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Abstract—In this paper, we will consider the selective mainte-
nance problem for multistate series systems with stochastic depen-
dent components. In multistate systems, the health state of a com-
ponent may vary from perfect functioning to complete failure. The
stochastic dependence (S-dependence) between components is dis-
cussed and categorized into two types in multistate context. First,
the failure of a component can immediately cause complete failures
of some other components in the system. Second, as components
deteriorate, the reduced working performance rate of a multistate
component affects the state as well as the degradation rate of its
subsequent components in series structure. The system reliability
is evaluated using an approach based on stochastic process. A cost-
based selective maintenance model is developed for the multistate
system with S-dependent components to maximize the total system
profit, which includes the production gain and loss in the next mis-
sion as well as possible maintenance costs for the system. Analyses
of systems with independent and dependent components are pro-
vided. It is observed that ignoring S-dependence in the systemmay
lead to alternative maintenance decision making and an optimistic
estimation of the system performance.

Index Terms—Failure interaction, multicomponent systems,
multistate component, multistate systems, selective maintenance,
stochastic dependence (S-dependence).

ACRONYMS

MSS Multistate systems.

IF Immediate failure.

IFD Immediate failure dependence.

GDD Gradual degradation dependence.

C-K Chapman–Kolmogorov.

SM Selective maintenance.

PG Production gain.

PL Production loss.
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NOTATION

Number of components in the system.

Component indices, .

State indices.

Set of possible states of a component
.

Random variable representing the state of
component at time .

Set of discrete performance rates in ascending
order, .

Random variable representing the instantaneous
performance rate of component at time

.

State of the system at time ..

Random variable representing the instantaneous
performance rate of the system at time .

Transition rate from state to state of
component when it degrades due to its local
degradation process.

Probability that an independent component is
in state at time .

Probability that a type 1 s-dependent component
is in state at time considering both local

degradation and induced failure processes.

Set of components which can cause immediate
failures (IF) of other components.

Set of affected components which fails due to
induced failure from influencing component .

Induced hazard rate of influencing component
which causes type 1 s-dependence to other

components, .

Time to the IF failure of component .

Dependent transition rate of component when it
is subjected to type-2 s-dependence.

Transition rate dependent function of component
when it is subjected to type-2 s-dependence.

Complete failure state of the system.
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Probability a subsystem containing of 2
components is in state at time , i.e.,
component 1 in state and component 2 in state .

Probability that the system is in state at time
without considering IF.

Probability that the system is in state at time .

Vector of the system state
probabilities in the form

.

Transition rate matrix.

State of component at the end of the previous
mission.

State of component at the end of the maintenance
period.

Operating mission duration.

Required time for repairing component from
state to state .

Total completion time of all selective maintenance
activities.

Break duration (available time for selective
maintenance activities).

Total cost of the system.

System production profit/gain.

Average profit/gain per unit performance rate
when the system satisfies demand.

System production loss due to missing demand.

Average cost loss per unit of missing demand.

System maintenance cost in the maintenance
break.

Cost of repairing component from state to
state .

Available maintenance budget in the break.

Required demand level.

System reliability at demand level , i.e.,
probability of the MSS performance is greater
than or equal to .

Required probability that the MSS operates
satisfying the demand in the next mission.

Unity function, .

I. INTRODUCTION

T ODAY, maintenance plays an important role in engi-
neering asset management. Researchers have developed

various maintenance models for repairable systems in the
literature [1]–[3]. In these reported studies, optimum repair,

replacement, preventive maintenance, and inspection policies
for repairable systems were investigated. However, the ma-
jority of these maintenance models ignore the limitation of
resources to perform maintenance actions. Many systems have
to perform several missions with limited resources, such as time
and budget, for maintenance between successive missions. It is
often impossible to do all desirable maintenance actions within
the available resources. Thus, the maintenance manager has
to decide which components to maintain and how to perform
maintenance in order to meet the requirements on system's
performance. This problem is called selective maintenance.
Selective maintenance was first introduced by Rice et al. [4].

A binary-state series-parallel systemwith independent and iden-
tically distributed components was studied. The probabilities of
successfully completing a mission of components are assumed
to be known. At the maintenance depot, there are only two avail-
able maintenance options on a failed component: replace or do
nothing. A non-linear binary integer optimization model was
developed to maximize the system reliability in the next mis-
sion. Cassady et al. [5] extended the work of Rice et al. by con-
sidering components' lifetimes following the Weibull distribu-
tion and the possibility of preventive replacement of functioning
components. Maillart et al. [6] investigated selective mainte-
nance optimization for the system in [4] that works under
identical missions. Zhu et al. [7] extended the selective mainte-
nance model by considering both the costs of maintenance and
production losses for manufacturing lines. Pandey et al. [8] and
Liu and Huang [9] studied selective maintenance with imper-
fect maintenance, i.e., the condition of components after mainte-
nance depends on the cost spent, and the maintenance may bring
a component to a state between “as bad as old” and “as good as
new.” Maaroufi et al. [10] studied selective maintenance for bi-
nary systems with S-dependent components where the failure of
a component can cause other components to fail immediately.
They used the fault tree method to analyze the dependence be-
tween components.
In all of these selective maintenance studies, the components

are put under the binary assumption, i.e., the components in the
system can be in two possible states of functioning or failed.
However, in practice, many components can degrade and op-
erate in reduced performance levels. As the component deterio-
rates, its performancemay be in several states, varying from per-
fect functioning to complete failure. Such a component is called
a multistate component, and a system consisting of multistate
components is called a multistate system (MSS). The generic
concepts and reliability analysis for MSS have been explored in
[11] and [12]. In selective maintenance for multistate systems,
multiple intermediate repair actions on a component are pos-
sible from do-nothing to replacement. Chen et al. [13] modeled
selective maintenance for MSS where the probability distribu-
tions of multistate components are assumed to be deterministic.
The objective of the selective maintenance model is to minimize
the cost of maintenance subject to reliability constraints. The
shortest path method is used to solve the problem. Pandey et al.
[14] studied selective maintenance for multistate series-parallel
systems with exponential transition time between states of mul-
tistate components. Differential evolution algorithm is used to
solve the problem. Recently, Dao et al. [15] extended the model



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

DAO AND ZUO: SELECTIVE MAINTENANCE FOR MULTISTATE SERIES SYSTEMS WITH S-DEPENDENT COMPONENTS 3

in [13] to the case in which the repairs of multistate compo-
nents are not independent from each other. In this paper, they
suggested that repairing multiple components simultaneously is
more economical due to the share of setting up, tools, materials
and labors.
The assumption of stochastic independence between compo-

nents is frequently made in selective maintenance studies of
multicomponent systems. However, in a specific system design,
the current health condition of a component may affect the per-
formance of other components, and the stochastic dependence
(S-dependence) exists in most real and complex systems. As
stated in [16], the system reliability may be underestimated or
overestimated when there is existence of S-dependence, and
thus maintenance for those systems needs to be thoroughly in-
vestigated. In the literature, there is only one study of selective
maintenance for systems with S-dependent components [10], in
which the components are binary and the failure of a compo-
nent can cause other selected components to fail immediately.
In [10], the discussion on the effects of the S-dependence on
selective maintenance decision making was not investigated. In
addition, the dependence relationship in [10] is a special type of
S-dependence (type 1), which will be reviewed in the remaining
part of this section.
In binary systems, S-dependence is often referred to as

“failure dependence” or “failure interaction”. In [17], failure
interaction in multicomponent systems is classified into two
types, i.e., when a component fails: 1) it may cause immediate
failure to the other component (type 1) or 2) it may cause
damage by increasing the deterioration rate of the affected
component (type 2).
In type-1 S-dependence, a component may fail and cause the

other component to fail with probability , or leave no effect on
the other component with probability . Many papers have
provided maintenance analysis of systems with type-1 S-depen-
dence, including component replacement policy [18]–[20] and
block replacement policy [21]. Regarding type-2 S-dependence,
Barros et al. [22] studied a two-unit parallel system where the
failure of one component modifies the deterioration rate of the
remaining component. A preventive replacement model was
given to find the time of maintenance, , that minimizes the
failure and maintenance costs of the system. Lai and Chen [23]
studied a two-unit series system where the failure of unit 1
causes damage to unit 2 by increasing the failure rate of unit 2 by
a certain amount, while the failure of unit 2 will cause the system
immediate failure. Sung et al. [24] extended the two-unit system
in [23] by introducing an external shock affected to both com-
ponents. Albin and Chao [25] studied an -components system
in series where the deterioration of the first component changes
the failure rate of all subsequent components. However,
they did not discuss in details how the failure rate is affected.
Rasmekonen and Parlikad [26] considered a system consisting
of parallel non-critical components feeding a critical compo-
nent. Parallel elements are independent but the performance of
the critical components decreases as a parallel component fails.
Optimal preventive maintenance is determined to maximize the
performance of the critical components.
Recently, more efforts have been made on the S-dependence

exhibits in MSS. However, the researchers so far have only fo-

cused on the reliability analysis of MSS with S-dependence. In
[27] and [28], type-1 S-dependence is explored in MSS where
the complete failure originating from a multistate component
immediately causes complete failures of other dependent com-
ponents. In Levitin [29], the universal generating function ap-
proach is shown to be efficient to evaluate the reliability of MSS
when the conditional probability distributions of the dependent
components are deterministic and explicitly known. Dao and
Zuo [30] gave preliminary discussions on two types of S-de-
pendence and reliability analysis of the MSS when a multistate
component changes its state.
The discussion on S-dependence between multistate compo-

nents is still limited; only type-1 S-dependence has been con-
sidered for multistate systems. In addition, existingmaintenance
models for binary systemswith type-2 S-dependent components
are restricted in two-component systems or systems with two
stages of dependent components. Thus, our first objective is to
consider both types of S-dependence in an -component multi-
state series system. An approach based on the stochastic process
will be used to evaluate the system reliability. Secondly, existing
papers in selective maintenance have not taken both the costs
and the profit associated with the MSS performance rates into
consideration. Both the production loss and gain corresponding
to multiple working levels of the system and the maintenance
costs are integrated into the selective maintenance cost model.
To sum up, a cost-based selective maintenance model will be
developed for multistate systems with two types of S-depen-
dence. The objective of the maintenance model is to maximize
the total system profit considering resources and reliability con-
straints. Examples and results show that ignoring S-dependence
leads to an optimistic estimation of the system reliability and
profit for the illustrative case. The proposed selective mainte-
nancemodel is expected to help themaintenance decisionmaker
find the most economical maintenance strategy under reliability
and resource constraints.
The remainder of this paper is organized as follows.

Section II describes the MSS with two types of dependence. A
method of reliability analysis for the system with S-dependent
components is presented in Section III. Selective maintenance
policies and a cost-based maintenance optimization model
are developed in Section IV. Illustrative examples, results
and discussion will be presented in Section V, and a general
conclusion is provided in Section VI.

II. MULTISTATE SYSTEMS WITH S-DEPENDENT COMPONENTS

The multistate system in this study consists of multistate
components connected in series (Fig. 1). Each multistate com-
ponent can be in one state in a set of possible discrete
states, , associated with a corresponding
working performance rate in a set of .
is the perfect functioning state, 0 is the complete failure state,
and other intermediate states, , are imperfect
functioning states, i.e., the component can continue operating
but at a reduced performance rate. The set of state and perfor-
mance rates are in ascending order, i.e., if .
At time , the state of component , denoted by , is a

random variable, . The perfor-
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Fig. 1. Series system.

mance rate of component is denoted by and the prob-
ability that component is in state at time is defined as in

(1)

The system performance rate is defined as minimum per-
formance rate of its components as in

(2)

The system's state associated with performance rate at time
is , given by

(3)

The state of the system and its performance rate can be deter-
mined by the combination of its components' states from (2) and
(3). The state probability of the system is

(4)

In the presented MSS, there might be two types of dependence
when a multistate component changes its state as follows.
• Type 1—Immediate failure dependence (IFD): when a
component (influencing component) fails, it may cause
immediate failures of some other affected components.
For example, a component fails and creates fire that
causes some nearby components to fail immediately; or
an electrical component fails and causes a voltage spike
that triggers the failure of some other components in the
system that do not have protective device.

• Type 2—Gradual degradation dependence (GDD): as the
multistate component deteriorates with time and once it de-
grades to a lower working performance rate level, it does
not cause affected components to fail immediately but re-
sults in increasing or decreasing the degradation of the af-
fected components. In our model, when a component de-
grades to a lower state, i.e., its output performance rate de-
creases, both the state and the degradation rate of the next
component in the series system are affected. This depen-
dence mechanism occurs when the components have di-
rect connection to each other and the output of a compo-
nent controls the performance of the affected component.
A system consisting of a water feed pump station and a
steam turbine can serve as an illustrative example. This is
a two-component series system by considering the water
feed pump station as component 1 and the turbine as com-
ponent 2. When the pump station works at its maximum
performance rate of (ton/h), the healthy turbine can gen-
erate its maximum power corresponding to . When the
pump's health condition deteriorates, the amount of water
per unit time delivered to the next component (the turbine)
decreases. This will result in a decrease in the degradation

Fig. 2. Two types of dependence in a multistate series system.

rate of the turbine due to the reduced load that the turbine
needs to handle, and for the same reason, the output perfor-
mance of the turbine decreases too. Thus, in this paper, we
assume that both the performance state and the degradation
rate of a component may be affected by the degradation of
the influencing component.

The two types of dependence in multistate series systems can
be represented in Fig. 2.
In multistate systems, it is seen that type 1 S-dependence can

be defined in the same way as in binary systems, i.e., the failure
originating from a multistate component can immediately cause
complete failures of other affected components. In Fig. 2, the red
dashed arrows represent type-1 S-dependence relationship, e.g.,
the failure of component 1 can cause immediate failure (IF) to
component 3 and component . As stated in [18], a component
may cause type-1 S-dependence failure with probability , or
leave no effect on the other components with probability . It
is assumed that the influencing component can fail in two failure
processes: one is its local degradation process that has no effect
on other components, and the other failure process that causes
induced failures to affected components.
On the other hand, type-2 S-dependence in multistate context

describes the “degradation dependence” of a multistate compo-
nent on the degradation of other components in the system. The
transition rate between states of an affected component varies
depending on the instantaneous performance rate of the influ-
encing components. In MSS, the performance rate is often de-
fined as productivity or capacity. In series systems, the input of
a component is the output performance rate of its predecessor
and the output performance rate of a component is the input
of its subsequent component. Thus, type-2 S-dependence has
a chain effect (green arrows in Fig. 2). It is also recognized that
a component is actually affected by the output performance
rate of the group of components from , not just
from a single component . In other words, the instanta-
neous performance rate of component1 influences the degrada-
tion of component 2; the performance rate of the group of com-
ponents 1 and 2 influences the degradation of component 3 and
so forth (see the green-solid arrows in Fig. 2). Thus, a compo-
nent , can be both an influencing compo-
nent to its subsequence components and an affected component
from its predecessors.
In summary, the MSS with S-dependent components has the

following characteristics.
• The system consists of components connected in series.
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Fig. 3. Transition diagram of a MS component without S-dependence.

• The components can operate in one of states with
the performance rates ranging from perfect functioning to
complete failure.

• All components in the system degrade due to their local
degradation process. Some components can fail in an in-
duced failure mode that causes immediate failures of af-
fected components (type-1 S-dependence). Once an af-
fected component fails, it cannot cause IF to any other com-
ponent in the system.

• Components may degrade to a lower working performance
rate and it affects the degradation process of subsequent
components by increasing or decreasing the degradation
rate of the subsequent components (type-2 S-dependence).

• A component can cause both types of S-dependence and
a component can be subjected to both types of S-depen-
dence.

III. MULTISTATE SYSTEM RELIABILITY ANALYSIS

A. Multistate Systems With Independent Components

All components in the system degrade due to a local degra-
dation process from the perfect functioning state to complete
failure state. Without considering S-dependence, the probabili-
ties associated with different states of a component at time
due to its local degradation process can be represented by a set

(5)

Fig. 3 shows the transition diagram that represents the degra-
dation of a multistate component without considering S-depen-
dence.
In Fig. 3, component has possible states from perfect

functioning (state ) to complete failure (state 0) with nominal
transition rate from state to state of . For simplicity,
we assume that the sojourn time at each state of the compo-
nent follows exponential distributions, and the component de-
grades gradually, i.e., if the component is currently in state ,
it will degrade to state before reaching a worse state

. With these assumptions, the next transition of a component
only depends on its current state, and the stochastic process gov-
erning the local degradation process is aMarkov chain. The state
probabilities can be determined by solving the Chapman–Kol-
mogorov (C-K) system of differential equations as follows:

(6)

The last equation based on transition diagram is
. However, it can be replaced

by since the sum of all state probabilities
of a component is always equal to 1. Further discussions
on modeling the degradation of multistate independent
components can be found in [31]. Regarding the method
to solve the system of equations, there are several methods
including numerical and analytical methods. In this paper, we
solve the system of equations using a method described in [32]
to solve it analytically.

B. Modeling Two Types of S-Dependence of Components
1) Type-1 S-Dependence: In the system, we denote as

the set of components that can fail and cause immediate fail-
ures (IF) of other components and as the set of compo-
nents affected by the induced failure of component .
When component fails, it will either cause all the affected
components in to fail with probability , or leave no ef-
fect on these components with probability . As a result,
an influencing component may fail following two failure pro-
cesses: local failure and induced failure. The first failure process
is the local degradation process that does not affect any other
components as described in Section III-A. The induced failure
process causes the affected components to fail immediately. In
previous studies, the probability is assumed to be a predeter-
mined value, but, in this paper, the probability of induced failure
from component , is defined as a function of time:

(7)

where is the induced failure hazard rate of component .
In this case, a state is added into the set of states of the influ-
encing component to represent the induced failure state related
to type-1 S-dependence. The performance rates of influencing
and affected components at state are . The state proba-
bility vector of the influencing component takes the following
form:

(8)

In (8), is the probability that the influencing component
fails and causes IF. Thus, and

is the state probability of component in the case
that it does not fail due to induced failure process. We assume
that the local and induced failure processes are stochastically
independent, then

(9)

where is the state probability obtained by its local degra-
dation process which can be obtained from solving the system
of (6).
The state probability distribution of an affected component

depends on the state of component . In this paper, we
assume that an affected component cannot cause immediate
failure to any other component in the system. This also means
that a component in the set of influencing components, ,
cannot be affected by another component in the same set .
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If the induced failure does not occur, the state
probability vector of component is

, where
is the state probability of component obtained by solving
(6). If the induced failure of component occurs, the state
of component is 0, i.e., . Thus, we
have the conditional probability distribution of component
as shown by (10), at the bottom of the page.There is another
way to explain (9) and (10) in conditional probabilities by
defining with a state space of as
the stochastic process governing the local degradation process.
Another stochastic process with a state space

is defined to represent type-1 S-dependence
of influencing component as follows:

if
if (11)

where is the time to IF of component .
From these formulations, for , we have

(12)

(13)

Equation (13) is the same as (9).
When , we have

(14)

Similarly, we can define a stochastic process
with state space to represent the type-1 S-depen-
dence for an affected component as given by (15), shown at
the bottom of the page. This formula (15) is equivalent to (10).
2) Type-2 S-Dependence: Type-2 S-dependence exists when

components have direct connection to each other and the output
of the influencing components controls the performance of the
affected components. In series systems, a component

, can be both an influencing component to its
subsequent component and an affected component from its pre-
decessor. We assume that the degradation of component

depends on the output performance rate of its preceding compo-
nent .When its predecessor is at the perfect functioning
state, i.e., , component degrades at its nominal
transition rate, i.e., the transition rate of the local degradation
process .When component degrades and ,
type 2 S-dependence between component and its immediate
predecessor is described as follows.
• The performance rate dependence: the performance rate
of component is automatically adjusted to the output of
performance rate supply to it, i.e.,

• The degradation rate dependence: the transition rate be-
tween states of the affected component , , also depends
on . We use as a dependent function to de-
scribe type-2 S-dependence of component on its imme-
diate predecessor as follows:

(16)

In (16), is a function of the instantaneous performance
rate of the component , and a dependent expo-
nent . is an exponent that characterizes the degree of de-
pendence between component and its immediate predecessor.
When , the reduced performance of the influencing com-
ponent decreases the degradation process of the affected compo-
nent, i.e., ; when , the reduced performance
of the influencing component increases the degradation process
of the affected component, i.e., . When ,
we have , i.e., the transition rate doesn't change but
the performance of the affected component still depends on the
performance of its preceding component.
In this paper, we use the power law with being an expo-

nent representing the degree of dependence of component on
its preceding component. In general, the transition rate of an af-
fected component may also depend on state . If this is the case,
the component type and state effect can be characterized by an
exponent , where represents the dependence of com-
ponent at state on its preceding component. In this paper, we
assume that the performance rate associated with each state of a
component is uniformly distributed and the dependence effects
are equal for each state, i.e., can be considered as for
all . In addition, the same methods of reliability analysis and
maintenance optimization in the next sections can be applied for
either case where or is used.

if no IF occurs
if IF from at least one influencing component occurs (10)

if for every such that
if for some such that (15)
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Fig. 4. Transition diagram of two components with type-2 S-dependence.

C. Reliability Analysis of MSS With Dependent Components

1) Markov Analysis for Components With Type 2 s-Depen-
dence: In type-2 S-dependence, we see that the degradation of a
component , depends not only on its current state but also
on the state of its immediate predecessor. If we consider simul-
taneously the state of component and the state of its immediate
predecessor at the same time, the degradation of the subsystem
of components and can be modeled as a Markov chain.
To illustrate the type-2 S-dependence as a Markov chain,

we take an example of two components connected in series,
wherein each component's state space is . Al-
though the system state is , we de-
note the system state as a pair of . The system state space
is . With this notation,
the system states denoted by and are
considered to be different although the output performance of
the system is identical. The first element in system state
determines the state and the associated output performance rate
of component 1. The second element in the pair de-
pends on the value of the first element. However, the stochastic
process utilizing the pair notation is a Markov chain since the
next state of the system in pair notation only depends on
its current state. The stochastic process with the local degrada-
tion process is with transition rates .
When type-2 dependence is introduced, the stochastic process
is modified to with additional requirements of

and the transition rates of
to represent type-2 S-dependence between

the two components as described in Section III-B. The state
transition diagram for the group of two components is shown
in Fig. 4.

In Fig. 4, type-2 S-dependence happens whenever the influ-
encing component changes its state, which may result in state
dependence and transition rate dependence. Transition rate
dependence always happens when the influencing component
changes its state, but state dependence occurs only if the tran-
sition of the influencing component causes its state to be less
than the state of the affected component. For example, there
are two transition paths from state to state

, which are ,
and . In the first transition path, we
can understand that there is no dependence in the first transition

. In the system state , the
second component has its nominal transition rate . From
this system state, when component 1 degrades from state to

, i.e., the system state becomes , the tran-
sition rate of component 2 is modified to since
the performance rate of component 1 has changed. Although
state dependence does not take place, type 2 S-dependence still
occurs in this transition in terms of transition rate dependence.
In the second path, there is no transition from the state
to state , because when component 1 enters state

the state of component 2 is instantly adjusted to and
its transition rate is also adjusted to due to type
2 -dependence. It is noted that state dependence only happens
in the second path. This is because state dependence happens if
the transition causes the state of the affected component to be
greater than the state of the influencing component.
When any component degrades to state “0”, the system is in

complete failure state. In Fig. 4, we can combine all such states
with at least one component in state “0” as the “ ” state or
complete failure state. “ ” is an absorbing state during the mis-
sion, i.e., no transition can happen further when the system is
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failed. The C-K system of equations for type-2 S-dependence is
written as in (17), shown at the bottom of the page. In (17), the

last equation can be replaced by

since the sum of all system state probabilities is 1. In the transi-
tion diagram, it is noted that there are always “going-out”
transitions for each state (except absorbing state “ ”) repre-
senting the degradation of each of the two components in the
system. In general, there are also “going-in” transitions for
each state (except absorbing state “ ” and the state at which the
influencing component is in perfect functioning state ) repre-
senting the degradation of components from higher states.
The system of C-K equations can be rewritten in matrix form

[32]

(18)

In (17), there are a total of equations, of state
combinations of all components in the system. Then, is a
row vector, , and is the transition rate matrix, . For
system of (18), we can write matrix as given by (19), shown
at the bottom of the page. It is noted that the sum of all elements
in a column of matrix is always equal to zero. Given
as a row vector of initial condition, we can solve the system of
C-K equations and determine the system state probabilities. The
solutions to the system of equation (18) take the following form
[32].

(20)

where is a matrix of eigenvectors of matrix is a
diagonal matrix with diagonal elements being eigenvalues of .
When the system has more than two components, the com-

ponents' states are grouped and denoted in a similar way. Each
system state has to be denoted by -tuple for an -component
series system. Markov properties and analysis for the system
can be carried out similarly. The degradation of component can
be explicitly determined when the current states of the group of
components are included in the system state.

The next state of the system denoted by only
depends on its current state. The state transition diagram and the
system of C-K equations can be obtained similarly.
In this paper, the state space of the Markov model depends

on the number of components and the number of health states of
each component. The complexity of the Markov model depends
on two factors: 1) the system state space and 2) the method used
to solve the system of C-K equations. The complexity of the
method used to solve the C-K equation by [32] is not our focus
in this paper. Here, we will discuss the state space of the system
model and illustrate the complexity of the system model.
Consider a system of multistate components with type-2

S-dependence. Each component may be in possible states.
We use , to represent the number of states
of such a system with components and is the common
maximum state of each component.
• When , i.e., the system has only one component,
and we have .

• When , the state dependence requirement dictates
that where is the state of component 1 and is
the state of component 2. Component 1 is the influencing
component while component 2 is the affected component.
Considering may take integer values from 0 to , inclu-
sive and may take integer values from 0 to , inclusive,
the number of states of the system in is then equal
to

.
• When there are components in the system, there is a
cascading dependence requirement such that

. Using similar reasoning, we can find
the number of states of the system in as

.

We can see that

and . Thus, the number of system states in-
creases with the order of at least when

and . This exponential increase in the number
of system states limits the model presented in this paper for sys-
tems with large and values. In the future, more efficient

(17)

(19)
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methods for solving the system model are needed to handle the
relationships between components proposed in this paper.
2) Combining Two Types of S-Dependence in System Reli-

ability Analysis: When both types of dependence are consid-
ered, the stochastic process governing the degradation of each
component cannot be defined individually since there is a chain
effect in type-2 S-dependence from the first component to the
last component in a series system. Thus, all components in the
system are considered at the same time. In fact, we do not need
to define the stochastic process for each component individu-
ally to determine the system reliability. The system state prob-
abilities can be first obtained using the Markov analysis for the
system with type-2 S-dependence as outlined in Section 3.3.1.
Then, type-1 S-dependence is incorporated in the event that the
system is in a failure state, which is caused when at least one
immediate failure occurs.
A stochastic process for the system with components

considering both types of S-dependence is defined as follows.
For a system of components, we use

, which is an N-tuple, to repre-
sent the system state considering type-2 S-dependence.
The superscript refers to type-2 S-dependence and the
subscript is the component in the system. Each N-tuple,

, exactly defines the
state of the system and is the stochastic
process representing the system degradation due to type 2
-dependence. Then, the stochastic process governing both
types of -dependence of the system is , where

is defined in (21), shown at the bottom of the page.
In the system of (17), the state probabilities of the system

are in the form of . Given the initial state of each
component in the system, the system of C-K equations can be
solved using the method presented in [32] to obtain the state
probabilities . Denote as the probability
that the system is in state at time without considering IF. We
can easily transfer the system state probabilities
into by applying

(22)

When IF from component happens, both influencing and af-
fected components are in failed state, and the system is also in
failed state. In addition, if a component is in state 0, IF failure
cannot happen to the system. Thus, the state probabilities of the
system considering type-1 S-dependence can be represented as
follows.
For , we have

there is no IF
(23)

and
there is no IF

at least 1 IF occurs

(24)

From (23) and (24), we can get the system state probabilities
. The system reliability is the proba-

bility that the system can operate and satisfy a required demand
. Once the state probabilities are determined, the system

reliability can be obtained using a zero-one function, .

(25)

where
if
otherwise.

IV. SELECTIVE MAINTENANCE MODEL

Many systems have to work consecutive missions with break
intervals between missions. “Mission” is a task that the system
has to perform. A mission is associated with a time duration.
For example: an aircraft has to perform a mission, i.e., a flight,
between two airports, a manufacturing system has to operate in
a day shift from 6 am to 6 pm. Between two missions, there
is a break to do maintenance, e.g., stop time at the airport in
the aircraft example, and night time off-working in the manu-
facturing system example. In our selective maintenance model,
there is a maintenance break between two successive missions
during which maintenance can be performed. During the next
mission, if IF happens or when a component degrades to a state
that cannot satisfy demand, the system is considered as failed
and the mission is failed. No repair action is allowed within a
mission. Thus, the maintenance decision maker must take the
probability of successfully completing the next mission, i.e., the
system reliability, into consideration prior to the start of the mis-
sion. The proposed maintenance model will optimize the main-
tenance decisions before a mission starts so that the system re-
liability is greater than or equal to a required threshold.

A. Maintenance Actions on a Multistate Component

In the selective maintenance problem, one needs to find the
optimal combination of maintenance actions on the components
when they arrive at the maintenance depot under the limited
resources. Denote and as the states of component at
the time of entering and exiting the maintenance depot, respec-
tively. It is assumed that the system is inspected at the time of
entering the maintenance depot and the components' states are

if for
if for at least a component (21)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON RELIABILITY

detected instantaneously, i.e., the state vector at the time of en-
tering the maintenance depot is explicitly known. The mainte-
nance actions do not worsen the condition of the component,
i.e., . In general, multiple maintenance options are
available on a multistate component when it is in the mainte-
nance depot as follows.
• Do-nothing: the current health state of the component does
not change at the maintenance depot, i.e., .

• Replacement: The component is renewed to the state “as
good as new.”

• Imperfect maintenance (IM): .
In a selective maintenance modeling for the system consisting
of multiple S-dependent components, it is necessary to consider
the effect of S-dependence on the selection of maintenance ac-
tivities. In this paper, we take S-dependence between compo-
nents into account by considering the following aspects when
modeling the maintenance activities of components.
• At the maintenance depot, if the influencing component is
in induced failure state, the maintenance action of its af-
fected components is valid only when the influencing com-
ponent is selected, i.e., when the affected component is se-
lected in a maintenance strategy, the influencing compo-
nent in type-1 S-dependence is also selected.

• Among maintenance actions for type-2 S-dependence
components, the repair of the affected components cannot
bring it to a state greater than the influencing component's
state. Because of the state dependence between compo-
nents, the repair action to bring the affected component to
a state greater than the state of the influencing component
requires more maintenance resources but does not improve
the system reliability and stochastic degradation in the
next mission in comparison with repairing the affected
component to the state equal to the state of the influencing
component.

B. MSS Profit and Cost Evaluation

In this paper, our aim is to build a cost-based selective main-
tenance model to identify the most economical maintenance
strategy when S-dependence exists. To do so, we analyze the
profit and costs for the system during the maintenance period
and in the next operating mission, including:
• the system production gain and loss associated with its per-
formance rate in the next mission.

• the maintenance cost in the maintenance depot.
1) System Production Gain and Loss: In MSS, the perfor-

mance rate often represents productivity or capacity. Thus, the
MSS production gain and loss are evaluated using the multiple
output performance rates it can produce in the next mission. Let

and be the average production gain and loss per unit of
performance. It is assumed that and are given. This is a
reasonable assumption since the values of and can be de-
termined based on the sale price of a unit, labor costs, material
costs and penalty per shortage unit in customer contracts in real
operation context. The total expected system profit in the next

mission is defined as the production gain , minus the pro-
duction loss and is shown by

(26)

(27)

(28)

where is the state probability of the system at time in
the next mission, is the next mission duration and is the
demand level of the system in the next mission.
In (26), the production gain is calculated for each unit

of performance rate that satisfies demand . It is
a product of the average production gain per unit of perfor-
mance rate , the output performance rate of the system at state

, and the expected probability that the system is
in state in the next mission . The production

loss is calculated in a similar way but it is only counted per
unit of unsupplied demand .
2) Maintenance Cost and Time in the Maintenance Break:

For each component , an amount of is required to
repair it from state to state in the maintenance break.
If no maintenance action is performed on component , i.e.,

. When , the maintenance
cost of maintenance actions on component

. The maintenance cost of a component can be ar-
ranged in matrix form as in [15]

(29)

The total system maintenance cost is the summation of mainte-
nance costs of all components

(30)

Similarly, we define as the time of repairing compo-
nent from state to state as

(31)
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When the components in the system are repaired one by one,
the total system maintenance time can be obtained by taking the
sum of all components' repair times as

(32)

In summary, the total system profit (cost) function is calculated
from the start of the maintenance break to the end of the next
mission as presented in

(33)

C. Selective Maintenance Modeling and Solution Methodology

The objective of the selective maintenance problem is to find
which components to be maintained and how to maintain them
during the maintenance break given their conditions at the time
of entering the maintenance depot. Thus, a solution of the se-
lective maintenance is a combination of the states of all compo-
nents at the time of exiting the maintenance depot. It is in vector
form .
The selective maintenance problem can be formulated as a

non-linear integer programming problem as follows:

(34)
(35)
(36)
(37)
(38)
(39)

(40)

In this paper, the maintenance manager has to determine main-
tenance activities associated with each component to achieve
the maintenance objective of maximizing the total profit of the
system during the whole next mission under limitation of time
and budget for maintenance as well as maintaining the require-
ment of the system reliability in the next operating mission. The
objective function is to maximize the total multistate system
profit, which is equal to the production gain in the next mission
minus the production loss andminus the maintenance cost. Each
element in the cost function, , is calculated as in Section IV-B.
Constraint (35) indicates that the required system reliability

in the next operating mission at demand must be greater than
or equal to a specified value . is calculated using
the approach discussed in Section III. Constraints (36) and (37)
are two resource constraints, which indicate that the resources
for maintenance must be within the available budget and time
allotted within the break between the last mission and the up-
coming mission. Constraint (38) describes type-1 S-dependence
in the system: an affected component belongs to the set of
components affected by component , then component
cannot be in failure state if the state of component . Con-
straint (39) describes type-2 S-dependence in the system: the

Fig. 5. MSS in example 1.

TABLE I
COMPONENTS' TRANSITION RATES

state of a component is less than or equal to the states of its pre-
decessors. The decision variable, , is a combination of com-
ponents' states at the beginning of the next mission. Since the
maintenance activities do not worsen the state of the compo-
nents, must be an integer value between and themaximum
state for all .
In this paper, we use genetic algorithm (GA) to deal with the

non-linear selective maintenance optimization model. It is rec-
ognized that GA has simple structure and is easy to implement
using computer programming. GA has beenwidely used for var-
ious types of optimization problems including maintenance op-
timization [9], [15], [33].
In GA, we use a chromosome consisting of genes to rep-

resent a solution of the selective maintenance problem. Each el-
ement of the state vector corresponds to each gene in GA solu-
tion representation. is the targeted state of the corresponding
component in the maintenance period. If the states of com-
ponents at the time of entering the maintenance depot, , are
known, the MSS profits, maintenance cost and time as well as
the system reliability in the next operating mission can be cal-
culated for each vector . Thus, GA can be used to find the best
combination of the components' outcome states after the main-
tenance break for the proposed optimal selective maintenance
problem.

V. EXAMPLES, RESULTS AND DISCUSSIONS

Example 1: This example is devoted for illustrating the reli-
ability analysis of MSS with type-2 S-dependent components.
Consider a MSS consisting of three multistate components con-
nected in series with type-2 S-dependence as presented in Fig. 5.
Each component can be in one of four possible states, i.e.,

with corresponding performance rates in a set
. The nominal state transition rates are provided

in Table I and dependent exponents .
All components are as good as new at time , find the

probability that the system can deliver at least at demand
in a mission time year.
Denote the system's state by a set of with being

the state of component . The state diagram is con-
structed as in Fig. 6.
In Fig. 6, state “ ” or “Failed” indicates that at least one

component in the system is in state 0, i.e., complete failure
state. Once a component is in state 0, no other components can
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Fig. 6. Transition diagram of a three-component system with type-2
S-dependence.

degrade further in the mission. The C-K system of equations
can be written as given by (41), shown at the bottom of the
page. In example 1, the size of matrix is 11 11. The C-K
system of equations can be solved with initial condition vector

using the method presented
in Section III-C. With , we obtain

Hence, the system reliability at is

Example 2: Consider a MSS consisting of five multistate
components in series with their dependence as presented in
Fig. 7. Each component can be in one of four possible states

with corresponding performance rates in a

Fig. 7. MSS in Example 2.

TABLE II
COMPONENTS' CHARACTERISTICS IN EXAMPLE 2

set . The nominal state transition rates and
dependence exponents are provided in Table II.
Components 1 and 2 may fail due to induced failure processes

with and . In the set ,
component 1 can cause components 3 and 4 to fail immediately,
and component 2 can cause component 4 to fail immediately,
i.e., .
Upon arriving at the maintenance depot, the vector of com-

ponents' states is .
The repair time (in days) and cost (in $1 000) matrices of each

component are given as follows:

(41)
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TABLE IV
SELECTIVE MAINTENANCE RESULTS

TABLE III
SYSTEM INFORMATION AND RESOURCE AVAILABILITIES

The maintenance manager has to find selective maintenance ac-
tions to be performed on the system under the requirement and
resource availabilities as given in Table III.
The Markov analysis for the system is performed by denoting

the state of the system by . We enumerate all
states of the system including (3, 3, 3, 3, 3), (3, 3, 3, 3, 2), (3, 3,
3, 2, 2), (3, 3, 2, 2, 2), (3, 2, 2, 2, 2), (2, 2, 2, 2, 2), (3, 3, 3, 3,
1), (3, 3, 3, 2, 1), (3, 3, 2, 2, 1), (3, 2, 2, 2, 1), (2, 2, 2, 2, 1), (3,
3, 3, 1, 1), (3, 3, 2, 1, 1), (3, 3, 1, 1, 1), (3, 2, 2, 1, 1), (3, 2, 1,
1, 1), (3, 1, 1, 1, 1), (2, 2, 2, 1, 1), (2, 2, 1, 1, 1), (2, 1, 1, 1, 1),
(1, 1, 1, 1, 1), and state denoting the complete failure state of
the system. The reliability analysis is done in the same way as
in Example 1.
Using the given input data, we code and solve the selective

maintenance problem for the MSS inMatlabR2012a. The selec-
tive maintenance scenarios for the system with S-dependence is
compared with the scenario where S-dependence is ignored, as
presented in Table IV.
In the first maintenance scenario, the system is subjected to

both types of S-dependence. The best maintenance strategy is
to repair component 1 and 2 to their perfect functioning state
and three other components to state 2. The expected profit for
this maintenance strategy in the next mission considering the
average production gain, loss and the cost of maintenance is
$289.1 K.
We also investigate the effect of dependence in the system by

solving the selective maintenance problem for the same system
and assuming that the components degrade independently. The
system reliability and cost elements can be evaluated using the
same method but the induced failure rate and dependence expo-
nents are all set to zero; constraints (38) and (39) are removed
from the optimization model. The obtained result indicates that
the best maintenance strategy is to repair components 1, 3, and
4 to their perfect condition and components 2 and 5 to state 2.
It can be seen that the resources used in the maintenance break

Fig. 8. MSS profit and cost analysis.

for this strategy are not much different from the strategies for
dependent systems. However, the system reliability when com-
ponents are independent is much higher, at 0.90474, i.e., 5%
larger; and the total profit is also approximately 10% larger, at
$317.8 K, in comparison with the independent case. Thus, we
can conclude that ignoring S-dependence leads to another selec-
tivemaintenance decision, and this may overestimate the system
reliability and profit.
In order to investigate the differences between two mainte-

nance scenarios in Table IV in terms of cost and profit results,
we examine the elements in the cost function as in (30) for each
optimal strategy. Fig. 8 shows the profit and cost elements of
interest.
In the two selective maintenance strategies, the costs for

maintenance in the break when components are dependent and
when they are independent are not much different. However,
when components are dependent, the production loss is much
greater and the production gain is smaller. Thus,
the total system profit is significantly different for the two
cases. We can conclude that the two types of S-dependence
have negative effects on the reliability and performance of the
system. It is reasonable since the system reliability when com-
ponents are independent is greater than that when components
are S-dependent. When the probability of the system being
in high states is bigger, it can result in a larger total profit.
This result implies that ignoring S-dependence may lead to an
optimistic estimation of the system profit.

VI. CONCLUSION

This paper studies the selective maintenance problem for
multistate systems with multistate S-dependent components.
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The dependence relationships between components in se-
ries systems are discussed in multistate context. Firstly, the
induced failure of a multistate component can immediately
cause complete failures of some other components. Secondly,
as components in the system deteriorate, the degradation of
a component reduces the capacity flowing to the subsequent
component, thus affecting the degradation of these compo-
nents. The repair actions of S-dependent components and the
costs in the multistate system are analyzed, and a selective
maintenance model is proposed to maximize the total profit
of the multistate system subjected to time and reliability and
resources constraints.
The example and results imply that S-dependence has signifi-

cant effect on the MSS reliability. Also, ignoring S-dependence
may lead to a wrong determination of selective maintenance
plan for the system and overestimation of the system perfor-
mance. The selective maintenance model can help the mainte-
nance manager make the right decision to maintain the system
with available resources and under restricted conditions.
The paper investigates the selective maintenance problem for

a multistate series system under a single operating mission. The
components in the system degrade gradually. Different system
structures and components' degradation and multiple mission
selective maintenance for multistate systems with dependent
components are suggested for future studies. In addition, the
state space of Markov analysis for the system increases expo-
nentially when the number of components and number of states
of each component increase. More efficient methods for solving
the system model are also recommended for future research.
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