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A considerable amount of health record (HR) data has been stored due to recent

advances in the digitalization of medical systems. However, it is not always easy to

analyze HR data, particularly when the number of persons with a target disease is

too small in comparison with the population. This situation is called the imbalanced

data problem. Over-sampling and under-sampling are two approaches for redressing

an imbalance between minority and majority examples, which can be combined

into ensemble algorithms. However, these approaches do not function when the

absolute number of minority examples is small, which is called the extremely

imbalanced and small minority (EISM) data problem. The present work proposes a new

algorithm called boosting combinedwith heuristic under-sampling and distribution-based

sampling (HUSDOS-Boost) to solve the EISM data problem. To make an artificially

balanced dataset from the original imbalanced datasets, HUSDOS-Boost uses both

under-sampling and over-sampling to eliminate redundant majority examples based

on prior boosting results and to generate artificial minority examples by following the

minority class distribution. The performance and characteristics of HUSDOS-Boost were

evaluated through application to eight imbalanced datasets. In addition, the algorithm

was applied to original clinical HR data to detect patients with stomach cancer. These

results showed that HUSDOS-Boost outperformed current imbalanced data handling

methods, particularly when the data are EISM. Thus, the proposed HUSDOS-Boost is a

useful methodology of HR data analysis.

Keywords: health record analysis, imbalanced data problem, boosting, over- and under-sampling, stomach cancer

detection

1. INTRODUCTION

Digitalization of medical information is rapidly expanding due to advances in information
technologies, and many governments and medical institutions worldwide are promoting the
adoption of electronic health record (EHR) systems. An EHR system is a container for storing
the collection of patient and population health information in a digital format and for sharing
them over networks (1–3). A health record (HR) includes a wide range of items, such as patient
demographics, medical history, medical images, prescription, laboratory test results, vital signs, and
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billing. According to the U.S. Department of Health and Human
Services, more than 80 percent of hospitals in the U.S. had
adopted EHR systems by 2014 (4). In Japan, 77.5% of 400-bed
hospitals had introduced EHR systems by 2016, according to a
survey by the Ministry of Health, Labour and Welfare (MHLW).

The use of EHR systems would improve the quality
and efficiency of medical care, for example, by facilitating
smooth transition of patients between hospitals, preventing
unnecessary treatments and tests, and optimizing medical
resources (5). Analysis of a significant amount of HR data will
contribute to improving clinical decision-making, discovering
hidden relationships between diseases and patient lifestyles, and
predicting clinical endpoints (3).

It is beneficial to detect signs of a disease in its early
stages without special examinations. From the viewpoint of
machine learning, rare disease detection is formulated as a binary
classification problem: persons with or without the disease.
However, the majority of people will not contract a disease unless
the target disease becomes prevalent, such as the cold or the flu.
In this case, the objective data become imbalanced because the
number of patients with the target disease is small while that of
others is large.

Examples observed from the target rare event are referred to
as minority class examples, and examples from frequent events
are called majority class examples. Coping with the imbalance
between majority and minority classes is a challenging problem
for standard machine learning algorithms since most of them are
designed for balanced data (6, 7). These algorithms that optimize
model parameters based on classification accuracy tend to ignore
the minority class. Consider a dataset with 99 majority examples
and one minority example. A typical algorithm may classify all
examples into the majority class because a classification accuracy
of 99% is achieved. An accuracy of 99% means a highly-accurate
classifier for the balanced data problem; however, such a classifier
is unsatisfactory, since the detection of minority examples is of
crucial importance in most imbalanced data problems. Although
some methodologies for coping with the imbalanced data
problem have been proposed, they do not always function well,
particularly when the absolute number of minority examples is
too small. In this work, such a situation is defined as an extremely
imbalanced and small minority (EISM) data problem. HR data
analysis frequently faces the EISM data problem.

The present work proposes a new boosting-based algorithm
that combines heuristic under-sampling (HUS) and distribution-
based sampling (DOS) to overcome the binary classification
problem of EISM data, particularly for HR data analysis.
The proposed method is referred to as boosting combined
with HUS and distribution-based sampling (HUSDOS-Boost).
HUS selects majority examples that may be important for
subsequent weak classifier learning based on the former boosting
results, and DOS generates multiple artificial minority examples
whose variables are generated randomly in accordance with
the distribution of the minority class. Through using these
two sampling methods simultaneously, an artificially balanced
training dataset is generated for weak classifier learning. In
HUSDOS-Boost, multiple weak classifiers are constructed using
classifications and regression trees (CARTs) (8). Finally, they are

combined into a strong classifier for binary classification using
the boosting method.

This paper is organized as follows: section 2 provides an
overview of conventional algorithms for handling the imbalanced
data problem. To cope with the EISM problem, HUSDOS-Boost
is proposed in section 3. Section 4 evaluates the performance
of the proposed HUSDOS-Boost through application to eight
imbalanced datasets and discusses its characteristics. Section 5
reports the result of applying the proposed method to original
clinical HR data. The objective here is to detect patients with
stomach cancer from the HR data. Also, this section discusses
variables relevant to stomach cancer development derived from
the variable importance. Conclusion and future works are
presented in section 6.

2. RELATED WORKS

Various methodologies for coping with the imbalanced data
problem have been investigated because the imbalanced data
problem is not limited to the medical field (9), and many real-
world issues involve learning from imbalanced data, such as
fraud detection (10) and oil spill detection (11). The imbalanced
data problem arises due to characteristics of severe events like
natural disasters. This phenomenon is sometimes called the
power law (12).

This section explains existing methodologies for dealing
with the imbalanced data problem, which are classified into
six approaches–anomaly detection approach, cost-sensitive
approach, rule-based approach, sampling approach, ensemble
learning approach, and hybrid approach, which is a combination
of the sampling approach and the ensemble learning approach.

2.1. Anomaly Detection Approach
One approach to deal with the imbalanced data problem is
formulated as anomaly detection, which is also called one-
class learning. One class support vector machine (OCSVM)
and local outlier factor (LOF) are well-known anomaly
detection algorithms (13, 14). Fujiwara et al. (15) used
multivariate statistical process control (MSPC) for epileptic
seizure prediction, which is a well-known anomaly detection
method originally used in process control (16, 17). When
interested in the discovery of hidden factors related to disease
development from HR data, the importance of each variable to
the outcome should be calculated. Such importance is not always
calculated in an anomaly detection approach, although some
methods have been proposed (18, 19).

2.2. Cost-Sensitive Approach
The main concept of cost-sensitive approaches is to introduce
different miss-classification costs for different classes. For
instance, if an algorithm incorrectly classifies a healthy person
as a patient in a health check, the impact of misdiagnosis is
not crucial. In contrast, a patient may lose an opportunity for
treatment if he/she is diagnosed as healthy. In this example,
the misclassification cost of the latter case is much higher than
that of the former case. In general, the misclassification cost of
the minority examples must be higher than that of the majority
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examples (20). Cost-sensitive support vector machine (C-SVM)
is a well-known cost-sensitive algorithm, which introduces
different costs for different classes into the support vector
machine (SVM) (21).

2.3. Rule-Based Approach
Rule-based approaches find classification rules from the dataset.
A major methodology of the rule-based approach is a decision
tree. In the decision tree, a measure is needed to find the
classification rules, of which information gain is widely used (22,
23). Some measures have been proposed in order to cope with
the imbalance data problem. Liu et al. (24) proposed a class
confidence proportion (CCP) measure which uses Fisher’s exact
test to prune branches that are not statistically significant. In
addition, the rule-based approach can be combined with another
machine learning method. Batuwita and Palade (25) proposed
fuzzy-ruled SVM (FSVM) with the cost-sensitive approach,
referred to as FSVM-CIL (FSVM with class imbalance learning),
which copes well with the imbalanced data problem particularly
when the data contains outliers.

2.4. Sampling Approach
The imbalanced numbers of examples between the majority
class and the minority class are modified through sampling
methods (9). Under-sampling deletes majority examples from the
dataset so that the numbers of examples between different classes
become balanced, of which random under-sampling (RUS) is
a well-known method (26). Since under-sampling shrinks the
data size, less time is necessary for learning. The disadvantage
is that discarding majority examples may lead to losing useful
information of the majority class.

Over-sampling is carried out to add minority examples
to the dataset in order to achieve a balance, in which the
existing minority examples are replicated, or artificial minority
examples are generated. Random over-sampling (ROS) replicates
the existing minority examples randomly and adds them to
the dataset. However, it may cause overfitting because learning
algorithms tend to focus on replicated minority examples.
To avoid overfitting, over-sampling methods which generate
artificial minority examples are preferred. Synthetic minority
over-sampling technique (SMOTE) is a commonly used over-
sampling method that randomly selects minority examples and
creates artificial minority examples via random interpolation
between the selected examples and their nearest neighbors (27).
Some modifications of SMOTE for enhancing its performance
by modifying minority example selection have been proposed.
For instance, adaptive synthetic sampling (ADASYN) adaptively
changes the number of artificial minority examples following
the density of majority examples around the original minority
example (28).

2.5. Ensemble Learning Approach
In order to use ensemble algorithms, like boosting and bagging,
it is necessary to construct multiple weak classifiers by means
of any learning algorithm and to integrate them into a
final strong classifier. Although ensemble algorithms were not
originally designed for handling imbalanced data problems, they

perform relatively well in many imbalanced data problems (29).
Random forest (RF) and Adaptive Boosting (AdaBoost) are
well-known methods of ensemble algorithms (30–32). Moreover,
these methods can calculate the importance of variables (33),
which may contribute to discovering hidden factors of disease
development in HR data analysis.

2.6. Hybrid Approach
Sampling approaches can be combined with ensemble learning
algorithms, such as boosting and bagging, because ensemble
learning algorithms tend to outperform other machine learning
algorithms when dealing with the imbalanced data problem
(9). Such combinations are called hybrid algorithms. Under-
sampling or over-sampling methods for balancing classes are
used for weak classifier learning in boosting or bagging.
RUSBoost is a well-known hybrid algorithm that combines
RUS and boosting (26). A hybrid approach method adopting a
sampling method and hyper ensemble learning, which is referred
to as hyperSMURF, has been proposed (34). Hyper ensemble
learning is an meta-ensemble learning framework that combines
classification results of multiple ensemble learning classifiers.

However, hybrid algorithms do not always function well,
particularly when the objective data is EISM.

3. HUSDOS-BOOST

The present work proposes a new method for coping with
the imbalanced data problem, in particular, with the EISM
data problem. The proposed HUSDOS-Boost combines
HUS and distribution-based over-sampling (DOS) with the
AdaBoost framework.

To deal with the EISM problem, such as detecting rare diseases
from HR data, both under-sampling and over-sampling can be
used. Although a large number of minority examples need to
be generated by over-sampling, such manipulation may lead to
overfitting because many similar minority examples exist in the
dataset. To avoid overfitting, under-sampling, which reduces the
number of majority examples, should be used in addition to over-
sampling so that a class balance is achieved with the generation
of a small number of artificial minority examples.

Let S = {(xn, yn)}(n = 1, · · · ,N) be the dataset and xn and
yn = {−1, 1} denote variables and class labels, respectively. In
the imbalanced data, S maj = {(xn, yn)|yn = 1} and S min =

{(xn, yn)|yn = −1} are the majority and the minority datasets,
respectively, and S = S maj ∪ S min. Nmaj = |S maj|.

3.1. AdaBoost
Although there are some variations in the algorithms in the
AdaBoost framework, AdaBoost.M1 is described here. The
present work aims to detect a specific disease from HR data,
which is formulated as a binary classification problem. In
this case, AdaBoost.M1 and AdaBoost.M2 result in the same
algorithm, and the former is simpler than the latter (35).

A procedure of AdaBoost.M1 is described in Algorithm 1. In
step 1, the boosting weights of each example,D1,n(n = 1, · · · ,N),
are initialized to 1/N. After initialization, weak classifier learning
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is repeated in steps 2–8. Step 3 trains the tth weak classifier wt so
that the following objective function Jt is minimized:

Jt =

N
∑

n=1

Dt,nI(ht,n 6= yn) (1)

where I(hn,t 6= yn) is an indicator function which returns 1 if
hn,t 6= yn and 0 otherwise. The error εt is calculated in steps
4 and 5. Steps 6 and 7 update a parameter βt and the boosting
weights Dt,n:

Dt+1,n =
Dt,n

Zt
×

{

βt if ht,n = yn

1 otherwise
(2)

where Zt is a normalization constant. After T iterations, the final
classifier H(x) is built as a weighted vote of the T weak classifiers
as follows:

H(x) = arg max
y∈Y

∑

t : ht=y

log(1/βt). (3)

3.2. Heuristic Under-sampling
Although random under-sampling (RUS) randomly extracts a
part of the majority examples for weak classifier learning (26), the
drawback is that it does not consider the contribution that each
majority example makes to the classification.

The proposed HUS selects majority examples according to
sampling weights SWt,n(t = 1, · · ·T; n = 1, · · · ,Nmaj) which
are updated based on the estimation results in each boosting
iteration. The initial sampling weight SW1,n for the majority
examples xm ∈ S maj is set to 1/Nmaj. After the tth boosting
iteration, HUS updates the sampling weights SWt,n based on the
tth estimation result ht,n = wt(xn) as follows:

SWt+1,n =
SWt,n

ZSWt

×











βt if xn ∈ Ŝ
maj
t ∧ ht,n = ym

1/βt if xn ∈ Ŝ
maj
t ∧ ht,n 6= ym

1 if xn ∈ S maj ∧ xn /∈ Ŝ
maj
t

(4)

where Ŝ
maj
t is the tth learning set sampled from S maj, and ZSWt

is a normalization constant.

Algorithm 1: AdaBoost.M1

1: Initialize the boosting weights Dn,1 = 1/N for xn ∈ S.
2: for t = 1, . . . ,T do

3: Train the tth weak classifier ft so as to minimize Jt .
4: Get estimate of xn ∈ S: ht,n = ft(xn).
5: Calculate the error of ht,n, εt :

εt =
∑N

n=1 Dt,nI(ht,n 6= yn)
6: Set βt = εt/(1− εt).
7: Update the boosting weights Dt+1,n using Eq.(2).
8: end for

9: return The final classifier H(x).

This update rule means that the sampled and misclassified
majority examples have a higher probability of being sampled in

the subsequent training set Ŝ
maj
t+1 , while the sampled and correctly

classified examples have a lower probability of being sampled.
That is, majority examples that may be important for improving
classification performance tend to be sampled for the subsequent
weak classifier learning. Note that the sampling weights SWt,n are
different from the boosting weightsDt+1,n, although their update
rules use the same parameter βt .

We refer to a method in which the random under-sampling in
RUSBoost is replaced with HUS as HUSBoost.

3.3. Distribution-Based Over-sampling
Over-sampling methods that generate artificial minority
examples increase the amount of information for weak classifier
learning. This study proposes distribution-based over-sampling
(DOS), which generates artificial values for the variables based
on their distributions.

Categorical and continuous variables are considered here.
Categorical variables are generated by following the proportion
of each attribute in the minority class, pk = Nk/Na, where Na

and Nk are the number of examples in the minority class and
the number of examples that have the attribute k, respectively.
For example, it is assumed that the number of “male” is 15 and
that of “female” is 9 in “gender,” and the generated values in
“gender” have a probability of 15/24 of being “male” and 9/24
of being “female.”

Continuous variables are generated by following the
continuous distribution estimated from the minority examples.
When we assume that a variable “height” follows the Gaussian
distribution N(µ, σ 2), its mean µ and variance σ 2 need to be
estimated. Then, artificial values for ’height’ are generated by
following N(µ, σ 2).

Correlated variables may be generated by chance in
the process of over-sampling, and such samples may
cause multicollinearity in multiple regression (36). The
multicollinearity problem is a phenomenon in which the
estimated regression coefficients in a multiple regression model
greatly fluctuate in response to small changes in training
data when there is correlation among input variables. The
regression coefficients are estimated using the normal equation:
b = (XTX)1Xy, where X is an input matrix and y is an
output vector. The matrix (XTX) becomes ill-conditioned
when there is correlation among input variables, which lead to
unstable inverse matrix calculation (37). On the other hand, the
learning process of CART does not contain the inverse matrix
calculation. Thus, the proposed HUSDOS-Boost avoids the
multicollinearity problem even if the correlated variables are
generated by over-sampling.

3.4. HUSDOS-Boost
Algorithm 2 shows the proposed HUSDOS-Boost algorithm,
which combines AdaBoost.M1 with both HUS and DOS.
HUSDOS-Boost with AdaBoost.M1 can be easily modified to an
algorithm using AdaBoost.M2.

In step 1, the boosting weights of each example D1,n and the
sampling weights of each majority example SW1,n are initialized
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to 1/N and 1/Nmaj, respectively. After initialization, T weak
classifiers are iteratively trained in steps 2–12. In step 3, HUS
is applied to select Nu majority examples for the tth majority

training set Ŝ
maj
t . On the other hand, DOS generates No artificial

minority examples and adds them to S min to construct the tth
minority training set Ŝ min

t in step 4. The numbers of selected
majority examples by HUS and added minority examples by
DOS, Nu and No, should be determined by considering the
desired ratio of the majority examples to the minority examples.
After the tth training set Ŝt is constructed, the tth weak classifier
is trained in step 6. Note that the range of summation in the
objective function is modified from Equation (1) in Algorithm 1:

Ĵt =
∑

n|yn∈Ŝt

Dt,nI(ht,n 6= yn). (5)

The tth error εt is calculated in steps 7–8. The following steps
9-11 update the parameter βt , the sampling weights SWt+1,n,
and the boosting weights Dt+1,n. After T iterations, the final
hypothesis H(x) is built as Equation (3).

3.5. Classification and Regression Tree
Although any learning algorithm can be used for the weak
classifier in the proposed HUSDOS-Boost, a classification and
regression tree (CART) (8) is adopted in this work. In CART,
variable importance can be obtained.

A CART model is a binary tree that is obtained by splitting a
variable set into two variable subsets recursively so that the cost
function formisclassification is minimized. In addition, some leaf
nodes are pruned after tree construction to obtain simple tree
structures. CART uses the Gini coefficient as the cost function,
which is an indicator of uniformity of data distribution. The Gini

Algorithm 2:HUSDOS-Boost with AdaBoost.M1

1: Initialize the boosting weights Dn,1 = 1/N for xn ∈ S, and
the sampling weights SW1,n = 1/Nmaj for xn ∈ S maj.

2: for t = 1, . . . ,T do

3: Apply HUS with SWt,n to S
maj to generate Ŝ

maj
t with a size

Nu.
4: Apply DOS to S min to generate Ŝ min

t with a size No, where

S min ⊂ Ŝ min
t .

5: Ŝt = Ŝ
maj
t ∪ Ŝ min

t .

6: Train the tth weak classifier ft from Ŝt so as to minimize Ĵt .
7: Get hypothesis of xn ∈ S: ht,n = ft(xn).
8: Calculate the error of ht,n, εt :

εt =
∑

n : ht,n 6=yn
Dt,n.

9: Set βt = εt/(1− εt).
10: Update the boosting weights Dt+1,n by Eq.(2).
11: Update the sampling weights SWt+1,n by Eq.(4).
12: end for

13: return The final hypothesis H(x).

coefficient of the rth node, IG(r), is defined as follows:

IG(r) = 1−

K
∑

k=1

(n
{k}
r

Nr

)

(6)

where Nr and n
{k}
r are the numbers of all examples and examples

belonging to class k, respectively. K is the number of classes. The
decrease in the Gini coefficient due to the splitting of the rth node,
1IG(r), is expressed as

1IG(r) = IG(r)−
∑

l=1,2

wrl IG(rl). (7)

IG(rl)(l = 1, 2) are the Gini coefficients of the child nodes of the
rth node. wrl is defined as wrl = Nrl/Nr , where Nrl denotes the
number of examples in the lth child node. The split that gives the
largest decrease should be searched. Thus, 1IG(r) also indicates
the variable importance for classification in CART (32).

Since a strong classifier is the weighted sum of multiple CART
models in HUSDOS-Boost, the variable importance of the pth
variable, VIp, is defined as the weighted sum of the decreases due
to the pth variable splitting:

VIp =
1

ZVI

∑

t

log(1/βt)1ItG(p) (8)

where 1ItG(p)(t = 1, ·,T) is the Gini coefficient decrease due to
the pth variable splitting in the tth CART model, and ZVI is a
normalization constant.

4. CASE STUDY

This section investigates the performance and the characteristics
of the proposed HUSDOS-Boost through its application to
eight imbalanced datasets collected from the UCI Machine
Learning repository (38). In this case study, random forest (RF),
AdaBoost, SMOTE, ADASYN, RUSBoost, HUSBoost were tested
for comparison.

4.1. Datasets
This case study used the following eight imbalanced datasets,
which cover a wide variety of data sizes, imbalance ratios of the
majority class to the minority class, and application domains.

• Covertype: Dataset for forest cover type estimation based
on cartographic data, which consists of seven classes (27).
“Ponderosa Pine” and “Cottonwood/Willow” were selected as
the majority and minority classes.

• Satimage: Dataset for soil type classification from multi-
spectral image data measured by a satellite (27). The smallest
class “red soil” was the minority class, and other classes were
considered the majority class.

• Segment: Dataset for object type prediction from outdoor
image segmentation data (26). There are five classes, and the
number of examples in each class is the same. “brick face” was
selected as the minority class, and the rest was considered the
majority class.

Frontiers in Public Health | www.frontiersin.org 5 May 2020 | Volume 8 | Article 178

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Fujiwara et al. Sampling Approach for Health Record

TABLE 1 | Dataset Characteristics.

Dataset #Var #Minority #Majority Ratio [%]

Covertype 54 2,747 35,754 7.13

Satimage 19 626 5,809 9.73

Segment 36 330 1,980 14.3

Pageblocks 10 115 5,358 2.10

E. coli 7 77 259 22.9

CTG 21 53 2,073 2.56

Abalone 8 42 689 5.75

Yeast 8 30 1,464 1.35

• Pageblocks: Dataset for block type classification of a document
page layout, which consists of five classes. “graphic” with 115
examples was selected as the minority class, and the rest was
considered the majority class.

• E. coli: Dataset for protein localization site prediction
consisting of eight classes. “Inner membrane without signal
sequence” was the minority class, and the others were
considered the majority class (39).

• CTG: Dataset of fetal heart rate (FHR) prediction from
cardiotocography. There are ten types of FHR, and “type 3,”
whose size is the smallest, was selected as the minority class,
and the rest were considered the majority class.

• Abalone: Dataset for abalone age estimation using physical
measurements of an abalone. The ages of the abalones range
from 1 to 29 in the dataset. The ages of 9 and 18 were selected
as the majority and the minority classes, respectively (40).

• Yeast: Dataset for predicting cellular localization sites, which
consists of ten classes (27). The class “VAC” with only 30
examples was chosen as the minority class, and others were
considered the majority class.

Table 1 shows the characteristics of eight datasets, in which
#Var, #Minority, and #Majority denote the numbers of
input variables, minority examples, and majority examples
in each dataset, respectively, and Ratio is their imbalance
ratio: #Minority/(#Majority+ #Minority). Note that datasets in
Table 1 are sorted in descending order of #Minority.

4.2. Experimental Procedure
The classification performances of RF, AdaBoost, SMOTE,
ADASYN, RUSBoost, HUSBoost, hyperSMURF, and the
proposed HUSDOS-Boost were evaluated using the imbalanced
datasets described in section 4.1.

In SMOTE, the number of artificial minority examples
generated by over-sampling was the same as the original number
of majority examples for obtaining a perfectly balanced dataset,
and a CART model was constructed. RUSBoost and HUSBoost
sampled the same number of majority examples as that of
minority examples by under-sapling. In the proposed HUSDOS-
Boost, the number of artificial minority examples generated by
DOS was the same as the original number of minority examples,
and the number of sampled majority examples by HUS was twice
that of the original minority examples. Thus, Nu = No =

#Minority in steps 3–4 in Algorithm 2. The weak classifier
used in RF, AdaBoost, RUSBoost, HUSBoost, and HUSDOS-
Boost was a CART model, and the maximum number of their
constructed weak classifiers was 100. hyperSMURF used RF for
hyper ensemble learning.

Each dataset was randomly divided into ten subsets, of which
nine were used for modeling while the remaining one was
used for validation. Modeling and validation were repeated
ten times so that all subsets became the validation dataset
once. The above procedure was repeated ten times for precise
performance evaluation.

The computer configuration used in this case study was as
follows: CPU: Intel Core i7-9700K (3.60GHz × 8 cores), RAM:
32GB, OS:Windows 10 Pro (64 bit), and the R language was used.

4.3. Performance Metrics
In standard machine learning problems, the overall accuracy is a
metric for performance evaluation: however, it is not appropriate
in this case study because an accuracy of 99% is achieved when
the imbalance ratio is 1:99 and a stupid classifier discriminates all
of the examples as the majority class.

The geometric mean (G-mean) of the sensitivity and the
specificity was used in this work:

Gmean =
√

sensitivity× specificity. (9)

The G-mean measures the classification performance of a
classifier for minority class examples as well as majority class
examples, simultaneously. A low value of the G-mean indicates
that the classifier is highly biased toward one class and vice-versa.
Thus, the G-mean is an appropriate metric for evaluating the
imbalanced data problem.

In addition, an area under the curve (AUC) of a receiver
operating characteristic (ROC) curve and the area under the
precision-recall curve (AUPRC) were used for evaluating the
averaged performances of classifiers.

The average CPU time permodeling calculation wasmeasured
for each method.

4.4. Results and Discussion
Table 2 shows the sensitivity, the specificity,the G-mean, AUC,
and AUPRC of each method in eight imbalanced datasets. The
bold fonts indicate the best scores in the seven algorithms.

RF and AdaBoost, which do not employ sampling methods,
achieved high specificities while their sensitivities were lower
than the three algorithms with sampling methods, which resulted
in low G-means. SMOTE, which uses over-sampling and which
are not an ensemble algorithm, performed modestly. ADASYN
improved the performance of SMOTE, which showed that
adaptive changes in the number of artificial minority examples
is certainly effective. These results indicate that sampling method
are effective in the imbalanced data problem.

RUSBoost, which uses random under-sampling and boosting,
achieved the highest G-means in four datasets whose number
of minority samples are the first to the fourth largest
among the eight datasets. However, AUC and AUPRC of
RUSBOOST achieved modest values, which means that its
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TABLE 2 | Performances of seven methods.

Dataset Metrics RF AdaBoost SMOTE ADASYN RUSBoost HUSBoost hyperSMURF HUSDOSBoost

Cover type Sensitivity 0.65±0.02 0.87±0.01 0.71±0.02 0.74±0.01 0.98±0.00 0.81±0.01 0.99±0.00 0.83±0.01

Specificity 1.00±0.00 0.99±0.00 0.97±0.00 0.92±0.00 0.96±0.00 0.99±0.00 0.84±0.01 0.97±0.00

G-mean 0.81±0.02 0.93±0.00 0.83±0.01 0.82±0.01 0.97±0.00 0.90±0.00 0.91±0.01 0.90±0.00

AUC 0.99±0.00 1.00±0.00 0.87±0.00 0.92±0.01 0.99±0.00 0.99±0.00 0.98±0.00 0.98±0.00

AUPRC 0.90±0.00 0.96±0.00 0.53±0.01 0.43±0.01 0.93±0.01 0.92±0.00 0.83±0.01 0.87±0.01

Satimage Sensitivity 0.52±0.02 0.63±0.02 0.68±0.02 0.89±0.01 0.91±0.02 0.70±0.01 0.94±0.01 0.75±0.01

Specificity 0.99±0.00 0.98±0.00 0.93±0.01 0.80±0.01 0.86±0.00 0.95±0.00 0.83±0.00 0.93±0.00

G-mean 0.72±0.01 0.79±0.01 0.79±0.01 0.84±0.01 0.89±0.01 0.82±0.01 0.88±0.00 0.83±0.00

AUC 0.96±0.00 0.78±0.01 0.87±0.01 0.85±0.01 0.55±0.12 0.95±0.00 0.96±0.00 0.94±0.00

AUPRC 0.78±0.01 0.18±0.00 0.47±0.02 0.32±0.01 0.09±0.03 0.75±0.01 0.74±0.01 0.71±0.00

Segment Sensitivity 0.99±0.00 0.99±0.00 0.96±0.01 0.91±0.01 0.99±0.01 0.99±0.01 0.99±0.00 0.99±0.00

Specificity 1.00±0.00 1.00±0.00 0.99±0.00 0.99±0.00 0.99±0.00 1.00±0.00 0.99±0.00 0.99±0.00

G-mean 0.99±0.00 0.99±0.00 0.98±0.01 0.94±0.01 0.99±0.00 0.99±0.00 0.99±0.00 0.99±0.00

AUC 1.00±0.00 1.00±0.00 0.98±0.01 0.96±0.01 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

AUPRC 1.00±0.00 1.00±0.00 0.93±0.03 0.89±0.01 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

Pageblocks Sensitivity 0.65±0.03 0.65±0.06 0.71±0.06 0.87±0.02 0.95±0.03 0.90±0.02 0.90±0.02 0.90±0.02

Specificity 1.00±0.00 1.00±0.00 0.99±0.00 0.92±0.01 0.94±0.01 0.97±0.00 0.97±0.00 0.97±0.00

G-mean 0.81±0.02 0.80±0.04 0.84±0.03 0.89±0.01 0.94±0.01 0.93±0.01 0.93±0.01 0.93±0.01

AUC 0.97±0.01 0.98±0.00 0.91±0.04 0.93±0.02 0.58±0.11 0.99±0.00 0.99±0.00 0.99±0.00

AUPRC 0.80±0.01 0.76±0.02 0.55±0.07 0.26±0.04 0.03±0.01 0.75±0.02 0.77±0.01 0.74±0.03

Ecoil Sensitivity 0.77±0.03 0.76±0.04 0.87±0.06 0.92±0.02 0.91±0.06 0.91±0.04 0.97±0.00 0.92±0.03

Specificity 0.94±0.01 0.94±0.02 0.87±0.02 0.87±0.02 0.87±0.02 0.89±0.01 0.76±0.02 0.89±0.01

G-mean 0.85±0.02 0.84±0.03 0.87±0.03 0.90±0.01 0.89±0.03 0.90±0.02 0.86±0.01 0.90±0.02

AUC 0.95±0.01 0.95±0.01 0.93±0.03 0.92±0.01 0.95±0.02 0.95±0.01 0.95±0.01 0.96±0.01

AUPRC 0.86±0.03 0.86±0.03 0.77±0.09 0.74±0.04 0.85±0.04 0.85±0.03 0.83±0.04 0.87±0.03

CTG Sensitivity 0.55±0.05 0.67±0.07 0.65±0.08 0.79±0.05 0.93±0.07 0.89±0.02 0.87±0.04 0.92±0.02

Specificity 1.00±0.00 1.00±0.00 0.98±0.01 0.96±0.00 0.91±0.01 0.96±0.00 0.98±0.00 0.96±0.00

G-mean 0.74±0.03 0.82±0.04 0.80±0.05 0.87±0.03 0.92±0.03 0.93±0.01 0.92±0.02 0.94±0.01

AUC 0.99±0.01 0.96±0.08 0.92±0.04 0.86±0.04 0.70±0.11 0.97±0.00 0.98±0.00 0.98±0.01

AUPRC 0.78±0.02 0.65±0.55 0.45±0.06 0.42±0.08 0.09±0.04 0.72±0.04 0.68±0.03 0.73±0.03

Abalone Sensitivity 0.15±0.05 0.37±0.05 0.46±0.10 0.60±0.09 0.69±0.07 0.57±0.02 0.76±0.03 0.67±0.10

Specificity 1.00±0.00 0.99±0.01 0.92±0.02 0.83±0.01 0.74±0.03 0.87±0.02 0.80±0.01 0.86±0.01

G-mean 0.38±0.07 0.61±0.04 0.65±0.07 0.71±0.05 0.72±0.04 0.70±0.02 0.78±0.02 0.76±0.05

AUC 0.82±0.02 0.81±0.05 0.74±0.08 0.73±0.05 0.67±0.11 0.82±0.01 0.83±0.01 0.84±0.03

AUPRC 0.44±0.05 0.44±0.08 0.27±0.11 0.24±0.08 0.19±0.08 0.37±0.06 0.40±0.07 0.42±0.06

Yeast Sensitivity 0.00±0.00 0.03±0.04 0.07±0.03 0.23±0.10 0.60±0.10 0.43±0.10 0.31±0.08 0.56±0.08

Specificity 1.00±0.00 1.00±0.00 0.98±0.01 0.85±0.02 0.57±0.03 0.84±0.01 0.90±0.01 0.74±0.01

G-mean 0.00±0.00 0.14±0.14 0.25±0.07 0.44±0.10 0.58±0.04 0.60±0.07 0.53±0.07 0.64±0.04

AUC 0.62±0.02 0.62±0.06 0.59±0.14 0.55±0.04 0.54±0.08 0.67±0.02 0.70±0.02 0.66±0.03

AUPRC 0.05±0.03 0.08±0.05 0.06±0.04 0.03±0.01 0.03±0.03 0.09±0.02 0.05±0.01 0.06±0.04

averaged performance is not so high. HUS-Boost that combines
HUS and boosting kept rather high AUC and AUPRC when
the imbalance ratio of a dataset was low although other
performance metrics were modest. This indicated that HUS was
effective when the imbalance ratio is low. hyperSMURF, which
adopts hyper ensemble learning, achieved high performance

on average even when the number of minority examples was
rather small.

The proposed HUSDOS-Boost, which utilizes both over-
sampling and under-sampling in addition to boosting, achieved
the best G-means in five datasets whose numbers of minority
samples are the third to the eighth largest. These results
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suggest that HUSDOS-Boost achieves higher performance than
RUSBoost and HUSBoost when the imbalance ratio of a
dataset is not particularly low, but the absolute number of
minority examples contained in a dataset is minimal. In
addition, HUSDOS-Boost also kept high AUC and AUPRC when
the imbalance ratio was low, which means that its averaged
performance does not deteriorate when the number of minority
examples is minimal. Thus, the use of bothHUS and distribution-
based over-sampling is certainly effective.

To verify this point, we compared RUSBoost and HUSDOS-
Boost through another experiment using datasets with
intentionally reduced minority examples. The minority examples
in Covertype, Satimage, Segment, and Pageblocks, which have
more than 100 minority examples, were eliminated randomly.
The numbers of reduced minority examples in these datasets
were 20, 30, 40, 50, 60, and 70. The procedure described in
section 4.2 was applied to these reduced datasets. Figure 1 shows
the G-means of RUSBoost and HUSDOS-Boost for the reduced
datasets. The proposed HUSDOS-Boost performed better than
RUSBoost when the number of minority examples was 20 and
30 regardless of #Var, and the performance of HUSDOS-Boost
was almost the same as RUSBoost when the number of minority
examples was more than 40. Thus, over-sampling, as well as
under-sampling, should be used when the number of minority
examples is small. It is concluded that the proposed HUSDOS-
Boost is more appropriate than RUSBoost for solving the EISM
data problem.

To evaluate the effects of the number of examples generated by
over-samplingNo, we investigated the performance of HUSDOS-
Boost and SMOTE with No = {2, 3, 4, 5, 6}× #Minority using
eight datasets. The number of examples sampled by under-
sampling Nu is fixed to #Minority. Figure 2 illustrates the G-
means of HUSDOS-Boost and SMOTE calculated for each No.
The ▽ marks in the figures denote the pairs for which a

significant difference was not confirmed by the t-test (α =

0.05). These results show that the proposed HUSDOS-Boost
achieved a higher performance than SMOTE regardless of which
No was selected, and that the performance did not improve
even when the number of artificial examples generated by over-
sampling became large in most cases, which indicates that an
excessive number of similar minority examples do not contribute
to classifier learning.

The influence of the number of majority examples sampled
by under-sampling on classifier learning was checked. We tested
HUSDOS-Boost and RUSBoost with Nu = {2, 3, 4, 5, 6}×
#Minority using eight datasets and No = #Minority. Their
G-means are illustrated in Figure 3, which shows that their
performances deteriorated as Nu became large. Thus, the
numbers of majority examples used for classifier learning should
be balanced with the numbers of minority examples.

The average CPU times of each of the seven methods required
for one strong classifier learning are reported in Table 3. In
almost all datasets, RF was the fastest, in which multiple CARTs
are constructed using a bagging approach in parallels. SMOTE
was the second-fastest. Although SMOTE roughly doubled the
number of examples for learning through over-sampling in this
case study, just one CART model was built. Thus, the total
amount of calculation was not significant. AdaBoost performed
the worst because it uses all examples for weak classifier learning,
and the learning process has to be performed in series. In
hyperSMURF, the CPU times did not decrease so much when
the number of examples became small because it constructed
multiple RFs as hyper ensemble learning. The CPU times
of RUSBoost were modest. Although RUSBoost is based on
boosting in the same manner as AdaBoost, the number of
examples used for weak classifier learning is significantly reduced
due to under-sampling. Since RUSBoost was much faster than
HUSBoost and the computational burdens of HUSBoost and

Covertype

HUSDOS-Boost

1.0

0.8

0.6
20 30 40 50 60 70

1.0

0.8

0.6
20 30 40 50 60 70

Satimage

1.0

0.8

0.6
20 30 40 50 60 70

1.0

0.8

0.6
20 30 40 50 60 70

skcolbegaPtnemgeS

G
-m
e
a
n

G
-m
e
a
n

ytironiM#ytironiM#

ytironiM#ytironiM#

G
-m
e
a
n

G
-m
e
a
n

RUSBoost

FIGURE 1 | G-means of HUSDOS-Boost and RUSBoost vs. #Minority.

Frontiers in Public Health | www.frontiersin.org 8 May 2020 | Volume 8 | Article 178

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Fujiwara et al. Sampling Approach for Health Record

Abalone
0.8

0.65

0.5

G
-m
e
a
n

2 3 4 5 6
× #Minority

No

G
-m
e
a
n

2 3 4 5 6
× #Minority

No

Covertype
1.0

0.9

0.8

G
-m
e
a
n

2 3 4 5 6
× #Minority

No

CTG
1.0

0.85

0.7

G
-m
e
a
n

2 3 4 5 6
× #Minority

No

Ecoli
0.92

0.87

0.82

G
-m
e
a
n

2 3 4 5 6
× #Minority

No

Pageblock
1.0

0.9

0.8

G
-m
e
a
n

2 3 4 5 6
× #Minority

No

Segment

0.98

0.96

1.0

G
-m
e
a
n

2 3 4 5 6
× #Minority

No

Yeast
0.7

0.35

0

G
-m
e
a
n

2 3 4 5 6
× #Minority

No

Satimage
0.9

0.8

0.7
SMOTE

HUSDOS-Boost

FIGURE 2 | G-means of HUSDOS-Boost and SMOTE vs. No.

HUSDOS-Boost were almost at the same level, heuristics under-
sampling requires heavy computational burden although it is
more effective than random under-sampling for the imbalanced
data problem.

The variable importance is discussed in the following
section 5.

5. STOMACH CANCER SCREENING FROM
CLINICAL HEALTH RECORD DATA

Early detection of stomach cancer is essential for its prognosis;
however, stomach cancer detection is a typical EISM data
problem. The lifetime morbidity risk of stomach cancer is 11%
in males and 5% in females, and newly diagnosed patients per
year is about 0.1–0.2% of the population in Japan. Hence, the
number of patients with stomach cancer in the HR data is

small, while those without stomach cancer is large. Although
it is challenging to find stomach cancer at early stages due to
lack of subjective symptoms, stomach cancer detection from
HR data would be beneficial. The 5-year survival rate of
stomach cancer is 82% for stage I while it is 8% for stage IV
in Japan.

This section reports the result of applying the proposed
HUSDOS-Boost to original clinical HR data to detect patients
with stomach cancer. In addition, possible factors of stomach
cancer development estimated by the variable importance of
HUSDOS-Boost are discussed.

5.1. Health Examination Data
The clinical HR data were collected from the Japanese Red
Cross Kyoto Daini Hospital, which provides comprehensive
health examination menus. The Research Ethics Committee of
the Japanese Red Cross Kyoto Daini Hospital approved the use
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FIGURE 3 | G-means of HUSDOS-Boost and RUSBoost vs. Nu.

and analysis of the HR data. Written informed consent was not
obtained in this study.

The original HR data were collected between 2014 and
2015, on more than 100 items, including observations, body
measurements, blood examination, medical history, and lifestyle.
Since some records belonged to the same person collected
in both years, we extracted records measured in the year
that stomach cancer was initially diagnosed as patient records
and the latest records of persons without stomach cancer as
healthy records. Persons who had other types of cancer or
a prior stomach operation were eliminated from the analysis.
The item “gastroscopy result” was not used as an input
variable for stomach cancer detection because it is almost
identical to the outcome. In addition, the item “family history
of stomach cancer” was eliminated. Helicobacter pylori is
an essential risk factor for stomach cancer development, in

which its main infection path is a family member. Only
continuous and binary variables were analyzed here because
descriptive variables such as “observations” were difficult
to analyze.

Finally, the objective data consisted of 7,379 healthy person
records (male: 3,890, female: 3,489, age: 56.6 ± 11.6 years old)
and 16 patient records (male: 10, female: 6, age: 68.8± 10.8 years
old); that is, its imbalance ratio was 0.2%. Twelve out of sixteen
patients had tubular adenocarcinoma, and the other four patients
had either stage IA or IB signet ring cell carcinoma. Forty-
one items were adopted as input variables, which are shown in
Table 4. “Type” in this table denotes a variable type: a numerical
variable (N) and a binary variable (B). No. 1 “Gender” was
male/female, and No. 38-41, which asked about lifestyle habits,
was yes/no. The data contained about 13%missing values because
examination menus vary for each person.
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TABLE 3 | CPU times (s).

RF AdaBoost SMOTE ADASYN RUSBoost HUSBoost hyperSMURF HUSDOSBoost

Cover type 41.4±3.57 4,635±1,582 119.0±13.9 66.4±10.1 285.6±18.1 3,978±90.6 402.7±14.8 3800±328

Satimage 5.05±0.23 321.0±12.0 6.08 ±0.88 11.4±0.46 130.6±9.34 191.7±2.99 47.89±1.22 206.1±3.96

Segment 0.68±0.03 122.3±3.11 1.09 ±0.18 0.76±0.02 101.5±6.69 39.9±1.71 38.9±0.93 44.7±1.16

Pageblocks 1.15±0.18 146.6±3.25 0.90 ±0.10 1.64±0.02 99.3±1.47 36.3±1.13 37.0±0.87 39.4±0.86

Ecoil 0.09±0.02 105.5±3.66 0.20 ±0.01 0.21±0.01 97.3±3.41 4.90±0.18 36.5±2.21 5.92±0.20

CTG 0.68±0.06 127.2±3.61 0.48 ±0.03 1.14±0.02 97.9±2.59 11.4±0.29 36.8±2.30 13.3±0.47

Abalone 0.20±0.19 108.8±2.77 0.21 ±0.01 0.32±0.01 97.0±4.41 6.00±0.20 36.5±1.97 7.14±0.34

Yeast 0.32±0.03 113.8±2.32 0.27 ±0.03 0.52±0.00 97.8±5.76 6.53±0.24 36.3±0.83 6.88±1.11

TABLE 4 | Input variables.

No. Description Type No. Description Type

1 Gender B 22 Uric acid N

2 Age N 23 Na N

3 Height N 24 K N

4 Weight N 25 Cl N

5 Degree of obesity N 26 Ca N

6 Body fat percentage N 27 Cholesterol N

7 C-reactive protein N 28 Neutral fat N

8 Total protein N 29 HDL cholesterol N

9 Albumin N 30 Amylase N

10 A/G ratio N 31 LDL cholesterol N

11 Bilirubin N 32 White blood cell count N

12 ALP N 33 Red blood cell count N

13 γ GTP N 34 Hemoglobin content N

14 GOT N 35 Hematocrit N

15 GPT N 36 Platelet count N

16 LDH N 37 fasting blood sugar level N

17 Cholinesterase N 38 Habit of quick eating B

18 ZTT N 39 Habit of meal before sleep B

19 BUN N 40 Habit of breakfast B

20 Creatinine N 41 Habit of smoking B

21 eGFR N

5.2. Procedure
The present work applied RF, AdaBoost, SMOTE, ADASYN,
RUSBoost, HUSBoost, hyperSMURF, and the proposed
HUSDOS-Boost to the HR data for stomach cancer detection.
Before analysis, missing values in the HR dataset needed to be
input appropriately.

Multiple imputations were used for missing value imputation,
which generates multiple complete datasets by replacing missing
values with plausible values generated from the posterior
distribution of missing values and aggregates them into the
final complete dataset (41). We used multiple imputations using
chained equations (MICE), which is a standard methodology
for coping with HR data with missing values (42). MICE
approximates the posterior distribution by regressing it on all
other remaining variables. Categorical variables (No. 1 and 38-
41) were digitized.

The input data were randomly divided into ten subsets, of
which nine were used for modeling while the remaining one was
used for validation. Modeling and validation were repeated ten
times so that all subsets became the validation dataset once. The
above procedure was repeated ten times for precise performance
evaluation. The experimental settings of seven methods were the
same as section 4.

5.3. Results
Table 5 shows the sensitivities, the specificities, the G-means,
AUC, and AUPRC in which the bold fonts indicate the best
score in the seven algorithms. RF, AdaBoost, and SMOTE did
not function because their sensitivities stayed zero while their
specificities were almost one. Thus, these algorithms classified
all records as healthy. ADASYN improved the classification
performance of SMOTE. On the other hand, the performance of
hyperSMURF was not improved.

RUSBoost achieved the highest sensitivity, and HUSDOS-
Boost and HUS-Boost were the second and the third best.
On the other hand, the specificity of HUSDOS-Boost was
higher than RUSBoost. Accordingly, the proposed HUSDOS-
Boost achieved the best G-mean and AUC. This result agrees
with the result of the case study described in section 4.4.
Since the number of patients in the HR data was smaller
than 30, the G-mean of HUSDOS-Boost was higher than that
of RUSBoost.

AUPRC, however, was almost zero in all algorithms in
the HR data. Figures 4, 5 are the ROC and PR curves
drawn by RUSBoost and HUSDOS-Boost. Their sensitivity
(recall) and specificity were not low, and their precision
was close to zero, which indicates that many false positives
were detected. In this data, the number of cancer patients
was extremely small (0.02%) and consequently the number
of true positives became small in comparison with that of
false positives. This result suggests that AUPRC is not always
appropriate for classification performance evaluation of the EISM
data problem.

Although, at the present moment, HUSDOS-Boost cannot be
applied to stomach cancer detection using the HR data due to its
unsatisfactory performance, the result above suggests the future
applicability of the proposedHUSDOS-Boost to patient detection
by means of HR data analysis, particularly when the number of
patient records in the HR data is extremely small.

Frontiers in Public Health | www.frontiersin.org 11 May 2020 | Volume 8 | Article 178

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Fujiwara et al. Sampling Approach for Health Record

TABLE 5 | Stomach cancer detection results.

RF AdaBoost SMOTE ADASYN RUSBoost HUSBoost hyperSMURF HUSDOSBoost

Sensitivity 0.00±0.00 0.00±0.00 0.00±0.00 0.30±0.08 0.76±0.06 0.46±0.05 0.14±0.02 0.59±0.07

Specificity 1.00±0.00 1.00±0.00 1.00±0.00 0.93±0.00 0.61±0.01 0.87±0.00 0.98±0.00 0.80±0.00

G-mean 0.00±0.00 0.00±0.00 0.00±0.00 0.53±0.07 0.68±0.02 0.63±0.03 0.36±0.02 0.69±0.04

AUC 0.54±0.02 0.62±0.02 0.58±0.02 0.61±0.01 0.56±0.03 0.76±0.00 0.75±0.01 0.79±0.00

AUPRC 0.00±0.00 0.01±0.00 0.00±0.00 0.01±0.00 0.00±0.00 0.01±0.00 0.02±0.01 0.01±0.00
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FIGURE 4 | ROC of HUSDOS-Boost and RUSBoost.

5.4. Variable Importance
The variable importance of stomach cancer detection was
calculated using RUSBoost and HUSDOS-Boost, which achieved
high G-means. Figure 6 shows the variable importance derived
by RUSBoost and HUSDOS-Boost, respectively. “Age” and
“amylase” had high importance in both methods.

Age is a factor in stomach cancer development, wherein the
morbidity of stomach cancer increases in people over 40 years of
age. The mean age of patients was different from healthy persons
in the HR data as described in section 5.1. Bothmethods correctly
isolated the factor of stomach cancer from the HR data.

The mean values of amylase were different between patients
and healthy persons in the HR data: 88.0 ± 35.8 IU/l of healthy
persons and 113.6± 45.0 IU/l of patients. They were significantly
different (p = 0.0075, Effect size: d = 0.66, and Power:
1 − β = 0.57); however, the power was rather low due to the
sample size of patients being very small. Although salivary gland
disorders or pancreatic diseases are suspected when the value of
amylase is high, the amylase value becomes high in the elderly
population due to the deterioration of amylase clearance in the
kidney with age (43). There was the possibility that the values
of amylase showed the difference in the mean age between
patients and healthy persons. Of course, this result might suggest
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FIGURE 5 | PRC of HUSDOS-Boost and RUSBoost.

an unknown relationship between abnormality in amylase and
stomach disease, which is difficult to confirm.

Here, we calculated variable importance for another purpose
in order to validate the accuracy of the variable importance.
Classifiers that detect persons experiencing gastric resection were
built by RUSBoost and HUSDOS-Boost, which were utilized for
variable importance calculation. Two hundred seven persons
experienced gastric resection and did not have stomach cancer at
the time of the health examination. The G-means of the classifiers
constructed by RUSBoost and HUSDOS-Boost were 0.80 ± 0.01
and 0.77 ± 0.00, respectively. The classification performance
of RUSBoost was higher than the proposed HUSDOS-Boost
because the number of minority examples, in this case, was more
than 40.

Both methods showed that “Age” and “Ca” have the first
and the second highest importance for detecting persons with
gastric resection. Although there are several causes of persons
experiencing gastric resection, they usually occur after middle
age. In the HR data, ages of persons with and without gastric
resection were 64.9± 10.3 and 56.0± 11.4, respectively.

In order to confirm the effect of “Age” on the result, we
tried to detect stomach cancer without “Age,” whose results are
shown in Table 6. The detection performance in every method
deteriorated when “Age” was not used. This indicated that
“Age” certainly contributed to stomach cancer detection. In
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FIGURE 6 | Variable importance: HUSDOS-Boost (left) and RUSBoost (right).

TABLE 6 | Stomach cancer detection results without “Age.”

RF AdaBoost SMOTE ADASYN RUSBoost HUSBoost hyperSMURF HUSDOSBoost

Sensitivity 0.00±0.00 0.00±0.00 0.00±0.00 0.25±0.02 0.72±0.11 0.29±0.06 0.11±0.02 0.47±0.04

Specificity 1.00±0.00 1.00±0.00 1.00±0.00 0.94±0.00 0.57±0.01 0.90±0.00 0.99±0.00 0.82±0.00

G-mean 0.00±0.00 0.00±0.00 0.00±0.00 0.48±0.02 0.64±0.04 0.51±0.06 0.32±0.03 0.62±0.03

AUC 0.54±0.01 0.60±0.02 0.55±0.01 0.59±0.02 0.54±0.03 0.69±0.01 0.70±0.01 0.71±0.01

AUPRC 0.00±0.00 0.01±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.01±0.00 0.01±0.00 0.01±0.00

addition, the proposed HUSDOS-Boost still achieved the best
detection performance.

It is well-known that absorption of Ca decreases after gastric
resection (44). The Ca values of persons with gastric resection
were lower than persons without gastric resection in the HR
data: 9.05 ± 0.31 mg/dL and 8.98 ± 0.33 mg/dL of persons with
gastric resection, respectively, which were significantly different
(p = 0.026, Effect size: d = 0.22, and Power: 1 − β = 0.88).
These results agree with pathological knowledge about the effect
of gastric resection. Therefore, this case study shows that variable
importance can be applied in the future to the discovery of
hidden factors of disease development from HR data.

5.5. Limitations
Limitations include properties of the collected data, such as the
fact that all records were from a single hospital and that all
records were from the Japanese population. Accordingly, more
studies using health records collected from other hospitals are
required to confirm our results.

6. CONCLUSION AND FUTURE WORKS

The present work proposed a new boosting-based method
for handling EISM data by combining HUS and DOS. The
case study using eight imbalanced datasets showed that the
proposed HUSDOS-Boost achieved comparable performance
to RUSBoost when the number of minority examples was
more than 40 and that HUSDOS-Boost achieved the best
performance when the number of minority examples was smaller

than 30. The proposed HUSDOS-Boost was sufficiently fast
for learning.

We applied HUSDOS-Boost to the clinical HR data for
detecting patients with stomach cancer. The application result
showed that the G-mean of HUSDOS-Boost was 0.69. The
possible factors of stomach cancer development derived from the
variable importance were discussed.

In future works, the hierarchical Bayes model will be
introduced to estimate the distribution parameter in DOS in
order to improve the over-sampling performance. We will apply
the proposed method to clinical HR data to detect other diseases.
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