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Abstract. The weighted T -free 2-matching problem is the following
problem: given an undirected graph G, a weight function on its edge
set, and a set T of triangles in G, find a maximum weight 2-matching
containing no triangle in T . When T is the set of all triangles in G,
this problem is known as the weighted triangle-free 2-matching problem,
which is a long-standing open problem. A main contribution of this pa-
per is to give a first polynomial-time algorithm for the weighted T -free
2-matching problem under the assumption that T is a set of edge-disjoint
triangles. In our algorithm, a key ingredient is to give an extended formu-
lation representing the solution set, that is, we introduce new variables
and represent the convex hull of the feasible solutions as a projection
of another polytope in a higher dimensional space. Although our ex-
tended formulation has exponentially many inequalities, we show that
the separation problem can be solved in polynomial time, which leads to
a polynomial-time algorithm for the weighted T -free 2-matching prob-
lem.

Keywords: Triangle-free 2-matchings · b-factors · Extended formulation
· Polynomial-time algorithm.

1 Introduction

1.1 2-matchings without Short Cycles

In an undirected graph, an edge set M is said to be a 2-matching1 if each vertex
is incident to at most two edges in M . Finding a 2-matching of maximum size is
a classical combinatorial optimization problem, which can be solved efficiently
by using a matching algorithm. By imposing restrictions on 2-matchings, various
extensions have been introduced and studied in the literature. Among them, the
problem of finding a maximum 2-matching without short cycles has attracted
attentions, because it has applications to approximation algorithms for TSP and

? Supported by JSPS KAKENHI Grant Numbers JP16K16010, 16H03118,
JP18H05291, and JP19H05485, Japan.

1 Although such an edge set is often called a simple 2-matching in the literature, we
call it a 2-matching to simplify the description.
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its variants. We say that a 2-matching M is C≤k-free if M contains no cycle of
length k or less, and the C≤k-free 2-matching problem is to find a C≤k-free 2-
matching of maximum size in a given graph. When k ≤ 2, every 2-matching
without self-loops and parallel edges is C≤k-free, and hence the C≤k-free 2-
matching problem can be solved in polynomial time. On the other hand, when
n/2 ≤ k ≤ n − 1, where n is the number of vertices in the input graph, the
C≤k-free 2-matching problem is NP-hard, because it decides the existence of a
Hamiltonian cycle. These facts motivate us to investigate the borderline between
polynomially solvable cases and NP-hard cases of the problem. Hartvigsen [12]
gave a polynomial-time algorithm for the C≤3-free 2-matching problem, and
Papadimitriou showed that the problem is NP-hard when k ≥ 5 (see [6]). The
polynomial solvability of the C≤4-free 2-matching problem is still open, whereas
some positive results are known for special cases. For the case when the input
graph is restricted to be bipartite, Hartvigsen [13], Király [18], and Frank [10]
gave min-max theorems, Hartvigsen [14] and Pap [26] designed polynomial-time
algorithms, Babenko [1] improved the running time, and Takazawa [28] showed
decomposition theorems. Recently, Takazawa [30,29] extended these results to a
generalized problem. When the input graph is restricted to be subcubic, i.e., the
maximum degree is at most three, Bérczi and Végh [4] gave a polynomial-time
algorithm for the C≤4-free 2-matching problem. Relationship between C≤k-free
2-matchings and jump systems is studied in [3,8,22].

There are a lot of studies also on the weighted version of the C≤k-free 2-
matching problem. In the weighted problem, an input consists of a graph and a
weight function on the edge set, and the objective is to find a C≤k-free 2-matching
of maximum total weight. Király proved that the weighted C≤4-free 2-matching
problem is NP-hard even if the input graph is restricted to be bipartite (see
[10]), and a stronger NP-hardness result was shown in [3]. Under the assump-
tion that the weight function satisfies a certain property called vertex-induced
on every square, Makai [24] gave a polyhedral description and Takazawa [27]
designed a combinatorial polynomial-time algorithm for the weighted C≤4-free
2-matching problem in bipartite graphs. The case of k = 3, which we call the
weighted triangle-free 2-matching problem, is a long-standing open problem. For
the weighted triangle-free 2-matching problem in subcubic graphs, Hartvigsen
and Li [15] gave a polyhedral description and a polynomial-time algorithm, fol-
lowed by a slight generalized polyhedral description by Bérczi [2] and another
polynomial-time algorithm by Kobayashi [19]. Relationship between C≤k-free
2-matchings and discrete convexity is studied in [19,20,22].

1.2 Our Results

The previous papers on the weighted triangle-free 2-matching problem [2,15,19]
deal with a generalized problem in which we are given a set T of forbidden
triangles as an input in addition to a graph and a weight function. The objective
is to find a maximum weight 2-matching that contains no triangle in T , which
we call the weighted T -free 2-matching problem. In this paper, we focus on the
case when T is a set of edge-disjoint triangles, i.e., no pair of triangles in T
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shares an edge in common. A main contribution of this paper is to give a first
polynomial-time algorithm for the weighted T -free 2-matching problem under
the assumption that T is a set of edge-disjoint triangles. Note that we impose
an assumption only on T , and no restriction is required for the input graph. We
now describe the formal statement of our result.

Let G = (V,E) be an undirected graph with vertex set V and edge set E,
which might have self-loops and parallel edges. For a vertex set X ⊆ V , let
δG(X) denote the set of edges between X and V \ X. For v ∈ V , δG({v}) is
simply denoted by δG(v). For v ∈ V , let δ̇G(v) denote the multiset of edges
incident to v ∈ V , that is, a self-loop incident to v is counted twice. We omit the
subscript G if no confusion may arise. For b ∈ ZV≥0, an edge set M ⊆ E is said to

be a b-matching (resp. b-factor) if |M ∩ δ̇(v)| ≤ b(v) (resp. |M ∩ δ̇(v)| = b(v)) for
every v ∈ V . If b(v) = 2 for every v ∈ V , a b-matching and a b-factor are called a
2-matching and a 2-factor, respectively. Let T be a set of triangles in G, where a
triangle is a cycle of length three. For a triangle T , let V (T ) and E(T ) denote the
vertex set and the edge set of T , respectively. An edge set M ⊆ E is said to be
T -free if E(T ) 6⊆M for every T ∈ T . For a vertex set S ⊆ V , let E[S] denote the
set of all edges with both endpoints in S. For an edge weight vector w ∈ RE , we
consider the problem of finding a T -free b-matching (resp. b-factor) maximizing
w(M), which we call the weighted T -free b-matching (resp. b-factor) problem.
Note that, for a set A and a vector c ∈ RA, we denote c(A) =

∑
a∈A c(a).

Our main result is formally stated as follows.

Theorem 1. There exists a polynomial-time algorithm for the following prob-
lem: given a graph G = (V,E), b(v) ∈ Z≥0 for each v ∈ V , a set T of edge-
disjoint triangles, and a weight w(e) ∈ R for each e ∈ E, find a T -free b-factor
M ⊆ E that maximizes the total weight w(M).

A proof of this theorem is given in Section 4. Since finding a maximum
weight T -free b-matching can be reduced to finding a maximum weight T -free
b-factor by adding dummy vertices and zero-weight edges, Theorem 1 implies
the following corollary.

Corollary 1. There exists a polynomial-time algorithm for the following prob-
lem: given a graph G = (V,E), b(v) ∈ Z≥0 for each v ∈ V , a set T of edge-
disjoint triangles, and a weight w(e) ∈ R for each e ∈ E, find a T -free b-
matching M ⊆ E that maximizes the total weight w(M).

In particular, we can find a T -free 2-matching (or 2-factor) M ⊆ E that
maximizes the total weight w(M) in polynomial time if T is a set of edge-disjoint
triangles.

1.3 Key Ingredient: Extended Formulation

A natural strategy to solve the maximum weight T -free b-factor problem is to
give a polyhedral description of the T -free b-factor polytope as Hartvigsen and
Li [15] did for the subcubic case. However, as we will see in Example 1, giving a
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system of inequalities that represents the T -free b-factor polytope seems to be
quite difficult even when T is a set of edge-disjoint triangles. A key idea of this
paper is to give an extended formulation of the T -free b-factor polytope, that
is, we introduce new variables and represent the T -free b-factor polytope as a
projection of another polytope in a higher dimensional space.

Extended formulations of polytopes arising from various combinatorial opti-
mization problems have been intensively studied in the literature, and the main
focus in this area is on the number of inequalities that are required to represent
the polytope. If a polytope has an extended formulation with polynomially many
inequalities, then we can optimize a linear function in the original polytope by
the ellipsoid method (see e.g. [11]). On the other hand, even if a linear function
on a polytope can be optimized in polynomial time, the polytope does not nec-
essarily have an extended formulation of polynomial size. In this context, the
existence of a polynomial size extended formulation has attracted attentions.
See survey papers [5,17] for previous work on extended formulations.

In this paper, under the assumption that T is a set of edge-disjoint trian-
gles, we give an extended formulation of the T -free b-factor polytope that has
exponentially many inequalities (Theorem 2). In addition, we show that the sep-
aration problem for the extended formulation is solvable in polynomial time, and
hence we can optimize a linear function on the T -free b-factor polytope by the
ellipsoid method in polynomial time. This yields a first polynomial-time algo-
rithm for the weighted T -free b-factor (or b-matching) problem. Note that it is
rare that the first polynomial-time algorithm was designed with the aid of an
extended formulation. To the best of our knowledge, the weighted linear matroid
parity problem was the only such problem before this paper (see [16]).

1.4 Organization of the Paper

The rest of this paper is organized as follows. In Section 2, we introduce an ex-
tended formulation of the T -free b-factor polytope. The outline of the correctness
proof is given in Section 3. In Section 4, we give a polynomial-time algorithm
for the weighted T -factor problem and prove Theorem 1. Finally, we conclude
this paper with remarks in Section 5. Some of the proofs are omitted due to the
space constraint and given in the full version [21].

2 Extended Formulation of the T -free b-factor Polytope

Let G = (V,E) be a graph, b ∈ ZV≥0 be a vector, and T be a set of forbidden
triangles. Throughout this paper, we only consider the case when triangles in T
are mutually edge-disjoint.

For an edge set M ⊆ E, define its characteristic vector xM ∈ RE by

xM (e) =

{
1 if e ∈M ,

0 otherwise.
(1)
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The T -free b-factor polytope is defined as conv{xM |M is a T -free b-factor in G},
where conv denotes the convex hull of vectors, and the b-factor polytope is de-
fined similarly. Edmonds [9] shows that the b-factor polytope is determined by
the following inequalities.

x(δ̇(v)) = b(v) (v ∈ V ) (2)

0 ≤ x(e) ≤ 1 (e ∈ E) (3)∑
e∈F0

x(e) +
∑
e∈F1

(1− x(e)) ≥ 1 ((S, F0, F1) ∈ F) (4)

Here, F is the set of all triples (S, F0, F1) such that S ⊆ V , (F0, F1) is a partition
of δ(S), and b(S) + |F1| is odd. Note that x(δ̇(v)) =

∑
e∈δ̇(v) x(e) and x(e) is

added twice if e is a self-loop incident to v.
In order to deal with T -free b-factors, we consider the following constraint in

addition to (2)–(4).

x(E(T )) ≤ 2 (T ∈ T ) (5)

However, as we will see in Example 1, the system of inequalities (2)–(5) does not
represent the T -free b-factor polytope. Note that when we consider uncapacitated
2-factors, i.e., we are allowed to use two copies of the same edge, it is shown by
Cornuejols and Pulleyblank [7] that the T -free uncapacitated 2-factor polytope
is represented by x(e) ≥ 0 for e ∈ E, x(δ̇(v)) = 2 for v ∈ V , and (5).

Example 1. Consider the graph G = (V,E) in Figure 1. Let b(v) = 2 for every
v ∈ V and T be the set of all triangles in G. Then, G has no T -free b-factor,
i.e., the T -free b-factor polytope is empty. For e ∈ E, let x(e) = 1 if e is drawn
as a blue line in Figure 1 and let x(e) = 1

2 otherwise. Then, we can easily check
that x satisfies (2), (3), and (5). Furthermore, since x is represented as a linear
combination of two b-factors M1 and M2 shown in Figures 2 and 3, x satisfies
(4).

Fig. 1. Graph G = (V,E) Fig. 2. b-factor M1 Fig. 3. b-factor M2

In what follows in this section, we introduce new variables and give an
extended formulation of the T -free b-factor polytope. For T ∈ T , we denote
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ET = {J ⊆ E(T ) | J 6= E(T )}. For T ∈ T and J ∈ ET , we introduce a new
variable y(T, J). Roughly, y(T, J) denotes the (fractional) amount of b-factors M
satisfying M ∩ E(T ) = J . In particular, when x and y are integral, y(T, J) = 1
if and only if the b-factor M corresponding to (x, y) satisfies M ∩E(T ) = J . We
consider the following inequalities.∑

J∈ET

y(T, J) = 1 (T ∈ T ) (6)

∑
e∈J∈ET

y(T, J) = x(e) (T ∈ T , e ∈ E(T )) (7)

y(T, J) ≥ 0 (T ∈ T , J ∈ ET ) (8)

If T is clear from the context, y(T, J) is simply denoted by y(J). Since triangles
in T are edge-disjoint, this causes no ambiguity unless J = ∅. In addition, for
α, β ∈ E(T ), y({α}), y({α, β}), and y(∅) are simply denoted by yα, yαβ , and y∅,
respectively.

We now strengthen (4) by using y. For (S, F0, F1) ∈ F , let TS = {T ∈ T |
E(T )∩ δ(S) 6= ∅}. For T ∈ TS with E(T ) = {α, β, γ} and E(T )∩ δ(S) = {α, β},
we define

q∗(T ) =


yα + yαγ if α ∈ F0 and β ∈ F1,

yβ + yβγ if β ∈ F0 and α ∈ F1,

y∅ + yγ if α, β ∈ F1,

yαβ if α, β ∈ F0.

Note that this value depends on (S, F0, F1) ∈ F and y, but it is simply denoted
by q∗(T ) for a notational convenience. We consider the following inequality.∑

e∈F0

x(e) +
∑
e∈F1

(1− x(e))−
∑
T∈TS

2q∗(T ) ≥ 1 ((S, F0, F1) ∈ F) (9)

For T ∈ TS with E(T ) = {α, β, γ} and E(T ) ∩ δ(S) = {α, β}, the contribution
of α, β, and T to the left-hand side of (9) is equal to the amount of b-factors M
such that |M ∩ {α, β}| 6≡ |F1 ∩ {α, β}| (mod 2) by the following observations.

– If α ∈ F0 and β ∈ F1, then (6) and (7) show that x(α) = yα + yαβ + yαγ
and 1 − x(β) = 1 − (yβ + yαβ + yβγ) = y∅ + yα + yγ + yαγ . Therefore,
x(α) + (1 − x(β)) − 2q∗(T ) = y∅ + yγ + yαβ , which denotes the amount of
b-factors M such that |M ∩ {α, β}| is even.

– If β ∈ F0 and α ∈ F1, then (6) and (7) show that (1−x(α))+x(β)−2q∗(T ) =
y∅+yγ+yαβ , which denotes the amount of b-factors M such that |M∩{α, β}|
is even.

– If α, β ∈ F1, then (6) and (7) show that (1− x(α)) + (1− x(β))− 2q∗(T ) =
yα + yβ + yαγ + yβγ , which denotes the amount of b-factors M such that
|M ∩ {α, β}| is odd.

– If α, β ∈ F0, then (6) and (7) show that x(α) + x(β)− 2q∗(T ) = yα + yβ +
yαγ + yβγ , which denotes the amount of b-factors M such that |M ∩ {α, β}|
is odd.
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Let P be the polytope defined by

P = {(x, y) ∈ RE ×RY | x and y satisfy (2), (3), and (5)–(9)},

where Y = {(T, F ) | T ∈ T , F ∈ ET }. Note that we do not need (4), because it
is implied by (9). Define the projection of P onto E as

projE(P ) = {x ∈ RE | There exists y ∈ RY such that (x, y) ∈ P}.

Our aim is to show that projE(P ) is equal to the T -free b-factor polytope. It is
not difficult to see that the T -free b-factor polytope is contained in projE(P ).

Lemma 1. The T -free b-factor polytope is contained in projE(P ).

Proof. Suppose that M ⊆ E is a T -free b-factor in G and define xM ∈ RE by
(1). For T ∈ T and J ∈ ET , define

yM (T, J) =

{
1 if M ∩ E(T ) = J ,

0 otherwise.

We can easily see that (xM , yM ) satisfies (2), (3), and (5)–(8). Thus, it suffices
to show that (xM , yM ) satisfies (9). Assume to the contrary that (9) does not
hold for (S, F0, F1) ∈ F . Then, xM (e) = 0 for every e ∈ F0 \

⋃
T∈TS E(T ) and

xM (e) = 1 for every e ∈ F1 \
⋃
T∈TS E(T ). Furthermore, since the contribution

of E(T ) ∩ δ(S) and T to the left-hand side of (9) is equal to 1 if and only if
|M ∩ E(T ) ∩ δ(S)| 6≡ |F1 ∩ E(T )| (mod 2), we obtain |M ∩ E(T ) ∩ δ(S)| ≡
|F1 ∩ E(T )| (mod 2) for every T ∈ TS . Then,

|M ∩ δ(S)| = |(M ∩ δ(S)) \
⋃
T∈TS

E(T )|+
∑
T∈TS

|M ∩ E(T ) ∩ δ(S)|

≡ |F1 \
⋃
T∈TS

E(T )|+
∑
T∈TS

|F1 ∩ E(T )| = |F1|.

Since M is a b-factor, it holds that |M∩δ(S)| ≡ b(S) (mod 2), which contradicts
that b(S) + |F1| is odd. ut

To prove the opposite inclusion (i.e., projE(P ) is contained in the T -free
b-factor polytope), we consider a relaxation of (9). For T ∈ TS with E(T ) =
{α, β, γ} and E(T ) ∩ δ(S) = {α, β}, we define

q(T ) =


yα + yαγ if α ∈ F0 and β ∈ F1,

yβ + yβγ if β ∈ F0 and α ∈ F1,

yγ if α, β ∈ F1,

0 if α, β ∈ F0.

Since q(T ) ≤ q∗(T ) for every T ∈ TS , the following inequality is a relaxation of
(9). ∑

e∈F0

x(e) +
∑
e∈F1

(1− x(e))−
∑
T∈TS

2q(T ) ≥ 1 ((S, F0, F1) ∈ F) (10)
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Define a polytope Q and its projection onto E as

Q = {(x, y) ∈ RE ×RY | x and y satisfy (2), (3), (5)–(8), and (10)},
projE(Q) = {x ∈ RE | There exists y ∈ RY such that (x, y) ∈ Q}.

Since (10) is implied by (9), we have that P ⊆ Q and projE(P ) ⊆ projE(Q).
In addition, we show the following proposition whose proof outline is given in
Section 3.

Proposition 1. projE(Q) is contained in the T -free b-factor polytope.

By Lemma 1, Proposition 1, and projE(P ) ⊆ projE(Q), we obtain the fol-
lowing theorem.

Theorem 2. Let G = (V,E) be a graph, b(v) ∈ Z≥0 for each v ∈ V , and let T
be a set of edge-disjoint triangles. Then, both projE(P ) and projE(Q) are equal
to the T -free b-factor polytope.

We remark here that we do not know how to prove directly that projE(P ) is
contained in the T -free b-factor polytope. Introducing projE(Q) and considering
Proposition 1, which is a stronger statement, is a key idea in our proof. We also
note that our algorithm in Section 4 is based on the fact that the T -free b-factor
polytope is equal to projE(P ). In this sense, both projE(P ) and projE(Q) play
important roles in this paper.

Example 2. Suppose that G = (V,E), b ∈ ZV≥0, and x ∈ RE are as in Example 1.

Let T be the central triangle inG and let E(T ) = {α, β, γ}. If y ∈ RY satisfies (6)
and (8), then yαβ+yβγ+yαγ ≤ 1. Thus, without loss of generality, we may assume
that yαβ ≤ 1

3 by symmetry. Let S be a vertex set with δ(S) = {α, β}. Then,
(10) does not hold for (S, {α}, {β}) ∈ F , because x(α) + (1 − x(β)) − 2q(T ) =
1− x(α)− x(β) + 2yαβ ≤ 2

3 < 1. Therefore, x is not in projE(Q).

3 Outline of the Proof of Proposition 1

In this section, we describe the outline of the proof of Proof of Proposition 1. In
our proof, we use the following lemma whose proof is given in Appendix A.

Lemma 2. Let x be an extreme point of projE(Q). Then, one of the following
holds.

(i) x = xM for some T -free b-factor M ⊆ E.
(ii) (5) is tight for some T ∈ T .

(iii) There exists a vector y ∈ RY with (x, y) ∈ Q such that (10) is tight for some
(S, F0, F1) ∈ F with T +

S 6= ∅, where we define T +
S = {T ∈ T | E(T )∩ δ(S)∩

F1 6= ∅}.
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We prove Proposition 1 by induction on |T |. If |T | = 0, then y does not exist
and (10) is equivalent to (4). Thus, projE(Q) is the b-factor polytope, which
shows the base case of the induction.

Fix an instance (G, b, T ) with |T | ≥ 1 and assume that Proposition 1 holds
for instances with smaller |T |. Suppose that Q 6= ∅, which implies that b(V ) is
even as (V, ∅, ∅) 6∈ F by (10). Pick up an extreme point x of projE(Q) and let
y ∈ RY be a vector with (x, y) ∈ Q. Our aim is to show that x is contained in
the T -free b-factor polytope.

We apply Lemma 2 to obtain one of (i), (ii), and (iii). If (i) holds, that is,
x = xM for some T -free b-factor M ⊆ E, then x is obviously in the T -free
b-factor polytope. If (ii) holds, that is, (5) is tight for some T ∈ T , then we
replace T with a certain graph and apply the induction. If (iii) holds, that is,
(10) is tight for some (S, F0, F1) ∈ F with T +

S 6= ∅, then we divide G into two
graphs, where one corresponds to S and the other corresponds to V \ S, apply
the induction for each graph, and merge them. See the full version [21] for a
complete proof.

4 Algorithm

In this section, we give a polynomial-time algorithm for the weighted T -free
b-factor problem and prove Theorem 1. Our algorithm is based on the ellipsoid
method using the fact that the T -free b-factor polytope is equal to projE(P )
(Theorem 2). In order to apply the ellipsoid method, we need a polynomial-time
algorithm for the separation problem. That is, for (x, y) ∈ RE ×RY , we need
a polynomial-time algorithm that concludes (x, y) ∈ P or returns a violated
inequality.

Let (x, y) ∈ RE ×RY . We can easily check whether (x, y) satisfies (2), (3),
and (5)–(8) or not in polynomial time. In order to solve the separation problem
for (9), we use the following theorem, which implies that the separation problem
for (4) can be solved in polynomial time.

Theorem 3 (Padberg-Rao [25] (see also [23])). Suppose we are given a
graph G′ = (V ′, E′), b′ ∈ ZV

′

≥0, and x′ ∈ [0, 1]E
′
. Then, in polynomial time,

we can compute S′ ⊆ V ′ and a partition (F ′0, F
′
1) of δG′(S′) that minimize∑

e∈F ′
0
x′(e) +

∑
e∈F ′

1
(1− x′(e)) subject to b′(S′) + |F ′1| is odd.

In what follows, we reduce the separation problem for (9) to that for (4) and
utilize Theorem 3. Suppose that (x, y) ∈ RE×RY satisfies (2), (3), and (5)–(8).
For each triangle T ∈ T , we remove E(T ) and add a vertex rT together with three
new edges e1 = rT v1, e2 = rT v2, and e3 = rT v3 (Figure 4). Let E′T = {e1, e2, e3}
and define x′(e1) = x(α) + x(γ) − 2yαγ , x′(e2) = x(α) + x(β) − 2yαβ , and
x′(e3) = x(β) + x(γ) − 2yβγ . Let G′ = (V ′, E′) be the graph obtained from G

by applying this procedure for every T ∈ T . Define b′ ∈ ZV
′

≥0 as b′(v) = b(v) for
v ∈ V and b′(v) = 0 for v ∈ V ′ \ V . By setting x′(e) = x(e) for e ∈ E′ ∩ E and
by defining x′(e) as above for e ∈ E′ \ E, we obtain x′ ∈ [0, 1]E

′
. Then, we can

show the following lemma whose proof is given in Appendix B.
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e1
e2 e3
rT

Fig. 4. Replacement of a triangle T ∈ T

Lemma 3. Suppose that (x, y) ∈ RE×RY satisfies (2), (3), and (5)–(8). Define
G′ = (V ′, E′), b′, and x′ as above. Then, (x, y) violates (9) for some (S, F0, F1) ∈
F if and only if there exist S′ ⊆ V ′ and a partition (F ′0, F

′
1) of δG′(S′) such that

b′(S′) + |F ′1| is odd and
∑
e∈F ′

0
x′(e) +

∑
e∈F ′

1
(1− x′(e)) < 1.

Since our proof of Lemma 3 is constructive, given S′ ⊆ V ′ and F ′0, F
′
1 ⊆ E′

such that (F ′0, F
′
1) is a partition of δG′(S′), b′(S′)+|F ′1| is odd, and

∑
e∈F ′

0
x′(e)+∑

e∈F ′
1
(1− x′(e)) < 1, we can construct (S, F0, F1) ∈ F for which (x, y) violates

(9) in polynomial time. By combining this with Theorem 3, it holds that the
separation problem for P can be solved in polynomial time. Therefore, the el-
lipsoid method can maximize a linear function on P in polynomial time (see
e.g. [11]), and hence we can maximize

∑
e∈E w(e)x(e) subject to x ∈ projE(P ).

By perturbing the objective function if necessary, we can obtain a maximizer
x∗ that is an extreme point of projE(P ). Since each extreme point of projE(P )
corresponds to a T -free b-factor by Theorem 2, x∗ is a characteristic vector of a
maximum weight T -free b-factor. This completes the proof of Theorem 1.

5 Concluding Remarks

This paper gives a first polynomial-time algorithm for the weighted T -free b-
matching problem where T is a set of edge-disjoint triangles. A key ingredient is
an extended formulation of the T -free b-factor polytope with exponentially many
inequalities. As we mentioned in Section 1.3, it is rare that the first polynomial-
time algorithm was designed with the aid of an extended formulation. This ap-
proach has a potential to be used for other combinatorial optimization problems
for which no polynomial-time algorithm is known.

Some interesting problems remain open. Since the algorithm proposed in
this paper relies on the ellipsoid method, it is natural to ask whether we can
design a combinatorial polynomial-time algorithm. It is also open whether our
approach can be applied to the weighted C≤4-free b-matching problem in general
graphs under the assumption that the forbidden cycles are edge-disjoint and the
weight is vertex-induced on every square. In addition, the weighted C≤3-free 2-
matching problem and the C≤4-free 2-matching problem are big open problems
in this area.
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A Proof of Lemma 2

In this section, we give a proof of Lemma 2. We begin with the following easy
lemma.

Lemma 4. Suppose that x ∈ RE satisfies (3) and (5). Then, there exists y ∈
RY that satisfies (6)–(8).

Proof. Let T ∈ T be a triangle with E(T ) = {α, β, γ} and x(α) ≥ x(β) ≥ x(γ).
For J ∈ ET , we define y(T, J) as follows.

– If x(α) ≥ x(β) + x(γ), then yαβ = x(β), yαγ = x(γ), y∅ = 1 − x(α), yα =
x(α)− x(β)− x(γ), and yβ = yγ = yβγ = 0.

– If x(α) < x(β) + x(γ), then yαβ = 1
2 (x(α) + x(β) − x(γ)), yαγ = 1

2 (x(α) +
x(γ)− x(β)), yβγ = 1

2 (x(β) + x(γ)− x(α)), y∅ = 1− 1
2 (x(α) + x(β) + x(γ)),

and yα = yβ = yγ = 0.

Then, y satisfies (6)–(8). ut

By using this lemma, we can prove Lemma 2.

Proof (Proof of Lemma 2). We prove (i) by assuming that (ii) and (iii) do not
hold. Since (10) is not tight for any (S, F0, F1) ∈ F with T +

S 6= ∅, x is an extreme
point of

{x ∈ RE | There exists y ∈ RY such that (x, y) satisfies (2)–(8)},

because (4) is a special case of (10) in which T +
S = ∅. By Lemma 4, this polytope

is equal to {x ∈ RE | x satisfies (2)–(5)}. Since (5) is not tight for any T ∈ T ,
x is an extreme point of {x ∈ RE | x satisfies (2)–(4)}, which is the b-factor
polytope. Thus, x is a characteristic vector of a b-factor. Since x satisfies (5), it
holds that x = xM for some T -free b-factor M ⊆ E. ut

B Proof of Lemma 3

In this section, we give a proof of Lemma 3.
First, to show the “only if” part, assume that (x, y) violates (9) for some

(S, F0, F1) ∈ F . Recall that TS = {T ∈ T | E(T ) ∩ δG(S) 6= ∅}. Define S′ ⊆ V ′

by S′ = S ∪ {rT | T ∈ T , |V (T )∩ S| ≥ 2}. Then, for each T ∈ TS , E′T ∩ δG′(S′)
consists of a single edge, which we denote eT . Define F ′0 and F ′1 as follows:

F ′0 = (F0 ∩ E′) ∪ {eT | T ∈ TS , |E(T ) ∩ F1| = 0 or 2},
F ′1 = (F1 ∩ E′) ∪ {eT | T ∈ TS , |E(T ) ∩ F1| = 1}.

It is obvious that (F ′0, F
′
1) is a partition of δG′(S′) and b′(S′)+|F ′1| ≡ b(S)+|F1| ≡

1 (mod 2).
To show that

∑
e∈F ′

0
x′(e) +

∑
e∈F ′

1
(1 − x′(e)) < 1, we evaluate x′(eT ) or

1− x′(eT ) for each T ∈ TS . Let T ∈ TS be a triangle such that E(T ) = {α, β, γ}
and E(T ) ∩ δG(S) = {α, β}. Then, we obtain the following by the definition of
q∗(T ).
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– If T ∈ TS and α, β ∈ F0, then x(α) + x(β)− 2q∗(T ) = x′(eT ).
– If T ∈ TS and α, β ∈ F1, then (1− x(α)) + (1− x(β))− 2q∗(T ) = x′(eT ).
– If T ∈ TS , α ∈ F0, and β ∈ F1, then x(α) + (1− x(β))− 2q∗(T ) = y∅ + yγ +
yαβ = 1− x′(eT ).

– If T ∈ TS , β ∈ F0, and α ∈ F1, then (1− x(α)) + x(β)− 2q∗(T ) = y∅ + yγ +
yαβ = 1− x′(eT ).

With these observations, we obtain∑
e∈F ′

0

x′(e) +
∑
e∈F ′

1

(1− x′(e)) =
∑
e∈F0

x(e) +
∑
e∈F1

(1− x(e))−
∑
T∈TS

2q∗(T ) < 1,

which shows the “only if” part.
We next show the “if” part. For edge sets F ′0, F

′
1 ⊆ E′, we denote g(F ′0, F

′
1) =∑

e∈F ′
0
x′(e) +

∑
e∈F ′

1
(1 − x′(e)) to simplify the notation. Let (S′, F ′0, F

′
1) be a

minimizer of g(F ′0, F
′
1) subject to (F ′0, F

′
1) is a partition of δG′(S′) and b′(S′)+|F ′1|

is odd. Among minimizers, we choose (S′, F ′0, F
′
1) so that F ′0∪F ′1 is inclusion-wise

minimal. To derive a contradiction, assume that g(F ′0, F
′
1) < 1. We can show the

following claim by a case analysis (see [21] for a proof).

Claim. Let T ∈ T be a triangle as shown in Figure 4 and denote F̂0 = F ′0 ∩E′T
and F̂1 = F ′1 ∩ E′T . Then, we obtain the following.

(i) If v1, v2, v3 6∈ S′, then rT 6∈ S′.
(ii) If v1, v2, v3 ∈ S′, then rT ∈ S′.
(iii) If v1 ∈ S′, v2, v3 6∈ S′, and |F̂1| is even, then g(F̂0, F̂1) = x′(e1) = x(α) +

x(γ)− 2yαγ .

(iv) If v1 ∈ S′, v2, v3 6∈ S′, and |F̂1| is odd, then g(F̂0, F̂1) = 1 − x′(e1) =
y∅ + yβ + yαγ .

Note that each T ∈ T satisfies exactly one of (i)–(iv) by changing the labels
of v1, v2, and v3 if necessary. In what follows, we construct (S, F0, F1) ∈ F for
which (x, y) violates (9). We initialize (S, F0, F1) as

S = S′ ∩ V, F0 = F ′0 ∩ E, F1 = F ′1 ∩ E,

and apply the following procedures for each triangle T ∈ T .

– If T satisfies the condition (i) or (ii), then we do nothing.
– If T satisfies the condition (iii), then we add α and γ to F0.
– If T satisfies the condition (iv), then we add α to F0 and add γ to F1.

Then, we obtain that (F0, F1) is a partition of δG(S), b(S)+|F1| ≡ b′(S′)+|F ′1| ≡
1 (mod 2), and∑

e∈F0

x(e) +
∑
e∈F1

(1− x(e))−
∑
T∈TS

2q∗(T ) =
∑
e∈F ′

0

x′(e) +
∑
e∈F ′

1

(1− x′(e)) < 1

by the above claim. This shows that (x, y) violates (9) for (S, F0, F1) ∈ F , which
completes the proof of the “if” part. ut
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