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We investigate the mechanisms of control and suppression of prethermalization in N-component alkaline-
earth-metal gases. To this end, we compute the short-time dynamics of the instantaneous momentum distribution
and the relative population for different initial conditions after an interaction quench, accounting for the
effect of initial interactions. We find that switching on an interaction that breaks the SU(N ) symmetry of
the initial Hamiltonian, thus allowing for the occurrence of spin-changing collisions, does not necessarily
lead to a suppression of prethermalization. However, the suppression will be most effective in the presence
of SU(N )-breaking interactions provided the number of components N � 4 and the initial state contains a
population imbalance that breaks the SU(N ) symmetry. We also find the conditions on the imbalance initial
state that allow for a prethermal state to be stabilized for a certain time. Our study highlights the important
role played by the initial state in the prethermalization dynamics of multicomponent Fermi gases. It also
demonstrates that alkaline-earth-metal Fermi gases provide an interesting playground for the study and control
of prethermalization.

DOI: 10.1103/PhysRevA.101.053620

I. INTRODUCTION

Dilute Fermi gases of akaline-earth-metal atoms (AEMAs)
like 173Yb or 87Sr exhibit a remarkable unitary symmetry at
ultracold temperatures [1–3]. Such symmetry is ultimately
a consequence of their closed-shell (ground-state) electronic
structure, 1S0: For AEMAs, the atomic total angular momen-
tum F in their ground state equals the nuclear spin I. Due
to the weakness of hyperfine interactions, I is essentially
decoupled from the electronic degrees of freedom. Thus ul-
tracold gases of AEMAs can be viewed as spin-I particles
interacting with a pseudopotential that is independent of their
nuclear spin orientation, Iz, and therefore invariant under
the larger unitary group SU(N = 2I + 1). The accuracy of
this SU(N )-symmetric description of interaction has been
confirmed experimentally [4,5]

Recently, this property has attracted a great deal of inter-
est in connection with the possibility of quantum emulation
of SU(N )-symmetric models of interest to condensed mat-
ter physicists [1,2,6–19]. In recent years, many experiments
along this direction have been carried out [20–26] (see also [3]
for a recent review). In addition, the realization of SU(N > 2)
symmetric many-body systems is relevant to the understand-
ing of some aspects of the strong force that binds quarks into
nucleons [27,28]. Indeed, as a quantum emulator of an SU(N )
interacting fermion gas for which N can be as large as 10,
ultracold gases of AEMAs can provide an ultracold realization
of certain toy models of quantum chromodynamics (QCD)
[28]. In this regard, it is interesting to explore any further
connections between ultracold gases of AEMAs and quark-
gluon physics. Indeed, an idea that has recently emerged

in the study of the quark-gluon plasma is the existence of
prethermalized states [29]. These states are characterized by
the rapid establishment of a kinetic temperature while, at
the same time, the distribution of the eigenmodes of the
system has not reached thermal equilibrium as described by
the Fermi-Dirac or Bose-Einstein distributions. Prethermal-
ized states have been extensively discussed in relation to the
nonequilibrium dynamics of ultracold atomic gases [30–49].
In earlier work, it was also shown [32] that prethermalization
can be also linked to the existence of an integrable truncated
version of the Hamiltonian that describes the short-time dy-
namics [32] and can be related [32] to the nonthermal states
occurring in integrable systems, which are described by the
generalized Gibbs ensemble [42,45,46,50–58]. However, for
nonintegrable systems, the system will eventually relax at
long times to a thermal state described by a standard Gibbs
ensemble [59–68]. If the breaking of integrability is weak, the
prethermalized state emerging at short times can be fairly long
lived [30,31,34,34–41,44,45,47,48,69–78].

Understanding the conditions under which a system ex-
hibits prethermalization is an important ongoing research
effort. In this work, we investigate the control and suppression
of the prethermalized behavior by the choice of the initial state
and the symmetries of the post-quench Hamiltonian. Mathe-
matically, the emergent SU(N = 2I + 1) symmetry described
above forbids spin-changing collisions that change the relative
population of the different spin components (cf. Fig. 1). Thus,
we shall consider the short-time dynamics of an AEMA Fermi
gas following a sudden interaction quench in which the post-
quench Hamiltonian breaks the SU(N ) symmetry. We analyze
under which conditions this system exhibits prethermalization

2469-9926/2020/101(5)/053620(11) 053620-1 ©2020 American Physical Society

https://orcid.org/0000-0001-7458-8933
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.101.053620&domain=pdf&date_stamp=2020-05-12
https://doi.org/10.1103/PhysRevA.101.053620


HUANG, TAKASU, TAKAHASHI, AND CAZALILLA PHYSICAL REVIEW A 101, 053620 (2020)

FIG. 1. Two possible scattering processes in an SU(4) Fermi gas
following a quench of the interaction that breaks the emergent SU(4)
symmetry, starting from an initial state with population imbalance.
Right panel: Spin-changing collision (as understood in this work)
defines a two-atom collision that modifies the relative spin popula-
tions. Left panel: Other scattering processes that conserve total spin
and do not change the relative spin-population.

and, in particular, how the emergence of prethermalization is
affected by allowing for spin-changing collisions. It is known
[30–32,39] that the existence of prethermalized states in Fermi
gases is related to the lack of phase space for collisions that
increase the number of particle-hole pairs. Thus, thermal-
ization is only possible after enough phase space has been
created for such collisions to efficiently take place [30,31,39].
Thermalization happens more efficiently as the strength of
the quenched interaction is increased, as has been confirmed
numerically [69,76]. In this work we further analyze this
issue and show that the mere existence of phase space in the
initial state allowing for collisions that increase the number of
particle-hole pairs is a necessary but not sufficient condition
for the suppression of prethermalization. Furthermore, the
existence of matrix elements of the interaction allowing for
such collisions is not sufficient if it is not accompanied by the
existence of phase space in the initial state for the collisions
to take place. Nevertheless, as we show below, it is possible to
find certain types of initial states for which the rate at which
such collisions happen at intermediate times vanishes.

The rest of this article is organized as follows. The details
of the model as well as the methods employed for the study
of prethermalization are discussed in Sec. II. In Sec. III, the
details of the calculations of the instantaneous momentum
distribution are provided. In Sec. IV, we describe the quench
dynamics in the two-component gas. In Sec. V we report the
results for the four-component gas and discuss the effects of
spin-changing collisions and the spin-imbalance in the initial
state. In Sec. VII, we provide the conclusions of this work and
summarize the main results. Some details of the calculations
are given in Appendix A. Henceforth, we shall work in units
where h̄ = 1.

II. MODEL AND METHODS

An interaction quench in an AEMA ultracold gas can be
described by means of the following Hamiltonian:

H (t ) = H0 + U1(t ), (1)

H0 = K + U0, (2)

K =
∑
pσ

εpc†pσ cpσ , (3)

where εp = p2/2m is the single-particle dispersion, and
cpσ , c†pσ are the annihilation and creation operators of
fermions with momentum p and spin σ obeying {cpα, c†kβ

} =
δα,βδp,k (and anticommuting otherwise); U0 is the initial
(SU(N)-symmetric [1–3]) interaction and U1(t ) = θ (t )U1 is
the quenched interaction (see below), θ (t ) being Heaviside’s
step function, which describes a sudden quench of the interac-
tion term U1. The generalization of our methods to other types
of quenches has been presented in Ref. [79], where special
attention was paid to the proper definition of the energy and
the asymptotic behavior of the momentum distribution out
of equilibrium. In the sudden quench limit, the calculation
of the dynamics of the total energy is less involved; see the
discussion at the end of this section.

In general, for ultracold Fermi gases of spin-F atoms,
the generalization of Lee-Huang-Yang pseudopotential that
describes the two-particle collisions in the s-wave channel
reads [80]

U1 =
2F−1∑

J=0,2,...

gJ

2V

J∑
M=−J

∑
αβγ δ

〈FFαβ|JM〉〈JM|FFγ δ〉

×
∑
pkqr

c†pαc†kβ
cqγ crδ δp+k,q+r, (4)

where 〈αβ|FFmJ〉 are Clebsch-Gordan coefficients. The cou-
plings that parametrize the short-range interaction are gJ =
8πaJ

s /m, where aJ
s are the s-wave scattering lengths of the

scattering channel with total spin J , m is the atom mass, and
V is the volume of the system. However, before the interaction
quench, the AEMAs are in their ground state and all the scat-
tering lengths aJ

s are identical with very high accuracy, which
results in the emergent SU(N ) symmetry [1–3] mentioned
above. Thus, the initial interaction reads

U0 = gi

2V

∑
pkqr

c†pαc†kβ
cqβcrα δp+k,q+r, (5)

where the coupling gi = 8πas/m, as being the scattering
length. However, suddenly turning on U1 which contains
different values of gJ (i.e., g0 �= g2 �= · · · ) breaks the SU(N )
symmetry while respecting spin rotation symmetry. This
means that in the two-particle scattering events the total
(hyperfine) spin of the colliding particles is still conserved but
the spins of the colliding particles can change. In that case,
we speak of spin changing collisions (SCCs; see Fig. 1, right
panel).

Unfortunately, for gases of AEMAs the kind of interaction
quench envisaged above that breaks the emergent SU(N ) sym-
metry cannot be realized using magnetic Feshbach resonances
because they are not accessible in the ground state due to their
closed-shell electronic structure. However, by means of the
so-called optical Feshbach resonances (OFR) [4,81–86] it is
possible to (suddenly) enhance the values of the scattering
lengths aJ

s . To this end, a laser is used to couple a pair of
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colliding atoms with an excited bound state, which induces
a Feshbach resonance and modifies the scattering lengths
aJ

s . This method for enhancing the interaction violates the
emergent SU(N ) symmetry of the resulting interaction since
the ground state is coupled to an excited state that possesses a
hyperfine structure. As a result, it should possible to observe
the dynamics of the initially SU(N )-symmetric gas that is
subject to an SU(N )-symmetry-breaking interaction quench.
The price to pay for the use of OFR is the introduction of
inelastic losses, which result from the real excitation to the
excited bound state of a pair of AEMAs. Inelastic losses
will provide an additional mechanism for the suppression of
prethermalization. Nevertheless, as shown below (see, e.g.,
Figs. 4 and 8) the characteristic timescale for the emergence of
prethermalization is determined by the inverse of the (average)
Fermi energy in the initial state. In order to assess the effect
of inelastic collisions, we can evaluate the ratio of the rate
of the accompanying loss in the OFR to the Fermi energy
of the gas from Eqs. (6)–(9) in Ref. [82]. Thus, we find that
the ratio can be much smaller than 1 for values of aJ

s /as as
large as 104, where aJ

s is the largest scattering length in the
quenched interaction [cf. Eq. (4)]. Let us recall that, according
to our perturbative analysis (see below), the strength of the
interaction controls the magnitude of the effects (as long as
prethermalization is accessible using perturbation theory; see
the discussion below Eq. (7) and also [69,76]). Thus, it is
safe to envisage values of aJ

s /as � 10, which can lead to
observable effects while keeping the effect of the inelastic
losses at a negligible level.

Following previous work [29–32,39,45,46,76,77,87,88],
we shall study the evolution of the instantaneous momentum
distribution and the total energy in order to identify the
prethermalized regime; i.e., we compute

npσ (t ) = 〈
(t )|c†pσ cpσ |
(t )〉, (6)

Etot (t ) = 〈
(t )|H (t )|
(t )〉, (7)

where |
(t )〉 is the solution of the time-dependent
Schrödinger equation for the Hamiltonian H (t ) [cf. Eq. (2)].
In the following section, we compute the short-time dynamics
of npσ (t ) using perturbation theory to the lowest nontrivial
orders in the initial and quench interactions. The second-order
results obtained below are valid for times that fulfill the
condition [30,31] εFt � (gJ

maxk3
F /εF )−3 � (kF aJ

max)−3, where
gJ

max (aJ
max) is the largest coupling (scattering length) in the

quenched interaction and εF (kF ) is the mean Fermi energy
(momentum).

From the instantaneous momentum distribution, we obtain
the total particle number of each spin component,

Nσ (t ) =
∑

p

npσ (t ), (8)

as well the discontinuity of the momentum distribution at
Fermi momentum:

Zσ (t ) = lim
δ→0+

[npFσ +δ,σ (t ) − npFσ −δ,σ (t )]. (9)

Below, when discussing prethermalization, we will focus on
Zσ (t ) rather than on the full momentum distribution.

For a sudden quench, the dynamics of total energy can
be obtained by resorting to energy conservation. Consider
the evolution of the total energy for times t > 0: The state
of the system is described by |
(t )〉 = e−i(H0+U1 )t |
(0)〉.
Hence,

Etot (t > 0) = 〈
(t )|H (t )|
(t )〉 (10)

= 〈
(0)|(H0 + U1)|
(0)〉 (11)

= E0 + 〈
(0)|U1|
(0)〉, (12)

where E0 = 〈
(0)|H0|
(0)〉. In other words, the total energy
is a constant for t > 0, and for any time t it exhibits rather
simple evolution dynamics:

Etot (t ) = E0 + θ (t )〈
(0)|U1|
(0)〉. (13)

The above result implies that the total energy immediately
reaches its final (thermal) value after the quench. For a
Dirac-delta interaction (also called single-channel model), it
is not possible to mathematically define the instantaneous
kinetic energy. This is because the instantaneous momentum
distribution nkσ (t ) behaves as k−4 for k � kF [79], which
renders the integral Ekin = ∑

k,σ εknkσ (t ) divergent. Thus, we
shall define the prethermalized regime as a state in which the
total energy has reached its (final) thermal value while the
momentum distribution has not. This means that the existence
of a prethermalized regime can entirely be inferred from
the existence, for a certain time following the quench, of a
quasistationary, nonthermal momentum distribution. In Fermi
systems, this is manifested by a plateau in the evolution of
the instantaneous discontinuity at the Fermi momentum, Zσ (t )
[cf. Eq. (9)].

III. INSTANTANEOUS MOMENTUM DISTRIBUTION

In this section, we describe how the time evolution of the
instantaneous momentum distribution is obtained. Assuming
that the interaction strength is weak, we shall compute the
evolution of a given observable O in a perturbative series in
the total interaction, V (t ) = eiKt [U0(t ) + U1(t )]e−iKt , where
we used the fact that the initial interaction U0(t ) = U0e−η|t | is
adiabatically switched on (off) at a rate η → 0+. Thus,

O(t ) = 〈GS, ν|T [e−i
∫

C dt V (t )O(t )]|GS, ν〉
〈GS, ν|T [e−i

∫
C dt V (t )]|GS, ν〉 (14)

= 〈O〉 − i
∫

C
dt1〈T [V (t1)O(t )]〉

+ (−i)2

2!

∫
C

dt1dt2 〈T [V (t1)V (t2)O(t )]〉c + · · · ,

(15)

where 〈O〉 = 〈GS, ν|O|GS, ν〉. The times t1, t2, . . . all lie on
the closed contour C shown in Fig. 2 and T is the time-
ordering symbol on C. The state |GS, ν〉 denotes a noninter-
acting state, which is characterized by a particular ratio ν of
the population of the different spin components (the definition
of ν depends on the number of components; see below).
Strictly speaking, the denominator of Eq. (14) equals unity,
but it is needed when expanding in powers of V (t ) in order
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FIG. 2. Closed-time contour C. Times τ and τ̄ lie on the time-
ordered and anti-time-ordered branches, respectively. τ is earlier than
τ̄ in contour ordering. The turning point t is the time of at which
observable in which we are interested is evaluated. |GS, ν〉 is the
initial state, which we take to be the ground state of a noninteracting
N-component Fermi gas characterized by a certain population ratio
ν (see the discussion below).

to cancel disconnected terms resulting from the application of
Wick’s theorem to the above expression.

Previous work [30–32,39,45,46,76,77,87,88] has estab-
lished that prethermalization is accessible through perturba-
tion theory. In the problem of interest here, the perturbation
series for the observable O can be organized as a double
perturbative expansion in powers of U0 and U1, i.e.,

〈O(t )〉 = O(0,0) + O(0,1)(t ) + O(1,0)

+ O(1,1) + O(0,2)(t ) + O(2,0)(t ) + · · · , (16)

where O(n,m)(t ) denotes the term that is nth order in the initial
interaction U0 and mth order in the quenched interaction U1.
Next we set O = c†pσ cpσ , and thus,

npσ (t ) = n(0,0)
pσ (t ) + n(1,0)

pσ (t ) + n(0,1)
pσ (t )

+ n(1,1)
pσ (t ) + n(2,0)

pσ (t ) + n(0,2)
pσ (t ) + · · · , (17)

where n(0,0)
pσ (t ) = n0

pσ . In the closed time contour C, we can
express the other n(n,m)

pσ (t ) in terms of the self-energy and prop-
agator matrices which, to second order in the total interaction,

read

n(1,0)
pσ (t ) =

∫
C

dt1 Gpσ (t, t1)�(0,1)
pσ (t1)Gpσ (t1, t ),

n(0,2)
pσ (t ) =

∫
C

dt1 Gpσ (t, t1)�(0,1)
pσ (t1)Gpσ (t1, t, )

n(2,0)
pσ (t ) =

∫
C

dt1dt2 Gpσ (t, t2) �(2,0)
pσ (t2, t1)Gpσ (t1, t ),

n(1,1)
pσ (t ) =

∫
C

dt1dt2 Gpσ (t, t2) �(1,1)
pσ (t2, t1)Gpσ (t1, t ). (18)

The propagator Gpσ (a, b) is defined in Eq. (A2), and �(1)
pσ (t1),

�(2)
pσ (t2, t1) can be computed using Feynman diagrams (see

Appendix A).
For the calculation of equal-time expectation values, we

choose the time argument of the observable (t) to lie slightly
before the turning point of the contour C, which is on the time
ordered (τ ) branch. In this case, the fermion propagators must
be obtained from Eq. (A1), which yields

Gpσ (t, b) = e−iεp(t−b)

(
1 − n0

pσ −n0
pσ

0 0

)
, (19)

where εp = p2/(2m) is the single-particle kinetic energy. The
nonvanishing entries correspond to b lying either before or
after t on the contour C. Similarly,

Gpσ (a, t ) = e−iεp(a−t )

(
−n0

pσ 0

1 − n0
pσ 0

)
, (20)

and the two nonzero entries correspond to a lying before or
after t on the contour C. Combining Eq. (18), the propagators
[Eqs. (19) and (20)] and the second-order corrections to the
self-energy [Eqs. (A17) to (A20)], we arrive at

n(2)
pσ (t ) = − 2

V 2

∑
αβγ

∑
pkqr

Qσαβγ

pkqr

∫ t

−∞
dt1

∫ t

−∞
dt2 eiEpkqr (t1−t2 )

× [
g(2)

f (σ, α; β, γ )θ (t1)θ (t2) + g2
i δσ,βδα,γ e−η(|t1|+|t2|) + 2gig

(1)
f (σ, α; σ, α)δσβδαγ θ (t1)e−η|t2|],

= − 2

V 2

∑
kqr

∑
αβγ

Qσαβγ

pkqr

{
g2

i δσβδαγ

E2
pkqr

+ [
g(2)

f (σ, α; β, γ ) + gig
(1)
f (σ, α; σ, α)δσβδαγ

]
F (Epkqr, t )

}
, (21)

where g(1)
f and g(2)

f are given by the interaction strengths

g(1)
f (σ,α; σ, α) =

∑
J=0,2,...

∑
M

gJ〈JM|FFσα〉〈FFσα|JM〉, (22)

g(2)
f (σ, α; β, γ ) =

∑
J1,J2=0,2,...

∑
M1M2

gJ1 gJ2〈J1M1|FFσα〉〈FFβγ |J1M1〉〈J2M2|FFσα〉〈FFβγ |J2M2〉, (23)

and we have defined Epkqr = εp + εk − εq − εr and intro-
duced F (E , t ) to denote the result of the integration over t1
and t2:

F (E , t ) = 4 sin2 (Et/2)

E2
. (24)

In Eq. (21) Qσαβγ

pkqr corresponds to the following expression:

Qσαβγ

pkqr = δp+k,q+r

[
n0

pσ n0
kα (1 − n0

qβ )(1 − n0
rγ )

− (1 − n0
pσ )(1 − n0

kα )n0
qβn0

rγ

]
. (25)
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FIG. 3. Schematic representation of the only scattering process
allowed in a two-component gas with Dirac-delta interactions. No-
tice that (↑ + ↓) → (↑ + ↓), thus preserving the spin populations
for each spin component.

IV. TWO-COMPONENT FERMI GAS

As a warmup, in this section we consider the two-
component gas in order to show that breaking the SU(N =
2) symmetry of the initial state by introducing an initial
population imbalance does not suppress prethermalization.

Let us first recall that, for a contact interaction in a
two-component system, the pseudopotential in Eq. (4) is
parametrized by a single coupling constant only, which is
determined by the s-wave scattering length for atoms colliding
with total J = 0, as. Therefore, it is not possible to break the
SU(N = 2) symmetry of the interaction. Indeed, as shown in
Fig. 3, the only scattering process in a two-component gas
is of the type (↑ + ↓) → (↑ + ↓). This kind of scattering
process preserves the populations of each spin component.
Thus, even if the initial state contains a population imbalance
(i.e., for ν = N↑/N↓ �= 1), the time evolution following the
quench cannot alter the ratio ν. This conservation law alone
protects the existence of the prethermalized regime.

In order to show that prethermalization is preserved, we
have evaluated explicitly the time evolution of the disconti-
nuity of the instantaneous momentum distribution at Fermi
momenta, i.e., Zσ (t ); see Fig. 4. Notice that, after a short tran-
sient, Zσ (t ) displays a plateau for both spin components and

the momentum distribution approaches a stationary behavior.
This is a behavior characteristic of the prethermalized regime
indicating that the momentum distribution is nonthermal,
similarly to what was found in previous studies using different
models and spin-unpolarized initial states [29,30,32,76]. The
initial population imbalance is reflected in the prethermal
value of Z↑(t ) being different from that of Z↓(t ). Indeed,
we have checked that this result also applies to N > 2-
component Fermi gas. Thus, we conclude that, if the post-
quench Hamiltonian retains the SU(N ) symmetry, the system
shows prethermalization independently of the existence of
population imbalance in the initial state (see discussion in the
following section).

Next we consider the effects of the initial interaction. Al-
though the interaction is SU(N = 2) symmetric and therefore
will not suppress prethermalization, for the sake of experi-
mental interest it is worth analyzing its quantitative effect on
the dynamics of the instantaneous momentum distribution. As
a function of the ratio as/a0

s , Fig. 5 shows the ratio of the
prethermalized value of Z↑(t ) to its value in the ground state
of H0 + U1 = K + U0 + U1 (see Appendix A for the details
of the calculation). Recall that the (initial) interaction strength
is gi = 8πas/m and a0

s is the scattering length characterizing
the quench interaction strength g0 = 8πa0

s /m. Thus, the final
interaction is equal to 8π (as + a0

s )/m. The inset shows the
full time dependence for a few values of the ratio as/a0

s . The
results shown in Fig. 5 can be summarized by the following
relation:

1 − Zst
σ

1 − Zeq
σ

= C

(
as

a0
s

)
, (26)

where Zst
σ and Zeq

σ are the stationary and equilibrium values of
the discontinuity at the Fermi momentum of the momentum
distribution. The crossover function C(x) takes the following
limiting forms: C(x � 1) = 1 and C(x � 1) = 2, while inter-
polating in between for intermediate values of x = as/a0

s . The
x → 0 limit, which corresponds to the noninteracting initial
state, has been obtained in previous work [30–32]. The factor
of 2 arises from the long-time limit of the sinus square in

FIG. 4. Left panel: Dynamics of discontinuity of the momentum distribution at Fermi momentum Zσ (t ) after a sudden interaction quench
in a two-component Fermi gas. After a short transient, a plateau is observed indicating the existence of a prethermalized regime. Right panel:
Dynamics of the change in momentum distribution (k/k̄F )2δnkσ show stationary behaviors for both components. The (k/k̄F )2 is chosen since∑

k (· · · ) = ∫
(· · · )k2dkd�/(2π )3 with the isotropic angular integral

∫
d� = 4π . Time is measured in units of the inverse of mean Fermi

energy, ĒF = (ε↑
F + ε

↓
F )/2 = k̄2

F /2m. The interaction strength is k̄F a0
s = 0.0158 for the quenched interaction and we take k̄F as = 0.0097 for

the initial interaction.
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FIG. 5. Upper panel: (1 − Zst
σ )/(1 − Zeq

σ ) as a function of the
ratio of the scattering lengths. Zst

σ and Zeq
σ are the stationary and

equilibrium values of the discontinuity at the Fermi momentum of the
momentum distribution for the spin σ =↑ in a two-component Fermi
gas following a sudden interaction quench. a0

s is the scattering length
of the quenched interaction and as is the scattering length of the
initial interaction. The post-quench total scattering length is as + a0

s .
As discussed in the main text, the ratio (1 − Zst

↑ )/(1 − Zeq
↑ ) ranges

between 1 and 2 and depends on the ratio of the initial to the final
interaction strengths. Lower panel: The evolution of discontinuity
at Fermi momentum for different values of the ratio as/a0

s shows a
plateau after a short-time transient. The interaction strength for the
quenched interaction is k̄F a0

s = 0.0158. Time is measured in units of
the inverse of the mean Fermi energy ĒF = (ε↑

F + ε
↓
F )/2 = k̄2

F /2m.
The scaling (k̄F a0

s )−2 is used because the results are obtained using
second-order perturbation theory.

Eq. (24). Physically it implies that the discontinuity of the
(instantaneous) momentum distribution in the prethermalized
state is larger than in the ground state of the interacting
system. This reflects the existence of quasiparticle excitations
in the initial state (compared to the ground state and by
virtue of the variational theorem). Those excitations need to
be accommodated in the stationary (prethermalized) state by
placing fermions in higher (and lower) momentum levels,
which leads to a reduced discontinuity

V. SUPPRESSION OF PRETHERMALIZATION

The dynamics of the two-component gas described above
illustrates that introducing a population imbalance in the
initial state is not a sufficient condition to suppress prether-
malization. In this section, we show that the situation changes
dramatically when, besides the initial population imbalance,
we allow for spin-changing collisions (SCCs) that result from
the breaking of the SU(N ) symmetry of the quenched interac-
tion. For a contact interaction that conserves the total angular

momentum, the minimum value of N allowing for SCCs is
N = 4. Figure 1 schematically shows the two possible types of
scattering processes. They are classified into two types: those
preserving the relative spin populations (left panel) and the
SCCs (right panel).

Next, we consider a sudden interaction quench in an ini-
tially interacting (with scattering length as) four-component
Fermi gas. We assume the initial state contains an imbalance
in the population of the different spin components as shown in
Fig. 1. This population imbalance can be parametrized by the
ratio ν = N±1/2/N±3/2, which also determines the noninteract-
ing state |GS, ν〉 used in the perturbative treatment outlined in
Sec. III. In the left panel of Fig. 6 we have plotted the time
evolution of Zσ (t ) for ν = 1.83. In this case, unlike the plateau
observed for the imbalanced two-component gas, we find a
slow decay of Zσ (t ) as a function of time, and the momentum
distributions show increase (decrease) for the particles above
(below) the Fermi surface, which is suggestive of the absence
of prethermalization. In order to shed further light into the
behavior of the system, it is useful to consider the dynamics of
the ratio δN±3/2(t )/Ntot, where δNσ (t ) measures the deviation
from its initial value of the population for spin component σ .
This ratio is shown in Fig. 6, which illustrates how the SCCs
alter the relative populations by decreasing the population of
the majority components with σ = ±1/2 and increasing that
of the minority component [note that δN±1/2(t ) = −δN±3/2(t )
because the total number is conserved].

Analytically (see Appendix B), it can be shown that, after
a short transient, the rate of population change is given by
Fermi’s golden rule. This result can be obtained by formally
taking the limit t → +∞ of the second-order expressions for
δNσ (t ), i.e.,

lim
t→∞

δNσ (t )

t

∝ 1

V 2

∑
pkqr

∑
αβγ

g(2)
f (σ, α; β, γ )

[
n0

pσ n0
kα

× (
1 − n0

qβ

)(
1 − n0

rγ

) − (
1 − n0

pσ

)(
1 − n0

kα

)
n0

qβn0
rγ

]
× δ(εp + εk − εq − εr )δp+k,q+r, (27)

where g(2)
f (σ, α; β, γ ) is the (square of the) matrix element

for SCCs. Note that the rate of population change is inde-
pendent of the initial SU(N )-symmetric interaction (U0) since
g(2)

f [cf. Eq. (23)] only depends on the quenched interaction
U1 through the couplings gJ and does not depend on U0.
The slope, dδNσ (t )/dt , in the linearly increasing regime is
proportional to the phase space volume available for SCCs
multiplied by the matrix element mediating the transitions. As
shown in Fig. 7, the rate of change of δNσ (t ) (that is, its slope
in Fig. 7) becomes larger as the initial population imbalance
increases, as expected from the corresponding enhancement
in the available phase space. Since the SCCs can induce
scattering processes that increase the number of particle-hole
pairs, they provide a decoherence mechanism in the short-time
dynamics after the quench. The momentum distribution shows
no stationary behavior. Thus, for an initial state with ν �= 1
in the presence of SCCs, neither the relative population nor
the momentum distribution for each spin component become
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FIG. 6. Left panel: Dynamics of the discontinuity, Zσ (t ), at Fermi momentum of the momentum distribution for a N = 4 Fermi gas
following a sudden quench of the interaction that breaks the SU(4) symmetry. The population ratio in the initial state ν = N±1/2/N±3/2 = 1.83
is indicated in the inset. Right panel: Evolutions of the change in momentum distribution. They show an increase (decrease) in the populations
of the minority (majority) component. Time is measured in units of the inverse of the mean Fermi energy ĒF = (ε3/2

F + ε
1/2
F )/2 = k̄2

F /2m,
and ās = (a0

s + a2
s )/2 is the mean value of the scattering lengths of the quenched interaction.The interaction strengths are determined

by the parameters k̄F a0
s = 0.0158 and k̄F a2

s = 0.0032, for the quenched interaction and k̄F as = 0.0097 for the initial interaction. The
scaling (k̄F ās )−2 is used because the results are obtained from second-order perturbation theory in the scattering length of the quenched
interaction.

stationary after a short-time transient, indicating that the
intermediate time behavior cannot be described as prether-
mal. Conversely, the prethermalized regime is robust when
particle-hole creating scattering processes are (Pauli) blocked
at short time, which is the case of an initial state with no spin
imbalance (i.e., ν = 1), or when the SCCs are absent because
the quenched interaction is SU(N ) symmetric.

VI. CONTROL OF PRETHERMALIZATION

We have seen in the previous sections that prethermal-
ization can take place provided the symmetries of the post-
quench Hamiltonian or the initial state are properly broken.

ν = 1.15

ν = 1.45

ν = 1.83
ν ∼ 1

ĒFt

δN
3
/
2
(t

)/
N

to
t
(k̄

F
ā

s
)−

2

FIG. 7. Evolution of the population ratio δNσ /Ntot (k̄F ās )−2 for
σ = 3/2, and different initial conditions with symmetry (N1/2 =
N−1/2, N3/2 = N−3/2). The scaling (k̄F ās )−2 is used because the results
are obtained using second-order perturbation theory in the scattering
length of the quenched interaction. Time is measured in units of the
inverse of the mean Fermi energy ĒF = (ε3/2

F + ε
1/2
F )/2 = k̄2

F /2m.
The interaction strengths are determined by the parameters k̄F a0

s =
0.0158 and k̄F a2

s = 0.0032 for the quenched interaction and k̄F as =
0.0097 for the initial interaction. ās = (a0

s + a2
s )/2 is the mean value

of the scattering lengths of the quenched interactions.

Here we demonstrate the possibility of controlling the exis-
tence of prethermalization by carefully choosing the initial
state.

As mentioned above, Eq. (27) shows that the rate of change
of the relative populations vanishes when the population of the
different spin species is the same and the initial state becomes
SU(N = 4) symmetric. However, this is not the only type
of initial condition for which the rate of change of relative
populations vanishes. Indeed, it is possible to find other types
of initial states for which the rate of change of the relative
population, Eq. (27), vanishes. To see this, let us define Epα =
εp − εα

F , where εα
F is the Fermi energy for the component α.

Thus, the Dirac delta function, ensuring energy conservation
in Eq. (27) becomes

δ(εp + εk − εq − εr ) = δ(Epσ + Ekα − Eqβ − Erγ + �F ),

(28)

where �F = εσ
F + εα

F − ε
β
F − ε

γ
F . In addition, we notice that

δN (t ) receives contributions only from the SCCs, which for
N = 4 means that σ = −α = 3

2 and β = −γ = 1
2 . Thus,

�F = ε
+3/2
F + ε

−3/2
F − ε

+1/2
F − ε

−1/2
F . (29)

Next we shall argue that initial states satisfying �F = 0
will exhibit prethermal behavior [when initial interactions
are present, the initial state must be adiabatically connected
to a noninteracting state that satisfies the condition �F = 0
since the initial SU(N )-symmetric interaction does not induce
SCCs]. In order to establish this result, we first notice that
the expression in Eq. (27) contains two terms. In the first
one, the occupation factors n0

pσ n0
kα (1 − n0

qβ )(1 − n0
rγ ) require,

at T = 0, that is, for a pure state, that Epσ , Ekα � 0 and
Eqβ, Erγ � 0. At the same time, the energy conservation
for �F = 0 requires that Epσ + Ekα = Eqβ + Erγ , which can
only be satisfied if Epσ = Ekα = Eqβ = Erγ = 0. The mani-
fold of points satisfying the previous condition in the nine-
dimensional space span by the vectors p, k, q (r = p + k − r
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FIG. 8. Left panel: Discontinuity at the Fermi momentum starting from an imbalanced initial state. The plateau indicates the emergence of
prethermalization in the presence of SCCs. The inset shows the initial condition schematically where the imbalanced initial state is ε

−3/2
F = 0

and 2ε
±1/2
F = ε

3/2
F . Right panel: Time evolution of the relative population. After an initial exchange of particles, the spin populations reach

stationary values. Time is measured in units of the inverse of the mean Fermi energy ĒF = 1
4

∑
σ εσ

F = k̄2
F /2m. The interaction strengths

satisfy k̄F a0
s = 0.0158 and k̄F a2

s = 0.0032 for the quenched interaction and k̄F as = 0.0097 for the initial interaction. The scaling (k̄F ās )−2 is
for second-order perturbation calculation.

is fixed by momentum conservation) is a set of zero measure
and does not contribute to the integrals over momentum in
Eq. (27). An entirely identical conclusion is reached for the
second term in Eq. (27). Physically, the condition that �F = 0
amounts to having zero phase space for the SCCs to occur,
even if this is not obvious from the fact that the initial state
contains a population imbalance. This argument can be easily
generalized to the case where N > 4.

In order to explicitly show how prethermal behavior
emerges when �F = 0, we have computed the evolution of
Zσ (t ) and δNσ (t ) by numerically evaluating the corresponding
expressions for an initial state satisfying the condition that
�F = 0. The results are shown in Fig. 8. It is worth comparing
the results on the right panel of Fig. 8, with those shown in
Fig. 8 (left panel). It can be seen that, after a short transient, for
the initial state satisfying the condition �F = 0, the curves for
δNσ (t ) flatten out. Concurrently, Zσ (t ) also reaches the char-
acteristic prethermal plateau. However, it is worth noticing
that, unlike the case of initial states with SU(N ) symmetry
which trivially satisfy �F = 0, there is a change in population
during the short-time transient because there are SCCs that
do not satisfy energy conservation. The energy conservation
is only enforced for t sufficiently large. When this happens,
the system enters the prethermalized regime. As a caveat, it
is important to notice that if change of population happens
during the short-time transient, then condition �F = 0 will
not ensure that the system reaches the prethermalized regime.
Thus, we must require that δNσ (t )/Nσ � 1, which is the
case in the regime where quenched interaction can be treated
perturbatively.

VII. CONCLUSIONS

In conclusion, we have studied the prethermalization dy-
namics of an isolated multicomponent Fermi gas of ultracold
atoms following a sudden interaction quench. This type of
nonequilibrium dynamics can be experimentally studied using
alkaline-earth-metal atoms, whose interaction can be tuned

using optical Feshbach resonances [4,81–84], e.g., in 173Yb
for N � 6 and 87Sr for N � 10.

We have shown that the short-time dynamics of this system
is affected by both the presence of a population imbalance in
the initial state and the breaking of the emergent SU(N) sym-
metry of the contact interactions by allowing spin-changing
collisions. Both elements are necessary for the suppression
of prethermalization, as illustrated by the behavior of the
two-component Fermi gas with initial spin imbalance, which
displays a robust prethermalizated regime at short to inter-
mediate times. On the other hand, for a generic SU(N � 4)-
symmetry-breaking (i.e., imbalanced) initial state we do not
observe a prethermal regime after a quenching an SU(N )-
symmetry-breaking interacting. This is because, generically,
the population imbalance in the initial state provides phase
space for spin-changing collisions and introduces a decoher-
ence mechanism and suppress prethermalization.

Nevertheless, we have shown that there is a class of
imbalanced initial states which allows for the emergence
of prethermal behavior. This opens the possibility of using
multi-component gases to study the suppression and control
of this nonequilibrium state. In addition, the findings reported
in this work should allow for the possibility to experimentally
observe the effect of SCCs by studying the dynamics of the
quantum gas following an interaction quench.
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APPENDIX A: TECHNICAL DETAILS OF THE
CALCULATIONS

The fully connected contributions [denoted by 〈· · · 〉c in
Eq. (15)] resulting from the application of Wick’s theorem can
be represented in terms of Feynamn graphs (cf. Fig. 9). Notice
that there are four possible choices for the time arguments for
the fermion propagator:

iG0(t1, t2; pσ ) = 〈T [cpσ (t1)c†pσ (t2)]〉, (A1)

where t1 and t2 can be in either the τ or τ̄ branches of C.
The free fermion propagator can be written in matrix form as
follows:

Gpσ (a, b) =
(

iGT
pσ (a, b) iG<

pσ (a, b̄)

iG>
pσ (ā, b) iGT̃

pσ (ā, b̄)

)
. (A2)

Using cpσ (t ) = cpσ e−iεpt , the entries of the above matrix can
be evaluated to yield

iG<
pσ (t1, t̄2) = −n0

pσ eiεp(t2−t1 ), (A3)

iG>
pσ (t̄1, t2) = (

1 − n0
pσ

)
eiεp(t2−t1 ), (A4)

iGT
pσ (t1, t2) = θ (t1 − t2)iG>

pσ (t̄1, t2) + θ (t2 − t1)iG<
pσ (t1, t̄2; ),

(A5)

iGT̃
pσ (t̄1, t̄2) = θ (t2 − t1)iG>

pσ (t̄1, t2) + θ (t1 − t2)iG<
pσ (t1, t̄2).

(A6)

For the calculation of equal-time expectation values, we
choose the time argument of the operator (t) to lie slightly
before the turning point of the contour C, which is on the time-
ordered (τ ) branch. In this case, the fermion propagators must
be obtained from Eq. (A1), which yields

Gpσ (t, b) = e−iεp(t−b)

(
1 − n0

pσ −n0
pσ

0 0

)
, (A7)

where the nonvanishing entries correspond to b lying either
before or after t on the contour C. Similarly,

Gpσ (a, t ) = e−iεp(a−t )

( −n0
pσ 0

1 − n0
pσ 0

)
. (A8)

and the two nonzero entries correspond to a lying before or
after t on the contour C.

The self-energy can be calculated from the diagrams shown
in Fig. 9 and the propagators, Eqs. (A3) to (A6). Thus, to first
order in V (t ), we obtain

�(0,1)
σ (t1) = θ (t1)

V

∑
α

g(1)
f (σ, α; σ, α)

∑
k

n0
kα, (A9)

�(1,0)
σ (t1) = gi

V

∑
α �=σ

∑
k

n0
kαe−η|t1|, (A10)

where we have introduced

g(1)
f (σ, α; σ, α) =

∑
J=0,2,...

∑
M

gJ〈JM|FFσα〉〈FFσα|JM〉.

(A11)

Combining the expression in matrix form, Eq. (17), the
propagators, Eqs. (A7) and (A8), and the self-energy for the
first-order correction, Eqs. (A9) and (A10), we obtain that
firstorder correction to the instantaneous momentum distribu-
tion vanishes, i.e., n(1)

pσ = 0.
At second order in the quenched interaction, we need to

use the following self-energy matrix, which contains four
different combinations of the time arguments (t1, t2) on the
two branches of the closed contour:

�(2,0)
pσ (b, a) = − 2g2

i

V 2
e−η(|b|+|a|) ∑

kqr

δp+k,q+r

×
∑
αβγ

�̄(2)(b, a)δσ,βδαγ , (A12)

�(1,1)
pσ (b, a) = − 4

V 2
θ (a)e−η|b| ∑

kqr

δp+k,q+r

×
∑
αβγ

gig
(1)
f (σ, α; σ, α)�̄(2)(b, a)δσ,βδα,γ ,

(A13)

�(0,2)
pσ (b, a) = − 2

V 2
θ (b)θ (a)

∑
kqr

δp+k,q+r

×
∑
αβγ

g(2)
f (σ, α; β, γ )�̄(2)(b, a), (A14)

where �̄(2)(b, a) is the following matrix:

�̄(b, a) =
(

�̄(2,T )(b, a) �̄(2,>)(b̄, a)
�̄(2,<)(b, ā) �̄(2,T̃ )(b̄, ā)

)
(A15)

where, for the sake of brevity, we have suppressed the explicit
dependence of �(2)(b, a) = �

(2)
kqr,αβγ

(b, a) on the momentum
and spin indices. Furthermore, we have introduced the follow-
ing notation:

g(2)
f (σ, α; β, γ )

=
∑

J1,J2=0,2,...

∑
M1M2

gJ1 gJ2〈J1M1|FFσα〉

× 〈FFβγ |J1M1〉〈J2M2|FFσα〉〈FFβγ |J2M2〉,
(A16)
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which contains the information of coupling strength and
Clebsch-Gordon coefficients. Using the diagram in Fig. 9 and
free propagators in Eqs. (A3)–(A8), we can write down the
following expression for the elements in the matrix:

�̄(2,<)(t2, t̄1) = i3G<
kα (t2, t̄1)G>

qβ (t̄1, t2)G>
rγ (t̄1, t2),

= (
1 − n0

qβ

)(
1 − n0

rγ

)
n0

kαei(t1−t2 )(εq+εr−εk ),

(A17)

�̄(2,>)(t̄2, t1) = i3G>
kα (t̄2, t1)G<

qβ (t1, t̄2)G<
rγ (t1, t̄2),

= n0
qβn0

rγ

(
1 − n0

kα

)
ei(t1−t2 )(εq+εr−εk ), (A18)

�̄(2,T )(t2, t1)

= i3GT
kα (t2, t1)GT

qβ (t1, t2)GT
rγ (t1, t2),

= θ (t2 − t1)�(2,>)(t2, t̄1) + θ (t1 − t2)�(2,>)(t̄2, t1), (A19)

�̄(2,T̃ )(t̄2, t̄1)

= i3GT̄
kα (t̄2, t̄1)GT̄

qβ (t̄1, t̄2)GT̄
rγ (t̄1, t̄2),

= θ (t1 − t2)�(2,>)(t2, t̄1) + θ (t2 − t1)�(2,>)(t̄2, t1).
(A20)

APPENDIX B: EVOLUTION OF THE SPIN POPULATION

Using the result of momentum distribution, we can find the
change in populations to leading order:

δNσ =
∑

p

n(2)
pσ (t ) (B1)

= − 2

V 2

∑
pkqr

∑
σαβγ

Qσαβγ

pkqr g(2)(σ, α; β, γ )F (Epkqr, t ). (B2)

Notice that this result does not involve the corrections of
O(U 2

0 ) and O(U1U0) to the momentum distribution. This is
because the initial interaction conserves the population of the
different spin components.

For intermediate to long times, we notice that, formally,

lim
t→+∞ F (E , t ) ∝ t δ(E ) (B3)

and therefore the rate of population change of the different
components is given by the golden-rule expression in Eq. (27).
This rate is proportional to the phase-space volume available
for scattering with SCCs. We note that this is result is inde-
pendent of the initial interaction which preserves the SU(N )
symmetry.
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