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ABSTRACT: The major concern of the physical and chemical instability of the effervescent 

products during manufacturing and storage is addressed through the co-crystallization strategy. 

Citric acid (CA) and sodium bicarbonate (SBC) are the essential components of effervescent 

products. CA is hygroscopic and led to uncontrollable autocatalytic chain reaction with SBC in 

presence of small amount of moisture causing product instability. The acid…amide dimer bond 

and layered structure of citric acid-nicotinamide co-crystal restricts interaction of moisture with 

CA, making it non-hygroscopic and improves stability of effervescent products. The 
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comparative study of effervescent products containing CA in its free form and as a co-crystal 

suggests significant advantage of use of co-crystal in effervescent products. This finding is 

supported by the mechanistic understanding developed through GAB and Y&N models obtained 

from moisture sorption data along with the computational investigations into moisture 

interactions with different crystal surfaces.  

 

Effervescent products, such as vitamin C Fizz tablets, are designed to provide a clear solution or 

uniform dispersion when added to water along with effervescence. Effervescent products are 

widely used in pharmaceutical, nutraceutical, food, agriculture, detergent and cleaning sectors. A 

typical effervescent product contains at least two components; an alkaline agent and an acidic 

agent, which react with each other in the presence of water, producing carbon dioxide (CO2) as a 

by-product, this leads to the disintegration of the tablet and cause effervescence.1,2,3 Typical 

alkaline agents are sodium carbonate and sodium bicarbonate (SBC), whilst typical acidic agents 

are citric acid (CA), tartaric acid, malic acid and maleic acid. There are many challenges in the 

manufacturing, performance and storage of effervescent products due to its hygroscopic nature 

and moisture induced instability. 4,5 It is important that, we understand the interactions of 

moisture with the effervescent material and can then address the instability issue.6 This 

interaction depends on the affinity of the solid for moisture bonding, strength of bonding, 

functional groups present at the solid surface and exposed surface area. 7 

CA, which is widely accepted as a food ingredient, is an acidic agent of choice in most of the 

effervescent products along with SBC as an alkaline agent. The presence of moisture or small 

amount of water initiates reaction between CA and SBC, which in turn releases more water. 



 3 

Once started, this autocatalytic reaction is difficult to control during manufacturing or storage 

(Scheme 1). 5 

 

 

Scheme 1.  Effervescence reaction between CA and SBC 

 

 

To address this challenge, currently effervescent product manufacturing is undertaken at 

controlled hygrothermal conditions, maintaining less than 20 % relative humidity (% RH) at 25 

°C. 8 However, this increases the carbon footprint of the process and makes the manufacturing 

process expensive as there is a huge cost involved in achieving and maintaining low humidity. In 

addition, highly moisture impervious packaging materials and desiccants are required to ensure 

storage stability which adds to the overall product cost.9 Despite these stringent controls, studies 

have shown that there is still at least an 8 - 10 % loss of CO2, during processing and storage. 

Processing under low humidity conditions affects the quality of the tablets. A high compression 

force is required for the tableting; this leads to dust generation which is the main cause of 

occupational hazards for the working staff. Currently, there is not a single approach available to 

manufacture stable effervescent products under ambient manufacturing conditions i.e. at 45 

%RH at 25 °C. These critical issues associated with the manufacturing and storage of the 

effervescent products has motivated us to provide the solution to address the above mentioned 

challenges.  

Herein, we explore co-crystallization as a means of improving the stability of an effervescent 

product, during the manufacturing process and storage. Our initial investigation was focused on 
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finding the most moisture sensitive/hygroscopic component of the effervescent products. To 

determine the interaction of CA and SBC with the moisture we conducted dynamic vapor 

sorption measurements. The vapor sorption isotherms of  CA and SBC at 25 °C   were obtained 

by equilibrating the samples between 0 % RH to 90 % RH using DVS intrinsic instrument (Make 

- Surface Measurement Systems, UK). The experimental details of DVS study is provided in 

Supporting Information, SI 1.  

It was observed that CA starts absorbing moisture at 80 %RH and absorbs 31 % moisture as RH 

increases to 90 % (see Figure SI 2 in Supporting Information), whereas SBC absorbed only 0.32 

% moisture between 10% - 90 %RH (see Figure SI 3 in Supporting Information). This study 

confirmed that SBC is not hygroscopic, but CA is highly hygroscopic in nature, most probably 

as a result of the carboxylic groups present. During sorption cycle of the DVS, CA forms 

hydrogen bonds with water above 80 % RH and solid CA turns into a liquid form showing 

deliquescent nature. During desorption cycle the CA in the liquid form transforms back to a solid 

but it is CA monohydrate rather than CA anhydrous. This was confirmed by differential 

scanning calorimetry (DSC) (see Figure SI 4 in Supporting Information).  

The CA:SBC effervescent mixture (1:1.5 weight ratio) when subjected to DVS investigation the 

reaction between CA and SBC starts when only 0.5 % moisture was absorbed at 45 % RH. The 

reaction is evidenced by continuous weight loss due to CO2 release (Figure 1).  
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Figure 1. Comparative DVS study for a) effervescent mixture containing free CA and b) 

effervescent mixture containing CA-NIC co-crystal and images showing physical state of 

material by the end of 90 %RH.    

 

The deliquescent nature of CA and initiation of autocatalytic reaction between CA and SBC 

after such a low moisture uptake is mainly responsible for the instability of the effervescent 

products.  Hence, we proposed to change deliquescent nature of CA by transforming it into a co-

crystal form. Tailoring of physicochemical properties by co-crystallization, mainly deliquescence 

will overcome the stability issue in effervescent products. 10 

A co-crystal is a multicomponent crystalline entity, which contains at least two molecular or 

ionic components, which are held together in the same crystalline lattice either by hydrogen 

bonds, halogen bonds or π-π interactions.11,12,13  Co-crystals have emerged as a new solid form 

that can tailor the physicochemical properties of crystalline Active Pharmaceutical Ingredients 

(API).14  A number of potential applications for co-crystals have been demonstrated, including 
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improving drug dissolution rate, tailoring compressional properties, tuning color and taste of 

molecules and improving photo-stability.15-20 Previous work has shown that the formation of co-

crystals can reduce the hygroscopicity of a number of active pharmaceutical ingredients 

including caffeine, oxiracetam, ibuprofen and dapagliflozin.21-24 However, this is the first attempt 

where we demonstrate co-crystallization of an excipient to control acid-base reaction to improve 

stability of the product.  

Nicotinamide (NIC) was selected as a coformer molecule as it is a ‘Generally Recognized as 

Safe’ (GRAS) molecule and widely accepted in the formulations of nutraceutical supplements. 

The DVS study for NIC showed only 0.31% moisture absorption by the end of exposure to 90% 

RH at 25 °C (see Figure SI 3 in Supporting Information). Apart from this, co-crystal of CA with 

NIC (CA-NIC, 1:2 molar ratio) is reported in the literature along with detailed information about 

its crystal structure parameter.25 This makes NIC as an ideal co-former for CA to study the effect 

of co-crystallization on the stability of effervescent products. The co-crystal was synthesized by 

liquid assisted grinding (LAG) using ethanol as a solvent. The formation of the pure co-crystal 

phase was confirmed through PXRD (see Figure SI 5 in Supporting Information) and DSC 

analysis (see Figure SI 6 in Supporting Information). The details of PXRD and DSC experiments 

are provided in Supporting Information, SI 1. The obtained PXRD pattern matches the simulated 

pattern of the known co-crystal of CA-NIC. The DSC thermogram of the sample showed e a 

single melting endotherm at 127 °C indicating formation of phase pure CA-NIC co-crystals.  

The CA-NIC co-crystal obtained from the LAG experiment was also evaluated for moisture 

uptake performance using DVS. The co-crystal shows only 0.23 % moisture uptake at 90 %RH 

(see Figure SI 2 in Supporting Information) which is significantly lower than pure CA. At the 

end of the desorption cycle of DVS experiment, CA-NIC co-crystal was also found to remain in 
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the solid form and did not show any hydrate formation as confirmed by DSC (see Figure SI 4 in 

Supporting Information). This suggests the hygroscopic property of CA has been successfully 

tailored through co-crystallization. However, at 50 %RH, the CA-NIC co-crystal showed 0.04 % 

moisture uptake compared to the 0.01% moisture uptake by CA. This is not significantly higher 

moisture uptake by CA-NIC co-crystal. This higher moisture uptake was attributed to the higher 

surface area of CA-NIC co-crystal (1.16 m2g-1) than CA (0.145 m2g-1), means co-crystal has 8 

times higher surface area than CA. The Brunauer–Emmett–Teller (BET) surface areas for CA-

NIC co-crystal and CA were calculated from the DVS data using DVS-Intrinsic analysis 

software (version 5.1.0.8).  

The DVS study involving an effervescent mixture consists of CA-NIC co-crystal and SBC in 

1:1.5 weight ratio (co-crystal equivalent to required amount of CA was weighed) showed 4.5% 

moisture uptake by the end of exposure to 90% RH during DVS analysis without any weight loss 

(Figure 1). This indicates that no interaction took place between CA from CA-NIC co-crystal 

and SBC to release CO2 to show the weight loss. This improvement in the stability is likely due 

to the interaction of the carboxylic functional groups of CA with NIC in the co-crystal, making 

them unavailable, or making it unfavorable, to react with SBC in the presence of small amount 

of moisture. Thus, the co-crystal showed improved stability of an effervescent mixture in 

presence of small amount of moisture.  

To test the advantage of CA-NIC co-crystal against CA in effervescent products, we 

manufactured magnesium oxide effervescent tablets under the standard hygrothermal 

manufacturing conditions (i.e. at 25 °C and 45 %RH). Two batches of magnesium oxide 

effervescent tablets were produced; one batch with acidic component in the form of co-crystal 

i.e. CA-NIC co-crystal and another with CA as the acidic component of the effervescent product 
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(formulation details are provided in Supporting Information SI 1). Tablets from these two 

batches were subjected to stress stability by exposing the tablets in an open beaker to 40°C at 75 

%RH. At the end of 24 hrs it was observed that tablets containing plain CA shows collapsed 

structure resulting in instability whereas tablets containing CA-NIC co-crystal were stable for at 

least 30 days retaining their strength and effervescence performance (Figure 2). This clearly 

shows manufacturing and storage stability advantage of CA-NIC co-crystal over CA in the 

effervescent products. The co-crystallization of CA with NIC has created a solid phase of CA 

that is less hydroscopic at high relative humidity; the stability of this phase in the effervescent 

mixture reactivity needs to be investigated.  

 

 

 

 

Figure 2. Comparative stability of magnesium oxide effervescent tablet containing free CA and 

CA-NIC co-crystal as part of effervescent mixtures 

 

It is well known that rather than the total amount of moisture adsorbed, the amount of free 

moisture is critical for the physical and chemical stability of the moisture sensitive materials.26 

The amount of moisture adsorbed depends on the affinity of water molecules to the surface, 

relative humidity, temperature and exposing surface area.27 To understand  difference in the 

distribution of moisture in CA and CA-NIC co-crystal, we fitted the moisture isotherm  to the 
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Guggenheim-Anderson-de Boer (GAB) and Young and Nelson  (Y&N) models.  These models 

provide information on the interaction of water molecules at the interface as well as the strength 

of the interaction.28, 29, 30  Upon adsorption onto the dry surface of the material; water molecules 

form a monomolecular layer which is then subjected to surface binding and diffusional forces. 

Once, a layer of water molecules adhere to the surface and diffusional force exceeds the binding 

forces; the adsorbed moisture is transferred into the material. In case of multilayer water 

adsorption water goes into pores and capillary spaces and lead to solute dissolution. 31, 32 The 

theoretical details of the GAB and Y & N models are provided in the Supporting Information SI 

7. Both the GAB and Y&N models suggest that CA has a lower capacity to hold the water as a 

monolayer in comparison to CA-NIC (Table 1). 

Table 1. Water interaction with CA and CA-NIC co-crystals calculated by GAB and Y&N 

equation using moisture sorption data from DVS study 

Parameters              CA CA-NIC co-crystal 

GAB Y&N GAB Y&N 

Sorption constant§ (J mol-1) 1.2439 5.3206 0.9656 2.918 

Moisture capacity of  

monomolecular layer (mol g-1) 

1.87 x 10-6 8.94 x 10-12 1.80 x 10-5 1.79 x 10-5 

 

The amount of moisture 

internally absorbed  

or “bulk” moisture (mol g-1) 

 

--- 

 

5.35 x 10-2 

 

--- 

 

8.59 x 10-8 

 

Model fitting, 

correlation coefficient (r2) 

 

0.954 

 

0.701* 

 

0.988 

 

0.900 

Note: §Strength of interaction of water vapor with the sample  

*Correlation coefficient is tested by t-test and it is <5%. This poor correlation is 

attributed to conversion of citric acid into citric acid monohydrate during DVS study. 
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This might be attributed to a higher surface area CA-NIC co-crystal than the CA as discussed 

before. In addition, as CA is deliquescent in nature, it shows adsorption of water molecules to 

the surface in a semi-organized manner and capillary condensation below the deliquescence 

point thus showing lower monolayer water capacity. The sorption constant shows strength of 

interaction of water vapor with the crystal surface and is calculated by GAB and Y&N equation. 

It is observed that the sorption constant for CA is higher than CA-NIC co-crystal.  

The difference is probably due to the different functional groups present on the crystal surfaces. 

Predicted morphologies for CA and CA-NIC were generated to identify the nature of the 

dominant crystal faces and the available functional groups. The crystal structures used for the 

computational predictions and methodology is provided in the Supporting information SI 1. For 

CA the (100) and (002) faces are dominant, which display carboxylic acid groups (Figure 3).  

 

Figure 3. (a) Predicted morphology for CA- perpendicular view of CA crystal surface, (b) CA 

(100) face and (c) CA (002) face. 

 

Whereas, the dominant (001) and (010) faces for CA-NIC (Figure 4) cut through the 

amide…amide and acid…amide dimers of the complex.  
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Figure 4. (a) Predicted morphology for CA-NIC-perpendicular view of CA-NIC crystal surface, 

(b) CA-NIC (010) face and (c) CA-NIC (001) face. 

 

Thus, the higher sorption constant for CA is attributed to the presence of three carboxylic groups 

which act as potential hydrogen bonding sites. The lower sorption constant for CA-NIC shows a 

loose and physical adsorption of water molecules with the hydrophilic groups present at the 

surface. The moisture distribution obtained from the Y&N equation suggests that CA has 

significantly higher (5.35 x 10-2 mol g-1) absorbed moisture in the bulk of the material compared 

to CA-NIC co-crystal (8.59 x 10-8 mol g-1). 

A computational investigation into the ability of different crystal and co-crystal surfaces to 

interact with water was undertaken with a view to understanding the experimental results. The 

difference in absorbance of these surfaces to a water molecule was investigated through 

optimization of a water molecule onto each surface using the differential evolution global 

optimizer (Table 2).  
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Table 2. Optimized Interaction Energy for water with selected crystal surfaces 

System Face Lowest Energy 

( KJ.mol-1) 

CA (100) -54.40 

CA (002) -38.28 

CA-NIC co-crystal (001) -22.72 

CA-NIC co-crystal (010) -47.01 

 

Three surfaces [CA (100), (002) and CA-NIC co-crystal (010) faces] display bridging of the 

water molecule over carboxylic acid groups on the surface (Figure 5 (a) (b) and (c)) with 

stronger bonding. In contrast the (001) face of the CA-NIC binds water weakly to the 

nicotinamide amide group (Figure 5 (d)). The total interaction energy was stronger with CA 

compared to the CA-NIC co-crystal. This suggests that a CA-NIC will bind water selectively on 

one face, while CA binds water upon multiple crystal faces. Thus, the larger level of CA 

hygroscopicity may be due to a larger number of potential hydrogen bonding sites.    
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Figure 5. (a) Optimized location of a water molecule onto (100) surface of CA, (b) Optimized 

location of a water molecule onto (002) surface of CA, (c) Optimized location of a water 

molecule onto (010) surface of CA-NIC co-crystal and (d) Optimized location of water molecule 

onto (001) surface of CA-NIC co-crystal. Representative water interaction is highlighted by 

yellow box. 

 

The co-crystal structure shows that one molecule of CA is connected through hydrogen bonding 

to NIC forming a layered structure (Figure 6). 
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Figure 6. Crystal packing of CA-NIC co-crystal, viewed along the a-axis. 

Thus, it can be concluded that penetration of water molecules inside the bulk of CA-NIC is 

prevented by the NIC molecules which are present on the surface of the co-crystal. From the 

computational modelling and the DVS data it was concluded that the formation of CA-NIC 

makes CA less interactive with water molecules and so provides better storage stability in 

effervescent products by preventing interaction of CA with SBC in a limited amount of 

moisture.  

In summary, we have successfully demonstrated application of co-crystallization to tailor the 

hygroscopic nature of the CA by blocking the water interaction sites. This tailored CA has 

shown its potential in the manufacturing of stabilized effervescent product at ambient condition 

which will significantly lower down the production and packaging cost along with reduction in 

carbon footprint. 
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