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Abstract 6 

This paper presents a method for upscaling permeability of fractured coal by using cubic law to 7 

quantify permeability of fractures system. The version of the cubic law that incorporates the 8 

length/tortuosity effect available in the literature was modified by including a connectivity parameter.  9 

All parameters of the modified cubic law (fracture aperture, porosity, length, and connectivity) were 10 

estimated for a set of coal samples using quantitative methods available in the literature. The 11 

geometry of the fracture system within the coal samples was determined from Micro-CT scans.  12 

Parameters of the modified cubic law estimated from the scans were validated by comparison of the 13 

resulting permeability with the numerical simulation of single phase fluid flow in fractures, which was 14 

developed at the previous stage of this study. The modified cubic law was then used for upscaling of 15 

permeability from millimetre scale to centimetre scale. It produced the results that match the 16 

literature data for the coal from the same region as well as the experimental data for the studied area. 17 

 18 

Key words 19 

Permeability; flow simulation; upscaling; cubic law; coal fractures 20 

 21 

Introduction 22 

Coal seams are naturally fractured reservoirs, and the nature of these fractures plays an important 23 

role in the development and production of coalbed methane (6). Methane in coal is mostly adsorbed 24 

by coal matrix or exists as a free gas in large pores and fractures (5). Previous research (3, 21, 17) 25 

shows that the flow capacity of fractures media is mostly governed by the amount, continuity in the 26 

direction of flow and aperture of fractures while the contribution of rock matrix is often small if any 27 

(22).  Fractures in coal reservoirs are called cleats and they are usually characterised by two main 28 

directions of propagation (“face” and “butt” cleats) perpendicular to each other and to the bedding 29 

(22).  Generally, for an ordinary cleat set, the connectivity pattern of fractures mostly presents “T-30 

junctions” between face and butt cleats (9). 31 

 32 

Research which is presented in this paper focuses on upscaling of fracture permeability obtained from 33 

mm-scale samples (cylinders with diameter and height equal to 2.5 mm) to cm-scale samples 34 



(cylinders with diameter and height equal to 2.5 cm). In the literature, there are different methods for 35 

permeability upscaling (i.e. 14) but most of them are focused on idealised pore space presented as a 36 

set of tubes. Upscaling of fractured permeability is not broadly covered, although the problem of 37 

laminar flow of a viscous incompressible fluid in fractures has been studied by many researchers (2, 38 

15, 24, 1). Adopting parallel plate approach, it was established that the volumetric flow per unit width 39 

normal to the direction of flow is proportional to the cubed aperture between the plates (i.e. 11). 40 

Lomize (15) demonstrated the validity of cubic law for laminar flow between parallel glass plates as 41 

well as the effect of roughness of fracture walls and the effect of flow through fractures with planar 42 

but non-parallel sides. In turn, Romm (24) studied the behaviour of flow in fine (10-100 micron) and 43 

superfine (0.25-4.3 micron) fractures and he demonstrated the validity of cubic law in both fine and 44 

superfine fractures. Witherspoon et al. (29) performed laboratory experiments on closed and open 45 

fractures with varying aperture (from 4 to 250 micron) and concluded that permeability is uniquely 46 

defined by the fracture aperture. He also established an empirical factor to make correction if the real 47 

fractures deviate from parallel plate concept and mentioned that the deviation factor fell in a range 48 

from 1.04 to 1.65. Oron and Berkowitz (20) re-examined the validity of applying the local cubic law. 49 

They paid attention to the question of how to measure the aperture of fractures and pointed out that 50 

many researchers (e.g. 4, 18) argued that the automatic assumption that the aperture measured 51 

vertically is correct. Mourzenko et al. (18) suggested drawing a centreline in the flow direction and a 52 

sphere around each point on this centreline and increasing the sphere to touch both walls. Ge (4) 53 

introduced an approach which assumes that the aperture should be measured normal to the local 54 

orientation of the centreline. Both approaches have their limitations: Ge’s (4) method is problematic 55 

for fractal curves, while Mourzenko’s (18) approach is very sensitive to isolated bumps on the surfaces. 56 

Oron and Berkowitz (20) concluded that fracture aperture should not be measured on a point-by-point 57 

basis but rather as an average over a certain length. Recently, Wu et al. (30) characterized the coal 58 

fracture network with a fractal theory with micro-CT images and modified the cubic law based on 59 

fractal theory to estimate the coal fracture network permeability (31).  60 

 61 

 As it was mentioned before, the flow in fractures is dependent of the fractures surface roughness and 62 

correction for roughness was introduced by many authors (e.g. 32). Zimmermann and Bodvarsson (32) 63 

corrected the fracture aperture taking into account the mean aperture, a surface roughness factor 64 

and a tortuosity factor. Some other authors also worked on finding the relationship between cubic 65 

law and fracture geometry. Thus, Jin et al. (8) introduced a semi-empirical function to make correction 66 

for surface walls roughness as well as for the hydraulic and surface tortuosity effect. Kluge et al. (12) 67 

analysed the discrepancy between numerical simulation of fluid flow and analytical solution of Navier-68 



Stokes equation for rough fractures and quantified the deviation from the cubic law permeability. 69 

Sarkar et al. (26) studied the behaviour of flow in fractures connected in series or in parallel. They also 70 

established the correction for permeability for inclined fractures. 71 

For the purpose of the research described in this paper it was decided to apply cubic law in order to 72 

calculate permeability for a cylinder with diameter and height 2.5mm, compare the results with the 73 

outcomes of numerical simulation for the same volume, make corrections and use the resulted 74 

“updated” cubic law for a cylinder with diameter and height 2.5cm. This study relies on the previous 75 

study by the authors which focused on micro-CT image resolution improvement and permeability 76 

numerical simulation (25). Validation of the final results is performed by comparison with laboratory 77 

data obtained for the studied or similar samples. 78 

 79 

Input data 80 

Coal sample of intermediate rank coal from Panlong mine in Southern Qinshui coal bed methane basin 81 

(China) was used for the study described in this paper. The sample is extracted from the coal seam 82 

buried in a range of 600–750m subsurface and the samples from that area generally contain 0.59–83 

3.54% moisture, 3.5–15.54% ash yield, 73.62–88.92% fixed carbon and 2.14–4.04% hydrogen, with 84 

C/H ratios in the range of 19.96–36.25. Vitrinite reflectance and vitrinite/inertinite percentage are 85 

listed in Table 1. 86 

 87 

Table 1. Coal sample characteristics 88 

Sample ID 
Sample (%) Organic matters (%) Vitrinite 

Reflectanceo 

ran (%) 
Organic 
matter 

Pyrite Others Vitrinite Inertinite Liptinite 

PL3#-2 79.87 0.17 19.97 77.52 22.48 0.00 1.68 

 89 

Coal samples were scanned at several resolutions (please see the Methodology section for details) 90 

resulting in several sets of micro-CT images. In order to perform required numerical simulation and 91 

calculation of cubic law, two different sets of micro-CT images of coal samples were chosen: the first 92 

set, named SCAN, contained scanned images with resolution 2.5-micron, the second one, named 93 

SUBV, consisted of subvoxelled images (25) with the resulting resolution 2.5-micron (Table 2). Images 94 

were segmented and binarized for further analysis. 95 

 96 

Then, four subsets were extracted from these two sets of micro-CT images: two subsets were taken 97 

from each set (Table 3), resulting in three different volume of investigation sizes denoted with S, M, L 98 

for small, medium, large volume respectively. Subsets SCAN-M and SUBV-M hence represented 99 



almost the same volume of investigation while subset SCAN-S was smaller and subset SUBV-L was 100 

bigger than subsets SCAN-M and SUBV-M. Subsets SCAN-M and SUBV-M were from the central part 101 

of the sets, subset SCAN-S is from the lower right part of the first set, and subset SUBV-L included 102 

almost the whole sample (Figure 1). Four different subsets taken from different areas were utilised 103 

for additional quality control. Each subset was exploited to perform numerical simulation of fluid flow 104 

in fractures and to calculate cubic law permeability. 105 

 106 

Table 2. Characteristics of two sets of coal sample images 107 

Set Type 
Resolution 
(micron) 

Field of view (mm) Image size (pixel) 
Pixel size 
(micron) 

SCAN Scanned 2.5 2.5x2.5 980x980 2.5 

SUBV Subvoxelled 2.5 10x10 3920x3920 2.5 

 108 

Table 3. Characteristics of four subsets of coal sample images 109 

Subset Set 
Resolution 
(micron) 

Field of view Image size (pixel) 
Pixel size 
(micron) 

SCAN-M SCAN 2.5 2.5x2.5 980x980 2.5 

SUBV-M SUBV 2.5 2.5x2.5 980x980 2.5 

SCAN-S SCAN 2.5 1.5x1.5 560x560 2.5 

SUBV-L SUBV 2.5 10x10 3920x3920 2.5 

 110 

 111 

Figure 1. The four subsets plotted on the 10-micron resolution micro-CT scan image 112 

 113 

Methodology 114 

Micro-CT images used for this study were obtained by X-ray microtomography scanning (25). X-ray 115 

computed tomography uses X-rays to create sets of images of an object that can be further restored 116 

to a 3D virtual model without destroying the original physical object. Images exploited for the current 117 

research were obtained by the ZEISS Xradia VersaXRM-410 microscope which achieves 0.9 μm true 118 



spatial resolution with minimum achievable voxel size of 100 nm. The raw images were segmented 119 

using watershed method and the median filter was applied to reduce observed noise. In the course of 120 

the study described in the paper, the images with resolution 2.5-, 10- and 25-micron were utilised. 121 

The resolution of 2.5-micron was good enough to determine accurate cleat width but the resolution 122 

of 10-micron and especially 25-micron images required improvement and it was achieved by 123 

implementation of subvoxel processing algorithm (25). The idea of this algorithm can generally be 124 

described as subdivision of each voxel of the original image into eight subvoxels and assigning gray-125 

scale values to those new subvoxels based on gray-scale values of the neighbouring voxels from 126 

original image. Weight contribution of each neighbour is determined by their proximity to the 127 

subvoxel of interest. The results of subvoxel processing algorithm were validated (calibrated) by 128 

comparison to scanning electron microscopy images and the results were found acceptable (less than 129 

10% of the width difference between subvoxelled and SEM images). 130 

 131 

All four subsets were divided into different blocks: subsets SCAN-M, SUBV-M and SUBV-L were divided 132 

into 10 blocks and subset SCAN-S was divided into 5 blocks; it was done for analytical calculations and 133 

numerical simulation. Each block was exploited to estimate parameters required further for cubic law 134 

calculations: fracture aperture, fracture direction, porosity and connectivity. Fracture direction was 135 

estimated automatically using the method and the Matlab algorithm (FracPaQ) written by Dave Healy 136 

for faults and fractures (7). This algorithm is based on coordinate geometry in 2D and by default 137 

assumes that fracture orientations (i.e. their strikes) are measured clockwise from the positive Y-axis. 138 

In addition to automatic method of direction estimation, this parameter was also estimated manually 139 

for comparison. Manual determination of fracture direction gave almost the same values. 140 

 141 

Connectivity was estimated by two different methods. The first method (which can be called “fracture 142 

restoration method”) involves the following steps: determine the number of voxels of each particular 143 

fracture; “restore” the fracture by dilution, erosion and filling gaps; determine the number of voxels 144 

the restored new fracture. The resulting ratio of the number of voxels in the original and restored 145 

fractures is a number between 0 and 1, where 0 indicates no connectivity while 1 means 100% 146 

connectivity. The second method (which will be called “percolation method”) to calculate fracture 147 

connectivity was based on Dave Healy’s algorithm.  The algorithm relies on Manzocchi’s study of the 148 

connectivity of fractures (16). The main idea of the approach is to determine how close is a particular 149 

fracture system to its percolation threshold which represents the fracture configuration at which the 150 

network becomes macroscopically connected. The algorithm uses a triangle with each vertice 151 

representing a different type of fracture connection, namely I – percentage of isolated nodes, Y – 152 



percentage of nodes at an ‘y’-shaped connection, X – percentage of intersection nodes, i.e. those at 153 

an ‘x’-shaped connection (7). Connectivity is determined from the ratio Y:X:I (Figure 2). Manzocchi 154 

demonstrated that there is no percolation threshold when I (isolated notes) type of connection is 155 

dominant. For the purpose of the current research it was attempted to use the ratio (X+Y) / (X+Y+I) in 156 

order to estimate whether this ratio can be used as a connectivity factor as it will be demonstrated in 157 

Results and Discussion section. 158 

 159 

Fracture aperture was estimated manually in the following manner: average aperture of different 160 

fractures was determined, then, resulting data were summarised as histograms and finally, a range of 161 

average aperture and a mean of the range were determined. Porosity was determined for each block 162 

automatically in Avizo software from a 3D binary matrix. Based on the analysis of coal samples images 163 

obtained from SEM and micro-CT scanning, it was decided that in case of studied coal samples 164 

roughness factor can be neglected. Some considerations why this assumption was made are given in 165 

Results and Discussion section. 166 

 167 

Figure 2. A ternary plot of fracture segment connectivity. Connectivity of trace segments, Y:X:I where 168 

I – is a relative proportion of isolated, Y - splay or abutment, and X is intersection nodes in the 169 

fracture network. On this figure dot represents connection characteristics of analysed image, blue 170 

lines for Connections per Line (CL) use indicative values described by Sanderson & Nixon (27). 171 

 172 

After determination of all required parameters, cubic law was used to calculate permeability for each 173 

block. The original form of cubic law (𝑘 =
𝜙𝑑2

12
, where φ is porosity, d is an average aperture) is here 174 

called basic cubic law. This law was modified by taking into account not only fracture average aperture 175 

but also porosity, connectivity and the length/tortuosity effect (i.e. the effect of actual flow following 176 

a tortuous path, while pressure gradient for the purpose of calculating permeability is expressed using 177 

the projection of the total length in the principal flow direction used for calculating permeability (here 178 

x). A simple conceptual illustration of how porosity, connectivity and the length effect are included in 179 

the basic cubic law is shown in the Appendix. Assuming planar fractures at a constant angle () with 180 



x, the length/tortuosity effect can be expressed via cos(). Including the length effect results in 181 

multiplying the r.h.s. of the basic cubic law with cos(). 182 

 183 

It should be mentioned that direction of fractures was previously implemented in cubic law by other 184 

researchers. According to them, direction of fractures was used in a form of cosine (26) or cosine 185 

squared (e.g. 28, 19). Although the theory of Poiseuille flow in fractures implies the use of cosine 186 

squared, implementation of cosine squared didn’t demonstrate good results in the course of current 187 

research, so the following modified cubic law was used: 188 

 189 

𝑘 =
𝜙𝑑2

12
 cos(α) . B, 190 

 191 

where φ is porosity, d is an average aperture, B is connectivity factor, α is a fracture propagation angle 192 

with x. In the remaining text this version of cubic law is called modified cubic law. 193 

 194 

Fracture connectivity B included in the modified cubic law was estimated by two different methods 195 

described earlier. It was observed that the first method (fracture restoration method) gave values 196 

which were 1-4% higher than the second one (percolation method). Porosity was also included into 197 

the cubic law calculation as a volumetric portion of fractures. Table 4 gives comparison between two 198 

connectivity methods. 199 

 200 

Table 4. Comparison between two methods of connectivity determination 201 

 
Subset 

Connectivity 

Mean Range 

First method Second Method First method Second Method 

SCAN-M 0.89 0.87 0.78 - 0.99 0.74 - 0.98 

SUBV-M 0.82 0.77 0.71 - 0.93 0.63 - 0.91 

SCAN-S 0.88 0.86 0.78 - 0.97 0.72 - 0.98 

SUBV-L 0.74 0.68 0.62 - 0.86 0.59 - 0.84 

 202 

The same blocks were used to calculate permeability. This petrophysical parameter was determined 203 

by numerical simulations of steady state single-phase flow through the cleat networks. Simulations 204 

were performed using Palabos, which is an open-source computational fluid dynamics (CFD) solver 205 

based on the Lattice Boltzmann method (25).  The following parameters were used for simulation: the 206 

D3Q19 lattice, bounce back boundary conditions at the solid walls, a fixed pressure difference 207 

between inlet and outlet boundary and zero initial fluid velocity, with a constant initial pressure 208 



gradient in the x-direction. The principal flow direction is shown on Figure 3. The simulation was 209 

performed until the convergence was reached. The number of iterations was limited to 10 000 but in 210 

all cases the convergence was reached before 10000 (typically about 9000 iterations). The 211 

permeability was computed by applying Darcy’s law to the simulated velocity data. The results 212 

obtained from calculation and numerical simulation were summarised in tables and their analysis is 213 

presented in Results section. 214 

 215 

 216 

Figure 3. An example of a cross section through the 3D flow domain (2.5-μm scanned set) – the size 217 

of the sides is 2.5*2.5 mm. 218 

Results 219 

Table 5 shows results for fracture apertures, directions and connectivity. Fracture aperture is in a 220 

range between 15 and 25 microns with a mean equal to 21 microns for subsets SCAN-M, SUBV-M and 221 

SUBV-L; and in the range 5-10 microns with a mean equal to 7 microns for subset SUBV-S. Previous 222 

researchers demonstrated that fracture aperture is the main factor which affects the cubic law 223 

permeability (e.g. 29). In the course of the current research, aperture was analysed manually, and two 224 

different values were tested to calculate permeability – minimal aperture and average aperture. When 225 

the minimal aperture was used, it was found that the analytical solution is 44-48% smaller than 226 

numerical solution (Figure 4), while the implementation of average aperture gives a difference 227 

between analytical calculation and numerical solution around 4-8% (numerical solution gives slightly 228 

bigger results). Another parameter that may influence permeability of fractured coal is the fracture 229 

roughness. SEM analysis of coal samples (Figure 5) demonstrated that fractures are relatively smooth: 230 

roughness was estimated as 1-2 micron. It was therefore decided that roughness effects can be 231 

neglected. This is considered fully justified for subsets SCAN-M, SUBV-M and SUBV-L, where roughness 232 

height is of the order of 10% of the average aperture. In case of SUBV-S with 5-10 micron fractures, 233 

roughness may have some influence, so analytical permeability is probably somewhat overestimated. 234 



Cubic law was used to calculate permeability based on different subsets and different inputs. First of 235 

all, only porosity and fracture aperture were taken into account, i.e. the basic cubic law was applied. 236 

No clear correlation was found between numerical simulation results and the results of application of 237 

basic cubic law (Figure 6). Correlation between numerical simulation and analytical solution of cubic 238 

law was found when fracture direction and connection factor were added (Figures 7). 239 

 240 

Table 5. Parameters used for modified cubic law 241 

Subset Average aperture (micron) (α) (degrees) Connectivity (second method) 

Mean Range Mean Range Mean Range 

SCAN-M 21 15 – 25 55 45 - 65 0.87 0.74 - 0.98 

SUBV-M 21 15 – 25 55 40 - 70 0.77 0.63 - 0.91 

SCAN-S 7 5 – 10 55 45 - 65 0.86 0.72 - 0.98 

SUBV-L 21 15 – 25 60 35 - 85 0.68 0.59 - 0.84 

 242 

 243 

 244 

Figure 4. Numerical solution versus analytical solution using modified cubic law for subset SCAN-M 245 

when minimal aperture was used 246 

 247 

 248 

Figure 5. SEM image (A) and micro-CT image (B) demonstrate that the fracture width is quite 249 

constant 250 



 251 

Figure 6. Comparison of basic (blue colour) and modified (red colour) cubic law for subset SCAN-M 252 

 253 

 254 

Figure 7. Numerical solution versus analytical solution using modified cubic law for subset SCAN-M 255 

(A), subset SUBV-M (B), subset SCAN-S (C) and subset SUBV-L (D) 256 

 257 

The next stage of this part of the research described in the paper was upscaling of permeability values 258 

when modified cubic law was applied for calculation of permeability on 2.5cm micro-CT images. The 259 

following procedure was applied: first of all, images with resolution 25 micron (i.e. field of view 2.5cm) 260 

were analysed, subvoxelled and calibrated by comparison to 2.5-micron images; then those 261 

parameters were put into the modified cubic law and permeability was calculated. Permeability 262 



calculations gave 0.14-0.31mD. When permeability calculation was repeated without connectivity and 263 

direction factors, permeability was equal to 6.5-7.3 mD.   264 

 265 

The final step of the study was to validate the results of permeability calculation. Available data from 266 

the studied basin show that coal permeability is in the range 0.005-0.68mD with average 0.21mD (13), 267 

where lower limit of this range corresponds to the impermeable coal while the upper one and average 268 

– to the fractured coal. These data were used for initial validation to get the range of permeability 269 

which we can expect. We also measured the NMR hydrogen relaxation time and estimated the coal 270 

permeability through Schlumberger‐Doll Research (SDR) equation (10). The experimental results of 271 

analysis of the studied samples is in the range 0.16 – 0.79mD, this is also similar to the studied samples 272 

from the same area. 273 

 274 

Discussion, conclusion and future challenges 275 

The main purpose of the current research was to establish a robust method for permeability upscaling 276 

from micron and millimetre scale to centimetre scale and apply it for intermediate rank coal samples. 277 

This research focused on fracture permeability and applied cubic law for upscaling purpose. In the 278 

course of the current research it was found that cubic law in its “classical” form didn’t work for studied 279 

samples since no correlation was observed between numerical and analytical solutions (Figure 6). 280 

Previous researchers (e.g. 26) claimed that cubic law might require some modifications and in the 281 

current research some attempts were made to alter cubic law for permeability upscaling. Thus, 282 

fracture direction and connection factor were included in the cubic law and as a result, good 283 

agreement was established between modified analytical expression of cubic law and numerical 284 

simulation. The modified cubic law was applied to different data sets in order to make sure that the 285 

established agreement is not spurious. Although correlation was observed on all studied samples, it is 286 

important to notice that the study was performed on the coal samples of only one coal rank 287 

(intermediate rank coal) and some assumptions were made which might be not correct for coal from 288 

other coal samples. For example, analysis of studied coal samples demonstrated that fractures are 289 

quite smooth, and their aperture is quite constant over the entire volume of coal samples, thus it was 290 

possible to omit the roughness of fractures and to use the average fracture aperture. Nonetheless, 291 

modified cubic law was successfully applied for permeability calculation of studied 2.5-cm samples: 292 

the resulting permeability was in the range 0.14-0.31mD while available data from the studied basin 293 

show that coal permeability is in the range 0.005-0.68mD with average 0.21 mD. Experimental results 294 

for the studied samples and similar to the studied samples from the same area gave permeability 295 

range which was equal to 0.16 – 0.79mD. 296 



 297 

As it was mentioned before, previous researchers have already re-examined and modified cubic law 298 

for permeability calculations, for instance, Sarkar et al. added fracture direction to cubic law (26). The 299 

modification which is suggested by the authors of the current paper is to add to cubic law a 300 

connectivity factor: although the importance of fracture connectivity was established before the 301 

current study, to the authors’ best knowledge none of the previous studies involved explicit 302 

quantitative method for evaluating connectivity. As it was mentioned before, two different methods 303 

were used to estimate connectivity – the first one which was based on the ratio of the number of 304 

voxels which build the “original” cleat and the number of those which compose the “restored” one. 305 

This method gives a number between 0 to 1 where 0 is no connectivity while 1 is 100% connectivity. 306 

Another method was based on the analysis of the topology of fracture. Topology is particularly 307 

relevant to fracture network connectivity and the flow properties (27), moreover, topological analysis 308 

has been implemented in the fracture characterisation software (7) but the applicability of the Y:X:I 309 

ratio for connectivity factor quantification was not tested before. As it was described in the current 310 

paper, both method for connectivity factor analysis demonstrated very similar results and overall 311 

improvement of cubic law outcomes, it should be noted that connectivity factor is empirical factor 312 

and the form in which it was included in the cubic form was determined from the analysis of 313 

correlation between numerical and analytical solutions.  314 

 315 

Although the modified version of cubic law described in this paper was obtained empirically and may 316 

underestimate some important cleat features like roughness in some cases, the modified cubic law 317 

can give correct valuation of permeability for some coal, and provide more accurate results in case of 318 

coal with irregular cleat system than the methods when coal cleat system is considered to be regular 319 

and permeability is coupled to porosity.   320 

 321 

The study described in the current paper focused on fracture permeability and did not take into 322 

account permeability of coal matrix pores. Although in the literature pore matrix contribution to fluid 323 

flow is considered negligible if any (23), this assumption will be tested in the next part of the research. 324 

Another future challenge is to apply other methods to calculate fracture aperture as it is apparently 325 

the most important variable in cubic law equation. 326 

 327 
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