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Respiratory Motion Imaging Using 2.4-GHz
Nine-Element-Array Continuous-Wave Radar

Takuya Sakamoto™, Senior Member, IEEE, and Takato Koda

Abstract— A radar system with antenna array and signal
processing method are presented for noncontact monitoring of
human respiration. We develop a 2.4-GHz nine-element radar
system and use it to measure the respiratory rate of a participant
lying on a bed. The results show that this system and method can
image a respiring body and estimate its instantaneous respiration
rate accurately. The accuracy of the proposed system is validated
by simultaneously recording the ribcage circumference using a
piezoelectric respiratory sensor and the 3-D body shape using a
depth camera. The results indicate the potential of this system
for long-term respiratory monitoring during sleep periods.

Index Terms— Antenna array, microwave, radar imaging,
respiration.

I. INTRODUCTION
EASURING vital signs and physiological signals such
as heartbeat and respiration is very important in health-
care applications. Noncontact measurements of vital signs
using radar systems do not cause skin irritation or discomfort
as contact measurements do. Radar-based measurements also
cause less concern about privacy than camera-based measure-
ments. For these reasons, radar-based sleep monitoring is a
promising approach to long-term measurement of vital signs.
To estimate the direction of arrival of vital echoes,
Wang et al. [1] and Peng et al. [2] studied mechanical antenna
rotation with a 5.8-GHz radar system and Chen et al. [3]
studied mechanical antenna scanning with a 1.5-GHz ultra-
wideband (UWB) radar system. Because radar systems with
mechanical rotation/scanning are generally bulky and heavy,
array antennas are preferable in such applications.
Millimeter-wave radar systems have become more widely
used to monitor physiological signals. Islam et al. [4] used a
24-GHz two-element radar system to monitor the respiration
of two people. Walterscheid et al. [5] located a number of
people through their breathing with a radar system operating
at 24-GHz with 16 channels and another operating at 77-GHz
with 32 channels in multiple-input-multiple-output (MIMO)
mode. Our group [6] used a 60-GHz eight-channel MIMO
radar system to measure a heartbeat.
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Fig. 1. Block diagram of the radar system.

On the other hand, lower frequency microwave radar
systems with antenna array have the advantage of easily
penetrating thick clothing and comforters to measure physi-
ological signals even when a person is wrapped in a thick
quilt. Hsu et al. [7] built a 2.4-GHz four-element radar
using self-injection-locked radar. Mostafanezhad et al. [8] built
a 2.4-GHz four-element radar system using a time-domain
multiplexing circuit to measure respiration of a single per-
son. Hall et al. [9] and Boothby et al. [10] built a 2.4-GHz
three-element radar system that can find the direction with the
largest phase fluctuation.

Despite these studies to develop radar systems with antenna
array to monitor respiration, no reported system can identify a
specific body part (e.g., chest wall or abdomen) through respi-
ratory motion. Locating that part of the body moving at a respi-
ratory rate would help in detecting and monitoring respiratory
illnesses including sleep apnea. In this letter, we designed
and fabricated the first 2.4-GHz continuous wave (CW) radar
system coupled with a 2-D nine-element antenna array that
accurately locates a respiring body of a sleeping person.
The measurement results indicate the effectiveness of our
radar system with antenna array in imaging and measuring
respiration.

II. RADAR WITH CROSS-SHAPED ARRAY

Our radar system (see Fig. 1) has a single transmit element
and eight receive elements for a total of nine elements. The
eight receive elements are connected to an eight-port GaAs
integrated-circuit switch. The antenna array is cross-shaped as
shown in Fig. 2, where the transmit element is at the center and
the receive elements form a cross around it. Each element is
an omnidirectional ceramic patch antenna with a peak gain of
2 dBi. The element intervals are all 7.0 cm, which corresponds
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Fig. 2. Radar with antenna array designed and used in this letter.

to 0.574, where 1 = 12.3 cm is the wavelength for 2.45 GHz.
The position of the ith receive element is denoted as (x;, y;, 0)
fori =1,..., N, where N = 8 and the transmit element is at
the origin. The received signals go through the GaAs switch
and are down-converted by a pair of mixers. The transmit
signal is also fed to the mixers via a quadrature hybrid coupler.
Then, their I and Q components are A/D converted using a
data acquisition (DAQ) hardware. The sampling frequency of
the A/D converter is 24 kHz. The A/D converted data are
averaged and decimated by a factor of 30, resulting in 800 Hz
sampling. Because there are N = 8 channels, the sampling
frequency for each channel becomes 100 Hz. For example,
assuming a sinusoidal respiration motion with an amplitude
of 2 mm and a period of 5 s, the maximum Doppler shift is
0.04 Hz, which is much lower than the sampling frequency.

III. RADAR MEASUREMENT WITH A PARTICIPANT

The radar system was installed above a Styrofoam bed.
The top surface of the bed was 1.25 m below the array
that was facing down to the floor. First, we used the radar
system to measure an empty scene without a participant
to obtain the background echo signal vector s®®(r) =
[sl(bg) @, -, s,(\t,)g) o1 containing a direct-current component
caused by static clutter, where superscript T denotes the matrix
transpose, and N = 8 is the number of receive elements.
Because these background signals are time-invariant, they are
averaged over time via 0 = (1/7) fOT s®2(1)dr, where T
is the total measurement time.

Next, we measured a participant lying on the bed and
obtained the echo signal vector s’(7). The participant was a
healthy male in his twenties. The participant was instructed
to remain calm and stationary and to breathe normally during
the measurement for 7 = 60.0 s. To estimate the respiration
period, the measurement time 7" needs to be twice longer than
the respiration period. Because a typical respiration period
is 5 s, T must be longer than 10 s. The background echo
signal §®® is subtracted via s(r) = s'(r) — §®, and s(¢) is
processed in Section IV.

IV. RADAR IMAGING OF RESPIRATORY MOTION

To selectively obtain an image associated with respiratory
motion only, our proposed method obtains image /(x, y) via

uny»=AT 2

T
w(x,y)H/O h(t —7)s()dz| dt (1)
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Fig. 3. Participant lying on the left side of the bed (left) and radar image
focusing on the respiratory motion (right).

where superscript H denotes the Hermitian transpose, A(t)
is the inverse Fourier transform of a bandpass filter H ()
to retrieve the respiration component. H(w) is defined as
Hw) = 1 for o, < o < wy, and Hw) = 0
otherwise. Here, wp and wy(> ) are half-power angu-
lar frequencies of the signal spectrum S(w) that is
obtained by averaging spectra calculated from eight chan-
nels. The beam-forming weight vector w(x, y) is defined
as w(x,y) = [wilx,y), wr(x,V),..., wn(x, )T, whose
elements w;(x,y) = =00+ G = 1, .. N)
compensate for the phase rotation caused by propagation.
The beam-forming weight w(x, y) focuses signals to position
(x,¥,z0), where zo is the distance between the array plane
and the bed.

The filter H () is designed on the basis of the respiration
characteristic of the target person estimated from the power
spectrum of the echo signal. By introducing bandpass filter
H (w), we can obtain a radar image I (x, y) of a specific body
part showing respiratory motion such as the chest wall or
abdomen.

Next, we determine the representative position of respiratory
motion by finding the maxima of the image 7(x,y) via
(x0, yo) = argmax,y) I (x, y). We then obtain the displace-
ment of the body part at (xo, yo, z9) that is expected to contain
the largest respiration component via

ro(t) = (A/4m) L (w(xo, yo) s (1)). 2)

Displacement ro(7) is expected to be more accurate than a
displacement estimated using a single-channel signal without
an antenna array.

V. APPLICATION OF THE PROPOSED IMAGING METHOD

We next apply our imaging method to the measured radar
signals. Figs. 3 and 4 show photographs of a participant
lying face-up on a bed and radar images produced using the
proposed method. The difference between Figs. 3 and 4 is
the reverse orientation of the participant. These figures indi-
cate the performance accuracy of the imaging system. The
spatial 3-dB resolutions of these images are 0.57 and 0.69 m,
respectively. The resolution was defined as the average of the
major and minor axes of an ellipse that is fit to the —3-dB
contour line extracted from the image and shown as dashed
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Fig. 4.  Participant lying upside-down on the bed (left) and radar image
focusing on the respiratory motion (right).
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Fig. 5. Participant lying on the right side of the bed (left) and radar image
focusing on the respiratory motion (right).

curves. Note that the image resolution depends on the distance
from the radar to the participant.

To verify the imaging accuracy, we introduced an Intel
RealSense depth camera (Intel Corporation, Santa Clara, CA,
USA) to record the actual body displacement of the partic-
ipant. In this measurement, the participant was in tight and
thin underwear only so that the depth camera could detect the
actual body shape and skin displacement accurately. The depth
camera recording was done only to evaluate the performance
of the radar-based system in this letter. In general practice,
only the radar system will be used and users undergoing
tests can be in clothes and on a bed. We assume that the
depth camera images are sufficiently accurate to be used as a
reference.

Fig. 5 shows the body displacement image (left) obtained
using a depth camera and the radar image 7 (x, y) (right). Note
that the silhouette line of the human body is shown only for
readers’ convenience and it is not necessarily accurate. The
blue cross symbols are the peak position with the largest respi-
ratory motion. The discrepancy between the peaks in the radar
and depth camera images was 0.05 m. These discrepancies
without the bandpass filter was 0.07 m. These results indicate
that the proposed imaging method in (1) improved the spatial
accuracy by a factor of 1.4.

VI. RESPIRATION MEASUREMENT VALIDATION
USING CONTACT SENSOR

We investigated the accuracy in measuring the respiration
rate using (2). To assess the accuracy, we also measured the
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Fig. 6. Body displacement measured using the proposed bandpass-filtered
beam-forming radar imaging (blue) and piezoelectric respiration sensor
belt (red) with the participant on the right side of the bed.

change in the ribcage circumference of the participant using
a piezoelectric respiratory effort sensor with a chest belt as a
reference. Fig. 6 shows the chest belt data (blue) and radar
data (red) obtained using (2) for the same measurement as
Fig. 5. Although these curves do not match exactly, their
temporal periodic patterns are almost identical. We obtained
time-dependent instantaneous respiration intervals (RIs) by
applying a local auto-correlation method to both data. The
root-mean-square (rms) error of the RIs calculated from the
radar and chest belt data was calculated to be 30 ms, which is
sufficiently small compared with the respiration period. Next,
to investigate the improvement in accuracy due to the proposed
antenna array, we estimated the RI using only a single element
instead of eight; the rms error was 135 ms on average using a
single element, indicating a 4.5-fold improvement in accuracy.
The results show the effectiveness of our proposed system for
monitoring respiratory patterns.

VII. CONCLUSION

We designed and fabricated a 2.4-GHz nine-element radar
system for use in measuring a participant lying on a bed below
the array antenna. We also proposed a radar imaging method
specifically targeting the respiratory component by introducing
a bandpass filter before forming an image. This method was
applied to the measured radar data and the images obtained
depicting the chest wall and abdomen of the participant.
We conducted a measurement using a depth camera and a
piezoelectric respiratory sensor to assess the accuracies in
imaging and estimating the respiration rate. The result gave
an average imaging error of 0.05 m and error of 30 ms in
estimating the RI, which indicates the effectiveness of the
designed radar system and imaging method. This system,
which has more antenna elements than existing 2.4-GHz radar
systems [7]-[10], generated for the first time an image from
respiratory motion. The performance of this system will be
evaluated with more data sets involving more participants in
future work. Although we used only a low-cost CW radar
system in this letter, the next important step would involve the
use of frequency-modulated CW radar [11], [12] to achieve a
higher resolution in respiratory imaging.
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