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The steady behaviour of a rarefied gas around a rotating sphere is studied numerically
on the basis of the linearised ellipsoidal statistical model of the Boltzmann equation,
also known as the ES model, and the Maxwell diffuse-specular boundary condition. It is
demonstrated numerically that the normal derivative of the circumferential component
of the flow velocity and that of the heat flux diverge on the boundary with the rate
s−1/2, where s is the normal distance from the boundary. Further, it is demonstrated
that the diverging term is proportional to the magnitude of the jump discontinuity of
the velocity distribution function on the boundary, which originates from the mismatch
of the incoming and outgoing data on the boundary. The moment of force exerted on the
sphere is also obtained for a wide range of the Knudsen number and for various values
of the accommodation coefficient.

Key words:

1. Introduction

In this paper we consider a steady flow of a rarefied gas induced around a rotating
sphere in an unbounded domain. The problem is one of the most fundamental external
flow problems in fluid mechanics and in rarefied gas dynamics, whose practical applica-
tions can be sought in aerosol sciences and/or in vacuum engineering. In this paper, we
revisit this classical problem (Loyalka 1992) and carry out precise numerical analysis on
the basis of the ellipsoidal statistical model of the Boltzmann equation (the ES model)
and the Maxwell diffuse-specular boundary condition.

Our motivation for the present study is twofold. The first motivation is related to the
Magnus effect in a rarefied gas. That is, when there is a flow over a rotating sphere, the
sphere experiences a lift known as the Magnus force (see e.g. Rubinow & Keller 1961).
Our interest is to understand and clarify the Magnus force acting on a rotating sphere

† Email address for correspondence: taguchi.satoshi.5a@kyoto-u.ac.jp
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in a slow rarefied gas flow, for which the present analysis plays an important role. This
will be treated in a forthcoming paper.

The second motivation on which we will focus in the present paper is based on recent
theoretical works (Takata & Taguchi 2017; Takata et al. 2016b) on singular behaviours of
the macroscopic quantities of rarefied gases [or the moments of the velocity distribution
function (VDF)]. In rarefied gases, there are two main mechanisms underlying the
determination of the behaviour of the gas, namely, the molecular (ballistic) transport
and collisions (scattering). The effect of the ballistic transport is most highlighted when
the gas is in contact with a convex body or boundary. In general, there is a mismatch
of the incoming and outgoing data of the unknown (VDF) on a point on the boundary
for the molecular velocity tangent to the boundary, if the boundary is convex or flat.
In case the boundary is convex, this mismatch, or the discontinuity in VDF, propagates
into the gas along the characteristics of the transport equation, causing a singularity
in the behaviour of the macroscopic quantities on the boundary (Takata & Taguchi
2017). More precisely, the normal derivative of the macroscopic quantities diverges in
approaching the boundary with diverging rate s−1/n, where s is the normal distance
from the boundary and n (n > 2) is the degree of the dominant terms of the polynomial
that locally approximates the boundary.

A spherical body is a typical convex body and the flow around a rotating sphere is
subject to this singular behaviour. However, this aspect has not been considered in the
preceding study. A further investigation is still necessary in order to clarify the detailed
flow features, including not only the flow velocity and the shear stress, but also the heat
flow in the gas. In this paper, we will do this numerically. In particular, we will show
that the most rapidly diverging term in the macroscopic quantities is proportional to
the magnitude of the jump discontinuity of VDF on the boundary. This complements
the previous work (Takata & Taguchi 2017), in which some simplification was needed in
the boundary condition to pursue detailed and precise analysis. The Maxwell boundary
condition plays an ingenious role for this purpose. We also note that the present issue
has a close connection to the S layer (Sone 1973; Sone & Takata 1992) in the situation
where the Knudsen number is small.

Incidentally, when the boundary is of a smooth concave or a plane, the characteristics
tangent to the boundary do not enter the gas region. In these cases, a weaker singularity
was shown to occur (Takata & Taguchi 2017; Takata & Funagane 2011), that is, the
normal derivative of the macroscopic quantities diverges in approaching the boundary
with diverging rate ln s.

The resting part is organised as follows. After the formulation (section 2), the reduction
of the problem is carried out in section 3. Section 4 summarises analytical results for the
cases of large and small Knudsen numbers. Section 5 shows the numerical results, followed
by discussions (section 6). Section 7 is the conclusion.

2. Formulation

2.1. Problem and basic assumptions

Let us consider a monatomic ideal gas around a sphere with radius L rotating about a
fixed axis passing through the centre with constant angular velocity Ω∗. We introduce the
space rectangular coordinate system Lxi (or Lx) in such a way that the origin is located
at the centre of the sphere and that the x1 axis is taken to be the axis of revolution of
the sphere. At far distance from the sphere, the state of the gas is the resting equilibrium
state with density ρ∞, and temperature T∞. The (uniform) temperature of the sphere is
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supposed to be the same as that of the gas at infinity. We investigate the steady behaviour
of the gas induced around the sphere, under the following basic assumptions.

(i) The behaviour of the gas is described by the ellipsoidal statistical model (Holway
1966; Andries et al. 2000), which we call the ES model, of the Boltzmann equation.

(ii) The gas molecules are reflected on the sphere surface according to the Maxwell
diffuse-specular boundary condition (Sone 2007).

(iii) The angular velocity of the sphere is sufficiently small, i.e. |Ω∗|L/(2RT∞)1/2 � 1,
and the equation and boundary condition can be linearised around the reference
equilibrium state at rest. Here, R is the specific gas constant (i.e. the Boltzmann
constant divided by the mass of a molecule).

We further assume that the state of the sphere surface is homogeneous and therefore
the accommodation coefficient of the surface, denoted by α, is a constant independent
of the position on the surface. In the present study, we assume that the temperature of
the sphere is uniform and is the same as that of the gas at infinity. A justification of this
assumption is given in Appendix A.

2.2. Basic equations

Let us introduce the molecular velocity (2RT∞)1/2ζi [or (2RT∞)1/2ζ] and the ve-
locity distribution function (VDF) of the gas molecules ρ∞(2RT∞)−3/2(1 + φ(x, ζ))E,
where E = E(ζi) = π−3/2 exp(−ζ2j ). We also denote by ρ∞(1 + ω(x)) the density, by

(2RT∞)1/2ui(x) the flow velocity, by T∞(1+τ(x)) the temperature, by p∞(1+P (x)) the
pressures, by p∞(δij +Pij(x)) the stress tensor and by p∞(2RT∞)1/2Qi(x) the heat-flow
vector of the gas. Here, δij is the Kronecker delta and p∞ = Rρ∞T∞. In the sequel,
we also use the spherical coordinate system (Lr, θ, ϕ) with its polar direction directed
to the x1 axis. The corresponding components of the molecular velocity are denoted
by (2RT∞)1/2(ζr, ζθ, ζϕ). The similar convention will be used throughout the paper for
vectors and tensors [e.g. (ur, uθ, uϕ) etc].

The linearised ES equation for the present steady problem reads

ζj
∂φ

∂xj
=

1

k
LES[φ], (2.1)

LES[φ] = −φ+ ω + 2ζjuj + (ζ2j −
3

2
)τ + ν(ζiζj −

ζ2k
3
δij)Pij , (2.2)

ω = 〈φ〉, ui = 〈ζiφ〉, τ =
2

3
〈(ζ2j −

3

2
)φ〉, Pij = 2〈ζiζjφ〉, (2.3)

where LES is the linearised collision operator for the ES model with the so-called
relaxation parameter ν ∈ [−1/2, 1),

〈g(ζi)〉 =

∫
gEdζ, (2.4)

and k is defined by

k =

√
π

2
Kn =

√
π

2

`∞
L

=
(2RT∞)1/2

Acρ∞L
. (2.5)

Here, Kn is the Knudsen number with `∞ being the mean free path of the gas molecules in
the equilibrium state at rest with temperature T∞ and density ρ∞, and Ac is a constant
such that Acρ∞ is the collision frequency at the reference state. In (2.4), dζ = dζ1dζ2dζ3
and the domain of integration is the whole space of ζ.

The Maxwell diffuse-specular boundary condition (or the Maxwell condition for short)
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on the sphere is written as

φ = (1− α)φ(xi, ζi − 2ζrni)

+ α(−2
√
π

∫
ζr<0

ζrφEdζ + 2Ωζϕ sin θ), ζr > 0, (r = 1), (2.6)

where ni is the unit normal vector on the surface of the sphere pointed to the gas,
ζr = ζini, Ω = Ω∗L/(2RT∞)1/2 and α ∈ [0, 1] is the accommodation coefficient. When
α = 1, the specular-reflection part of the condition (2.6) is absent and the condition is
known as the diffuse reflection condition. The Maxwell boundary condition is a model,
originally introduced by Maxwell, in which the molecules arriving at the boundary
are reflected diffusely with probability α and specularly with probability 1 − α. This
model is the well-known gas-surface interaction model which can represent in a simplest
way the non-perfect accommodation with the boundary of the reflected molecules. The
simple combination of diffuse and specular reflections plays a key role in the subsequent
discussions because it allows us to control the magnitude of the discontinuity in VDF on
the boundary by changing the parameter α (the specular part produces no discontinuity
on the boundary). Other models such as the Cercignani-Lampis model (Cercignani 1988)
do not represent the specular boundary and therefore is inadequate for the present
purpose of quantifying the relation between the discontinuity and the diverging term
in the macroscopic quantities. It is also expected that, though the Maxwell condition
is unable to reproduce some physical details of actual molecular scatterings, the global
property like the torque acting on the sphere is well represented by this model.

On the other hand, the state of the gas approaches the equilibrium state at rest with
density ρ∞ and temperature T∞ (and pressure p∞) at infinity. Therefore, we have

φ→ 0, (r →∞). (2.7)

The pressure and the heat-flow vector are defined by

P =
2

3
〈ζ2j φ〉 = ω + τ, Qi = 〈ζi(ζ2j −

5

2
)φ〉. (2.8)

If we set ν = 0 in the (linearised) ES collision operator (2.2), we obtain the well-known
linearised BGK collision operator (Bhatnagar et al. 1954; Welander 1954; Sone 2007):

LES → LBGK, (ν → 0), (2.9)

LBGK[φ] = −φ+ ω + 2ζjuj + (ζ2j −
3

2
)τ, (2.10)

where ω, ui and τ are still defined in (2.3).
When the state of the gas is close to the local equilibrium, the ES model yields the

following viscosity µ∞ and thermal conductivity λ∞ in the reference state:

µ∞ =

√
π

2

p∞(2RT∞)−1/2`∞
1− ν

, (2.11)

λ∞ =
5
√
π

4
p∞(2RT∞)−1/2R`∞. (2.12)

Consequently, the corresponding Prandtl number for the ES model, defined by the ratio
of the kinematic viscosity to the thermal diffusivity, is given by

Pr =
5R

2

µ∞
λ∞

=
1

1− ν
, (2.13)

which is monotonically increasing in ν ∈ [−1/2, 1). The Prandtl number for a monatomic
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gas is close to 2/3 both experimentally and theoretically (it is exactly 2/3 for the pseudo-
Maxwell molecules). As seen from (2.13), the ES model yields Pr = 2/3 by specifying the
value ν = −1/2. This means that the ES model has an ability to match both the viscosity
and the thermal conductivity simultaneously to experimental data for monatomic gases,
while tuning the mean free path. However, this favourable property is less important in
the present linearised problem, because as shown below (section 2.3), the temperature of
the gas is uniform and therefore the thermal conduction is irrelevant (note that the heat
flux does not vanish in the gas though the temperature is uniform). Also for the reason
explained in the end of section 5, ν (or Pr) is considered as a free parameter and will not
be specialised to ν = −1/2 (or Pr = 2/3) in this study.

In the original (nonlinear) ES model, the Boltzmann collision term is replaced by a
relaxation operator, which is computationally more tractable. It can be viewed as an
extension of the BGK model (for which ν = 0), and has an advantage over other similar
models in that the Boltzmann H theorem has been proved for −1/2 6 ν < 1 (Andries
et al. 2000). The modification of the original Boltzmann ollision operator may lose some
details of the two-body collision mechanics involved in the original collision kernel but
retains the important basic properties. Moreover, it has been shown in various flow
problems that the adjustment of the mean free path in terms of viscosity or thermal
conductivity in accordance with the problem and the quantity under consideration is
required to have quantitatively a good agreement between the BGK model and the
Boltzmann equation. Various extensions of the ES model have also been proposed in the
context of gas mixtures (Brull 2015) and polyatomic gases (Andries et al. 2000).

2.3. Similarity solution

The following similarity solution is compatible for the present problem:

φ = ΩζϕφS(r, ζr, ζ) sin θ, (2.14)

where ζ = (ζ2i )1/2 = (ζ2r + ζ2θ + ζ2ϕ)1/2. With this similarity solution, the problem is
reduced to the following spatially one-dimensional problem for φS , i.e.

ζr
∂φS
∂r

+
ζ2 − ζ2r

r

∂φS
∂ζr
− ζr

r
φS =

1

k
LES
1 [φS ], (2.15)

φS(1, ζr, ζ) = (1− α)φS(1,−ζr, ζ) + 2α, ζr > 0, (2.16)

φS → 0, (r →∞), (2.17)

where

LES[ζϕφS ] = ζϕLES
1 [φS ] = ζϕ(−φS + 2ũϕ + 2νζrP̃rϕ), (2.18)

ũϕ =
1

2
〈(ζ2 − ζ2r )φS〉, P̃rϕ = 〈ζr(ζ2 − ζ2r )φS〉. (2.19)

Substituting (2.14) into (2.3) and (2.8), we find that the macroscopic quantities take the
following forms:

uϕ = Ωũϕ(r) sin θ, (2.20a)

Prϕ = ΩP̃rϕ(r) sin θ, (2.20b)

Qϕ = ΩQ̃ϕ(r) sin θ, (2.20c)
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and ω = ur = uθ = τ = P = Prr = Prθ = Pθθ = Pθϕ = Pϕϕ = Qr = Qθ = 0. Here, ũϕ
and P̃rϕ are given by (2.19), and

Q̃ϕ =
1

2
〈(ζ2 − ζ2r )(ζ2 − 5

2
)φS〉. (2.21)

Corresponding to (2.9), we have

LES
1 → LBGK

1 , (ν → 0), (2.22)

LBGK
1 [φS ] = −φS + 2ũϕ. (2.23)

Multiplying (2.1) by ζiE and integrating the result with respect to ζ yield ∂Pij/∂xj =

0, from which one can show d(r3P̃rϕ)/dr = 0, or equivalently

r3P̃rϕ = const. (2.24)

Therefore, r3P̃rϕ is a conserved quantity of the problem. In section 3, this property plays
a crucial role to find a conversion relation between the ES and BGK models (see also,
e.g. Cercignani 1988; Takata et al. 2016a, and references therein).

If we denote by p∞L
3(M, 0, 0) the moment of force (torque) acting on the sphere, M

is given by

M = −
∫
|x|=1

ε1jkxjPk`n`dS,

where εijk is the Eddington epsilon and dS is the surface element on the sphere. By the
use of (2.20b), it is further simplified to

M = −8

3
πΩP̃rϕ(r = 1). (2.25)

Thus, if we express M as

M = ΩhM , (2.26)

hM = hM (k,Pr, α) is given by

hM = −8

3
πP̃rϕ(r = 1) = −8

3
π(r3P̃rϕ(r)), (2.27)

where (2.24) has been used for the second equality. The hM depends not only on k and Pr
(or ν), but also on α through the boundary condition; hence, the functional dependency
hM = hM (k,Pr, α). One of our interests is to construct hM (k,Pr, α) for the ES model
for a wide range of the parameter space.

No net force acts on the sphere in the present problem.
In our formulation, the problem has been linearised about the reference equilibrium

state at rest under the condition of slow rotation, i.e. |Ω| = |Ω∗|L/(2RT∞)1/2 � 1.
Since the domain is unbounded, it is important to determine the range of r in which
the linearisation is valid. In this problem, the perturbed velocity distribution function φ
decays like r−2 as r →∞ when k <∞. Consequently, the nonlinear term remains smaller
than the transport term (i.e. the left-hand side of (2.1)) as r is increased, implying that
the linearisation is valid uniformly in the whole gas region. The situation is different from
a slow uniform flow past a sphere, for which a matched expansion approach is required
to treat the nonlinear effect in the region far from the sphere (Taguchi 2015; Taguchi &
Suzuki 2017).
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3. Relation between the solutions for the ES model and the BGK
model

The problem contains three parameters k, Pr (ν) and α. Hence, the necessary amount
of computations is quite large. Fortunately, in the case of the ES model, one can express
the solution for arbitrary ν in terms of the solution for ν = 0 (the BGK model), thereby
reducing the amount of computations. In this section, for the sake of discrimination,
we denote the solution of the boundary-value problem (2.15)–(2.17) based on the ES
model and that based on the BGK model by φES

S and φBGK
S , respectively (i.e. φBGK

S =
φES
S |ν=0). Likewise, the corresponding macroscopic quantities are distinguished using the

superscript ES or BGK.
Supposing that φBGK

S is known, we seek φES
S in the form

φES
S = a(r) + bφBGK

S , (3.1)

where a is a function of r and b is independent of (r, ζr, ζ). Thanks to the linearity of
LES
1 and LES

1 [1] = 0, we deduce

LES
1 [φES

S ]− bLBGK
1 [φBGK

S ] = LES
1 [φES

S − bφBGK
S ] + 2bνζrP̃

BGK
rϕ = 2bνζrP̃

BGK
rϕ .

Thus, the subtraction of (2.15) with φS = φES
S and that with φS = φBGK

S (multiplied by
b) leads to

ζr
∂(φES

S − bφBGK
S )

∂r
− ζr

r
(φES
S − bφBGK

S ) =
2νb

k
ζrP̃

BGK
rϕ ,

or equivalently,

r
d

dr

(a
r

)
=

2νb

k
P̃BGK
rϕ (r). (3.2)

On the other hand, (2.24) allows one to write

P̃BGK
rϕ =

P̃BGK
rϕ |r=1

r3
. (3.3)

Substituting this into (3.2) and integrating the result with respect to r yield

a = −2

3

νb

k

P̃BGK
rϕ |r=1

r2
+ βr, (3.4)

where β is an integration constant.
The constants β and b are determined as follows. First, condition (2.17) at infinity

requires a→ 0 as r →∞, and hence β = 0. Next, after noting that both φES
S and φBGK

S

satisfy the boundary condition (2.16) at r = 1 independently (for the same α > 0), we
have

a(1) = 2− 2b. (3.5)

Applying this to (3.4) (with β = 0) determines b, and hence a(r), as follows:

a = −2ν

3k

P̃BGK
rϕ |r=1

1− (ν/3k)P̃BGK
rϕ |r=1

1

r2
,

b =
1

1− (ν/3k)P̃BGK
rϕ |r=1

.
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To summarise, φES
S is expressed in terms of φBGK

S as

φES
S =

(
1 +

1

8π

Pr− 1

Prk
hBGK
M

)−1(
φBGK
S +

1

4π

Pr− 1

Prk

hBGK
M

r2

)
, (3.6)

where we have replaced P̃BGK
rϕ |r=1 and ν by hBGK

M (≡ hM (k, 1, α)) and Pr, respectively,

by the use of the relation hBGK
M = −(8/3)πP̃BGK

rϕ |r=1 and (2.13). The corresponding
formulas for the macroscopic variables (i.e. the moments of φS) are summarised as

ũES
ϕ =

(
1 +

1

8π

Pr− 1

Prk
hBGK
M

)−1(
ũBGK
ϕ +

1

8π

Pr− 1

Prk

hBGK
M

r2

)
, (3.7a)

P̃ES
rϕ =

(
1 +

1

8π

Pr− 1

Prk
hBGK
M

)−1
P̃BGK
rϕ , (3.7b)

Q̃ES
ϕ =

(
1 +

1

8π

Pr− 1

Prk
hBGK
M

)−1
Q̃BGK
ϕ . (3.7c)

The moment of force acting on the sphere is also expressed as

hES
M =

(
1 +

1

8π

Pr− 1

Prk
hBGK
M

)−1
hBGK
M . (3.8)

With the aid of these relations, one can readily obtain the solution for the ES model
from that for the BGK model (Pr = 1 or ν = 0) for the common k and α. Moreover, the
relation can be used to check the accuracy of numerical computation, if one has solutions
for Pr = 1 and Pr 6= 1 for the same k and α.

4. Results for large and small k

Before proceeding to the actual numerical analysis, we summarise here some analytical
results available for large and small k. The formulas given in this section are not restricted
to the ES model.

The solution in the case of a collisionless gas, i.e. k = ∞, is easily obtained for the
present problem and is given by

φS =

{
2αr, (0 6 θζ < Arcsin(r−1)),

0, (Arcsin(r−1) < θζ 6 π).
(4.1)

Here, θζ (0 6 θζ 6 π) is the polar angle of the molecular velocity ζi measured from the
radial direction, i.e. θζ = Arccos(ζr/ζ). Thus, the solution is simply proportional to α in
the case of the collisionless gas. The macroscopic quantities and the torque acting on the
sphere are easily obtained and are summarised as follows:

ũϕ =
αr

2

[
1−

√
1− 1

r2

(
1 +

1

2r2

)]
, (4.2a)

P̃rϕ =
α

π1/2

1

r3
, (4.2b)

Q̃ϕ = 0, (4.2c)

hM = −8

3
π1/2α. (4.3)
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k0 a1 a2 a3 3k20 − 3a1 + a2 + a3

BGK −1.01619 0.76632 0.50000 −0.26632 1.03265
ES (Pr = 2/3) −0.67746 0.51088 0.33333 −0.17755 0.00000
HS −1.25395 0.90393 0.66012 −0.24381 2.42169

Table 1. The slip coefficients occurring in (4.4a)–(4.4c) for the BGK model, the ES model
with Pr = 2/3 and for the hard-sphere gas (HS) under the diffuse reflection boundary condition
(or the Maxwell boundary condition with α = 1). Data taken from Sone (2007); Takata et al.
(2016a).

Thus, the heat flow vanishes in the collisionless limit. From the above expression, it is
easily seen that dũϕ/dr diverges with the rate (r − 1)−1/2 as r ↓ 1.

The asymptotic expressions of the flow field for k � 1 are obtained with the aid of the
asymptotic theory (the general slip flow theory) (Sone 2002, 2007). We summarise the
results in the case of α = 1:

ũϕ =
1

r2
+ 3k

(
k0
r2

+ Y0(η)

)
+ 3k2

(
3k20 − 3a1 + a2 + a3

r2
+ Y(η)

)
+ · · · , (4.4a)

P̃rϕ =
3γ1k(1 + 3kk0 + 3k2(3k20 − 3a1 + a2 + a3) + · · · )

r3
, (4.4b)

Q̃ϕ = −3kHA(η) + · · · , (4.4c)

and

hM = −8πγ1k(1 + 3kk0 + 3k2(3k20 − 3a1 + a2 + a3) + · · · ), (4.5)

where

Y(η) = 3k0Y0(η)− 3Ya1(η) + Ya2(η) + Ya3(η), (4.6)

and η = (r−1)/k. We note that γ1k is the dimensionless viscosity [(
√
π/2)γ1p∞(2RT∞)−1/2`∞

is the viscosity where γ1 = 1/(1 − ν) = Pr for the ES model, γ1 = 1 for the BGK
model and γ1 = 1.270042427 for the hard-sphere model], k0, a1, a2 and a3 are the slip
coefficients and that Y0(η), Ya1(η), Ya2(η), Ya3(η) and HA(η) are the Knudsen-layer
functions (Sone 2007). The slip coefficients and the Knudsen-layer functions depend on
the molecular model as well as on the model of the molecular scattering law on the
surface. The values for the ES model under the diffuse reflection boundary condition,
i.e. α = 1, have recently been obtained in Takata et al. (2016a). In this reference, it was
shown that the above slip coefficients and the Knudsen-layer functions for the ES model
are related to those for the BGK model (i.e. Pr = 1) by the following simple relations:

(k0, a1, a2, a3)ES = Pr(k0, a1, a2, a3)BGK,

(Y0, Ya1, Ya2, Ya3, HA)ES = Pr(Y0, Ya1, Ya2, Ya3, HA)BGK,

where the subscripts “ES” and “BGK” stand for the the slip coefficients and Knudsen-
layer functions for the ES model and those for the BGK model, respectively. We list
the values of the slip coefficients for the BGK model and those for the ES model with
Pr = 2/3 under the diffuse reflection boundary condition in table 1. For the ES model
with Pr = 2/3, the combination 3k20 − 3a1 + a2 + a3, occurring at the third term in ũϕ,

P̃rϕ and hM , turns out to be practically zero.
We note that the S-layer corrections, which are required at the bottom of the Knudsen
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layer (Sone & Takata 1992), have not been included in the above formulas for ũϕ and

Q̃ϕ for k � 1.

5. Numerical results

We solved the boundary-value problem (2.15)–(2.17) numerically by a finite difference
method. The main feature of the present problem is the propagation of the discontinuity
of the velocity distribution function in the phase space along the characteristics r sin θζ =
1 [θζ = Arccos(ζr/ζ)]. In order to capture this feature accurately, our method is based on
a hybrid scheme consisting of a finite difference method and a method of characteristics.
Its original form, among its variants, was developed for an evaporating flow from a
cylindrical condensed phase (Sugimoto & Sone 1992) and then applied to the problem of
a slow uniform flow past a sphere (Takata et al. 1993). Recently, the process of calculating
the discontinuity was refined in Taguchi & Suzuki (2017). The numerical computations
were carried out for Pr = 1 (ν = 0) and Pr = 2/3 (ν = −0.5), and for various values of
the accommodation coefficient α.

It should be emphasised that the proper account of the discontinuity in the velocity
distribution function is crucial for the purpose of the present study. Loyalka (1992) solved
the same problem numerically by using the Legendre polynomial expansion (truncated at
the fourth term) of the linearised collision kernel for a hard-sphere gas. However, probably
due to his main interest on the global quantities (e.g. the torque), the discontinuity
of the velocity distribution was not taken into account there. In the present study,
numerical computations were carried out carefully and faithfully at the level of the
velocity distribution function in order to achieve high accuracy required to reveal precise
structures of the flow field. This is computationally quite challenging even with the ES
or BGK model.

5.1. Behaviour of the macroscopic quantities

We first show the behaviour of the macroscopic quantities. Figure 1 shows the profiles
of uϕ/Ω sin θ, Prϕ/Ω sin θ and Qϕ/Ω sin θ in the case of the diffuse reflection (α = 1)
for k = 0.1, 1 and 10. The solid line indicates the results for Pr = 2/3 and dashed line
those for Pr = 1 (or the BGK model). A flow is induced around the sphere due to the
sphere rotation. The flow speed is faster for Pr = 2/3 than for Pr = 1 for the same
k. On the other hand, the flow speed is larger for smaller k and approaches the limit
uϕ → αΩ sin θ/r2 as k → 0. The tangential stress Prϕ is inversely proportional to r3 as
seen from (2.24). There occurs a heat flux flowing in the opposite direction to the mass
flow when 0 < k <∞, in spite that the temperature is uniform. Note that this heat flow,
however, vanishes in the collisionless limit (see (4.2c)).

Next, in order to see the effect of the accommodation coefficient α, the profiles of
uϕ/Ω sin θ and Qϕ/Ω sin θ for various α (α = 1, 0.6 and 0.2) are presented in figure 2 in
the case of Pr = 2/3 (k = 0.1, 1 and 10). The magnitude of the flow velocity and that of
the heat flux decrease with the decrease of α.

We have seen that the gradient of the tangential flow velocity ∂uϕ/∂r diverges on the
boundary r = 1 in the case of collisionless flow (k =∞). It is also seen from figures 1 and
2 that uϕ and Qϕ vary sharply near the boundary r = 1. Though it is difficult to see from
the figure, the heat flux Qϕ for α = 0.2 is also seen to vary quite sharply near r = 1 if
the figure is enlarged. In order to see this behaviour more clearly, we show in figure 3 the
variations of uϕ and Qϕ near the boundary as functions of s = r−1 for k = 10, 1 and 0.1,
in the case of the diffuse reflection boundary condition (α = 1). Clearly, these quantity
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Figure 1. Profiles of the macroscopic quantities in the case of α = 1 (the diffuse reflection
boundary condition). (a) uϕ, (b) Prϕ, (c) Qϕ. The solid line indicates the results for Pr = 2/3
and the dashed line those for Pr = 1. The value at r = 1 is indicated by ◦ for Pr = 2/3 and by
� for Pr = 1.

approach their boundary values in proportion to s1/2 for each Knudsen number, implying
that the divergence of ∂uϕ/∂r and ∂Qϕ/∂r occurs at r = 1. It seems paradoxical from
the conventional fluid mechanics view point, because the divergence of the derivative of
the flow velocity implies that the viscous stress is not well-defined on the boundary. Note
that however, the stress is not determined by the derivative of the flow velocity in a
rarefied gas, but is directly related to the velocity distribution function. In figure 4, we
show the variations of the same macroscopic variables for different values of α in the case
of the Maxwell boundary condition for k = 10 (Pr = 1). Again, we see the occurrence of
the gradient divergence of the macroscopic variables on the boundary, implying that this
phenomenon is not restricted to the case of the diffuse reflection boundary condition.
In figure 4(b), several results based on different lattice systems (M1–3) are shown for
α = 0.2 [(M1) is the finest and (M3) is the coarsest]. When the mesh near r = 1 is
refined, the variation tends to follow that of s1/2. The cause of the gradient divergence
is due to the propagation of the discontinuity of the velocity distribution function in the
gas. We will come back to this point later in section 6. For the moment, we continue to
present our numerical results.
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Figure 2. Profiles of uϕ and Qϕ for various α in the case of Pr = 2/3. (a,b) k = 0.1, (c,d)
k = 1, (e,f) k = 10. The value at r = 1 is indicated by ◦.

5.2. Moment of force acting on the sphere

We now show the results for the (dimensionless) moment of force hM acting on the
sphere. Figure 5 shows hM as a function of k for Pr = 1 and 2/3 and for various values
of α (α = 1, 0.6 and 0.2). The symbols represent the results of the direct numerical
analysis. For comparison, the values of hM for Pr = 2/3 are also calculated from those of
Pr = 1 with the aid of the formula (3.8) and are shown by the symbol + in figure 5(b).
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k α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1

0.1 0.7179 1.1589 1.4588 1.6771 1.8439
0.2 0.8283 1.4753 1.9960 2.4253 2.7861
0.3 0.8695 1.6106 2.2510 2.8106 3.3047
0.4 0.8902 1.6829 2.3940 3.0362 3.6197
0.5 0.9024 1.7269 2.4837 3.1814 3.8271
0.6 0.9104 1.7562 2.5445 3.2814 3.9723
0.7 0.9159 1.7769 2.5881 3.3541 4.0789
0.8 0.9200 1.7923 2.6208 3.4090 4.1601
0.9 0.9231 1.8042 2.6462 3.4519 4.2239
1 0.9256 1.8136 2.6663 3.4861 4.2751
2 0.9361 1.8541 2.7547 3.6384 4.5058
3 0.9393 1.8669 2.7829 3.6876 4.5813
4 0.9409 1.8730 2.7966 3.7117 4.6185
5 0.9418 1.8767 2.8047 3.7260 4.6405
6 0.9424 1.8791 2.8100 3.7354 4.6551
7 0.9428 1.8808 2.8138 3.7421 4.6655
8 0.9432 1.8820 2.8166 3.7470 4.6733
9 0.9434 1.8830 2.8188 3.7509 4.6793

10 0.9436 1.8838 2.8206 3.7540 4.6840

Table 2. Values of −hM for various k and α on the basis of the BGK model (or the ES model
with Pr = 1) under the Maxwell boundary condition with accommodation coefficient α.

k α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1

0.1 0.6282 (0.6282) 0.9417 1.1306 – 1.2575 (1.2575) 1.3490 (1.3490)
0.2 0.7653 – 1.2865 1.6654 – 1.9539 (1.9538) 2.1815 (2.1814)
0.3 0.8221 – 1.4552 1.9586 (1.9586) 2.3691 (2.3690) 2.7106 (2.7105)
0.4 0.8524 – 1.5529 2.1393 (2.1392) 2.6379 (2.6378) 3.0674 (3.0674)
0.5 0.8711 – 1.6158 2.2603 – 2.8239 – 3.3213 (3.3212)
0.6 0.8837 – 1.6595 2.3465 – 2.9594 – 3.5100 (3.5099)
0.7 0.8927 – 1.6915 2.4108 – 3.0622 – 3.6552 (3.6551)
0.8 0.8994 – 1.7158 2.4605 – 3.1426 – 3.7701 (3.7700)
0.9 0.9047 – 1.7350 2.4999 – 3.2072 – 3.8632 (3.8631)
1 0.9089 (0.9089) 1.7504 2.5320 – 3.2600 – 3.9400 (3.9400)
2 0.9275 – 1.8206 2.6813 – 3.5113 – 4.3125 (4.3125)
3 0.9335 – 1.8440 2.7325 – 3.5996 – 4.4462 (4.4462)
4 0.9365 – 1.8558 2.7582 – 3.6444 – 4.5147 (4.5147)
5 0.9383 – 1.8628 2.7737 – 3.6715 – 4.5564 (4.5564)
6 0.9395 – 1.8674 2.7841 – 3.6897 – 4.5844 (4.5844)
7 0.9403 – 1.8708 2.7915 – 3.7027 – 4.6045 (4.6045)
8 0.9409 – 1.8733 2.7970 – 3.7124 – 4.6196 (4.6196)
9 0.9414 – 1.8752 2.8014 – 3.7201 – 4.6314 (4.6313)

10 0.9418 (0.9418) 1.8767 2.8048 – 3.7261 – 4.6408 (4.6408)

Table 3. Values of −hM for various k and α on the basis of the ES model with Pr = 2/3
under the Maxwell boundary condition with accommodation coefficient α. The results were
obtained from those for Pr = 1 with the aid of the formula (3.8). The results of direct numerical
computations for Pr = 2/3 are shown in the parentheses.
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Figure 3. Variations of uϕ and Qϕ near the surface of the sphere as functions of the normal
distance s = r − 1 for various k (Pr = 1, α = 1). (a) uϕ, (b) Qϕ.
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Figure 4. Variations of uϕ and Qϕ near the surface of the sphere as functions of the normal
distance s = r − 1 for various α (Pr = 1, k = 10). (a) uϕ, (b) Qϕ. (M1–3) in the panel (b) are
the results based on different lattice systems; (M1) is the finest and (M3) is the coarsest.

The results of the direct numerical computations and those obtained from the formula
agree well (see also table 3). The corresponding values for Pr = 1 and those for Pr = 2/3
are tabulated in tables 2 and 3, respectively, where the results for α = 0.8 and 0.4 are
also included. The magnitude of hM increases monotonically with k, and approaches
the limiting value hM → −(8/3)π1/2α as k → ∞. The moment of force decreases in
its magnitude with the decrease of the accommodation coefficient α. The two-terms
asymptotic formula and three-terms formula for α = 1 (the dash-dotted line and the
solid line) do not make difference in the case of Pr = 2/3, since the coefficient of the
term k3 is zero within the significant figures (see table 1). Incidentally, the asymptotic
formula for the Maxwell boundary condition with α ∈ (0, 1) requires the information on
the slip coefficients (k0, a1, a2, a3) for α 6= 1. The values of the first-order slip coefficient
k0 under the Maxwell boundary condition were obtained in Wakabayashi et al. (1996)
for various α, for the hard-sphere gas. Results based on the variational approach are
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(a) (b)

Figure 5. hM versus k on the basis of the ES model under the Maxwell boundary condition
with accommodation coefficient α. (a) Pr = 1 (or the BGK model), (b) Pr = 2/3. The symbol
◦ indicates the numerical results. The horizontal lines indicate the values in the collisionless
gas limit (k → ∞). The results based on the asymptotic formula (4.5) for α = 1 are shown
by the broken line (one term), the dash-dotted line (two terms) and by the solid line (three
terms). In (b), the symbol + represents the result obtained from that for Pr = 1 with the aid
of formula (3.8).

available in Loyalka & Hickey (1989). The leading-order term of the formula is given by
hM = −8πγ1αk.

The increasing trend of −hM in terms of k can be interpreted in the case of large
and small k as follows. For the sake of convenience of discussion, we take the frame of
reference rotating with the sphere, in which the sphere is at rest and the fluid is rotating.
Also for clarity, we consider the situation where the molecules are reflected diffusely on
the surface. In this case, the reflected molecules have an isotropic velocity distribution
and give no contribution to the tangential momentum flux on the surface at a point
under consideration. Then, the torque acting on the sphere is determined by solely the
tangential momentum flux carried by the impinging molecules on the boundary. For the
free molecular flow, all the impinging molecules come directly from the infinity. When k
is large but finite, some molecules, after having reflected on the surface, collide with the
incoming molecules and hit them back, thereby reducing the momentum flux transmitted
to the boundary. The torque is therefore reduced with the decrease of k when k is large.
On the other hand, when k is small, the molecules coming from the region several mean
free paths away from the surface essentially determine the momentum flux. Since there
is a shear around the sphere, the molecules arriving at a point on the surface have faster
tangential velocity when k bocomes larger. Therefore, the torque is increasing with k,
when k is small.

Finally, compare hM for different Pr in the case of α = 1 (i.e. the diffuse reflection
boundary condition) in figure 6. Here, the results for Pr > 1 are also included though it
is unrealistic for a gas. −hM increases with the increase of Pr. However, if Pr is further
increased, the monotonicity of −hM with respect to k is lost.

Remark 1. We have so far confined our consideration to the case of a monatomic
gas. The extension to the case of a polyatomic gas is simpe if we adopt the ES model for
a polyatomic gas proposed by Andries et al. (2000) to replace our basic equation (with
a suitable modification in the diffuse reflection boundary condition). Let us denote by δ
the number of degrees of freedom of a gas molecule, by RT∞ε the energy related to the
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Figure 6. hM vs k for various Pr in the case of α = 1 (the diffuse reflection condition). The
symbols show the numerical results based on the ES model, which are connected by the solid
lines.

internal degree of freedom and by ρ∞(2RT∞)−3/2(RT∞)−1(1 + φ(x, ζ, ε))E(ζi)Eδ(ε) the
molecular velocity distribution function, where Eδ(ε) = Λδε

δ/2−1 exp(−ε) with Λ−1δ =∫∞
0
εδ/2−1 exp(−ε)dε. We also introduce the following notations for the polyatomic gas

under consideration: `∗∞ = (2/
√
π)(2RT∞)1/2/A∗cρ∞ with A∗c being a constant is the

molecular mean free path at the reference equilibrium state at rest, Kn∗ = `∗∞/L, k∗ =
(
√
π/2)Kn∗, α∗ ∈ [0, 1] the accommodation coefficient† and

Pr∗ =
δ + 5

2

Rµ∗∞
λ∗∞

the Prandtl number, where µ∗∞ and λ∗∞ are, respectively, the viscosity and the thermal
conductivity at the reference state. Then, if we introduce the similarity solution similar
to (2.14) as well as its the marginal with respect to the energy related to the internal
degree of freedom, i.e.

φ = ΩζϕφS(r, ζr, ζ, ε) sin θ and FS(r, ζr, ζ) =

∫ ∞
0

φSEδdε,

it turns out that FS solves the same equation and boundary conditions as φS, (2.15)–
(2.19), provided that the following correspondence between the parameters is satisfied:

k∗ = k, α∗ = α, Pr∗ = Pr = 1/(1− ν).

Also under the same condition, the macroscopic variables of the polyatomic gas also
coincide with those of a monatomic gas. Therefore, the present result for a monatomic
gas also gives the result for the case of a polyatomic gas. This also signifies the utility of
the conversion formula derived in section 3.

We conclude this section by a brief summary of the present numerical analysis.
• The flow speed is faster for Pr = 2/3 than for Pr = 1 and faster for smaller k.
• There exists nonzero heat flux in the gas in spite that the temperature of the gas is

uniform. The heat flow vanishes at the two limits k =∞ and 0.
• The flow and heat flow decrease as the accommodation coefficient (α) becomes small.
• The tangential component of the flow velocity and that of the heat flux, uϕ and

† For the present linearised problem, the Maxwell boundary condition on the sphere is given
by
φ = (1−α∗)φ(xi, ζi−2ζrni, ε)+α

∗(−2
√
π
∫
ζr<0

∫∞
0
ζrφEEδdεdζ+2Ωζϕ sin θ), ζr > 0, (r = 1).
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Qϕ, vary abruptly near the boundary in a way that their normal derivatives diverge on
the boundary with the rate (r − 1)−1/2. On the other hand, as (2.24) implies, such a
divergence of the normal derivative does not occur for Prϕ. Such observations are not
peculiar to the diffuse reflection boundary condition.
• −hM (> 0) is monotonically increasing in k if Pr is not very large.
• The present result is also applicable to the case of a polyatomic gas.

6. Discussions: gradient divergence

We have seen that the normal derivatives of the macroscopic quantities uϕ and Qϕ
diverge on the boundary. The present section discusses the cause of the occurrence of
gradient divergence in more detail along the line of Takata & Taguchi (2017). The point
is the propagation of the discontinuity of the velocity distribution function along the
characteristics r sin θζ = 1 in the phase space.

Let us consider the tangential flow velocity uϕ as an example, whose radial dependency
ũϕ(r)(= uϕ/Ω sin θ) is given by

ũϕ = π

∫ ∞
0

∫ π

0

ζ4 sin3 θζφS(r, θζ , ζ)Edθζdζ. (6.1)

Here, φS is regarded as a function of (r, θζ , ζ). Now, keeping in mind that φS is discon-
tinuous at θζ = θ∗ζ ≡ Arcsin(r−1), we differentiate the above expression with respect to
r to obtain

dũϕ
dr

= π

∫ ∞
0

∫ π

0

ζ4 sin3 θζ
∂φS
∂r

Edθζdζ − π
∫ ∞
0

ζ4[φS ]± sin3 θ∗ζ
dθ∗ζ
dr

Edζ, (6.2)

where

[φS ]± = φS(r, θ∗ζ + 0, ζ)− φS(r, θ∗ζ − 0, ζ). (6.3)

The second term arises because the location of the discontinuity θζ = θ∗ζ (r) changes with
r. Now substituting the explicit form of θ∗ζ , the second term is further transformed into

(second term) =
π

r4
√
r2 − 1

∫ ∞
0

ζ4[φS ]±Edζ, (6.4)

which diverges with the rate (r − 1)−1/2 as r ↓ 1, provided that |
∫∞
0
ζ4[φS ]±Edζ| is

bounded from below by a positive constant. On the other hand, the first term diverges
at most logarithmically on approaching the boundary. We leave the estimate of the first
term in Appendix B. Thus, the normal derivative ∂uϕ/∂r diverges on the boundary with
the diverging rate (r−1)−1/2 due to the second term of (6.2). Since its mechanism is the
propagation of the discontinuity of VDF into the gas, it should be observed irrespective
of the magnitude of k (even in the free molecular gas limit). Similarly, we can show that
∂Qϕ/∂r diverges with the same rate, (r − 1)−1/2, as r ↓ 1, which is also consistent with
our numerical results.

Now let us introduce the following notation for the integral measuring the magnitude
of jump across r sin θζ = 1 (a weighted marginal with respect to the ζ-variable):

G(r) =

∫ ∞
0

ζ4[φS ]±Edζ. (6.5)

From the above discussion, ũϕ can be expressed as ũϕ = ũϕ|r=1 + C1(r − 1)1/2 + · · ·
for r ∼ 1, and the coefficient C1 of the leading term of the diverging gradient should be
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k = 10 k = 1
α C1 G0 C1/G0 α C1 G0 C1/G0

1 −1.0380 −0.2343 4.431 1 −0.8796 −0.1976 4.453
0.8 −0.8334 −0.1881 4.430 0.8 −0.7301 −0.1641 4.450
0.6 −0.6274 −0.1416 4.430 0.6 −0.5683 −0.1277 4.449
0.4 −0.4198 −0.0948 4.429 0.4 −0.3933 −0.0884 4.447
0.2 −0.2106 −0.0476 4.428 0.2 −0.2042 −0.0459 4.445

Table 4. Values of C1 and G0 = limr↓1
∫∞
0
ζ4[φS ]±Edζ for various accommodation coefficients

α (k = 10, 1).
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Figure 7. (a) C1 and G0 = limr↓1
∫∞
0
ζ4[φS ]±Edζ for various accommodation coefficients α in

the cases of k = 10 and 1 (Pr = 1). The circles (◦, •) are for the case k = 10 and the triangles
(4, N) for the case k = 1. (b) Double-log plot of |C1| vs |G0| for k = 10 (◦) and 1 (4). In both
figures, the symbols represent the numerical results which are connected by the solid lines.

related to G0 ≡ limr→1+0G(r), as

C1 = 21/2πG0, (6.6)

where the factor 21/2π is purely geometric. To check this relation, the value of C1 was
obtained by fitting the curve ũϕ = ũϕ|r=1+C1(r−1)1/2 to the numerical data by the least
square method using five data points adjacent to the boundary. At the same time, the
value of G0(= G(1)) was calculated numerically using the data of φS at θζ = π/2± 0 on
the boundary. We show the values of C1 and G0 thus obtained in table 4 and in figure 7
for k = 10 and 1 and for various α in the case of Pr = 1. It is clearly observed that C1

varies in proportion to G0, a measure of the magnitude of jump discontinuity of VDF
(see figure 7(b)). The constant of proportionality is, according to (6.6), 21/2π ∼ 4.44288
irrespective of α > 0. As is seen from the columns C1/G0 in table 4, our numerical
results show C1/G0 ∼ 4.4, which is close to 21/2π, and again support the discussion in
this section.

As for Prϕ, a factor ζr = ζ cos θζ is contained in the integrand. This factor acts to
cancel the singularity originated from dθ∗ζ/dr. This explains why ∂Prϕ/∂r remains finite
as r ↓ 1. This result is also consistent with the more general result that the normal
derivative of any moment which contains ζini as a factor in the integrand (ni is the unit
normal vector to the boundary) do not diverge on a smooth boundary (Takata & Taguchi
2017).
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We conclude this section with a brief comment on the S layer. The discontinuity of
the velocity distribution function decays appreciably over the distance of the order of
the mean free path due to the molecular collision. Therefore, when k is small, the region
where the discontinuity of VDF is appreciable is confined in a thin region adjacent to
the boundary with the thickness of order Lk2. This thin region at the bottom of the
Knudsen layer whose thickness is of order Lk, is the S layer (Sone 1973; Sone & Takata
1992). The discussion in the present section is applicable irrespective of the values of k,
and therefore naturally applies to the S layer. In this way, the pesent result also clarify
the structure of the S layer around a rotating sphere.

7. Conclusion

In this paper, we have studied a flow induced around a spinning sphere in a rarefied gas
in detail, on the basis of the linearised ES model and Maxwell diffuse-specular boundary
condition. The main results are summarised as follows:
• We have derived a conversion formula that allows us to derive the result for arbitrary

Pr(> 2/3) from that for Pr = 1, for given (k, α).
• We have clarified the detailed profiles of the macroscopic quantities (flow velocity,

tangential stress, heat flow). In particular, we have shown numerically that the normal
derivatives of uϕ and Qϕ diverge on the boundary with the rate 1/

√
r − 1, which is

consistent with the estimate obtained in Takata & Taguchi (2017). The diverging term
in the normal derivatives of uϕ and Qϕ are proportional to the magnitude of the jump
discontinuity in VDF on the boundary.
• On the other hand, the normal derivative of Prϕ does not diverge on approaching the

boundary. The result is consistent with the more general result that the normal derivative
of any moment containing ζini as a factor in the integrand (ni: unit normal vector to
the boundary) do not diverge on a smooth boundary.
• We have obtained the moment of force acting on the sphere for a wide range of the

parameter space.
• The present result is also applicable to the case of a polyatomic gas.

This work was supported by JSPS KAKENHI Grant Number 25820041 and 17H03173
and in part by JSPS KAKENHI Grant Number 17K06146. The authors also acknowledge
the support by JSPS and MAEDI under the Japan-France Integrated Action Program
(SAKURA).

Appendix A. On the temperature of the sphere

In this paper, we have assumed that the temperature of the sphere is uniform and is
equal to that of the gas at infinity. In this appendix, we justify this in the case where the
heat flow in the sphere is described by the Fourier law.

We take the linearised Boltzmann equation as our basic equation and assume the
general kinetic boundary condition on the sphere, which includes the ES model and the
Maxwell boundary condition as particular examples. Let ρ∞(2RT∞)−3/2(1 + φ(x, ζ))E
be the velocity distribution function of the gas molecules, T∞(1+τs(x)) the temperature
of the sphere, (2RT∞)−3/2KB0(ζ, ζ∗) the scattering kernel at the reference equilibrium
state at rest describing the relation between the velocities of the incident molecules
ζ∗ (ζ∗r < 0) and those of the reflected molecules ζ (ζr > 0) on the surface and

p∞(2RT∞)1/2(L/T∞)λ̂s(> 0) the thermal conductivity of the sphere. The other notations
appearing below are the same as those in the main text, unless otherwise stated. Then,
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φ and τs satisfy the following equations and boundary conditions:

ζi
∂φ

∂xi
=

1

k
L[φ], (|x| > 1), (A 1a)

φ = gw + E−1
∫
ζ∗r<0

KB0(ζ, ζ∗)(φ∗ − g∗w)E∗dζ∗, ζr > 0, (|x| = 1), (A 1b)

φ→ 0, (|x| → ∞), (A 1c)

∂

∂xj
(λ̂s

∂τs
∂xj

) = 0, (|x| < 1), (A 2a)

λ̂s
∂τs
∂r

= −〈ζr(ζ2 −
5

2
)φ〉 ≡ −Qr[φ], (|x| = 1). (A 2b)

Here, L[φ] is the linearised collision integral (Sone 2007) whose explicit form is not
required,

gw(ζ) = 2Ωζϕ sin θ + (|ζ|2 − 5

2
)τs, (A 3)

and φ∗, g∗w and E∗ are φ∗ = φ(x, ζ∗), g∗w = gw(ζ∗) and E(ζ∗), respectively. The function
gw depends also on the position on the sphere through θ and τs. Equation (A 2b), which
states the continuity of heat flow across the surface, is the linearised version of the
conservation of energy on the surface (i.e. the continuity of energy flow across the surface).

The operator L satisfies the following well-known properties:
(i)

L[ϕ] = 0 ⇐⇒ ϕ(ζ) is a linear combination of 1, ζ and |ζ|2. (A 4)

(ii) For any function ϕ(ζ),

〈ϕL[ϕ]〉 6 0, (A 5)

and the equality holds if and only if ϕ is a linear combination of 1, ζ and |ζ|2.
The scattering kernel KB0(ζ, ζ∗) is required to satisfy the following basic properties.

Let ni be the unit normal vector on the boundary pointing the the gas and let ζn = ζini
and ζ∗n = ζ∗i ni. Then,

(i) Positivity:

KB0(ζ, ζ∗) > 0, for ζ∗n < 0 and ζn > 0; (A 6)

(ii) Impermeability: ∫
ζn>0

ζn
ζ∗n
KB0(ζ, ζ∗)dζ = −1, ζ∗n < 0; (A 7)

(iii) Uniqueness: let ϕe = c0 + ciζi + c4|ζ|2, where c0, ci (i = 1, 2, 3) and c4 are
independent of ζ. Then, the equality

ϕeE =

∫
ζ∗n<0

KB0(ζ, ζ∗)ϕe(ζ
∗)E∗dζ∗, (ζn > 0), (A 8)

holds if and only if c1 = c2 = c3 = c4 = 0.
Further, if KB0(ζ, ζ∗) satisfies the above properties, the following inequality holds on the
boundary:
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• Darrozes–Guiraud inequality (Cercignani 1988; Sone 2007): Let F (x) be a strictly
convex function. Then, for any ϕ(ζ) satisfying

ϕE =

∫
ζ∗n<0

KB0(ζ, ζ∗)ϕ(ζ∗)E∗dζ∗, (ζn > 0), (A 9)

the following inequality holds

〈ζnF (ϕ)〉 6 0. (A 10)

The equality sign applies if and only if ϕ is independent of ζ.
We first consider a reduced problem for φ derived from (A 1a)–(A 1c) by setting τs ≡ 0

in the boundary condition (A 1b), i.e. gw ≡ 2Ωζϕ sin θ. The solution to this problem is
denoted by φ0. Clearly, this corresponds to the situation considered in the main text;
the temperature of the sphere is uniform and coincides with that of the gas at infinity.
If the scattering operator defined by the kernel KB0(ζ, ζ∗) admits an axial symmetry
about the axis normal to the boundary, the same similarity solution of the form (2.14) is
applicable, and consequently, the heat flux across the boundary vanishes since Qr[φ

0] = 0
[see the line following (2.20)]. Consequently, τs = 0 is a solution to the problem (A 2a)
and (A 2b) (with φ = φ0). Thus, we conclude that (φ, τs) = (φ0, 0) is a solution to the
(full) boundary-value problem (A 1a)–(A 2b). Moreover, the uniqueness of solution (see
below) assures that (φ, τs) = (φ0, 0) is the only solution to the problem (A 1a)–(A 2b).

The uniqueness of solution can be shown along the same line as that of the boundary-
value problem of the linearised Boltzmann equation (without the stationary heat-
conduction equation) (see e.g. Sone 2007, A.12). However, the inclusion of the heat-
conduction equation results in an interesting application of the uniqueness condition for
the scattering kernel, which is illustrative. Therefore, we present a proof here.

Our goal is to show that the solution to the problem (A 1a)–(A 1c) with Ω = 0 vanishes
identically, i.e. (φ, τs) = (0, 0). To see this, we multiply the equation (A 1a) by 2φE and
integrate the result with respect to ζi over the whole space to obtain †

∂

∂xi
〈ζiφ2〉 =

2

k
〈φL[φ]〉 ≡ g(x) 6 0. (A 11)

Further integration with respect to x over the whole gas region gives∫
|x|>1

∂

∂xi
〈ζiφ2〉dx =

∫
|x|>1

g(x)dx ≡ G 6 0. (A 12)

Applying Gauss’s divergence theorem on the left-hand side yields∫
|x|>1

∂

∂xi
〈ζiφ2〉dx = lim

r→∞

∫
|x|=r

〈ζrφ2〉dS −
∫
|x|=1

〈ζrφ2〉dS, (A 13)

where dS is the surface element. Noting that 〈ζiφ2〉 = O(|x|−3) for |x| � 1 ‡, the first
term on the right-hand side vanishes and (A 12) reduces to

−
∫
|x|=1

〈ζrφ2〉dS = G 6 0. (A 14)

† Since the velocity distribution function contains discontinuities, the order of spatial
derivative and integration cannot be interchanged freely. However, using the fact that the
discontinuity of φ lies on the characteristics of the equation, one can show that the expression
of the most left-hand side of (A 11) is legitimate (Sone 2007). The same note applies to the
sentence containing (2.24).
‡ This follows from the estimate φ = 2ζihi + (|ζ|2 − 5/2)h4 +O(|x|−2) for |x| � 1, where hi

(i = 1, 2, 3) and h4, independent of ζ, are quantities of O(|x|−1).
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Now if we put F (x) = x2, ϕ = φ− ḡw and ḡw = (|ζ|2−5/2)τs in the Darrozes–Guiraud
inequality, the condition (A 9) is satisfied and we have

〈ζr(φ− ḡw)2〉 6 0, (|x| = 1). (A 15)

Since 〈ζrḡ2w〉 = 0, the left-hand side is transformed to

〈ζr(φ− ḡw)2〉 = 〈ζrφ2〉 − 2〈ζr ḡwφ〉 = 〈ζrφ2〉 − 2τsQr[φ] 6 0, (|x| = 1). (A 16)

Thus, ∫
|x|=1

〈ζrφ2〉dS 6 2

∫
|x|=1

τsQr[φ]dS. (A 17)

Combining this with (A 14), we obtain∫
|x|=1

τsQr[φ]dS > 0. (A 18)

On the other hand, multiplying (A 2a) by τs and integrating the result inside the sphere
gives ∫

|x|<1

∂

∂xj
(τsλ̂s

∂τs
∂xj

)dx−
∫
|x|<1

λ̂s(
∂τs
∂xj

)2dx = 0. (A 19)

Applying Gauss’s divergence theorem to the first term gives∫
|x|<1

∂

∂xj
(τsλ̂s

∂τs
∂xj

)dx =

∫
|x|=1

τsλ̂s
∂τs
∂r

dS = −
∫
|x|=1

τsQr[φ]dS, (A 20)

where (A 2b) has been used in the last equality. Therefore,∫
|x|=1

τsQr[φ]dS = −
∫
|x|<1

λ̂s(
∂τs
∂xj

)2dx 6 0. (A 21)

Hence, from (A 18) and (A 21), we have∫
|x|=1

τsQr[φ]dS =

∫
|x|<1

λ̂s(
∂τs
∂xj

)2dx = 0. (A 22)

Thus, τs is a constant independent of x. Also from (A 14), (A 17) and (A 22),

−
∫
|x|=1

〈ζrφ2〉dS = G =
2

k

∫
|x|>1

〈φL[φ]〉(x)dx = 0. (A 23)

However, since 〈φL[φ]〉 is non-positive (see (A 5)), 〈φL[φ]〉 = 0 must hold throughout
the gas region. This shows that φ is a linear combination of 1, ζ and |ζ|2. As the result,
L[φ] = 0 holds and (A 1) reduces to

ζi
∂φ

∂xi
= 0. (A 24)

Therefore, φ is invariant along the characteristics, which implies that φ = 0 for ζi whose
corresponding characteristic can be traced back to the infinity. In particular, φ = 0 for
the incident molecules (ζr < 0) on the boundary (|x| = 1). With this, (A 23) is rewritten
to give ∫

|x|=1

∫
ζr>0

ζrφ
2EdζdS = 0, (A 25)
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which shows that φ = 0 holds also for the outgoing molecules ζr > 0 on the boundary
(|x| = 1). Thus, we can conclude that φ = 0 in the whole gas region. Then, (A 1b) (with
Ω = 0) reduces to

ḡwE =

∫
ζ∗r<0

KB0(ζ, ζ∗)ḡ∗wE
∗dζ∗, ζr > 0, (|x| = 1). (A 26)

However, due to the uniqueness condition for KB0, τs must vanish on the boundary.
Thus, we conclude that τs = 0 also inside the sphere, since τs is constant.

One might think that the uniform temperature of the sphere and the gas (i.e. τ = τs =
0) is physically obvious for the following reason. In a slow flow for which a linearisation
is applicable, the energy equation of the gas reduces to ∂Qi/∂xi = 0, which is identical
with the energy equation in a solid body. Consequently, in the absence of heat sources in
the body and under the condition of energy continuity across the surface, the radial heat
flux through the sphere and the gas is zero, which results in a uniform temperature of
the sphere and the gas. However, this argument does not hold in rarefied gases, though
the result is still true for the present rotating flow. The reasons are the followings. First,
we cannot conclude that τ = const from Qi = 0, since the Fourier law does not hold
generally in rarefied gases. In the present problem, τ ≡ 0 is derived as a consequence
of the similarity solution. Second, we cannot conclude that there is no radial heat flux
in the sphere in the absence of heat sources inside when the ambient gas is a rarefied
gas. In rarefied gases, the flow velocity and the heat flux are linked through the velocity
distribution function, and if any nonzero radial heat flux is induced in the gas, it may
cause a redistribution of the temperature (in a thermally neutral body), resulting in
a nonuniform temperature distribution (thermal polarisation) †. The present linearised
steady rotating flow is free from this effect because it produces no radial heat flux in the
gas (i.e. Qr ≡ 0). Here, we stress again that the vanishing radial heat flux is a consequence
of the similarity solution and is not derived from τ ≡ 0. In rarefied gases, τ = const and
Qi = 0 are not equivalent. Indeed, Qϕ 6= 0 despite τ ≡ 0 in the present rotating flow.
Incidentally, the thermal polarisation of a sphere has been extensively studied in the
literature (see e.g. Beresnev et al. 1990; Takata & Sone 1995, and the references therein).

A steady nonuniform temperature distribution of the sphere and the surrounding gas
without total heat production in a thermally adiabatic system does not conflict with
the thermodynamic laws when there are inputs of energy (i.e. work) per unit time. If
this work is solely associated with the sphere rotation, the problem separation and the
uniqueness result exclude such a possibility in the linearised framework.

Appendix B. Estimate of the first term on the right-hand side of (6.2)

In this appendix, we estimate the behaviour of the first term of the right-hand side of
(6.2). To this end, we follow the basic strategy in Takata & Taguchi (2017) and summarise
the main points.

Let us first consider the so-called partial model, obtained by omitting the gain term
of the linearised ES equation (or the linearised Boltzmann equation):

ζi
∂φ

∂xi
= −νc

k
φ, (B 1)

which is supplemented by the boundary conditions (2.6) and (2.7). Here, νc = νc(ζ) >
δ(> 0) with δ being a positive constant (νc = 1 in the case of the linearised ES model).

† This in turn affects the flow around the sphere.
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After applying the form φ = ΩζϕφS(r, θζ , ζ) sin θ, the solution φS for the partial model
is given by

φS(r, θζ , ζ) =

2αr exp(−νcσB(r, θζ)

kζ
), [0 6 θζ 6 Arcsin(r−1)],

0, [Arcsin(r−1) < θζ 6 π],
(B 2)

σB(r, θζ) = r cos θζ − (1− r2 sin2 θζ)
1/2. (B 3)

Thus, in the case of the partial model, it is sufficient to consider the case of α = 1.
Keeping this in mind, we evaluate the first term of (6.2) as follows:

(first term) = π

∫ ∞
0

∫ Arcsin( 1
r )

0

ζ4 sin3 θζ
∂φS
∂r

(r, θζ , ζ)Edθζdζ

= 2π

∫ ∞
0

∫ Arcsin( 1
r )

0

ζ4 sin3 θζ
∂

∂r

[
r exp(−νcσB(r, θζ)

kζ
)

]
Edθζdζ

= 2π

∫ ∞
0

∫ Arcsin( 1
r )

0

ζ4 sin3 θζ

(
1− νcr

kζ
cos θζ

)
exp(−νcσB(r, θζ)

kζ
)Edθζdζ

− 2π

k

∫ ∞
0

∫ Arcsin( 1
r )

0

νcr
2ζ3 sin5 θζ

(1− r2 sin2 θζ)1/2
exp(−νcσB(r, θζ)

kζ
)Edθζdζ. (B 4)

The first term obviously remains finite as r ↓ 1. On the other hand, the second term is
estimated as∣∣∣∣∣

∫ ∞
0

∫ Arcsin( 1
r )

0

νcr
2ζ3 sin5 θζ

(1− r2 sin2 θζ)1/2
exp(−νcσB(r, θζ)

kζ
)Edθζdζ

∣∣∣∣∣
6
∫ ∞
0

∫ Arcsin( 1
r )

0

νcr
2ζ3

(1− r2 sin2 θζ)1/2
Edθζdζ

=

∫ ∞
0

νcζ
3Edζ

∫ π/2

0

r2

(r2 − sin2 θζ0)1/2
dθζ0 =

(∫ ∞
0

νcζ
3Edζ

)
rK(

1

r
), (B 5)

where K(x) is the complete elliptic integral of the first kind. Since K(x) ∼ 1
2 ln 16

1−x2 as
x ↑ 1, we find that

rK(
1

r
) ∼ 1

2
ln(

1

r − 1
) (B 6)

as r ↓ 1. Thus, the second term diverges at most logarithmically. Also, notice that this
logarithmic divergence of the first term of (6.2) does not occur when the gas is collisionless
(k =∞), because the second term of (B 4) degenerates in this case.

Now we consider the following quasi-full model:

ζi
∂φ

∂xi
= −νc

k
φ+

S

k
, (B 7)

supplemented by the same boundary conditions as before, i.e. (2.6) and (2.7). Here,
S ≡ Ωζϕ sin θS1(r, θζ , ζ) represents a source term which is supposed to behave in the
same way as the moments of φ of the partial model as r ↓ 1. The ES model obviously
satisfies this property. That is, S1 ∼ a(θζ , ζ) + b(θζ , ζ)s1/2 + c(θζ , ζ)s ln s + · · · with
s = r− 1. The second term proportional to s1/2 is due to the contribution of the second
term of (6.2).

Integrating the equation along the characteristics, the solution φS of φ =



A rarefied gas flow around a rotating sphere 25

ΩζϕφS(r, θζ , ζ) sin θ for the quasi-full model is given, for θζ ∈ [0,Arcsin(r−1)), as
follows:

φS(r, θζ , ζ) = rφS(1, θζ0, ζ) exp(−νcσB
kζ

) +
1

k

∫ σB

0

rS1(r̃, θ̃ζ , ζ)

ζr̃
exp(−νc(σB − t)

kζ
)dt.

(B 8)

Here, σB = σB(r, θζ) is given by (B 3) and

θζ0 = Arcsin(r sin θζ), (B 9a)

r̃ = (t2 + 2t cos θζ0 + 1)1/2, (B 9b)

θ̃ζ = Arcsin(
r sin θζ
r̃

), (B 9c)

φS(1, θζ , ζ) = 2α+ (1− α)φS(1, π − θζ , ζ), (0 6 θζ 6 π/2). (B 9d)

Note that φS(1, θζ0, ζ) in the first term depends on VDF of the incoming molecules on
the boundary when α 6= 1.

In order to verify that the inclusion of the source term does not change the behaviour
of the moment of the partial model, we go back to the first term of (6.2) and consider
the following partial integral:

I = π

∫ ∞
0

∫ Arcsin( 1
r )

0

ζ4 sin3 θζ
∂φS
∂r

(r, θζ , ζ)Edθζdζ. (B 10)

Substituting φS into this expression, we obtain, after some manipulations,

I = π

∫ ∞
0

∫ Arcsin( 1
r )

0

ζ4 sin3 θζ

×
[
(1− νcr cos θζ

kζ
)φS(1, θζ0, ζ) +

r cos θζ
kζ

S1(1, θζ0, ζ)

]
exp(−νcσB

kζ
)Edθζdζ

− π

k

∫ ∞
0

∫ Arcsin( 1
r )

0

r2ζ3 sin5 θζ

(1− r2 sin2 θζ)1/2

[
νcφS(1, θζ0, ζ)− S1(1, θζ0, ζ)

− k(1− α)ζ

r sin θζ

∂φS(1, π − θζ0, ζ)

∂θζ0

]
exp(−νcσB

kζ
)Edθζdζ

+
π

k

∫ ∞
0

∫ Arcsin( 1
r )

0

ζ3 sin3 θζ

∫ σB

0

D

(
rS1(r̃, θ̃ζ , ζ)

r̃

)
exp(−νc(σB − t)

kζ
)dtEdθζdζ,

(B 11)

where

Dg(t, r) =

(
∂

∂r
+
∂σB
∂r

∂

∂t

)
g(t, r). (B 12)

Note that (B 4) for the partial model is recovered by setting φS(1, θζ , ζ) = 2 (0 6 θζ 6
π/2) and S1 = 0 as well as α = 1. Clearly, the first term remains finite as r ↓ 1 if
|φS(1, θζ , ζ)| is bounded for the impinging molecules θζ ∈ (π/2, π]. The second term
involves the derivative of φS with respect to θζ on the boundary for the impinging
molecules, θζ ∈ (π/2, π]. We will see later that this remains finite. Therefore, essentially
the same estimate as in the case of the partial model applies and the integral is estimated
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to be logarithmically diverging as r ↓ 1. For the third term, we first note that

Dr = 1,

Dr̃ =
(t+

√
1− r2 sin2 θζ) cos θζ + r sin2 θζ

r̃
,

Dθ̃ζ =
sin θζ(t+

√
1− r2 sin2 θζ − r cos θζ)

r̃2
.

Then, since |∂S1/∂r| ∼ C/
√
r − 1 for some positive constant C as r ↓ 1, we have the

following estimate:† ∣∣∣∣∣D
(
rS1(r̃, θ̃ζ , ζ)

r̃

)∣∣∣∣∣ . Cr2√
r̃ − 1

, (r̃ ↓ 1).

Thus, we are left to examine the integral

J =
π

k

∫ ∞
0

∫ Arcsin( 1
r )

0

ζ3 sin3 θζ

∫ σB

0

r2

(r̃ − 1)1/2
exp

(
−νc(σB − t)

kζ

)
dtEdθζdζ. (B 13)

Since

1√
r̃ − 1

=

√
r̃ + 1√
r̃2 − 1

=

√
r̃ + 1√

t2 + 2t cos θζ0
6

√
r + 1

t1/2
√
t+ 2 cos θζ0

6

√
r + 1

t1/2
√

2 cos θζ0
6

√
2r

t1/2
√

2 cos θζ0
=

r

t1/2
√

cos θζ0
,

we have

J 6
π

k

∫ ∞
0

∫ Arcsin( 1
r )

0

ζ3r3 sin3 θζ
1√

cos θζ0

∫ σB

0

dt

t1/2
Edθζdζ

6
2π

k

∫ ∞
0

∫ Arcsin( 1
r )

0

ζ3r3 sin3 θζ

√
σB√

cos θζ0
Edθζdζ

=
2π

k

∫ ∞
0

ζ3Edζ

∫ π/2

0

sin3 θζ0

√
σB√

cos θζ0

cos θζ0√
r2 − sin2 θζ0

dθζ0.

But, since

σB = r cos θζ −
√

1− r2 sin2 θζ 6 r cos θζ = r
√

1− sin2 θζ =
√
r2 − sin2 θζ0,

† Since t 6 σB in the range of integration,Dr̃ 6 (σB+
√

1−r2 sin2 θζ) cos θζ+r sin
2 θζ

r̃
=

r cos2 θζ+r sin
2 θζ

r
= r

r̃
.
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J 6
2π

k

∫ ∞
0

ζ3Edζ

∫ π/2

0

sin3 θζ0
(r2 − sin2 θζ0)1/4√

cos θζ0

cos θζ0√
r2 − sin2 θζ0

dθζ0

=
2π

k

∫ ∞
0

ζ3Edζ

∫ π/2

0

sin3 θζ0√
cos θζ0

cos θζ0

(r2 − sin2 θζ0)1/4
dθζ0

6
2π

k

∫ ∞
0

ζ3Edζ

∫ π/2

0

1√
cos θζ0

cos θζ0

(1− sin2 θζ0)1/4
dθζ0

=
2π

k

∫ ∞
0

ζ3Edζ

∫ π/2

0

dθζ0 =
π2

k

∫ ∞
0

ζ3Edζ. (B 14)

Thus, the third term is also bounded.
We close this appendix by showing the boundedness of |∂φS/∂θζ | at r = 1 for θζ ∈

(π/2, π]. This is directly seen by writing φS(1, θζ , ζ) for π/2 6 θζ 6 π as (see (B 8))

φS(1, θζ , ζ) =
1

k

∫ ∞
0

1

ζ

S1(r̃, θ̃ζ , ζ)

r̃
exp(−νct

kζ
)dt, (

π

2
6 θζ 6 π), (B 15a)

r̃ = (t2 − 2t cos θζ + 1)1/2, (B 15b)

r̃ sin θ̃ζ = sin θζ , (π/2 6 θ̃ζ 6 π). (B 15c)

Differentiating (B 15a) with respect to θζ , we have

∂φS(1, θζ , ζ)

∂θζ
=

1

k

∫ ∞
0

1

ζ

∂

∂θζ

[
S1(r̃, θ̃ζ , ζ)

r̃

]
exp(−νct

kζ
)dt, (B 16)

where

∂

∂θζ

[
S1(r̃, θ̃ζ , ζ)

r̃

]
=

(
−S1(r̃, θ̃ζ , ζ)

r̃2
+

1

r̃

∂S1(r̃, θ̃ζ , ζ)

∂r̃

)
∂r̃

∂θζ
+

1

r̃

∂S1(r̃, θ̃ζ , ζ)

∂θ̃ζ

∂θ̃ζ
∂θζ

,

∂r̃

∂θζ
=
t

r̃
sin θζ ,

∂θ̃ζ
∂θζ

=
t cos θζ − 1

r̃2
.

Thus, recalling again that |∂S1/∂r| ∼ C/
√
r − 1 as r ↓ 1, we have the estimate∣∣∣∣∣ ∂∂θζ

[
S1(r̃, θ̃ζ , ζ)

r̃

]∣∣∣∣∣ . Ct

r̃2
√
r̃ − 1

,

uniformly in θζ ∈ (π/2, π]. In view of this, we consider the integral

1

k

∫ ∞
0

1

ζ

t

r̃2
√
r̃ − 1

exp(−νct
kζ

)dt. (B 17)

Since

t√
r̃ − 1

=
t
√
r̃ + 1√
r̃2 − 1

=
t
√
r̃ + 1√

t2 − 2t cos θζ
6
t
√
r̃ + 1√
t2

=
√
r̃ + 1 6

√
2r̃2,

1

k

∫ ∞
0

1

ζ

t

r̃2
√
r̃ − 1

exp(−νct
kζ

)dt 6

√
2

kζ

∫ ∞
0

exp(−νct
kζ

)dt =

√
2

νc
. (B 18)

Thus, |∂φS(1, θζ , ζ)/∂θζ | is bounded for θζ ∈ (π/2, π].
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