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Abstract 

This paper presents a study on selective maintenance for multi-state series-parallel systems 

with economically dependent components. In the selective maintenance problem, the 

maintenance manager has to decide which components should receive maintenance 

activities within a finite break between missions. All the system reliabilities in the next 

operating mission, the available budget and the maintenance time for each component from 

its current state to a higher state are taken into account in the optimization models. In 

addition, the components in series-parallel systems are considered to be economically 

dependent. Time and cost savings will be achieved when several components are 

simultaneously repaired in a selective maintenance strategy. As the number of repaired 

components increases, the saved time and cost will also increase due to the share of setting 

up between components and another additional reduction amount resulting from the repair 

of multiple identical components. Different optimization models are derived to find the best 

maintenance strategy for multi-state series-parallel systems. A genetic algorithm is used to 

solve the optimization models. The decision makers may select different components to be 

repaired to different working states based on the maintenance objective, resource 

availabilities and how dependent the repair time and cost of each component are. 
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1. Introduction  

Many systems in the industry are required to perform several missions with finite breaks 

between missions. In order to maintain good conditions of the systems, we have to decide 

which subsystems or components should be given maintenance activities in the limited time 

allotted between missions. This problem is called selective maintenance.In this study, the 

selective maintenance problem for multi-state series-parallel systems under strict 

requirements on resources such as time and cost is considered. The first selective 

maintenance model was introduced in 1998 by Rice et al. [1]. In their paper, the 

mathematical model for optimizing the reliability of binary-state series-parallel systems 

with independently and identically distributed (i.i.d.) time to failure of the components in 

each subsystem and a heuristic rule was provided to solve the model. Then, different 

selective maintenance models and applications for binary state case were developed by 

Cassady et al., 2001, [2]. Schneider and Cassady, 2004, [3] extended the model by Rice et 

al. by considering selective maintenance for a fleet including multiple binary series-parallel 

systems. Pandey et al., 2013, [4] studied the selective maintenance for binary systems 

considering imperfect repair, in which the health of components may be not as good as 

new  and depends on the maintenance cost. Maillart et al., 2009, [5] investigated selective 

maintenance optimization for binary series-parallel systems working under multiple 

identical missions and found that the difference in the long-run performance between 

optimal single-mission policy and multi-mission policy is minimal. 

In all these studies, [1] - [5], the system and its components are assumed to be in two 

possible states of failed or functioning. However, in practice, many systems and 
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components can operate in more than two possible states, e.g. partial failed  or imperfect 

functioning . In this more general case, Chen et al., 1999, [6] modeled selective 

maintenance for multi-state systems with the objective of minimizing the cost of 

maintenance subject to reliability constraints. Liu and Huang, 2010, [7] presented a 

selective maintenance model for systems with multi-state corresponding to cumulative 

performance of N binary components and considering the imperfect maintenance that may 

restore the condition of the system to an intermediate state. 

In the study of Chen et al. [6], a selective maintenance model for the multi-state 

series-parallel system was provided. In this model, the maintenance cost is minimized 

subjected to the system reliability constraints. However, in maintenance management and 

particularly in selective maintenance, the time allocated for maintenance activities is one of 

the most critical constraints. This paper studies the model by Chen et al. [6] for a situation in 

which the maintenance crews have to consider the available time for total maintenance 

activities, T0, which is limited.  

Furthermore, many maintenance actions are usually implemented on multi-component 

systems in a selective maintenance scenario. In all previous selective maintenance studies, 

[1]-[7], components in the system are assumed to be economically independent, i.e. the 

repair of each component is independent to other components. However, in many industrial 

systems such as aircrafts, medical equipments, automotive mechanical machines and 

nuclear power plants, etc., repairing multiple components, especially identical components, 

is always more economical due to the share of setting up, tools, materials and labor. In this 

case, those components in such systems are considered to be economically dependent. The 

idea of setting up cost saving due to performing a group of maintenance activities that may 

require only one set-up was employed in a series of papers [8] - [12] and a review by Dekker 

et al., 1997, [13]. More recently, Nourelfath and Chatelet, 2012, [14] investigated economic 
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dependence and structural dependence between components of a parallel system in the 

production and preventive maintenance planning problem with the objective of minimizing 

the total production and maintenance cost. Maaroufi et al. [15] considered maintenance for 

binary systems with propagated failures and economic dependence where -up 

than one components is replaced. In these papers, they considered the set-up cost incurred 

each time there is corrective, preventive or opportunistic replacement and the components 

 after replacement, rather than the possibility of 

repairing components to different intermediate states as in multi-state systems. Moreover, 

these papers did not consider time savings when performing maintenance on multiple 

components in the systems. 

This paper, therefore, focuses on modeling two types of economic dependency between 

multi-state components based on the share of setting up and the advantage of repairing 

multiple identical components in each subsystem of the multi-state series-parallel system. 

Both time and cost savings can be assured when several components are selected to be 

repaired in a selective maintenance strategy. In this study, the system and its components 

may be in any state from a set of all possible states, {0,1,..., }S K , where state K is perfect 

functioning, state 0 is complete failure, others are intermediate states. The multi-state 

series-parallel systems are assumed to have the following characteristics: 

- All the components in a subsystem are identical and s-independent. 

- The maintenance activities do not make the condition of components and the system 

worse, i.e. the states of the system and its components are not lower after going out 

of the maintenance depot. 

- The resource requirement for a single maintenance activity is deterministic and 

known. 
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2. Problem formulation 

Notation: 

:M  Number of subsystems connected in series 

:i  Subsystem index, 1,2,...,i M  

:iN  Number of components in subsystem i 

:j  Component index in each subsystem, 1,2,..., ij N  

( , ) :i j  Component j of subsystem i, 1,2,...,i M , 1,2,..., ij N  

:K  Maximum state of each component as well as the system 

, , :a b k  State indexes of component or system, 0 , ,a b k K  

:ijY  Given state of component (i,j) at the end of the previous mission 0 ijY K  

:Y  State vector of all components in the system at the end of the previous mission  

:ijX  State of component (i,j) at the end of maintenance period ij ijY X K  

:X  State vector of all components in the system at the end of maintenance period 

:s  The state function of the system after the next operating mission, 0,1,...,s K  

:  The operating mission duration 

( , ) :ijt a b The required time for individual repair (single repair) of component (i,j) from state 

a to state b; if all components in a subsystem are i.i.d.: ( , ) ( , )ij it a b t a b , and:  

0
( , )

0
ij

if b a
t a b

otherwise  

:iT  The time matrix for repairing a single component in subsystem i from state a to state 

b 

' ( , ) :it a b The adjusted repair time of repairing an additional identical component in 

subsystem i from state a to state b 

( , ) :i
Tf a b The time saving coefficient when repairing multiple components in subsystem i 

from state a to state b 
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:st  The amount of time saved per component due to the share of setting up 

:CT  The total completion time of all selective maintenance activities 

0 :T  The available time for all selective maintenance activities   

( , ) :ijc a b The cost for individual repair of component (i,j) from state a to state b; if all 

components in a subsystem are i.i.d.: ( , ) ( , )ij ic a b c a b , and:  

0
( , )

0
ij

if b a
c a b

otherwise
 

' ( , ) :ic a b The adjusted repair cost for each i.i.d. component in subsystem i from state a to state 

b 

:iC  The cost matrix for single repair of a component in subsystem i from state a to state 

b 

:sc  The amount of saved money per component due to the share of setting up 

( , ) :i
Cf a b The cost saving coefficient when repairing multiple components in subsystem i 

from state a to state b 

:i
mC  The total adjusted cost of repairing m identical components in subsystem i from state 

a to state b 

:TC  The total cost of all selective maintenance activities 

0 :C  The available budget for all selective maintenance activities   

: The exponents indicating the rate of time/cost improvement of identical repairs 

characterized by type of component in a subsystem 

( , ) :ijp b a The probability of a component (i,j) being in state b at the beginning of an 

operating mission and being in state a at the end of the mission. If all components in 

a subsystem are i.i.d. ( , ) ( , )ij ip b a p b a , and:  

0
( , )

0
ij

if b a
p b a

otherwise
 

:iP  The transition matrix of a component in subsystem i 
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( ) :sR k  The probability that the system state is greater than or equal to k, ( )sP k  or the 

reliability of the system at level k 

0 :R  The minimum reliability requirement of the system 

2.1. Multi-state series-parallel system and selective maintenance problem 

description 

1

2

N1 

1

2

N2 

...

...

1

2

NM 

... ...

Subsystem 1 Subsystem 2 Subsystem M

 

Figure 1. Series-Parallel System 

The series-parallel system consists of M independent subsystems connected in series and in 

subsystem i , {1,2,..., },i M there are iN identical components connected in parallel 

(Figure 1). Each component and the system may be one in a set of K+1 possible states,

{0,1,..., }S K , where state K is perfect functioning, state 0 is complete failure, others are 

intermediate states. In a series-parallel structure, the state of a subsystem is the maximum 

state among its components and the system state is determined by the minimum state among 

M subsystems. In the selective maintenance problem, the system has to work consecutively 

identical missions with break interval of 0T  - time from the end of previous mission to the 

beginning of the next mission. The maintenance crews have to decide what and how to 

maintain each component in the system within available budget C0 and available time T0.  

For each component ( , )i j , , 0ij ijY Y M , represents its state at the time of entering the 

maintenance depot and ijX  is its state after the selective maintenance break. Because the 
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maintenance activities do not make the condition of components and the system worse, it is 

clear that ij ijY X M . In the selective maintenance problem, the state vector of all 

components in the system at the time of entering the maintenance depot, 

{ },( 1,2,..., , 1,2,..., )ij iY Y i M j N , is known; we have to find its state vector at the time 

of exiting the maintenance depot, { },( 1,2,..., , 1,2,..., )ij iX X i M j N . 

2.2. The system reliability 

A component degrades with use, and its state at the end of an operating mission is a random 

variable. Xue and Yang, 1995, [16

performance degradation in multi-state coherent systems. This may serve as a good 

reference for the state transition analysis of multi-state components and systems. Here, we 

will not focus on the compone . 

This paper assumes that the probabilities for a component in subsystem i at any 

pre-specified state b degrading to all possible state a (0 a b ) after the operating mission, 

( , )ip b a , are already known. When 0,1,...,b K , these probabilities form a 

( 1) ( 1)K K transition probability matrix of each component in subsystem i for 

completing a mission as given in equation (1). 

 

1 0 ... 0

(1,0) (1,1) ... 0
, 1, 2,...,

... ... ... ...

( ,0) ( ,1) ... ( , )

i i
i

i i i

p p
P i M

p K p K p K K

    (1) 

In equation (1), the state of components cannot rise after an operating mission, i.e.

( , ) 0 .ip b a if b a If a component begins in state 0, a=0, it will remain in that state after 

the next mission since it cannot degrade further, hence (0,0) 1.ip  If a component is in 
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state , 0 ,b b K  its state after the next mission can be any value from the set of 

, 1,...,0b b , therefore: 

 
0 0

( , ) ( , ) 1 0,1,...,
K b

i i
a a

p b a p b a for b K     (2) 

In order to deal with the selective maintenance problem, we need to find the system 

reliability at the end of the next mission at a specified level a, i.e. the required reliability 

level, ( ) ( )s sR a P a . In series-parallel structures, a subsystem is in a state less than a, 

subi a , when all of its components are in states less than a. The event that the subsystem i 

is in state a or above at the end of the next mission, subi a , is the complement event of 

subi a . Therefore, the reliability of the system at level a, ( )sR a , can be computed by using 

equation (3), Chen et.al. [6]. 

1 1

1

1 1 0

( ) ( ) ( ) 1 ( )

1 ( , )
i

M M

s s subi subi
i i

NM a

i ij
i j k

R a P a P a P a

p X k
   (3) 

2.3. The system repair time and cost 

When entering the maintenance depot, components may be in any state from the set of state 

space, i.e. each elements of ijY can be any number from {0,1,..., }K . Within the maintenance 

break duration, 0T , and the available budget, 0C , the system and its components are 

subjected to be maintained to properly working  states so that the system will meet the 

reliability requirement in the next operating mission. Here, the required time and cost for 

single repair (individual repair) of an i.i.d. component in subsystem i from state a to any 

state b which is greater than a are known. The single repair time and cost of each component 
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in subsystem i from an arbitrary state a to state b are arranged in matrix form as in (4) and (5) 

respectively.  

0 (0,1) ... (0, )

0 0 ... (1, )

... ... ... ... , 1,2,...,

( 1, )0 0 ...

0 0 ... 0

i i

i

i

i

t t K

t K

T i M

t K K
    (4) 

0 (0,1) ... (0, )

0 0 ... (1, )

... ... ... ... , 1,2,...,

( 1, )0 0 ...

0 0 ... 0

i i

i

i

i

c c K

c K

C i M

c K K
    (5) 

In (4) and (5), the time and cost of repairing a single component from state a to state b are 

non-zero values when a is less than b. In general, '( , ) ( , )i it a b t a b '( , ) ( , )i iand c a b c a b

' ;if b b ( , ) 0, ( , ) 0 .i it a b c a b if a b  Without doubt to the calculation of maintenance 

time and cost, an element in these matrices is set equal to zero if a is greater than b, i.e. 

( , ) 0, ( , ) 0 .i it a b c a b if a b  

In order to calculate the total repair time and cost of the entire system, it is necessary to 

analyze the relationship of the repair time and cost between components. The time and cost 

for improving the state of a component may not affect that of other components - 

independent repair time for each component. However, the same setting up, maintenance 

process, equipments, etc. may be utilized when multiple components are simultaneously 

selected to be repaired in a maintenance strategy. In this case, time and cost savings will be 

achieved by repairing multiple components in the selective maintenance modeling. 

2.3.1. Independent  repair time and cost 
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When the repair time for each component is independent, the total time required to do the 

selective maintenance for the system is simply a summation of all the individual repair time 

of its components in (4). If we know the components  state vector at the time of entering the 

maintenance depot { },( 1,2,..., , 1,2,..., )ij iY Y i M j N , the total system maintenance 

time corresponding to a vector of component state at the time of exiting the maintenance 

depot, { }ijX X , can be computed and represented as in equation (6). 

1 1

( ) ( , )
iNM

C ij i ij ij
i j

T X T X Y        (6) 

Similarly, the total system maintenance cost can be obtained by taking the sum of all single 

 repair costs. 

1 1

( ) ( , )
iNM

T ij i ij ij
i j

C X C X Y        (7) 

2.3.2. Dependent repair time and cost 

In most realistic systems, time and cost savings are achieved when multiple components are 

selected to be repaired in a maintenance strategy, especially for identical components in 

each subsystem of series-parallel systems. They usually require similar initial setting up, 

labor and equipments. Here, the concept of set-up cost  [13] is employed to both cases of 

time and cost. In addition, it is even more economical when repairing multiple identical 

components in the same current state (condition) a to the same properly working state b. 

This is because there are not only the share of setting up but also the advantages of ordering 

materials (batch order) and using the same process of performing maintenance on those 

identical components. Additional cost and time savings for this type of repair should be 

addressed. Therefore, we consider two types of time and cost savings of repairing multiple 
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components in series-parallel systems as follows: 

1. Time and cost savings due to the share of setting up. 

2. Additional reduction time and cost of repairing multiple identical components in a 

subsystem from the same current state a to the same properly working state b. 

In the section below we will focus on formulating the total actual repair cost for a selective 

maintenance strategy based on the single repair cost matrix in (5) with the consideration of 

two types of cost saving above. Once the total repair cost is determined, the total 

maintenance time of the system can be calculated accordingly.  

The savings due to the share of setting up are assumed to be fixed per component since it is 

associated with the process of preparation for maintenance such as erecting, dismantling 

and reassembling the system, etc. Thus, in the first type of dependency, a fixed amount of 

set-up cost , sc , is saved whenever an additional component is selected in a selective 

maintenance strategy (Figure 2). The more components to be maintained, the more money is 

saved due to the share of setting up. If Nr components in the system are maintained in a 

selective maintenance strategy, the total amount of money saved due to the share of setting 

up will be ( 1)r sN c . 
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Figure 2.The maintenance cost (time) vs. number of repaired components 

when there is the share of setting up 

m identical multi-state components in a subsystem i with 

( , )ic a b  being the cost for individually repairing each component from state a to state b. In 

multiple repairs of identical components, the same technology and equipment can be 

utilized, and the maintenance is more efficient in repetitive tasks. Thus, in addition to the 

cost saved by setting up sharing, we introduce a cost saving coefficient, ( , )i
Cf a b , to 

represent the repairing cost dependency of multiple identical components in subsystem i. 

Denote ' ( , )ic a b  to be the adjusted repair cost for an additional component in subsystem i 

from state a to state b. The calculations of total maintenance cost and the saved amount due 

to each type of dependencies are illustrated in Figure 3. The adjusted repair cost and the 

saved amount in addition to a fixed set-up cost for repairing a component from state a to 

state b are calculated by (8) and (9) respectively. 

( )s sc t  

2 ( )s sc t  
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' ( , ) ( , ) ( , )i
i C i sc a b f a b c a b c      (8) 

'( , ) ( , ) 1 ( , ) ( , )i
i i s C ic a b c a b c f a b c a b    (9) 

From (8), we can form an adjusted repair cost matrix for a component in each subsystem i, 

'
iC ; each element in this matrix is a function of i

Cf  and sc . The total adjusted cost for 

repairing m identical components from state a to state b can be computed as in (10). 

'( , ) ( 1) ( , )

( , ) ( 1) ( , ) ( , ) ( 1)

i
m i i

i
i C i s

C c a b m c a b

c a b m f a b c a b m c
  (10) 

Theoretically, i
Cf can take any value between 0 and 1. When the two components are 

independent, 1i
Cf , the total repair cost cost. 

0i
Cf  when we do not need any additional cost to repair an extra component other than the 

first one. 
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Figure 3. The maintenance cost when repairing identical components 

 

The total system maintenance cost is, then, the summation of total adjusted repair cost of 

each component. It is a function of the decision variables ijX , the amount of saved money 

due to the share of setting up - sc , the cost saving coefficients - i
Cf  

state at the time of entering and exiting the maintenance depot. 

'

1 1

( ) ( , , , )
iNM

i
T ij ij ij ij s C

i j

C X C X Y c f       (11) 

In (11), ' ( , , , )i
ij ij ij s CC X Y c f  is the adjusted repair cost of component (i,j) which is equivalent 

to ' ( , )ic a b  in the explanation above. In the selective maintenance problem for the 

series-parallel system considering economic dependence, we need an assumption that the 

components in the same subsystem have to be maintained in a group to gain the benefits of 

sc  

2 sc  

ic  
'
ic  

(1 )i
C if c  
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time and cost savings. However, in the process of calculation, it is no doubt to assume a 

subsystem is repaired before another sub-system since all the results on the system 

reliabilities, cost and time are not affected. With this assumption, if there are multiple 

components in different sub-systems subjected to be maintained in a selective maintenance 

strategy, the value of the adjusted repairing for the first component is always equal to the 

cost of the single repair for that component. For the next component, ' ( , )ic a b  is calculated 

as in (12).  

' ( , ) If there is identical repair
( , )

( , ) Otherwise

i
C i s

i

i s

f c a b c
c a b

c a b c
    (12) 

Similarly, the total system maintenance time for a selective maintenance strategy can be 

obtained if the time saved due to the share of setting up - st , the time dependent 

coefficients - i
Cf , and the state of component at the time of entering the maintenance depot 

are known.  

'

1 1

( ) ( , , , ),
iNM

i
C ij ij ij ij s T

i j

T X T X Y t f       (13) 

where '
ijT is the adjusted repair time for component j in subsystem i when the repairs of 

components are dependent. 

In order to understand more about the proposed saving model, we also investigate other 

saving mechanisms and their effects on the selective maintenance for the multi-state 

series-parallel system. The saving patterns of performing multiple activities when task 

repetitions take place will be investigated and compared to our saving model. The basic 

-  [17]. It has the following 

mathematical representation:  
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1( )C x C x or 1log ( ) log logC x C x ,    (14)  

where 1C  is the cost (time) of the first unit, ( )C x is the average cost (time) of x units, and 

 is an exponent indicating the rate of productivity improvement, 0 1. 0 means 

that there is no advantage of performing multiple tasks and when  is close to 1, the benefit 

of multiple tasks execution is larger.  

From the basic model in equation (14), several models have been developed to measure the 

average unit cost/time as a function of the number of units produced. These models are 

summarized in [18]. In this paper, we will consider three typical saving patterns: the 

Log-linear, Plateau and Exponential models.  

1( ) pC x C C x         (15) 

1( ) cxC x C x e         (16) 

The Plateau model in (15) is often applied when there is a limit of the unit cost as x increases 

to a very big value. Cp is a parameter representing the plateau limit of the average unit cost. 

In (16), c is another parameter, usually a constant that reflects the upturn effect on the cost 

when the number of units increases to a considerably large value. 

From the average unit cost, we can find the total cost of repairing m identical components, 

i
mC , in a sub-system of the series-parallel system. Table 1 summarizes i

mC  calculated from 

the proposed model and three saving models in the literature.   
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Table 1. Summary of different cost saving models of repairing m identical components 

Model Average cost of x units 
   Total cost of repairing m  identical 

components 

Log-linear 1C x  1
1

i
mC C m  

Plateau 1C C x  1
1

i
mC Cm C m  

Exponential 1
cxC x e  1

1
i cm
mC C m e  

Proposed model '
1 1( 1) /C x C x  '

1 1( 1)i
mC C m C  

In the calculation of average cost of x units for the proposed model in Table 1, we use '
1C  as 

the adjusted repair cost, which can be computed in the same way as in (12). We use three 

saving patterns in Table 1 for describing the dependent relationship between the cost/time of 

multiple repairs and the number of components involved in each sub-system. The results of 

selective maintenance for multi-state series-parallel systems and discussions will be 

provided in Section 4. 

2.4. Mathematical programming formulation 

Cassady et al, 2001, [2], proposed mathematical programming models for optimizing 

selective maintenance of binary systems. This paper extends those models to the multi-state 

case. The selective maintenance problem for multi-state series parallel system is a 

non-linear integer programming problem with known component  such as 

the state of components at the time of entering the maintenance depot, the time and cost of 

single repair, time and cost savings of multiple repair, state probability distribution of each 

component in the next mission.  

In a very popular selective maintenance problem, the maintenance crews have to find what 

maintenance activities associated with each component to be performed to achieve the 
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maintenance objective of increasing the system reliability under limitation of resources such 

as time and cost. This type of problem can be formulated as follows: 

P1:  
1

01 1

( ) 1 ( , )
iNM a

s i ij
ki j

Maximize f R a p X k    (17) 

  0: ( )C ijSubject to T X T       (18) 

0( )T ijC X C       (19) 

ij ijY X K       (20) 

,ijX is integer 1,2,..., ; 1,2,..., ii M j N   (21) 

In the model, the objective function (17) is to maximize the reliability of the system at a 

specified working level a, which has been formulated in section 2.2. There are two types of 

constraints in (18) and (19) which restrict the total time and cost for all maintenance 

activities within available time, 0T , and budget, 0C . The component repair time and cost 

may be or may be not independent. We can find the total time and cost for maintaining the 

system to desired working level as explained in section 2.3. The decision variables, ijX , are 

the states of components at the time of exiting the maintenance depot. Since the 

maintenance activities do not worsen the state of the components, ijX must be integer value 

between ijY and the maximum state K for all 1,2,..., ; 1,2,..., ii M j N . 

The decision makers can use the problem P1 when they have information about their 

available time and budget and the system reliability is very critical. The solution of P1 gives 

us the most reliable system with on-hand resources. In practice, we may face many other 

situations of the principal objective and resource availability. When the total completion 

time is the most important issue it is treated as the objective of the selective maintenance 

problem. Then, the system reliability and cost are two constraints, and we have an 
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alternative P2. Similarly, another derivation, P3, can be obtained as follows: 

P2:  ( )C ijMinimize f T X        (22) 

0: ( )s ijSubject to R X R       (23) 

0( )T ijC X C       (19) 

ij ijY X K       (20) 

,ijX is integer 1,2,..., ; 1,2,..., ii M j N   (21) 

P3:  ( )T ijMinimize f C X        (24) 

  0: ( )s ijSubject to R X R       (23) 

0( )C ijT X T       (18) 

ij ijY X K       (20) 

,ijX is integer 1,2,..., ; 1,2,..., ii M j N   (21) 

In the problems P2 and P3, the constraint (23) requires the reliability of the system to be 

greater than or equal to a specified level 0R . Both ( )s ijR X and 0R are vectors with 

K-dimension; each dimension is the probability that the multi-state system is at the 

corresponding state or above. 

For an extremely urgent situation, we have to maintain the system to attain a certain 

reliability level as soon as possible regardless of how costly it is. In this case, the constraints 

on cost will be released and a special case of problem P2 can be derived: 

P4:  ( )C ijMinimize f T X        (24)  

  0: ( )s ijSubject to R X R       (25) 

ij ijY X K       (20) 
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,ijX is integer 1,2,..., ; 1,2,..., ii M j N   (21) 

It is also noted that many other derivations of these models can be obtained. Depending on 

the principal purpose of the maintenance and available information, the maintenance 

decision makers can select the most appropriate models and thereby understand what 

actions should be done based on his on-hand conditions. 

3. Solution approach 

Genetic Algorithms (GA) is used to solve the proposed selective maintenance models in 

section 2. In this section, we will provide a detailed solution representation for the selective 

maintenance problem, a general procedure of GA, and parameters setting in GA program. 

ound 

in [19] and [20]. 

3.1. Solution representation 

Solution representation is one of the most important parts in the implementation of genetic 

algorithm. Let N be the total number of components in the system, 1 2 ... .MN N N N

The detail of solution representation is illustrated in Figure 4. Each chromosome consists of 

N genes; each gene is an integer number between 0 and K which represents the state of the 

corresponding component at the end of the maintenance break.  

1 2  N1 1 2  N2  1  NM 

11X  
12X      

11NX  X
21

  X
22

     21NX   X
M1

  
MMNX  

 

       

Figure 4. Solution representation 

State of components 
in subsystem 1 

State of components 
in subsystem 2 

State of components 
in subsystem M 
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1 to subsystem 

M and the decision variable, , 1,2,..., , 1,2,...,ij iX i N j M , can be transformed to the state 

vector , 1,2,...,iX i N . Each state vector is considered as a solution of the proposed 

selective maintenance problem. If the states of components at the time of entering the 

maintenance depot are known and can be rewritten in vector form, , 1,2,...,iY i N ,we can 

maintenance break for the proposed optimal selective maintenance problem.   

3.2. General procedure and implementation of GA 

GA starts by randomly initializing a population of N chromosomes in the first generation. 

Each chromosome represents a possible solution to the selective maintenance problem. 

Since each gene of chromosome represents the state of the corresponding component, we 

use a random generator to create each integer number in each gene within the range from iY  

to M. The fitness function, i.e. the objective function, is used to evaluate the chromosomes, 

which allows a particular chromosome to be ranked against all the others. After computing 

the fitness values of the individuals, existing solutions are recombined using crossover, 

mutation, and reproduction procedures, to obtain new ones. The genetic algorithm 

terminates when a pre-specified number of generations is attained or a given time limit is 

over. 

Based on this approach, the problem is coded using Matlab R2011a. The parameters setting 

for GA program is shown in Table 2.  
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Table 2.GA parameters setting 

GA Parameters 
Value/ 

Probability 
Type 

Population size 50 - 

Crossover 0.8 Single point 

Mutation 0.1 Uniform 

Selection - Tournament 

Number of GA iterations  
(Stopping criteria) 

100 - 

 

4. Illustrative examples, results and discussion 

Example 1: Considering a multi-state series-parallel (Figure 5) with K=3, M=3, N1 = 3, N2 

= 2, N3 = 4, the given states of components when entering the maintenance depot are: 

2 0 1

2 2 2 0 1 2 2 0 2 2 1

0 2 2 1
ijY or Y  

For each i.i.d. component in subsystem i, i=1,2,3, the transition probability matrices and 

corresponding cost and time matrices for each individual maintenance activity are: 

1 2 3

1 0 0 0 1 0 0 0 1 0 0 0

0.2 0.8 0 0 0.1 0.9 0 0 0.25 0.75 0 0
, ,

0.1 0.3 0.6 0 0.1 0.3 0.6 0 0.05 0.15 0.8 0

0.05 0.1 0.1 0.75 0.05 0.05 0.1 0.8 0.05 0.1 0.15 0.7

P P P

 

1 2 3

0 7 8 10 0 3 9 10 0 5 6 10

0 0 2 7 0 0 6 8 0 0 4 8
, ,

0 0 0 2 0 0 0 5 0 0 0 7

0 0 0 0 0 0 0 0 0 0 0 0

C C C  
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1 2 3

0 2 5 7 0 3 4 6 0 1 3 6

0 0 3 4 0 0 3 5 0 0 2 4
, ,

0 0 0 2 0 0 0 2 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0

T T T  

The repairing time and cost for each component are independent. The required level of the 

system at the end of the next operating mission is a = 3. We want to find the maximum 

reliability of the system in the next mission with available time T0 = 25 time units, and total 

allowed budget C0 = 45 cost units.  

1

2

3

1

2

1

2

4

Subsystem 1
Subsystem 2

Subsystem 3

3

 

Figure 5. Series-parallel system example 

By running the GA program to solve problem P1 to find the optimal reliability of the system 

at state a=3, we obtain 3 3 3 3 3 0 2 3 3X , that is, we select to repair all 

components in subsystem 1 and 2 to state 3, do nothing to the first two components in 

subsystem 3 and repair the last two components in subsystem 3 to state 3. 
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Table 3. The optimal maintenance actions for all components 

when repairs of components are independent (in problem P1) 

Subsystem i 
Component j 

1 2 3 4 

1 2 3 0 3 1 3 - 

2 2 3 2 3 - - 

3 0 - 0 2 - 2 2 3 1 3 

The total cost for all maintenance activities is 44 cost units and the total maintenance 

time is 22 time units. Recall that Rs(k) is the probability of the system state being in 

state k or above in the next operating mission, we obtained the system optimal reliability at 

level 3, Rs(3) = 0.85995. The probabilities that the system will be at least in state 1 and 2 in 

the next mission are 0.99725 and 0.98222 respectively. 

Table 4. The probability of the system being in state k or above  

in the next operating mission (in problem P1) 

k 1 2 3 

Rs(k)=P( s  0.99725 0.98222 0.85995 

In example 1, solving problem P1 helps us find the most reliable system within available 

resources. Now, we want to investigate what maintenance actions should be implemented 

when the total maintenance time is the most critical issue. This situation is usually 

encountered in practice when a tight deadline is required in production or the next mission 

needs to be started as soon as possible. Example 2 is devoted to the illustration of this 

situation. With this example, the decision makers can find the best maintenance actions 

when time is the most critical while the required system reliability level is still close to the 

achieved results in Table 4. 

Example 2: Consider the system in Example 1. Find the selective maintenance strategy that 
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we can finish as soon as possible without any requirement on budget, but the system 

reliability at each level must be greater than R0(1) = 0.99, R0(2) = 0.96, R0(3) = 0.85.  

Here, the cost constraint is released and we deal with problem P4 to minimize the total 

completion time of all selective maintenance activities with the constraint of achieving the 

required reliability. The solution of GA program results the optimal completion time of 18 

time units. The vector state of all components at the end of the maintenance break is: 

3 1 3 3 3 0 3 3 3X . 

Table 5. The optimal maintenance actions for all components  

when repairs of components are independent (in problem P4) 

Subsystem i 
Component j 

1 2 3 4 

1 2 3 0 1 1 3 - 

2 2 3 2 3 - - 

3 0 - 0 2 3 2 3 1 3 

In comparison with problem P1 in Example 1, there are two different maintenance activities 

on component (1,2) and (3,2). Component (1,2) is repaired to state 1 and component (2,3) is 

repaired to the perfect working state 3; the other components in the system receive similar 

maintenance actions as in the previous example. The total cost of this strategy is 48 cost 

units, which indicates that we need more budget for all maintenance actions in comparison 

with the solution in problem P1. The reliability of the system at level a = 3 is Rs(3) = 0.8757 

which is, interestingly, greater than the optimal reliability in Example 1. The achieved 

reliability at each level satisfying the reliability constraints is provided in Table 6. 
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Table 6. The probability of the system being in state k or above  

when repairs of components are independent (in problem P4) 

K 1 2 3 

Rs(k)=P( s  0.99688 0.96446 0.8757 

Example 3a: Consider the problem in Example 1 again, but there are advantages of 

repairing multiple components, i.e. the components are economically dependent. The time 

and cost savings for each component due to the share of setting up of 0.4 time units and 0.8 

cost units; the cost saving coefficients of components in subsystem 1, 2, 3 are 0.7, 0.6, 0.45; 

and the time saving coefficients of components in subsystem 1, 2, 3 are 0.5, 0.4, 0.3 

respectively. 

Now, we have to deal with problem P1 to find the most reliable system with the available 

time and cost of 25 and 45 respectively. The GA program gives the state vector of 

components at the time of exiting the maintenance depot as follows: 

3 3 3 3 3 1 3 3 3X  

Table 7. The optimal maintenance actions for all components  

when repairs of components are dependent 

Subsystem i 
Component j 

1 2 3 4 

1 2 3 0 3 1 3 - 

2 2 3 2 3 - - 

3 0 1 2 3 2 3 1 3 

In this strategy, we repair the first component in subsystem 3 to state 1 and all other 

components to the best condition. In comparison with problem P1 in example 1, there are 

two more maintenance actions which can be taken on components (3,1) and (3,2) within 
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available resources. 

Table 8. The probability of the system being in state k or above  

when repairs of components are dependent 

k 1 2 3 

Rs(k)=P( s  0.99734 0.98333 0.91949 

Due to the time and cost savings of repairing multiple components, the achieved reliability 

of the system at each level (see Table 8) is much higher than the results in Example 1.  

Example 3b: In this example, we use three different saving models in section 2.3.2 for 

modeling the economic dependence when repairing multiple identical components in a 

sub-system. The input data from Example 3a is used.  

We use the Matlab program to solve the selective maintenance problem to get the most 

reliable system in the next mission within available time of T0=25 units and budget of 

C0=45 units.  In this example, the exponents ,i i
C T  for the cost and time savings are set 

based on , , ,i i
C T s sf f c t  so that the adjusted repair cost/time of a component from the 

proposed model is equivalent to the amount of  cost/time for repairing an additional 

identical component in a sub-system from equation (14). The obtained results of vector X  

from GA, the total time and cost used for maintenance and the system reliabilities with 

corresponding parameters used in each model are shown in Table 9. 

Table 9.Results of different saving models 

Model Vector X  ( )C X  ( )CT X  Rs(1) Rs(2) Rs(3) 

Log-linear 3 3 3 3 3 0 3 3 3  41.15 19.9 0.9973 0.98333 0.91949 

Plateau 
(Cp=0.1C1) 

3 3 3 3 3 0 3 3 3  43.55 20.2 0.9973 0.98333 0.91949 
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Exponential 
(c=0.1) 

3 3 3 3 3 0 3 3 2  41.21 18.69 0.99725 0.98222 0.85995 

Proposed 
model 

3 3 3 3 3 1 3 3 3  43.75 20.7 0.99734 0.98333 0.91949 

The first five elements in state vectors, X(1) to X(5), at the time of exiting the maintenance 

depot are similar in all four models, i.e. the maintenance actions for these components are 

exactly the same. In the maintenance strategy from the proposed model, one additional 

maintenance action (corresponding to X(6)) can be performed in comparison with 

Log-linear and Plateau models and two more maintenance actions (corresponding to X(6) 

and X(9)) can be performed in comparison with the Exponential model. The total 

maintenance cost and time spending in the proposed model is higher than in the other 

models (43.75 cost unit and 20.7 time units), and this brings the system to a state with higher 

system reliabilities of 0.99734, 0.98333, 0.91949 at levels 1, 2, and 3 respectively.  

To explain the differences in the results in Table 9, it is observed that the cost saving of a 

component in sub-system i is characterized by two parameters, i
Cf and sc , in the proposed 

model. Meanwhile, the other saving models describe the economic dependence relationship 

using a power function and parameter . These models can only describe the saving 

mechanism within a sub-system (when the components are identical), while the proposed 

model also addresses the economical dependence when repairing components in different 

sub-systems. This is close to the practical situation since the time and cost of doing common 

preparation and maintenance activities on the serial-parallel system such as erecting, 

cleaning, doing inspections, lubricating, etc. can be saved even with different types of 

components.  

To investigate the time and cost savings versus the number of components involved in a 

maintenance strategy, we study the selective maintenance strategy resulting from Example 

3a for independent repair and dependent repair cases. Figure 6 shows how the maintenance 
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time and cost for the series-parallel system are saved.  

 
(a) 

 
(b) 

Figure 6. Total maintenance time (a) and cost (b) of repairing  

dependent components vs. independent components  

Generally, we only need an assumption that the components in the same sub-system have to 
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be maintained in a group to gain the benefits of time and cost savings. In Figure 6, we also 

assume that the components are maintained in an order from the first sub-system to the last 

sub-system. In this example, there are 9 components which are subjected to be maintained in 

the maintenance scenario. When the repairs of components are dependent, the maintenance 

time and cost are smaller than those in the case of independent repairs. The different 

amounts of required resources between the two cases are more considerable as the number 

of repaired components increases. To repair all components in this maintenance strategy, 

the total required time and cost are just 20.7 time units and 43.75 cost units when repairs of 

components are dependent in comparison with 24 time units and 56 cost units in the case of 

independent repairs between components. 

5. Conclusion 

This paper proposes the selective maintenance model for multi-state series-parallel system 

with economic dependence. In the optimization models, the total system maintenance cost, 

completion time or system reliability can be either treated as objectives or constraints in the 

mathematical model; different alternative optimization models are derived. The models are 

closer to practical applications when the maintenance resources for repairing each 

component are analyzed with regard to the economic dependence. Both time and cost 

savings can be assured when several components are maintained in a selective maintenance 

strategy. The economic dependence is analyzed in multi-state contexts based on two types 

of time and cost savings: (i.) the share of setting up and (ii.) the advantage of repairing 

multiple identical components in series-parallel systems. 

Genetic Algorithms is used to solve the optimization models. The illustrative examples 

show that the maintenance schedulers may perform different maintenance actions on the 

system depending on the main objective and the availability of resources. 
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In selective maintenance of multi-component systems, the amount of resource savings is 

system and component specific, i.e. it depends on the nature of the system, number of 

components and type of components involved. By dividing the type of time and cost savings 

into fixed (the share of the setting up) and variable (identical repairs), the proposed model 

can capture both the system features and the component specific. Our main objective is to 

investigate the selective maintenance problem for multi-state systems under the effect of 

this saving mechanism. In general, the selective maintenance model in this paper can help 

the maintenance manager determine the best maintenance strategy to get a reliable system 

and allocate the resources effectively. 

This paper bases on the multi-state series-parallel systems with identical and s-independent 

components in the subsystem; the system performs missions in periodic intervals. The 

selective maintenance optimization for multi-state systems with non-identical and/or 

stochastic dependent components as well as systems with non-periodic operating intervals 

are recommended for future research. 
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