- and at-level mechanical hypersensitivity. (A, 

B): Study designs of acute and delayed DHA treatment regimens in vivo. DHA administered every 3 

days, starting either 30 minutes (C) or week 4 (D) post-SCI, significantly increased hindpaw withdrawal 

thresholds to punctate mechanical stimuli, comparing to those of vehicle-treated rats (C: weeks 2-6, 

p<0.01 and D: weeks 5-7, p<0.001). Both the acute and the delayed regimens significantly increased 

brainstem response thresholds to at-level mechanical stimulations, comparing to those of vehicle-treated 

rats (E: weeks 2-6, p<0.05; F: weeks 5-7, p<0.05). No differences in brainstem responses to hindpaw 

mechanical stimulations were found in both regimen studies (G, H). N=10-15 per group. Two-way 

repeated-measures ANOVA was used to determine the main effects of treatment (DHA vs vehicle) and 

time (weekly). Statistical significance of the differences between the groups was determined by one-way 

ANOVA followed by Tukey–Kramer post hoc test at each week point.  *p<0.05, **p<0.01, or 

***p<0.001 vs vehicle. 

 

Fig. 2: Effects of systemic DHA treatments on burrowing behaviour. In the acute regimen study, 

DHA-treated rats had significantly increased burrowing performances in contrast to vehicle-treated rats 

(A: weeks 2-6, p<0.01). Moreover, there were no significant differences in burrowing performances 

between DHA-treated and naïve rats (A: weeks 2-6, p>0.05). In the delayed regimen study, burrowing 

performances of SCI rats receiving DHA treatment were significantly attenuated in comparison to those 

observed in vehicle-treated rats (B: weeks 5-7, p<0.05), but still significantly lower than those of the 

naïve rats (B: weeks 4-7, p<0.05). N=10-15 per group. Two-way repeated-measures ANOVA was used 

to determine the main effects of treatment (DHA vs vehicle) and time (weekly). Statistical significance 

of the differences between the groups was determined by one-way ANOVA followed by Tukey–Kramer 

post hoc test at each week point. *p<0.05, **p<0.01, or ***p<0.001 vs vehicle. 
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Fig. 3: Effects of systemic DHA treatments on thigmotactic behaviour. (A-C, E-G): representative 

spontaneous movement tracks recorded for the naïve, vehicle-treated, and DHA-treated rats at weeks 6 

and 7 post-surgery for the acute and delayed regimen studies. (D): analysis showed that the acute 

regimen significantly increased inner zone time, comparing to that of vehicle treatment (**p<0.01, 

Tukey–Kramer post hoc). There was no significant difference in inner zone time between DHA-treated 

and naïve rats (p>0.05). (H): analysis showed that the delayed regimen also significantly increased 

inner zone time, in contrast to vehicle treatment (*p<0.05); but the time was still significantly less than 

that of the naïve rats (*p<0.05). N=10-15 per group. One-way ANOVA followed by Tukey–Kramer 

post hoc test were used. White dotted square boxes=open field arenas. Yellow and white lines=the 

widths of the open field arena and virtual inner zone. 

 

Fig. 4: Effect of systemic DHA treatments on PEAP behaviour. (A-C, E-G): Representative free 

movement tracks recorded for naïve, vehicle-treated, and DHA-treated rats at weeks 6 and 7 post-surgery 

for the two regimen studies. (D): analysis showed that the acute regimen led to a significant reduction 

in white zone cumulative time comparing to vehicle treatment (**p<0.01). Markedly, there was no 

difference in white zone cumulative time between DHA-treated and naïve rats (p>0.05). (H): analysis 

showed that the delayed regimen also significantly decreased white zone cumulative time contrasting to 

vehicle treatment (**p<0.01); but the time was still significantly more than that of the naïve rats 

(*p<0.05). N=10-15 per treatment group. One-way ANOVA followed by Tukey–Kramer post hoc test 

were used for statistical analysis. 

 

Fig. 5: Effects of systemic DHA treatments on microglial activation in vivo. Both regimen studies 

showed significantly reduced activated microglial morphology per 50,000 m2 by DHA treatments in 

L5 (A(i-iii) and F(i-iii)) and lesion site (D(i-iii) and I(i-iii)) dorsal horns (DH), comparing to vehicle treatments. 

Both DHA regimens led to significant reductions of microglial pp38 immunoreactivity in L5 dorsal 
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horns, comparing to vehicle treatments (B(i-iii) and G(i-iii); white arrows=Iba-1/pp38 double-

immunoreactive microglia). Flow cytometry further showed that both DHA regimens (C(i-iii) and H(i-iii)) 

significantly reduced microgliosis, i.e. the numbers of proinflammatory CD11b/c+/ED9+ microglia in 

L5 spinal cords, comparing to vehicle treatments; C(i-ii) and H(i-ii)=examples of flow cytometry data from 

vehicle- and DHA-treated rats. Finally, both DHA regimens (E(i-iii) and J(i-iii)) led to marked reductions 

in Iba-1 immunoreactive microglia in the ACC, in contrast to vehicle treatments. N=5-6 per group. 

Mann–Whitney test and unpaired student’s t test were used where appropriate. (K) is a schematic 

drawing of the lesion site segment from where lesion site DHs were analyzed for microglial Iba-1 

staining. *p<0.05, **p<0.01, ***p<0.001 vs vehicle. 

 

Fig. 6: Effects of systemic DHA treatments on tissue sparing. Representative euriochrome cyanine-

stained transverse sections are shown for naïve rats (A-C), SCI rats with Vehicle (D-F) or DHA (G-I)  

treatments in the acute regimen study, and SCI rats with Vehicle (J-L) and DHA (M-O) treatments in 

the delayed regimen study. (P) is a schematic drawing of the lesion site segment, from where rostral, 

epicenter, and caudal transverse sections were chosen for the staining. The lesion site epicenter showed 

large cavity formation accompanied by the loss of gray and white matter in vehicle-treated animals and 

SCI rats received delayed DHA treatment. (Q-R) Quantification of the cross-sectional area (CSA) 

indicates significant losses of white matter in vehicle control groups at three locations analyzed in both 

studies. In contrast, SCI rats received the acute DHA treatment regimen had significantly more spared 

myelin (****p<0.0001 vs vehicle-treated animals; Q). N=4-5 per group. Mann–Whitney test was used for 

statistical analysis. Scale bar=1mm. 

 

Fig. 7: Effects of systemic DHA treatments on the production of proinflammatory mediators in 

the dorsal horns of lesion site and L5 spinal cords. qPCR analysis showed that iNOS, TNF-α, IL-1β 

and IL-6 mRNA expression levels were significantly reduced at week 6 following the acute DHA 
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treatment regimen (A-H) and at week 7 following the delayed DHA treatment regimen (I-P), when 

compared to the vehicle groups. The relative mRNA expression levels of these proinflammatory 

mediators were similar between DHA-treated and naïve animals. N=4-5 per group. Statistical analysis 

was performed by t-tests in R. *p<0.05, **p<0.01, ***p<0.001 vs vehicle-treated animals. 

 

Fig. 8: DHA modulates microglial activation in vitro. Microglia, simultaneously treated (ST) with 

DHA and LPS, preserved resting bipolar morphology (A(iii)) seen with the controls (A(i)), contrasting to 

activated morphology seen with LPS only (A(ii)). DHA in ST experiments reduced iNOS expression, 

mRNA expression levels of iNOS, IL-6, TNF- and IL-1, and nitrite releases by microglia, comparing 

to LPS only (B(ii-iii), C(i-iv), E-F). Microglia with delayed DHA treatment (DT) after 4 hours of LPS pre-

exposure (G(iii)) reversed activated morphology seen with LPS only (G(ii)). DHA in DT experiments also 

reduced iNOS expression, mRNA expression levels of iNOS, IL-6, TNF- and IL-1, and nitrite 

releases by microglia, comparing to LPS only (H(ii-iii), I(i-iv), K-L). Flow cytometry further verified that 

the numbers of proinflammatory CD11b/c+/CD86+ microglia were significantly reduced by DHA in ST 

and DT experiments, comparing to LPS only (D(i-iv), J(i-iv)). N=3 biological replicates/n=9 technical 

replicates per group. Unpaired student’s t-test and t-tests in R were used where appropriate. *p<0.05, 

**p<0.01, ***p<0.001 vs LPS-treated microglia. 

 

Fig. 9: DHA’s mechanisms on modulating microglial activation in vitro. Pre-treating cultured 

microglia with PPAR/RXR receptor antagonists, alone or both, reduced DHA’s effects on decreasing 

mRNA expression levels of TNF- (A), iNOS (B), IL-1 (C) and IL-6 (D), in contrast to without 

PPAR/RXR receptor pre-blockage. Treating cultured LPS-exposed microglia with DHEA significantly 

reduced mRNA expression levels of TNF- (E), iNOS (F), IL-1 (G) and IL-6 (H), comparing to LPS 
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only. N=5 biological replicates per group. Statistical analysis was performed by t-tests in R. *p<0.05, 

**p<0.01, ***p<0.001 vs DHA-treated (A-D) and vs LPS-treated (E-H).   
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Summary 

Systemic treatments with docosahexaenoic acid prevent central pain development following 

spinal injury and partially abolish already established central pain at a chronic stage of injury. 

Summary
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Table 1. Forward and reverse primers and their concentrations. 

 

 

Primer Forward Primer 5’ – 3’ Reverse Primer 3’ – 5’ Working 

concentration 

TNF- AGCCCACGTCGTAGCAAACCAC AGGTACAACCCATCGGCTGGCA 0.5 µM 

iNOS CACCTTGGAGTTCACCCAGT ACCACTCGTATTGGGATGC 0.5 µM 

IL-6 TCCTACCCCAACTTCCAATGCTC TGGATGGTCTTGGTCCTTAGCC 0.4 µM 

IL-1 CACCTCTCAAGCAGAGCACAG GGGTTCCATGGTGAAGTCAAC 0.4 µM 

YWHAZ GCTACTTGGCTGAGGTTGCT TGCTGTGACTGGTCCACAAT 0.5 µM 

Table 1
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Table 2. Behavioural outcome measures comparing Pregabalin-treated animals with other experimental groups.  

Table 2 - Part A. At-level mechanical hypersensitivity, below-level mechanical hypersensitivity, and burrowing outcome measures. 

Behavioural outcome 

measures  

Treatment 

Regimen 

Behavioural assessment time points 

Week 3 post-surgery (mean  SE) Week 6 post-surgery (mean  SE) 

Naive DHA Vehicle Pregabalin Naive DHA Vehicle Pregabalin 

At-level mechanical 

hypersensitivity 

Acute  7.8 ± 0.2
#
 2.5 ± 0.2 1.3 ± 0.1* 3.2 ± 0.1 7.5 ± 0.5

#
 3.9 ± 0.6 1.1 ± 0.1* 5.1 ± 0.5 

Delayed  n/a 7.9 ± 0.1
#
 2.2 ± 0.3 1.0 ± 0.2* 4.2 ± 0.4 

Below-level 

mechanical 

hypersensitivity 

Acute  63.5 ± 1.3
#
 55.5 ± 2.1 48.2 ± 1.8* 58.0 ± 2.1 66.8 ± 1.5

#
 57.2 ± 1.3 41.1 ± 1.6* 56.6 ± 2.5 

Delayed  n/a 68.9 ± 1.9
#
 47.9 ± 1.6 33.4 ± 1.4 53.0 ± 3.0 

 

Burrowing  

behaviour 

 

Acute  
1980.7 ± 

199.5
†
 

1524.7 ± 

71.2 

797.9 ± 

135.4* 

1379.5 ± 

138.8 

2173.0 ± 

128.2 

1816.8 ±  

85.5 

876.3 ±  

78.4* 

1548.2 ±  

61.3 

Delayed  n/a 
1888.2 ±  

43.1
‡
 

1371.3 ±  

93.3 

897.4 ±  

114.9* 

1600.5 ±  

66.8 

Units are 50% response threshold (g), paw withdrawal threshold (g) and gravel displaced (g) for at-level mechanical hypersensitivity, below-level mechanical 

hypersensitivity, and burrowing behaviour respectively. One-way ANOVA followed by Tukey-Kramer post-hoc multi-comparison adjustment was used for 

statistical analysis. *p<0.05 vs naïve, DHA and Pregabalin. #p<0.05 vs DHA, vehicle and Pregabalin. †p<0.05 vs Pregabalin. ‡p<0.05 vs DHA and Pregabalin. 

Sham data are not included, as they are similar to Naïve. 

 

Table 2 - Part B. Thigmotaxis and PEAP outcome measures. 

Behavioural outcome measures  
Treatment 

Regimen 

Behavioural assessment time points 

Week 6 (acute) or week 7 (delayed) post-surgery (mean  SE) 

Table 2
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Naive DHA Vehicle Pregabalin 

Thigmotaxis 

time in inner zone  

Acute  42.8 ± 2.8
†
 36.4 ± 3.5 10.2 ± 1.8* 22.8 ± 3.8 

Delayed  38.3 ± 2.8
‡
 26.6 ± 1.7 15.4 ± 2.2* 26.0 ± 2.5 

frequency into inner zone  
Acute  19.7 ± 1.1 19.5 ± 2.9 7.6 ± 2.1* 22.0 ± 3.3 

Delayed  19.8 ± 1.1 19.7 ± 2.1 11.7 ± 3.9* 20.8 ± 2.7 

PEAP 

time in white zone  

Acute 529.6 ± 79.9 537.4 ± 46.2 1048.0 ± 47.4* 608.0 ± 59.9 

Delayed 542.0 ± 64.2
#
 762.6 ± 31.2 1102.3 ± 41.6* 590.9 ± 60.7 

frequency into white zone  

Acute  87.9 ± 12.0 89.7 ± 11.1 138.7 ± 20.3* 89.8 ± 5.3 

Delayed  88.4 ± 12.1
#
 113.5 ± 6.5 146.9 ± 12.0* 86.0 ± 5.3 

Units are seconds for Thigmotaxis-time in inner zone and PEAP-time in white zone., and entry numbers for Thigmotaxis-frequency into inner zone and PEAP-

frequency into white zone. One-way ANOVA followed by Tukey-Kramer post-hoc multi-comparison adjustment was used for statistical analysis. *p<0.05 vs 

naïve, DHA and Pregabalin. †p<0.05 vs Pregabalin. ‡p<0.05 vs DHA and Pregabalin. #p<0.05 vs DHA. Sham data are not included, as they are similar to Naïve. 
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1. Materials and methods: 

1.1 In vivo study designs 

Supplementary Table 1: Details of groups, animal numbers in treatment groups and primary outcomes for behavioural experiments 

Experiment 

Description  
Study type Groups 

Group size Timeline of 

behavioural 

assessment 

Primary behavioural outcomes 
Initial  

After 

exclusion 

BBB 

Acute DHA 

regimen 

Naïve/ Sham/ DHA/ Vehicle/ 

Pregabalin 
10/10/15/15/12 10/9/15/14/12 

D1, D3, D5, D7, W2, 

W3, W4, W5, W6 
Locomotor functional recovery  

Delayed DHA 

regimen  

Naïve/ Sham/ DHA/ Vehicle/ 

Pregabalin 
10/10/15/15/12 10/10/14/14/12 

D1, D3, D5, D7, W2, 

W3, W4, W5, W6, W7 

At-level mechanical 

hypersensitivity  

Acute DHA 

regimen 

Naïve/ Sham/ DHA/ Vehicle/ 

Pregabalin 
10/10/15/15/12 10/9/15/14/12 W2, W3, W4, W5, W6 

Brainstem response (licking 

guarding, biting, vocalizing, 

jumping) in response to static 

mechanical stimulus applied at the 

level of the injury 

Delayed DHA 

regimen  

Naïve/ Sham/ DHA/ Vehicle/ 

Pregabalin 
10/10/15/15/12 10/10/14/14/12 

W2, W3, W4, W5, 

W6, W7 

Below-level 

mechanical 

hypersensitivity 

(spinal reflex) 

Acute DHA 

regimen 

Naïve/ Sham/ DHA/ Vehicle/ 

Pregabalin 
10/10/15/15/12 10/9/15/14/12 W2, W3, W4, W5, W6  

Hind-paw withdrawal threshold in 

response to static mechanical 

stimulus applied on the later plantar 

surface of the foot 
Delayed DHA 

regimen  

Naïve/ Sham/ DHA/ Vehicle/ 

Pregabalin 
10/10/15/15/12 10/10/14/14/12 

W2, W3, W4, W5, 

W6, W7 

Below-level 

mechanical 

hypersensitivity 

(brainstem response) 

Acute DHA 

regimen 

Naïve/ Sham/ DHA/ Vehicle/ 

Pregabalin 
10/10/15/15/12 10/9/15/14/12 W2, W3, W4, W5, W6 

Brainstem response (licking 

guarding, biting, vocalizing, 

jumping) in response to static 

mechanical stimulus applied at the 

lateral plantar surface of the foot 

Delayed DHA 

regimen  

Naïve/ Sham/ DHA/ Vehicle/ 

Pregabalin 
10/10/15/15/12 10/10/14/14/12 

W2, W3, W4, W5, 

W6, W7 

Burrowing 

Acute DHA 

regimen 

Naïve/ Sham/ DHA/ Vehicle/ 

Pregabalin 
10/10/15/15/12 10/9/15/14/12 W2, W3, W4, W5, W6 

Grams of displaced gravel from the 

burrows Delayed DHA 

regimen  

Naïve/ Sham/ DHA/ Vehicle/ 

Pregabalin 
10/10/15/15/12 10/10/14/14/12 

W2, W3, W4, W5, 

W6, W7 

PEAP 

Acute DHA 

regimen 

Naïve/ Sham/ DHA/ Vehicle/ 

Pregabalin 
10/10/15/15/12 10/9/15/14/12 W6 

Frequency of crossing to and time 

spent in the white zone Acute DHA 

regimen 

Naïve/ Sham/ DHA/ Vehicle/ 

Pregabalin 
10/10/15/15/12 10/10/14/14/12 W7 
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Thigmotaxis 

Delayed DHA 

regimen  

Naïve/ Sham/ DHA/ Vehicle/ 

Pregabalin 
10/10/15/15/12 10/9/15/14/12 W6 

Frequency of crossing and time 

spent in the virtual inner zone Delayed 

regimen  

Naïve/ Sham/ DHA/ Vehicle/ 

Pregabalin 
10/10/15/15/12 10/10/14/14/12 W7 

 

D – Days post-injury / W – Weeks post-injury.  
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Supplementary Table 2: Major domains of good laboratory practice to minimise the effects of 

experimental bias. 

 Description of procedures 

Sample Size 

Calculation 
 Group size was determined by sample size estimation for each experiment using 

SigmaStat Version 3.5 (ANOVA sample size, desired power = 0.8, alpha = 0.05).  

 Effect sizes for estimation were derived from our previous studies (see below 

Table S3). 

Inclusion and 

Exclusion Criteria 
 In experiments for at-level brainstem response, rats that developed a decrease in 

the withdrawal threshold less than 70% from baselines were excluded.  

 For burrowing, rats that burrowed less than 500 g during training and at baselines 

were excluded. For PEAP, rats that spend less than 20% time in the white zone 

were excluded.  

 For locomotor recovery, rats which scored 2 or more points on the BBB scale at 

day 0 post-injury were excluded. Rats that did not reach a point of 9 on the BBB 

scale by day 14 were also excluded. All rats excluded from BBB assessment were 

also excluded for Horizontal ladder and Burrowing tests.  

Randomization  Animals were randomly assigned to sham, SCI vehicle-treatment, or SCI DHA-

treatment groups using random allocation software [10]. 

Allocation 

Concealment 
 The person performing SCI/sham surgeries and administering 

DHA/Pregabalin/vehicle was unaware of the allocation to treatment group*. 

 This was achieved by the blinding procedure described below. 

Reporting of 

Animals Excluded 

from Analysis 

 Rats showing marked behavioural changes, exudates around wound, or sensitivity 

to palpitation on handling attributable to surgery, drug, dosing procedure, 

infection from surgery were excluded. 

 Rats with significant surgical complications or whose general health deteriorates 

were excluded.  

 Any rat which showed a surgery-related weight of loss equal to more than 25% of 

the body weight pre-injury was excluded. 

 The details of the number of excluded animals and the reason for exclusion are 

stated in Supplementary Table 1. 

Blinding procedures  Codes were assigned to different treatments by an independent person and kept in 

a sealed envelope. The codes were not broken until the analysis had been 

completed. 

 The experimenter was ‘blinded’ to the treatments received and had no knowledge 

of the experimental group to which an animal was randomized.  
 

Animal exclusion: In the acute DHA regimen study, the following animals were excluded/culled: 1x 

sham-operated due to fluid build-up under the surgical incision and 1x vehicle-treated rat due to non-

injury/surgically related fluid build-up in the lungs; In the delayed DHA regimen study the following 

animals were excluded/culled: 1x DHA-treated rat due to non-injury/surgically related foot wound and 
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1x vehicle-treated rat due to non-injury/surgically related swollen and blocked gut. All conditions were 

reported to the animal facility vets and NACWO and registered with the Home Office. 

 

Supplementary Table 3: Sample size estimation. 

Sample size 15 

Difference in means 19 

Standard deviation 17.1 

Number of groups 5 

Power 0.80 

Alpha 0.05 

 

 Based on Figure 7B (Baastrup et al., 2010, Pain 151:670-79)  

 

1.2. Locomotor functional recovery 

The recovery in the locomotor function of the rats following SCI was assessed by the commonly 

employed open field BBB scale [1]. Briefly, the BBB scoring scale used exclusively for the assessment 

of rat locomotor recovery, ranged between 0-21 points depending on the movements that the animal is 

able to perform, zero being complete paralysis and 21 for normal walking. A milestone in the rat’s 

locomotor recovery is the score of 9 when it is able to support its body weight using its hind limbs, but 

still without having the ability to step. A score of 14 is another milestone in the functional recovery, when 

the rat is able to step in a coordinated manner. 

   

Prior to surgeries the rats were acclimatized to a circular non-slip open field arena with 100 cm diameter 

and 60 cm height for three consecutive days and then baselines were taken. Each animal was allowed to 
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walk freely in the arena for 4 minutes, while two observers assessed the rat’s joint movements and 

walking abilities, and took notes of the performance in pre-designed BBB scoring template sheets. 

Following SCI surgeries hind limb paralysis was confirmed for each animal after its recovery from 

anesthesia. BBB assessment was performed at days 1, 3, 5, 7 after injury and weekly thereafter until the 

end of the studies. Analysis of the recorded scores were performed blindly by another member of the 

laboratory group in reference to the BBB scale descriptions [1].  

 

1.3. Greiss assay 

In order to measure the release of nitrite in the medium of microglia cells activated with LPS or receiving 

LPS plus simultaneous or delayed DHA treatment, we performed a Greiss assay, as described previously 

[11]. Briefly, following treatments the medium in which the cells were incubated for the particular 

duration of time was collected in sterile Eppendorf tubes and stored at -80ºC. Greiss assay reagents were 

prepared as follows: Greiss reagent A (1% sulphanilamide (1mg; Sigma, UK) in 5% orthophosphoric 

acid (100 ml; Sigma, UK); Greiss reagent B (0.1% naphthylethylenediamine (100 mg; Sigma, UK) and 

5% orthophosphoric acid (100 ml; Sigma, UK). Stock solution of 1 mM sodium nitrite (Na-NO2, 69.00 

g/mol) was prepared by dissolving 0.345 mg sodium nitrate (Sigma, UK) in 5 ml serum free DMEM 

media. Standard curve of sodium nitrite from 0-100 μM was prepared in base media. The media samples 

were defrosted. Standard curve and test sample were aliquoted in 100 μl triplicates into a 96-well plate. 

The Greiss reagent A and B were mixed in a 1:1 ration and 100 μl were added to each well. The samples 

were immediately quantified for change in absorbance at 544 nm using the Galaxy Fluorstar 

spectrophotometer (BMG Labtech, UK). 

 

2. Supplementary results: 

2.1. DHA treatment regimens result in improved locomotor functional recovery 
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The neuroprotective effects of DHA and its potential to improve locomotor functional recovery in 

different animal models of SCI, such as the static compression model, have been previously reported [4; 

5; 8]. Thus, we used the BBB locomotor scale, as described in the literature [5; 7] to follow up the 

locomotor functional recovery of the rats with SCI. During the baseline measures, rats from different 

experimental groups obtained a score of 21 in accordance to the BBB scale (Supplementary Fig. 1a-b), 

reflecting on their unimpaired locomotor abilities. Following surgeries, rats with SCI developed 

significant locomotor disability in comparison to the naïve and sham operated animals, which was 

evident by marked reductions in the BBB scores in a range between 0 and 2 points in the first 3 days 

(Supplementary Fig. 1a-b). The locomotor deficits of SCI rats receiving vehicle treatment were 

continuous through the duration of both studies. Our analysis showed that there was a significant main 

effect of treatment on the BBB scores by the acute DHA treatment regimen (F(1,27)=40.52, p=0.000012, 

two-way repeated-measures ANOVA), in which animals receiving DHA treatment significantly 

improved their BBB scores (i.e. more than 2 scores) when compared to those of SCI rats treated with 

vehicle, from week 2 post-surgery onwards (Supplementary Fig. 1a). We also found a significant main 

effect of time on the BBB scores (F(8,216)=1196.44, p=0.0000001) and a significant treatment with time 

interaction (F(8,216)=9.52, p=0.0011). In order to provide evidence that the improved locomotor recovery 

following SCI of the rats treated with DHA is a result of the neuroprotective properties of the compound, 

we collected spinal cord longitudinal sections from naïve, SCI vehicle-treated, and SCI DHA-treated rats 

and performed an immunostaining against GFAP and Laminin (an extracellular matrix marker), in order 

to assess the lesion cavity appearance. We demonstrated that the lesion cavities of rats that were given 

the acute DHA regimen appeared to be smaller than those of SCI rats treated with vehicle and the 

accumulation of laminin around the injury site also appeared to be reduced (Supplementary Fig. 7b, c). 

 

We also assessed whether the delayed DHA treatment regimen would have an effect on the locomotor 

recovery of rats with SCI. Two-way repeated-measures ANOVA showed significant main effects of 
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treatment (F(1,26)=13.75, p=0.001) and time (F(3,78)=60.89, p=0.000057) on the BBB scores by the delayed 

DHA treatment regimen. Moreover, the analysis showed a significant treatment with time interaction 

(F(3,78)=10.99, p=0.0017). We found that delayed DHA treatment led to significant improvement of 

locomotor functional recovery of SCI rats in weeks 6 and 7 post-surgery, when compared to that of 

vehicle-treated SCI rats (Supplementary Fig. 1b; p=0.0001, Tukey–Kramer post hoc). Our 

immunohistochemistry of GFAP and laminin staining did not show that there appeared to be any 

differences in the lesion cavity size of rats receiving delayed DHA treatment and rats receiving vehicle 

treatment following SCI surgeries (Supplementary Fig.  7d, e). 

 

2.2. Effects of locomotor functions on complex pain-related outcome measures 

We used BBB locomotor scale to monitor the hindlimb locomotor function on a weekly basis from week 

2 post-surgery throughout the two DHA treatment regimen studies. We found that the locomotor 

functional recovery is in line with the ability of animals to enter the burrows. We observed that at week 

2 post-surgery in the acute regimen study, vehicle-treated SCI rats already achieved occasional weight-

supported plantar stepping, and continued to improve with frequent to consistent weight-supported 

plantar stepping from week 3 onwards; whilst DHA-treated SCI rats already achieved frequent to 

consistent weight-supported plantar stepping at week 2 (Supplementary Fig. 1). In the delayed regimen 

study, all SCI rats reached occasional weight-supported plantar stepping at week 2 and frequent to 

consistent weight-supported plantar stepping from week 3 onwards (Supplementary Fig. 1). Therefore, 

the locomotor recoveries from both regimen studies allowed all SCI rats from week 2 onwards to enter 

the burrows without difficulty and we found that SCI rats used both forepaws and hindpaws to displace 

gravels. For thigmotaxis and PEAP, all SCI rats achieved consistent weight-supported stepping at week 

6 or week 7, therefore they can readily explore the open field arena and white/black zones.  

 

 



 

 

 

9 

 

2.3. DHA significantly decreases the activation of astrocytes in vitro and in vivo 

We also investigated the effects of DHA on astrocyte activation. DHA (0.8 M) was found as the most 

efficacious in reducing GFAP-expression (F(5,68)=44.25, p=0.00045, one-way ANOVA; Supplementary 

Fig. 4b) in cultured astrocytes co-treated with LPS and DHA for 4 hours; DHA also preserved non-

reactive morphology (Supplementary Fig. 5). With qPCR, we showed that mRNA expression of iNOS, 

TNF-α, IL-1, and IL-6 in cultured astrocytes was significantly reduced by DHA when compared to 

control (co-treatment with LPS/DHA: p=0.0009-0.0021; pre-activation with LPS followed by DHA 

treatment: p=0.0010-0.0054; t-tests in R; Supplementary Fig. 6).  

 

With immunohistochemistry, we then elucidated that GFAP immunoreactivity in the dorsal horns and 

ACC was significantly reduced by systemic DHA treatments compared to vehicle-control [acute 

regimen: L5 (p=0.00017, Supplementary Fig. 7Ai-iii), lesion site (p=0.00036, Supplementary Fig. 7Bi-

iii), ACC (p=0.00091, Supplementary Fig. 7Ci-iii); delayed regimen: L5 (p=0.0035, Fig. Supplementary 

Fig. 7Di-iii), lesion site (p=0.00019, Supplementary Fig. 7Ei-iii), ACC (p=0.0038, Supplementary Fig. 

7Fi-iii); Mann–Whitney test].   



 

 

 

10 

 

Supplementary Figures: 

 

Supplementary Fig. 1 

 

Supplementary Fig. 1. Effects of systemic DHA treatment on locomotor function recoveries. BBB 

locomotor assessment revealed that: (a) DHA treatment administered systemically every 3 days starting 

30 minutes post-surgery (acute administration) significantly improved the locomotor functional 

recoveries of SCI rats between week 2 and week 6, when compared to those of the vehicle-treated group. 
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(b) DHA treatment administered systemically every 3 days starting 4 weeks post-surgery (chronic 

administration) improved the functional recoveries of SCI rats in week 6 and week 7, when compared to 

those of the vehicle-treated group. Each value is the mean  SEM. N= 10-15 per treatment group. Two-

way repeated-measures ANOVA was used to determine the main effects of treatment (DHA vs vehicle) 

and time (weekly). Statistical significance of the differences between the groups was determined by one-

way ANOVA followed by Tukey–Kramer post hoc test at each week point; ***p<0.001 vs vehicle.  
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Supplementary Fig. 2 

 

Supplementary Fig. 2. The effect of systemic DHA treatment on the frequency of entry in the 

virtual inner zone during the assessment of thigmotactic behaviour at week 6 and week 7. (a) The 

number of entries to the virtual inner zone of SCI rats at week 6 post-surgery was markedly decreased, 

when compared to that of the naïve group. DHA treatment in SCI rats commencing 30 minutes post-

surgery and continued every 3 days thereafter for 6 weeks, significantly increased the frequency of 

crossing into the inner zone, when compared to that of vehicle-treated SCI rats. (b) SCI rats at week 7 

post-injury crossed the virtual inner zone significantly fewer times than naïve rats. Delayed DHA 
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treatment in SCI rats administered 4 weeks post-surgery and its continued administration every 3 days 

thereafter for 4 weeks, significantly increased the frequency of entries into the inner zone, when 

compared to that of vehicle-treated SCI rats. Data are presented as the mean  SEM. N=10-15 per 

treatment group. One-way ANOVA and Tukey–Kramer post hoc test were used for statistical analysis; 

*p<0.05, **p<0.01, or ***p<0.001 vs vehicle.
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Supplementary Fig. 3 

Supplementary Fig. 3. The effect of systemic DHA treatment on the number of crossing to the white 

zone of the PEAP box at week 6 and week 7. (a) The number of crossings to the white zone of the 

PEAP box of SCI rats at week 6 post-surgery was significantly increased, when compared to that of the 

naïve group. DHA treatment administered acutely post-surgery, significantly decreased the frequency of 

crossing into the white zone of the arena, when compared to that of vehicle-treated SCI rats. (b) The 

frequency of crossing of SCI rats into the white zone of the PEAP box at week 7 was notably increased 

when compared to that of naïve rats. Delayed systemic DHA treatment significantly decreased the 

number of entries of SCI-rats into the white zone, when compared to that of vehicle-treated SCI rats. 
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Data are presented as the mean  SEM. N=10-15 per treatment group. One-way ANOVA Tukey–Kramer 

post hoc test were used for statistical analysis; *p<0.05, **p<0.01, ***p<0.001 vs vehicle.  



 

 

 

16 

 

Supplementary Fig. 4 

 

Supplementary Fig. 4. Analysis of the optimal concentration of DHA for modulation of LPS-

induced microglial and astrocyte activation in vitro. (a) Microglial cell cultures treated with 10 g/ml 

LPS over a period of 4 hours had a significantly higher percentage of microglia expressing iNOS 

compared to that of control cultures. Simultaneous treatment with DHA at four different concentrations 

revealed that 0.8 M DHA had the highest efficacy in reducing the number of iNOS-positive microglia. 
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(b) Cultures treated with 10 g/ml LPS for 4 hours had a significantly higher number GFAP 

immunoreactive astrocytes, when compared to control astrocyte cultures. Treatment with DHA at 

concentration of 0.8 M applied simultaneously during the 4 hours of LPS exposure, significantly 

reduced the GFAP immunoreactivity of the astrocytes, when compared to that of LPS treated only 

astrocyte cultures. Data are presented as the mean  SEM. N=3 biological replicates/n=9 technical 

replicates per treatment group. One-way ANOVA and Tukey–Kramer post hoc test were used for 

statistical analysis; *p<0.05, **p<0.01, ***p<0.001 vs LPS + 0.8 M DHA. ***p<0.001of LPS vs 

control or LPS + 0.8 M DHA. 
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Supplementary Fig. 5 

Supplementary Fig. 5. DHA attenuates LPS-induced astrocytes activation in vitro. Phase-contrast 

live images of (a) control astrocytes, (b) LPS-treated astrocytes, and (c) astrocytes treated with 0.8 M 

DHA during simultaneous exposure to LPS for 4 hours revealed that DHA treatment led to the 

preservation of the non-reactive morphology of astrocytes manifested in the control cultures, 

characterized by slender cell processes and small cell bodies. Fluorescent images of (d) control, (e) LPS-

treated, and (f) astrocytes treated with 0.8 M DHA simultaneously during 4 hours of LPS stimulation, 

showed that DHA treatment reduced the high GFAP staining intensity of astrocytes (indicator of their 
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activation) seen in LPS-treated astrocyte cultures. Bright field live images of (g) control, (h) LPS-treated, 

and (i) pre-activated for 4 hours with LPS astrocytes, which received a delayed DHA treatment at the 

concentration of 0.8 M for 4 additional hours post-activation, demonstrated that DHA markedly 

reversed the LPS-induced activated morphology of astrocytes nearly to that of control cells. Fluorescent 

images of (j) control, (k) LPS-treated, and (l) DHA-treated pre-exposed to LPS astrocytes revealed that 

0.8 M DHA treatment reduced the high GFAP staining intensity seen in the LPS-treated astrocyte 

cultures.  
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Supplementary Fig. 6 

 

 

Supplementary Fig. 6. In vitro DHA treatment of LPS-activated astrocytes significantly decreased 

the relative mRNA expressions of proinflammatory mediators. Analysis of the qRT-PCR results for 

iNOS, TNF-α, IL-1 and IL-6 mRNA expression levels demonstrated that: (a-d) simultaneous treatment 

of the astrocytes with 0.8 M DHA while exposed to LPS for 4 hours led to a significant reduction in the 

relative expressions of these proinflammatory genes, when compared to their expressions in astrocyte 

cultures stimulated with LPS only; (e-h) delayed treatment of astrocytes with 0.8 M DHA following 4 

hours of pre-treatment with LPS also significantly lowered the relative expressions of proinflammatory 

genes, when compared to astrocyte cultures stimulated with LPS only. 
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Supplementary Fig. 7 
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Supplementary Fig. 7: The effects of systemic DHA treatments on astrocyte activation. The acute 

regimen significantly decreased astrocyte activation (morphology/GFAP intensity) in dorsal horns (DH) 

of L5 (A(i-iii)) and epicenter (B(i-iii)) levels and the ACC (C(i-iii)), comparing to vehicle treatment. The 

delayed regimen also reduced astrocyte activation in L5 dorsal horns (D(i-iii)), lesion site dorsal horns (E(i-

iii)), and ACC (F(i-iii)), in contrast to that of vehicle-treated rats. N=5-6 per group. Mann–Whitney test 

was used for statistical analysis. (G) is a schematic drawing of the lesion site segment from where lesion 

site DHs were analyzed for GFAP staining. *p<0.05, **p<0.01, ***p<0.001 vs vehicle. 
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Supplementary Fig. 8 
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Supplementary Fig. 8. Lesion cavities at week 6 and week 7 following SCI in vivo.  Representative 

fluorescent images of 15 mm spinal cord segments containing the lesion cavity stained with GFAP (red) 

and laminin (green) revealed that: (a) Naïve spinal cord is lacking laminin staining due to the absence of 

lesion cavity and the staining intensity of GFAP is very low due to the absence of astrocyte activation in 

the healthy cord. (b) The lesion cavity at week 6 of SCI rats receiving vehicle treatment is evident from 

the pronounced accumulation of astrocytes (GFAP) and extracellular matrix (laminin) around the injury 

site. (c) Intravenous DHA treatment administered 30 minutes following SCI surgery and every 3 days 

thereafter until the end of the study, appeared to reduce the cavity size after the injury and the 

accumulation of astrocytes and extracellular matrix around the site of impact. (d) The lesion cavity at 

week 7 of SCI rats receiving vehicle treatment seemed similar to that of vehicle-treated SCI rat at week 

6. (e) Chronic administration of DHA treatment did not appear to reduce the cavity size as compared to 

that of the vehicle-treated group. N=2 per treatment group. 
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Supplementary Fig. 9 
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Supplementary Fig. 9. The effects of systemic DHA treatment on SCI-induced microgliosis at the 

lesion site of SCI rats at week 6 and week 7 post-surgery.  DHA treatment administered 30 minutes 

following SCI and every 3 days thereafter significantly reduced the expression of pp-38 by microglial 

cells (b&c) and significantly decreased the number of CD11b/c and ED9 double-positive microglial cells 

per mg spinal cord tissue (e&f), when compared to those of vehicle-treated SCI rat (a&c and d&f). 

Similarly, DHA treatment administered 4 weeks following SCI and every 3 days thereafter, significantly 

reduced the expression of pp-38 by microglial cells (b&c) and significantly decreased the number of 

CD11b/c and ED9 double-positive microglial cells (e&f), when compared to those of vehicle-treated SCI 

rats (a&c and d&f). Data are presented as the mean  SEM; N=4-5 per treatment group. Wilcoxon-Mann-

Whitney and unpaired student’s t-test were used for statistical analysis. The bottom panel is a schematic 

drawing of the lesion site segment from where lesion site DHs were analyzed for GFAP staining. 

*p<0.05, **p<0.01, ***p<0.001 vs vehicle. 
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Supplementary Discussion 

 

The intravenous dose of FFA DHA used in the current studies is 250 nmol/kg in a volume of 5 ml/kg. If 

assuming the average body weight of young adult rats is 250 g, then the concentration of DHA in the 

injected bolus solution is 62.5 M. We do not know how this injected FFA DHA concentration would 

be translated into the plasma FFA DHA concentration and how long this plasma DHA concentration 

would last. A recent study conducted in humans showed that repeated weekly 4-hour intravenous infusion 

of omega-3 fatty acids (fish oil formulation) including DHA led to significantly increased FFA DHA 

levels in the plasma (7-fold post-infusion verse pre-infusion) after the first infusion, which was highly 

repeatable across each of the later infusions up to 24 weeks [3]. We expect that the plasma FFA DHA 

concentration in our studies would have significantly increased after the first intravenous injection, and 

this increase would have been maintained across each of the later injections (every 3 days). Future studies 

are needed to investigate the pharmacokinetic studies for DHA, which is beyond the scope of the current 

studies. 

 

We injected a bolus of FFA DHA solution at 62.5 M as stated above. We do not know the exact 

percentage of this 62.5 M DHA that would have reached the brain and spinal cord; that would require 

further investigations that are beyond the scope of the current studies. It has been demonstrated in the 

literature that <1% of radiolabelled omega-6 arachidonic acid, when given intravenously, reached rat 

brains (with an intact blood-brain barrier) [6]. It has also been shown that about 1% of radiolabelled DHA 

was found to be incorporated in rat brain lipids after an intravenous infusion [9]. Therefore, by analogy, 

it is likely that in our studies a small proportion of the injected FFA DHA entered the CNS and was 

incorporated rapidly in phospholipids (may be higher than 1%, considering the blood-brain barrier is 

compromised following spinal cord injury). If assuming 1% of injected FFA DHA reached the CNS, the 
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concentration of incorporated FFA DHA in the CNS would be around 0.625 M. The FFA DHA in brain 

has been reported to be as low as 1.3 M [2]. Therefore, the assumed 0.625 M concentration of DHA 

is likely to remain in a physiological range and should be also compatible with the affinity of this fatty 

acid for targets such as ion channels and RXR receptors, which may be activated by FFA DHA [7]. In 

our in vitro experiments, we examined 0.8, 4, and 8 M FFA DHA concentrations, and found that DHA 

at all three concentrations was able to reduce microglial and astrocyte activation (Supplementary Fig. 4), 

with 0.8 M being found as the optimal concentration. Therefore, the in vivo FFA DHA concentration 

in the CNS as assumed above would be in line with the in vitro concentrations used in the current studies. 

 

Based on the findings from the human study involving repeated weekly intravenous infusion of omega-

3 fatty acids including DHA as discussed above [3], we would expect that following the initial bolus FFA 

DHA injection in our studies, the FFA DHA levels in the plasma would have increased more than 7-fold, 

which was seen with the human study. This is because the human study used emulsion form of omega-3 

fatty acids which would require an extra step of hydrolysis to release FFA DHA. We would also expect 

that a peak plasma concentration would have been reached very quickly after each intravenous injection, 

as previous evidence showed that about 1% of the dose of radiolabelled DHA injected intravenously was 

found in the rat brain 15 minutes after the injection. Future studies would need to establish the 

concentration range of DHA in the plasma including the peak plasma concentration following one DHA 

injection and before the next injection. In our studies, we used a repeated intravenous administration 

regime, i.e. every 3-day intervals, which would be a favourable regime in patients in the acute and 

subacute periods after SCI. We would anticipate that our regime would have maintained a constant 

plasma supply of FFA DHA to be incorporated into the CNS at a physiological range as discussed above. 

It is important to note that only FFA DHA in the plasma would be able to cross the blood-brain barrier 
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and reach the CNS, so that CNS cells such as neurons, microglia and astrocytes can take up FFA DHA 

using general FFA uptake mechanisms or via receptor binding [3]. 
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INTRODUCTION  
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METHODS  
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a. How (e.g. drug formulation and dose, site and route of administration, 
anaesthesia and analgesia used [including monitoring], surgical 
procedure, method of euthanasia). Provide details of any specialist 
equipment used, including supplier(s). 

b. When (e.g. time of day). 

c. Where (e.g. home cage, laboratory, water maze). 

d. Why (e.g. rationale for choice of specific anaesthetic, route of 
administration, drug dose used). 
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8 a. Provide details of the animals used, including species, strain, sex, 
developmental stage (e.g. mean or median age plus age range) and 
weight (e.g. mean or median weight plus weight range). 

b. Provide further relevant information such as the source of animals, 
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relevant. 
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including randomisation or matching if done. 
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b. Describe any modifications to the experimental protocols made to 
reduce adverse events. 
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Interpretation/ 
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implications 

18 a. Interpret the results, taking into account the study objectives and 
hypotheses, current theory and other relevant studies in the literature. 

b. Comment on the study limitations including any potential sources of bias, 
any limitations of the animal model, and the imprecision associated with 
the results2. 

c. Describe any implications of your experimental methods or findings for 
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in research. 
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