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ABSTRACT

Stable distribution is one of the attractive models that well describes fat-tail behaviors and scaling phenomena in various scientific fields.
The approach based upon the method of moments yields a simple procedure for estimating stable law parameters with the requirement of
using momental points for the characteristic function, but the selection of points is only poorly explained and has not been elaborated. We
propose a new characteristic function-based approach by introducing a technique of selecting plausible points, which could bring the method
of moments available for practical use. Our method outperforms other state-of-art methods that exhibit a closed-form expression of all four
parameters of stable laws. Finally, the applicability of the method is illustrated by using several data of financial assets. Numerical results
reveal that our approach is advantageous when modeling empirical data with stable distributions.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0013148

Stable distribution is a class of probability distributions including
the well-known Gaussian distribution. Besides its rich theoreti-
cal properties, it can effectively describe heavy-tails and skewness
in financial markets and other various science fields. One of the
primary and challenging issues when modeling financial behav-
iors with stable laws is to estimate all four parameters of stable
distribution, due to the lack of stable densities and cumulative
distribution functions (CDFs). We tackle this issue by proposing
a new technique that allows us to benefit from the interrelations
between the scaling exponent parameter and the characteristic
function. Differently from the existing literature, our approach
enables us to flexibly choose the proper points at which the char-
acteristic function should be evaluated. Therefore, we can detect
stable laws in financial data without any inconvenient restrictions
on parameter ranges. This makes the estimation significantly
practical. We explore price behaviors in crude oil futures and US
dollar-Japanese Yen (USDJPY) exchange rate and show numerical
evidence that our approach provides the most accurate detection
of stable laws.

I. INTRODUCTION

A fundamental theory of stochastic processes in various scien-
tific fields is the generalized central limit theorem (GCLT), which
points out that the sum of independent and identically distributed
random variables converges only to the family of stable distribution.1

There are some challenges to overcome the analytic difficulties of
stable distributions since the probability density function (PDF)
is not always expressed in a closed form in terms of elementary
functions. This is because the Fourier integral of the characteris-
tic function (CF) defining the PDF cannot be written in a formula
involving only elementary functions,2 except for the special cases
of Cauchy, Lévy, and Gaussian distributions, which have a closed
formula of the PDF. Thus, the lack of closed-form expression is
a general issue when discussing stable distribution. Numerically
approximated expressions of the PDF are known in symmetric
cases based on hypergeometric functions, but those in unrestricted
asymmetric cases are often too complex for estimating the param-
eters of the stable distribution.3 More practically, the estimation
of all parameters is the most basic and necessary process for any
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application, but it remains to be one of the most controversial issues
when attempting to detect stable laws. Numerous approaches have
been studied for the parameter estimation. The primary approaches
include the approximate maximum likelihood estimation,4–7 the
Bayesian based method,8 the quantile method (QM),9,10 the frac-
tional lower order moment (FLOM) method,11,12 the method of
log-cumulant (MOLC),13,14 the characteristic function-based (CF-
based) method,15–19 and their hybrid combinations. Many of them
tend to have different kinds of drawbacks, such as restrictions of
parameter ranges, complex estimation algorithms, high computa-
tional costs, requirements of larger datasets, and low accuracy. To
the best of our knowledge, the FLOM, MOLC, and QM and some
class of the CF-based methods16–19 provide closed-form estimators
of stable laws.

The CF-based method is perhaps the largest classification
group, including a variety of methods and approaches devel-
oped under different techniques. In particular, Press16 presents the
method of moments, which offers a simple approach to estimate all
four parameters of stable distribution using the characteristic func-
tion evaluated at four arbitrary points. The biggest advantage of this
method is that it is likely to have less drawbacks compared to other
primary methods, but it carries a fundamental problem. Without
appropriate points given, the performance is poor, and unfortu-
nately Press leaves unsolved the crucial idea about the choice of
points at which the CF should be evaluated. The selection of the
points has long been an open question, although several studies have
made an effort to improve the method of moments by reducing the
use of points from four to two and discussing their choice. Krutto
(2016, 2018) provides some guidance on how the two positive points
should be chosen through empirical searches relying on the cumu-
lant function.18,19 Bibalan et al. focus on the absolute value of the CF
and suggest an algorithmic approach where a positive point is fixed
for each scaling parameter.17 They show accurate estimates within
certain parameter ranges, but their method fails to support a wider
range of parameter spaces. Thus, these approaches are not compre-
hensive so that the method of detecting more appropriate points
related to the CF is required for practical uses.

In this paper, we propose an effective and practical method for
estimating stable laws. We greatly improve the method of moments
by introducing a new technique for the selection of two positive
points at which the CF is evaluated. The technique is developed over
the extension of both algorithmic and empirical search approaches.
The idea of empirical search plays a role in determining the scal-
ing related estimates, which take crucial responsibility for indicating
statistical values derived in the estimation process, whereas the con-
cept of the algorithmic approach yields various ideas of inferences
based on the absolute value of the CF. Our approach realizes the
possibility of choosing different values of points depending on the
index parameter α, which is a new perspective. We assess and
compare the performance of our method to those of other meth-
ods in terms of the Mean Squared Error (MSE) criterion and the
Kolmogorov–Smirnov (KS) distance. Our proposed method gen-
erally outperforms all the other state-of-art methods that exhibit
closed-form expressions for all four parameters of stable laws. It is
practically straightforward and assures that there is no restriction of
parameter ranges, except for α = 1 due to the discontinuous form
of the one-parameterization CF. Finally, we apply our method to

price fluctuation behaviors of several financial assets to examine the
appropriateness for practical uses.

This paper is organized as follows. Section II shows preliminar-
ies on stable distribution and its basic properties. We follow Sec. III
to describe the existing methods for estimating the parameters of
stable laws. In Sec. IV, we propose a new technique of the CF-based
parameter estimation method. The arguments for the selection of
points at which the CF should be evaluated are discussed. In Sec. V,
we report the performance with the comparison to other repre-
sentative methods and present that our method provides accurate
estimates of stable distribution. Section VI shows the application
to financial data and confirms that our method is applicable for
empirical studies.

II. STABLE DISTRIBUTION

In this section, we summarize the basis and properties of the
stable distribution. We explain the definition of the stable distribu-
tion and its properties.

A. Basis of stable distribution

Stable distribution, also known as α-stable distribution,
or Lévy’s stable distribution, was first introduced by Lévy,20

which is a family of parametric distribution with tails that are
expressed as power-functions. In the far tails, the PDF can be
written as21

f(x; α, β , γ , δ) '

{

cαγ
αα (1 + β) |x|−(1+α) for (x → +∞),

cαγ
αα (1 − β) |x|−(1+α) for (x → −∞),

and the cumulative distribution function (CDF) written as
{

P(X > x) ' cαγ
α(1 + β) |x|−α for (x → +∞),

P(X < x) ' cαγ
α(1 − β) |x|−α for (x → −∞),

where cα is a constant value [sin(πα/2)0(α)]/π . Stable distribution
is represented by four parameters; the scaling exponent parameter
α ∈ (0, 2] representing the fatness of the tail, the skewness parameter
β ∈ [−1, 1], the scaling parameter γ > 0, and the location parame-
ter δ ∈ R. In particular, the parameters α and β determine the shape
of distribution, including various forms of widely known distribu-
tions such as the Gaussian and Cauchy distribution. Smaller value
of α indicates fatter tails and hence it is well known that the vari-
ance diverges for 0 < α < 2, and also the mean cannot be defined
for 0 < α ≤ 1. Note that if β = 0, the distribution is symmetric, if
β > 0, right-tailed, and if β < 0, left-tailed.

The definition of stable distribution is that the linear combi-
nation of independent random variables that follow a stable distri-
bution with scaling exponent α invariably becomes again a stable
distribution with the same scaling exponent. More particularly,
when variables X1 and X2 are i.i.d. copies of a random variable X
and a and b are positive constant numbers, X is said to be stable and
follows a stable distribution if there is a positive constant number c
and a real number d ∈ R that satisfies

aX1 + bX2
d
= cX + d,
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also known for stability property. When a variable X follows a sta-

ble distribution, the notation X
d
= S(α, β , γ , δ) is often used, where

d
= denotes equality in distribution.22 Variable X can be standardized
according to the following property:

X − δ

γ

d
= S(α, β , 0, 1). (1)

Another important property of stable distribution is the GCLT,
which implies that the only possible limit distributions for sums of
i.i.d random variables is a family of stable distribution. When α = 2,
that is, when i.i.d. random variables have finite variance, the limit
distribution then becomes a Gaussian according to the well-known
classical Central Limit Theorem (CLT).

B. Characteristic function

The PDF of stable distribution cannot be written in a closed
form except for some cases: the Cauchy distribution (α = 1, β = 0),
the Lévy distribution (α = 1/2, β = 1), and the Gaussian distri-
bution (α = 2). Alternatively, the features are expressed by the
characteristic function (CF), ϕ(k), which is the Fourier transform
of the PDF. By taking the inverse Fourier transform of the CF, the
PDF can be obtained as

f(x) =
1

2π

∫ ∞

−∞

e−ikxϕ(k) dk.

When variable X follows a stable distribution with S(α, β , γ , δ), the
CF is shown as

ϕ(k) = exp
{

iδk − γ α|k|α
(

1 − iβ sgn(k)ω(k, α)
)}

,

ω(k, α) =

{

tan( πα

2 ), α 6= 1,

− 2
π

log |k|, α = 1,
(2)

which corresponds to the one-parameterization form of
S(α, β , γ , δ; 1) in Nolan.23 This is the most popular parameteriza-
tion among many other forms of the stable distribution owing to
the simplicity of the form. Figure 1 shows the standardized sta-
ble distributions with the one-parameterization form for different
parameters of α and β , as an example.

One-parameterization is preferred when one is interested in the
basic properties of the distribution, but the CF takes a discontinuous
form at α = 1. Nolan suggests the use of the zero-parameterization
form S(α, β , γ , δ0; 0) with different ω(k, α) shown as

ω(k, α) =

{

−
(

|γ k|1−α − 1
)

tan( πα

2 ), α 6= 1,

− 2
π

log |γ k|, α = 1,
(3)

giving a more complex form, but provides a continuous form.
The only difference between the parameterization is the location
parameter, which they are related by

δ0 =

{

δ + βγ tan πα

2 , α 6= 1,

δ + β 2
π
γ log γ , α = 1,

δ =

{

δ0 − βγ tan πα

2 , α 6= 1,

δ0 − β 2
π
γ log γ , α = 1.

(4)

FIG. 1. Standardized stable distributions with the one-parameterization form for
different parameters of α and β . (a) is the case of fixed β = 0 and (b) is the case
of fixed α = 0.5.

In this paper, we employ the simple one-parameterization, as
we are interested in estimating the four parameters through the
CF, and many existing estimation methods comply with that form.
However, since this CF does not have a continuous form at α = 1,
arguments with different parameterizations may be more appropri-
ate for discussing distributions when we already know that α is 1, for
instance, the case of the Cauchy distribution (α = 1, β = 0).

III. PARAMETER ESTIMATION OF STABLE LAWS

This section gives an overview of the methods for the parameter
estimation of the stable distribution. We review two major methods,
both of which are considered as an analytical approach that provides
a closed-form expression of the estimates—the quantile method
and the characteristic function-based method (CF-based method).
Several different approaches are explained for the CF-based method.

A. Quantile method

McCulloch proposes the use of five sample quantiles
x0.05, x0.25, x0.5, x0.75, and x0.95 as an informative measure for estimat-
ing the four parameters of stable laws, known as the quantile method
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(QM).10 He improves the former method of Fama and Roll by elim-
inating bias in estimates and relaxing estimation restrictions.9 The
idea is to calculate the functions φi(α, β) (i = 1, 2, 3, 4), where the
relationships between the function values and the parameters are
already studied and known beforehand. The method first sets out
to estimate α and β by using the functions φ1(α, β) and φ2(α, β)

independent of both γ and δ defined as

φ1(α, β) =
x0.95 − x0.05

x0.75 − x0.25
, (5)

φ2(α, β) =
(x0.95 − x0.5) − (x0.5 − x0.05)

x0.95 − x0.05
. (6)

Equation (5) refers to the measure of fat-tail behaviors with the focus
on estimating α, and Eq. (6) is a measure of skewness effects with
the focus on estimating β . With empirical values of sample quan-
tiles and employing linear interpolation with tabular look-ups, the
estimates α̂, β̂ are inversely obtained. To avoid α̂ being larger than

2, outside the parameter range, φ̂1 =
(x̂0.95−x̂0.5)−(x̂0.5−x̂0.05)

x̂0.95−x̂0.05
can be no

larger than the upper range 2.439, which corresponds to the case of
α = 2 (note that β is not identified in this case).

Next, the scale and location parameter γ and δ can be estimated
using the functions defined as

φ3(α, β) =
x0.75 − x0.25

γ
, (7)

φ4(α, β) =
µ − x0.5

γ
+ β tan

(πα

2

)

. (8)

The function φ3(α, β) indicates the standardized form of sample
sizes for the middle part of distribution. Since it does not depend
on γ nor δ, the value can be informed by tabular look-ups based
on α and β , which the relations are studied and known beforehand.
After calculating γ̂ = x̂0.75−x̂0.25

φ̂3(α̂, β̂)
in Eq. (7), the location parameter δ

can be estimated from Eq. (8) using the values φ̂4(α̂, β̂) and γ̂ . The
relations of the parameter values and the function value φ4(α, β) are
again studied and known beforehand. In the case of α = 1, φ4(α, β)

diverges and we cannot obtain the estimates for δ. McCulloch, there-
fore, suggests a complicated approach to overcome the discontinuity
of the stable CF. The method improves other issues and provides
accurate estimates; however, it has parameter restrictions and can
be applied only when α ≥ 0.6.

B. Characteristic function-based method

The CF-based method relies on the use of a consistent estima-
tor of the CF ϕ(k) for any fixed k. The advantage of this method
essentially lies in the fact that the stable CF can be expressed
explicitly, making discussions straightforward compared to methods
based on other distribution forms. Under the assumption that given
data Xn (n = 1, 2, . . . , N) are ergodic,24 the CF is obtained empirically
by the following equation:

ϕ̂
(

k
)

=
1

N

N
∑

n=1

eikXn . (9)

There are several approaches for estimating parameters of
stable laws that take advantage of the explicit form of CF.

Koutrouvelis15 proposed a regression-type approach, which employs
the iteration of two regression runs. Moreover, the regression of the
method requires different values of initial points k depending on
initial estimates of the parameters and sample sizes. The number
of points necessary for the regression also varies over initial con-
ditions. Although the accuracy of β is unsatisfactory in some cases,
the method generally shows accurate estimates of α, and, hence, it
is often suggested as a practical method for empirical analysis.25,26

However, some studies compare the method to McCulloch’s quan-
tile method and report that the regression-type method does not
significantly improve the classical quantile method,27,28 especially for
α smaller than 1. Other studies simplified the method by eliminat-
ing the iteration process and fixing the initial points to some extent,
but still leaves behind the issues of estimating when α is small.29,30

We do not consider the regression-type approach in this paper as
the method generally relies on iteration and the estimates cannot be
written analytically.

Another approach is based on the method of moment,16 which
was later remodeled and simplified with the use of two given points
of the CF.17–19 Starting off with the CF with the points k0 and k1,
taking the absolute value cancels out the effect of parameters β and
δ, and we obtain

{

|ϕ(k0; α, β , γ , δ)| = exp(−γ α|k0|
α),

|ϕ(k1; α, β , γ , δ)| = exp(−γ α|k1|
α).

(10)

Taking the cumulant function, which is the natural logarithm of the
CF, leads to the same discussion neutralizing the effect of parameters
β and δ. The equation ln ϕ = ln |ϕ| + j(arg ϕ + 2nπ) implies that
the real part of the cumulant function corresponds to the natural
logarithm of the absolute value of CF, shown as

{

<
{

ln ϕ(k0; α, β , γ , δ)
}

= ln |ϕ(k0; α, β , γ , δ)| = −γ α|k0|
α ,

<
{

ln ϕ(k0; α, β , γ , δ)
}

= ln |ϕ(k1; α, β , γ , δ)| = −γ α|k1|
α

(11)
for any value of k. We consider only the positive values for conve-
nience, since the CF is a symmetric function. By solving the above
equations simultaneously, parameters α and γ can be estimated
shown as

α̂ =
ln

(

−<
{

ln ϕ̂
(

k0

)})

− ln
(

−<
{

ln ϕ̂
(

k1

)})

ln k0 − ln k1
, (12)

γ̂ = exp

{

ln k0 ln
(

−<
{

ln ϕ̂
(

k1

)})

− ln k1 ln
(

−<
{

ln ϕ̂
(

k0

)})

ln
(

−<
{

ln ϕ̂
(

k0

)})

− ln
(

−<
{

ln ϕ̂
(

k1

)})

}

.

(13)

Since the one-parameterization form in Eq. (2) is discontinu-
ous at α = 1, the estimation of the remaining parameters β and δ is
divided into two cases. When α 6= 1, the cumulant function of stable
distributions with the points k0, k1 > 0 are

{

ln ϕ(k0; α, β , γ , δ) = −γ αk0
α

+ i
[

δk0 + γ αk0
α
β tan

(

πα

2

)]

,

ln ϕ(k1; α, β , γ , δ) = −γ αk1
α

+ i
[

δk1 + γ αk1
α
β tan

(

πα

2

)]

.

(14)
As we need the information of the parameters β and δ, we take the
imaginary part. Then, the parameters β and δ are estimated by solv-
ing the above equations simultaneously and using the estimates α̂
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and γ̂ ,

β̂ =
k1=

{

ln ϕ̂(k0)
}

− k0=
{

ln ϕ̂(k1)
}

γ̂ α̂ tan
(

πα̂

2

)

(k0
α̂k1 − k1

α̂k0)
, (15)

δ̂ =
k1

α̂
=

{

ln ϕ̂(k0)
}

− k0
α̂
=

{

ln ϕ̂(k1)
}

k0k1
α̂

− k1k0
α̂

. (16)

In the case of α = 1, the CF takes a discontinuous form and the
cumulant functions are written as

{

ln ϕ(k0; 1, β , γ , δ) = −γ k0 + i
[

δk0 − β 2
π

ln k0

]

,

ln ϕ(k1; 1, β , γ , δ) = −γ k1 + i
[

δk1 − β 2
π

ln k1

]

.
(17)

Then, the parameters are estimated by solving the above equations
simultaneously as well,

β̂ =
π

2

k1=
{

ln ϕ̂(k0)
}

− k0=
{

ln ϕ̂(k1)
}

γ̂ k0k1

(

ln k1 − ln k0

) , (18)

δ̂ =
k1=

{

ln ϕ̂(k0)
}

ln k1 − k0=
{

ln ϕ̂(k1)
}

ln k0

k0k1

(

ln k1 − ln k0

) . (19)

For simplicity, we express the estimates as a function of given points
k0 and k1 as follows:

α̂ = Fα(k0, k1), (20)

γ̂ = Fγ (k0, k1), (21)

β̂ = Fβ(k0, k1, α̂, γ̂ ), (22)

δ̂ = Fδ(k0, k1, α̂), (23)

where β̂ and δ̂ additionally need the information of the estimates α̂

and γ̂ . Sometimes, the estimates can possibly outrange the param-
eter spaces α ∈ (0, 2], β ∈ [−1, 1], and γ > 0, especially when the
true parameters are close to the borders. In such cases, the param-
eters are set to the closet border, except for α and γ , the estimates
are set no lower than 0.01. Applications with other parameteriza-
tions use slightly different forms of CF, but the stable parameters
are estimated essentially by the same procedure as explained above.
For the zero-parameterization, which is another common parame-
terization form, the CF is replaced to its corresponding form shown
in Eqs. (3) and (4) for Eqs. (10) and (14) [or (17)]. For parameter-
ization with a different definition of the scaling parameter written
as c (= γ α),17,31,32 Bibalan et al.17 presents an alternative procedure
for the estimation. They first directly obtain the scaling parameter c
from taking the absolute value of the empirical CF, or the real part
of the cumulant function as

ĉ = − ln |ϕ̂(1)| = −<
{

ln ϕ̂(1)
}

. (24)

Next, α is estimated as shown in Eq. (12). Then, the scale parameter
in our criterion, γ̂ , is obtained as

γ̂ = exp

(

ln ĉ

α̂

)

. (25)

The remaining parameters β and δ are then estimated straight-
forwardly as similar to the case of the one-parameterization form.
Replacing γ̂ α̂ with ĉ in Eqs. (15) and (16) [or Eqs. (18) and (19)] and
using the points k0 and k1 give the estimates.

IV. PROPOSED APPROACH FOR THE

CHARACTERISTIC FUNCTION-BASED METHOD

In this section, we make an improvement of the CF-based
method by discussing how the points related to the CF should be
chosen. We propose a technique that provides a flexible selection
of the points. We also clarify the difference of how the points are
selected between our proposal and the procedures in other existing
CF-based methods.

A. Argument for the inference of point k 1

Two positive points of the CF, k0 and k1(k0 6= k1), ought to
be selected to identify all four parameter estimates. As mentioned
before in this paper, the absolute value of the CF in Eq. (10) is inde-
pendent of the skew and location parameters for any k and provides
information of α and γ . When k = 1/γ is satisfied, the absolute
value of the CF takes a constant value

|ϕ (1/γ )| = e−1. (26)

The advantage of setting k = 1/γ as one of the candidate points is
to reduce any estimation bias influenced by certain parameter val-
ues since we expect to get a constant estimate which is independent
of all four parameters. When γ � 1, however, empirically obtained
values can cause significant estimation errors for the scale parameter
in Eq. (26).19,33 Therefore, we first consider a temporary estimate of
the scaling parameter, γ̃ , just in case the data exhibits scale far from
the standardized form (γ = 1).

Take the natural logarithm of Eq. (26). The temporary esti-
mate can be obtained by approximately solving the equation that
numerically satisfies

ln
∣

∣ϕ̂ (1/γ̃ )
∣

∣ ' −1, (27)

using a simple one-dimensional search function34 or any other
optimization procedure. Our rough estimate γ̃ is then used for stan-
dardizing, or pre-standardizing, the candidate points. Specifically,
point k1 is set to 1/γ̃ , where ln |ϕ(k1)| empirically takes −1.

As explained above, pre-standardization is preferred, especially
when we suspect that datasets have too large or small scales. When-
ever a new set of points is required for the parameter estimation
process, we conduct pre-standardization. Point k1 is replaced to 1/γ̌ ,
where γ̌ is the latest scaling parameter estimate available at that time.

B. Argument for the inference of point k 0

For the argument of selecting, point k0 > 0, which is perhaps
the most important proposal in our study. We focus on the abso-
lute value of the CF. Bibalan et al. proposed to calculate the distance
between two absolute values of CFs with different index parame-
ters α, the Gaussian case (α = 2) and the Cauchy case (α = 1).17

They set k0 > 0 to the point which corresponds to the maximum
distance and the other point to k1 = 1. Although the absolute CF
changes depending on the index parameter α, their approach con-
siders a fixed distance and essentially chooses an identical point for
any value of α ∈ (1, 2]. In addition, the distance they consider does
not account for the case of α ∈ (0, 1].

Our approach is an extension of Bibalan et al. and provides a
more generalized technique of selecting the points. We deal with
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the problem that the distance between two absolute values of CFs
can vary depending on the parameters. The basic idea is to find
the point where the absolute CF, |ϕ(k; α)|, presents the maximum
sensitivity with respect to α. In other words, we discuss the point
where the distance between the absolute CF of index parame-
ter α, |ϕ(k; α, β , γ , δ)|, and the absolute CF of α + 1α, |ϕ(k; α +
1α, β , γ , δ)|, shows the largest distance. Such a point is considered
as k0 in our study.

To make our discussion more simple, we consider the absolute
CF as a function of variable η,

|ϕ(k; α, β , γ , δ)| = exp(−ηα),

where η = γ k (k > 0) is a newly introduced variable, which
depends on γ and k. The distance can be expressed as
∣

∣exp(−ηα+1α) − exp(−ηα)
∣

∣. The candidate point for η0 = γ k0,
where the maximum distance is achieved, can be calculated by

d

dη

∣

∣exp(−ηα+1α) − exp(−ηα)
∣

∣ = 0, η > 0. (28)

Solving this equation for η > 0 yields two solutions, η ∈ (0, 1/γ )

and η ∈ (1/γ , ∞). For both points, the absolute value of CF shows
the largest ratio of change in a local sense. The smaller point η ∈
(0, 1/γ ) is employed, because the distance at the smaller point tends
to have larger values than that at the larger point η ∈ (1/γ , ∞),
which enables us to estimate α and γ in a more desirable and infor-
mative manner. Another reason is that smaller |k| is preferred rather
than larger |k|. As |k| → 0, the asymptotic variance of the empirical
cumulant function decreases.19 With empirical CF obtained by i.i.d.
distributed datasets, the relation

E
[

∣

∣ϕN(k)
∣

∣

2
]

= |ϕ(k)|2 +
1

N

(

1 − |ϕ(k)|2
)

(29)

holds,35 which implies that as k becomes larger, the empirical abso-
lute CF |ϕN(k)| is likely to be subject to sample errors. Thus, the
smaller η = γ k should be considered in this study.

The above discussion implies that k should be set close to zero
(but not at zero because then the CF takes a constant value and no
information of the parameters will be provided). But at the same
time, the employed smaller point is standapart from zero to some
extent so that the empirical CF will be more or less exposed by sam-
ple errors. Therefore, the choice of points derived from Eq. (28) is
unsatisfactory, and, hence, the distance

∣

∣exp(−ηα+1α) − exp(−ηα)
∣

∣

should be modified. To reduce the effect of sample errors, we intro-
duce a weight function w(η) that decreases monotonically as η

becomes larger (note that the introduced variable η = γ k has a
linear relationship with k).

Using the weight function w(η), we now introduce a weighted
distance

∣

∣exp(−ηα+1α) − exp(−ηα)
∣

∣ w(η) for η > 0. For conve-
nience, we employ w(η) = exp (−τ |η|), where τ > 0, since the CF
exhibits an exponential form. This choice leads to the association of
the weighted distance with a statistical measure used for goodness-
of-fit tests, developed by Matsui and Takemura.36 They propose the

following test statistic based on empirical CFs:

DN,κ := N

∫ ∞

−∞

∣

∣ϕ̂(t) − exp (−|t|α)
∣

∣

2
h(t) dt,

h(t) = exp (−κ|t|), κ > 0, (30)

where h(t) is a monotonically decreasing weight function. DN,κ

denotes the weighted L2-distance between the empirical CF and
the symmetric standardized stable CF ϕ(t; α, 0, 1, 0). This weighted
L2-distance can be associated with the weighted distance we are
considering now.

Taking the absolute value of a CF yields again a standardized
form of a CF with β = 0 and δ = 0,

exp(−ηα) = |ϕ(k; α, β , γ , δ)| = ϕ(η; α, 0, 1, 0).

Thus, the absolute values of CF with index parameter α and
α + 1α are equivalent to the symmetric standardized stable CFs,
ϕ(η; α, 0, 1, 0) and ϕ(η; α + 1α, 0, 1, 0), respectively. The weighted
L2-distance between these CFs essentially coincides DN,κ , when the
weight function satisfies

w(η) =
√

h(η)

for η > 0. In this case, the difference between the CFs can be
evaluated more accurately with the background of a meaningful
measurement. Following Matsui and Takemura, the asymptotic dis-
tribution of DN,κ is numerically evaluated and the critical values
of the test statistics are approximately obtained.36 Through com-
putational simulation, they provide evidence that the test is most
powerful when κ = 5.0 (h(η) = exp(−5|η|)), especially for heavy
tailed distributions. Thus, our choice of the weight function is
w(η) = exp(−2.5|η|), since τ = κ/2. Other weight functions such
as w(η) = exp (−|η|) and w(η) = exp (−η2)33,37 can be employed,
but lacks a conclusive evidence for the use of these alternatives.

With the weight function, the candidate points η > 0 are cal-
culated by solving the following equation:

g(α, η) =
d

dη

{(

exp(−ηα+1α) − exp(−ηα)
)

· exp(−τη)
}

= 0, (31)

where τ = 2.5. Then, we have

g(α, η) = (αηα−1 + τ) exp(−ηα − τη)

−
(

(α + 1α)ηα+1α−1 + τ
)

exp(−ηα+1α − τη). (32)

For convenience, 1α is set to 0.01 for all cases in this study. Equation
g(α, η) = 0 indicates the relationship between the index parameter
α and point η that exhibits the maximum rate of a change, or the
maximum sensitivity, of the absolute CF with respect to α.

There could exist some relationship between α and η since
they are interrelated due to g(α, η) = 0. When some estimate α̂ is
given, the corresponding point is obtained by computing η that
satisfies g(α̂, η) = 0, and vice versa [the corresponding parameter
α of a given point η̂ can be calculated by computing the equation
g(α, η̂) = 0]. As we have discussed previously in this subsection, we
focus on the point closer (smaller) to zero out of the two candidates
of the calculated points from Eq. (31). Figure 2 ascertains whether
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FIG. 2. The theoretical relationship between α and η based on our proposed
selection approach, g(α, η) = 0 in Eq. (31), is shown in the solid black line. The
blue plot shows the simulated results for the best point with the minimum MSE
for α and β over 100 simulations. We consider the MSE of α + 1

10
β because

the accuracy of β is generally worse roughly by ten times than the accuracy of
α and also that β estimates are usually susceptible to α estimates.10,15,17 The
simulation is implemented for each value of α ranging within the parameter space
of 0.2–1.95.

our approach of Eq. (31) correctly estimates the parameters of stable
distribution. The model clearly characterizes the distinctive relation-
ship between α and η, which are empirically verified via simulation
using synthetic data generated from random stable variables.38 This
indicates that our selection of points is valid for identifying desired
points in the estimation process.

In practice, α is unknown. Hence, the selection of point η0 =
γ k0 is undecidable, so that the parameters for the stable law can-
not be estimated directly. To cope with this problem, we first aim
to get a rough estimate of α calculated by using the temporary scale
estimate γ̃ . The rough estimate is considered poor as the estima-
tion method, but it plays a role in starting off the estimation process
with reasonable initial values. The accuracy of both points (η0 = γ k0

and η1 = γ k1) and the parameters (α, β , γ , δ) can be improved by
alternating searches of α and η from our relation model g(α, γ ) = 0
several times to get sophisticated estimates. With estimates η0 and
η1, the four parameters are ultimately calculated.

C. Estimation procedures

Here, we present our proposed algorithm for the estimation
of all four parameters of stable laws by utilizing the relationship
between α and η. Regarding the fact that substantial errors induced
by γ � 1 occur in empirically obtained estimates, we conduct a pre-
standardization with k replaced to η = γ k. Using the expressions of
the estimates in Eqs. (20)–(23), our algorithm is written as follows:

Step 1: Compute a temporary estimate γ̃temp from sample data
Xn (n = 1, 2, . . . , N) that satisfies the equation

ln

∣

∣

∣

∣

∣

1

N

N
∑

n=1

eiXn/γ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

γ=γ̃temp

= −1.

Step 2: Set
{

k̃0 = ξ/γ̃temp,

k̃1 = 1/γ̃temp,

where ξ is any initial value of ξ ∈ (0, 1).
Step 3: Make a rough estimate of α and γ from

α̃ = Fα(k̃0, k̃1),

γ̃ = Fγ (k̃0, k̃1),

respectively, where Fα(·, ·) and Fγ (·, ·) are given in Eqs. (20)
and (21).

Step 4: Compute η̃ that satisfies g(α̃, η)
∣

∣

η=η̃
= 0, where g(·, ·) is

given in Eq. (32).
Step 5: Recalculate the points associated with η̃,

{

k̃0 = η̃/γ̃ ,

k̃1 = 1/γ̃ .

Step 6: Estimate α and γ as

α̂ = Fα(k̃0, k̃1),

γ̂ = Fγ (k̃0, k̃1).

Step 7: Compute η̃ that satisfies g(α̂, η)
∣

∣

η=η̂
= 0.

Step 8: Recalculate the points associated with η̂,
{

k̂0 = η̂/γ̂ ,

k̂1 = 1/γ̂ .

Step 9: Finally, we estimate the parameters α and γ as

α̂ = Fα(k̂0, k̂1),

γ̂ = Fγ (k̂0, k̂1).

Step 10: Estimate the parameters β and δ from the functions
Fβ(·, ·, ·, ·) and Fδ(·, ·, ·) given in Eqs. (22) and (23), as

β̂ = Fβ(k̂0, k̂1, α̂, γ̂ )

δ̂ = Fδ(k̂0, k̂1, α̂),

which leads to the estimates of all four parameters of stable
laws.

V. NUMERICAL ASSESSMENTS

In this section, we show numerical assessments for the estima-
tion of stable laws. We compare the performances of our proposal
approach to other state-of-art approaches using the MSE and the
KS distance. The comparison is studied for three approaches. We
focus on the approaches of characteristic function-based methods
presented by Bibalan et al.17 and Krutto.19 We also compare with
the traditional QM method9,10 explained in Subsection III A, to
provide a benchmark with a well-known criterion. Note that all
three approaches above exhibit closed-form expressions for all four
estimates of stable parameters.
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FIG. 3. Comparison of the KS distances
for the methods based on the proposed
approach, Bibalan et al.’s approach, Krutto’s
approach, and the QM method. The RMS
values of KS distances are studied for several
cases of stable distributions with parameters
(a) α, (b) β , (c) γ , and (d) δ ranging within its
parameter range (N = 10 000, L = 500).

FIG. 4. Comparison of the MSE for the
methods based on the proposed approach,
Bibalan et al.’s approach, Krutto’s approach,
and the QM method with different values of
sample sizes N = 300, 1000, 3000, 10 000.
The MSE values of each stable parameter
(a) α, (b) β , (c) γ , and (d) δ are studied
for cases of S(1.4, 0.2, 1, 0) over L = 500
synthetic datasets.
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TABLE I. Simulation results for the performance of all four stable law parameters. The comparison of the proposed method with other methods based on Bibalan et al., Krutto,

and QM are examined for different values of (α, β) with a standardized form of (γ , δ)= (1, 0). Absolute values of bias are given below the MSE in parentheses for all cases.

The minimum values of MSEs among the methods are shown in bold for each case of parameters.

α

0.5 1.5 1.8

β β β

(×10−4) 0 0.5 0 0.5 0 0.5

α̂ Proposed MSE 0.859 0.767 3.353 2.881 2.128 2.100
bias (1.047) (5.376) (9.776) (4.193) (1.567) (2.140)

Bibalan et al. 5.252 4.803 4.015 3.757 2.346 2.234
(8.435) (4.880) (2.793) (16.51) (2.994) (1.710)

Krutto 1.387 1.429 4.958 4.604 2.816 2.728
(13.48) (2.535) (18.95) (4.333) (0.231) (3.642)

QM . . . . . . 3.915 5.306 9.282 8.857
(. . . ) (. . . ) (4.732) (16.75) (16.63) (16.97)

β̂ Proposed MSE 6.867 7.522 11.54 11.55 40.68 48.78
bias (13.78) (3.230) (0.629) (12.33) (24.90) (16.48)

Bibalan et al. 20.95 20.64 15.09 16.61 47.62 56.67
(19.32) (5.274) (17.51) (4.882) (36.72) (19.40)

Krutto 11.66 12.64 15.71 15.18 37.05 42.97
(0.736) (3.166) (9.488) (3.711) (7.387) (29.83)

QM . . . . . . 11.59 13.01 61.39 162.3
(. . . ) (. . . ) (6.575) (64.02) (3.764) (373.2)

γ̂ Proposed MSE 15.95 13.20 1.444 1.396 0.842 0.857
bias (14.74) (20.28) (5.552) (3.004) (0.748) (9.113)

Bibalan et al. 13.66 13.29 1.450 1.386 0.845 0.854
(24.70) (44.02) (5.306) (3.741) (0.984) (9.016)

Krutto 31.33 32.42 1.910 1.841 0.895 0.938
(48.27) (25.64) (13.73) (4.923) (1.007) (9.917)

QM . . . . . . 1.613 1.989 1.483 1.518
(. . . ) (. . . ) (11.55) (27.58) (9.162) (20.74)

δ̂ Proposed MSE 10.80 14.25 8.401 10.27 3.147 3.428
bias (11.90) (33.02) (10.70) (1.020) (0.243) (2.800)

Bibalan et al. 30.86 35.41 10.72 13.43 3.497 3.965
(15.92) (20.27) (26.94) (8.638) (3.954) (3.118)

Krutto 61.87 88.23 9.796 12.00 3.151 3.275
(23.49) (56.67) (4.332) (10.58) (2.116) (4.712)

QM . . . . . . 9.394 11.68 3.710 3.815
(. . . ) (. . . ) (14.87) (46.61) (1.920) (32.97)

Bibalan et al. have shown that their approach generally outper-
forms other methods that yield a closed-form expression, such as
the FLOM, the QM, and the MOLC.17 Krutto also compares the per-
formances with several well-known methods and concludes that the
method gives accurate estimates.19 Since both of them belong to the
family of the CF-based method, the selection of the points k0 and
k1 plays an important role. In Bibalan et al., k1 is set to 1. Point
k0 is always set to where the point shows the maximum distance
between the absolute Gaussian CF and the absolute Cauchy CF, by
using the estimates of γ α , which they are calculated beforehand. It
should be mentioned that the CF in this case poses an alternative
definition of the scaling parameter, so we eventually obtain γ in the
last procedure in Eq. (25). On the other hand, Krutto suggests to

employ two points that satisfies
{

ln |ϕ̂(k0)| = −0.1,

ln |ϕ̂(k1)| = −0.5,

under empirical searches.19 We examine the performance for each
parameter of stable distribution in addition to the fit with the entire
estimated stable distribution. We also refer to the effects of sam-
ple sizes for each estimation method. For all the simulations in this
paper, we generate L = 500 synthetic data of N = 10 000 i.i.d. ran-
dom stable samples. Synthetic random data sequences following a
stable distribution can be generated by algorithms constructed by
Chambers et al.,39 Weron,38 and Umeno.40 Umeno generates random
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FIG. 5. Comparison of the MSEs for the
methods based on the proposed approach,
Bibalan et al.’s approach, Krutto’s approach,
and the QM method. The MSEs of each
stable parameter (a) α, (b) β , (c) γ , and
(d) δ are studied for cases of parameters
β = −0.1, γ = 1, and δ = 0 with α rang-
ing from 0.3 to 1.8 (N = 10 000, L = 500).

FIG. 6. Comparison of the MSEs for the
methods based on the proposed approach,
Bibalan et al.’s approach, Krutto’s approach,
and the QM method. The MSEs of each sta-
ble parameter (a) α, (b) β , (c) γ , and (d)
δ are studied for cases of parameters α =
0.8, γ = 1, and δ = 0 with β ranging from
−0.9 to 0.9 (N = 10 000, L = 500).
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FIG. 7. Comparison of the MSEs for the
methods based on the proposed approach,
Bibalan et al.’s approach, Krutto’s approach,
and the QM method. The MSEs of each sta-
ble parameter (a) α, (b) β , (c) γ , and (d)
δ are studied for cases of parameters α =
1.6, γ = 1, and δ = 0 with β ranging from
−0.9 to 0.9 (N = 10 000, L = 500).

stable variables based on the superposition of chaotic processes. The
classical method of Chambers et al. is widely known as the pioneer
of all the methods, in which the algorithm was reorganized and cor-
rected later by Weron. Weron’s algorithm is our choice of method,
which is simple and is the fastest in calculation.

A. Performance of parameter estimates

The performance of the estimated parameters are examined by
the MSE criterion,

MSE(θ) =
1

L

L
∑

l=1

(

θ − θ̂l

)

,

where θ and L = 500 is the parameter of stable laws and the number
of times the simulation is implemented, respectively. We calcu-
late the MSE of all four parameters and evaluate each parameter
individually.

Table I shows the simulation results of the MSE associated
with the estimate bias for each parameter. We consider the cases of
parameters with α = 0.5, 1.5, 1.8 and β = 0, 0.5, all with a standard-
ized form of γ = 1 and δ = 0. Note that for the QM, the method has
parameter restrictions of α ≥ 0.6 and hence the cases with α smaller
than 0.6 cannot be implemented. Our proposed approach generally
provides the most accurate estimation with the smallest MSE. In par-
ticular, for the index parameters α and δ, our approach significantly
improves the accuracy of the estimates. For some cases as in large
values of α = 1.8, however, the method fails to show the best per-
formance. One possible reason may be related to the argument that
the CF-based method reflects the tail part of the PDF in a more pre-
cise manner. This indicates that cases of lighter tails with α close to

2 may not benefit from the method compared to those of heavier
tails with smaller α. Another possible reason may be that the accu-
racy of calculating the empirical CF for cases of α close to 2 is not as
high as for those of smaller α. This is because the CF is given by the
Fourier transformation of the PDF, and cases of larger α close to 2
have smaller sample variance but larger spectrum width.

More detailed simulation results for different cases of parame-
ters are shown in Figs. 5–7 in the Appendix. In particular, we show
the cases of S(α, −0.1, 1, 0), S(0.8, β , 1, 0), and S(1.6, β , 1, 0), with
parameter values varying within the parameter ranges. The results
imply that for whatever parameter combination, our method gener-
ally outperforms the others with the highest accuracy. Although we
find that other methods sometimes show higher accuracy on either
the parameter α or δ in cases of 0.6 ≤ α ≤ 1.2 in S(α, −0.1, 1, 0) in
Fig. 5 and −0.3 ≤ β ≤ 0.3 for S(0.8, β , 1, 0) in Fig. 6, the difference
is small and our method appears to be powerful for estimating all
four stable parameters.

B. Performance of the estimated distribution

Next, we examine the performance of estimating stable laws
from a different perspective: evaluation of the entire distribution.
We use the KS distance expressed as

D = max
x

|P(x) − P̂(x)|,

which represents the maximum distance between two distributions
in terms of the CDF. Here, P(x) and P̂(x) denotes the empiri-
cally obtained CDF, and the theoretical estimated CDF, respectively.
The standard density and distribution functions of stable distri-
butions are numerically derived approximately by implementing
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the Fourier integral formulas,41,42 which are available in package
libstable that provides good approximation values.43 KS distance
is one of the most major standards for numerical assessments
when discussing stable laws. We set aside any issues related to
numerical approximations of stable distributions so that we can
focus on the performance between the methods. The root mean
square (RMS) of the KS distance is used for the numerical assess-
ment to make the small differences of the comparison results more
apparent.

Figure 3 shows the simulation results of the KS distance for
several cases of stable distributions; S(α, 0.1, 1, 0), S(1.7, β , 1, 0),
S(1.3, 0.2, γ , 0), and S(0.7, −0.4, 1, δ). The RMS of the KS distance
is calculated for each case with various values of parameters rang-
ing within parameter ranges. We find in Fig. 3(c) that the estimation
for the scaling parameter γ 6= 1 poses significant estimation errors.
This is caused by the effect of sample errors induced by the scaling
parameter γ far from the standardized form, as shown in Eq. (26).
On the other hand, our proposed method achieves the smallest value
of KS distances for all cases of parameter combinations. This proves
that we are also successful in improving the estimation of the entire
stable distribution.

C. Effect of sample size

Needless to say, the accuracy of the estimation method strongly
depends on the number of samples. Larger sample sizes give more
information of the dataset, whereas smaller sample sizes have only
little information making it challenging to detect the true values. We
examine the effect of sample size by comparing the performance
among the estimation methods. Figure 4 displays the MSE of each
parameter of stable distribution as the sample size N changes from
300 to 10 000. The study is examined for the case of S(1.4, 0.2, 1, 0).
The MSE simulated by means of our method decreases with the
order O(1/N) while the MSE simulated by means of other repre-
sentative methods also exhibited similar behaviors of order. Our
proposed approach offers the best performance except for the loca-
tion parameter δ, where the QM method sometimes give more
accurate estimates for large datasets.

VI. APPLICATION TO FINANCIAL EMPIRICAL DATA

This section shows the application of the proposed estimation
method to real financial data. We provide several empirical studies
to present that our proposed approach is applicable for a wide range
of empirical analysis in finance.

Asset price returns in various financial markets tend to show
interesting properties of stable laws ever since Mandelbrot first
revealed that stable distribution fits cotton price returns better than
the classical Gaussian distribution.44 This argument have attracted

TABLE III. Parameters of the fitted stable distribution for daily return time series of

USDJPY exchange rate (2004/01/05–2019/12/31) and KS distance calculated based

on several estimation methods (N= 4190). The smallest KS value that indicates the

best performance is shown in boldface.

Method α β γ δ KS

Proposed 1.708 −0.121 0.003 5 −0.000 04 0.021 4
Bibalan et al. 1.884 −0.261 0.003 9 −0.000 02 0.039 6
Krutto 1.767 −0.138 0.003 6 −0.000 04 0.027 9
QM 1.584 −0.064 0.003 4 −0.000 12 0.021 6

attention to identifying price behaviors in many financial fields such
as equities,45–47 price consumer index inflation,48 metal markets,49 oil
markets,50 and cryptocurrency markets.35 We investigate return dis-
tributions of the Japanese Yen currency exchange rate in terms of the
US dollar (USDJPY) and the West Texas Intermediate (WTI) crude
oil futures market, both of which are potent indices in finance. The
basic statistics of the indices are provided in Table II. We explore
both cases of common daily analysis and high-frequency data anal-
ysis. In particular, we use daily and one-hour return time series for
the USDJPY and the WTI market, respectively. Since the scale of
returns for both cases are too small for the method based on Bibalan
et al. to give plausible estimates, we do a pre-standardization process
beforehand. We multiply returns by 100 and after the estimation the
parameters γ and δ are adjusted by dividing them by 100. Table III
presents the estimates of the fitted stable distribution associated with
the KS distance between the empirical distribution and the estimated
stable distribution for USDJPY, calculated based on four controver-
sial estimation methods. Our primary focus is on the KS-distance
value. The results show that the estimated distribution based on our
proposed method presents the smallest value among other estima-
tion methods. The smallest KS distance implies that our method
exhibits stable laws that best describes the observed data. Param-
eter estimates and the distance measure for the WTI market are
shown in Table IV. The result indicates that the outstanding per-
formance of our method also holds for high-frequency data with the
lowest KS distance. What makes the development of the estimation
method a crucial matter is that the parameter estimates can differ
so much among the methods when applied to empirically observed
data, even for large datasets. We find in Table IV that the estimate
of α marks a low 1.260 based on the QM method, whereas Bibalan
et al.’s method presents 1.846, in which the value differs quite a lot
between the methods in spite of the large sample size of dataset with
N = 54 356. A method that accomplishes the inference of the clos-
est distribution or set of parameters provides a more reliable model.
Hence, our proposed estimation approach play a significant role as
a tool for modeling with stable laws.

TABLE II. Basic statistics of USDJPY and WTI return time series with time intervals of 1-hour and one day, respectively. Mean is the average of the return time series, SD is the

standard deviation, and N is the number of sample sizes.

Mean SD Skew Kurt Min Max N

USDJPY 1.027 × 10−5 0.006 2 −0.053 1 4.788 0 −0.038 4 0.055 0 4 190
WTI −7.312 × 10−6 0.004 1 0.590 0 23.945 −0.057 6 0.106 8 54 356

Chaos 30, 073128 (2020); doi: 10.1063/5.0013148 30, 073128-12

© Author(s) 2020

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

TABLE IV. Parameters of the fitted stable distribution for 1-hour return time series

of WTI crude oil futures market (2010/11/14–2019/12/31) and KS distance calcu-

lated based on several estimation methods (N= 54 356). The smallest KS value that

indicates the best performance is shown in boldface.

Method α β γ δ KS

Proposed 1.357 −0.045 0.001 5 −0.000 07 0.018
Bibalan et al. 1.846 −0.012 0.002 4 −0.000 02 0.088
Krutto 1.487 −0.071 0.001 7 −0.000 07 0.036
QM 1.260 −0.031 0.001 5 −0.000 09 0.019

VII. CONCLUSION

This paper has proposed a new approach for estimating stable
laws and applied this approach to the exploration of price behav-
iors in financial markets. Our new technique is developed under the
method of moments, which is one of the widely known CF-based
methods that require the choice of appropriate momental points.
The points necessary for the estimation process are flexibly chosen,
as the estimation accuracy of stable laws depends heavily on their
true parameter values. We have focused on the fact that the index
parameter α and the desired momental points exhibit a distinctive
relationship, which is a new perspective in the literature. This rela-
tion is modeled as g(α, η) = 0, based on the idea of employing points
η at which the weighted absolute values of the CF present the max-
imum sensitivity. To detect appropriate points, we have suggested
a procedure relying on the combination of empirical searches and
algorithmic approaches. The advantage of employing these points
is that the parameters of stable laws can be estimated in a more
precise manner while remaining straightforwardly in the implemen-
tation of the method. The relative performance of the parameter
estimates is benchmarked against other existing methods, specifi-
cally the QM and the methods of Bibalan et al. and Krutto, through
simulation studies in terms of the MSE and KS-distance criteria.
The results have implied that our method is the most powerful with
the best performance. Our approach assures that the estimates of
all four parameters of stable laws present a closed-form expression
without any restrictions on parameter ranges, making the method
significantly practical. We have also explored the behaviors of price
fluctuations in several financial markets to show that our method is
applicable for empirical financial studies. For the USDJPY exchange
rate and the WTI crude oil future price, our method supports sta-
ble laws with the highest performance among all the other methods
discussed in this paper. This would motivate us to further develop
analytical methods for examining stable laws as well as to further
investigate various features of financial markets.

APPENDIX: FIGURES OF SIMULATION RESULTS

We show in this section some of the additional simulation
results examined for checking the performance of the parameter
estimates. Each of the four parameters of stable laws are studied for
various cases of parameter combinations. The results imply that for
most cases, our proposed approach based method leads to improve
the accuracy of the estimates. We find that the state of performance

is also consistent with all four parameters, outperforming the other
existing methods.

DATA AVAILABILITY

The data that support the findings of this study are openly
available in HistData.com at http://www.histdata.com, Ref. 51.
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