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Out-of-time-ordered correlators in a ðT2Þn=ℤn CFT
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In this paper we continue analyzing the nonequilibrium dynamics in the ðT2Þn=Zn orbifold
conformal field theory. We compute the out-of-time-ordered four-point correlators with twist operators.
For rational ηð¼ p=p0Þ which is the square of the compactification radius, we find that the correlators
approach nontrivial constants at late time. For n ¼ 2 they are expressed in terms of the modular
matrices and for higher n orbifolds are functions of pp0 and n. For irrational η, we find a new
polynomial decay of the correlators that is a signature of an intermediate regime between rational and
chaotic models.
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I. INTRODUCTION

Conformal field theories (CFTs) in two dimensions play
a very important role in modern physics. From describing
critical points of quantum Hamiltonians to AdS=CFT, they
provide a powerful framework to understand physical
phenomena in interacting many-body systems like, e.g.,
thermalization [1] or entanglement [2,3]. Nevertheless,
even though the conformal symmetry drastically con-
straints these theories and many things about 2d CFTs
are known [4], we are neither able to classify even rational
CFTs nor a pinpoint of 2d CFTs which have classical
holographic duals.
Recently, progress on the latter issue has been obtained

in the context of black holes in the AdS=CFT corre-
spondence. More precisely, by studying small perturba-
tions to black holes, authors of [5] proposed that a certain
out-of-time-ordered correlators (OTOC) could be used to
diagnose the butterfly effect.1,2 Subsequently, in [9], it
was argued that theories with Einstein gravity dual
should exhibit the maximal Lyapunov exponent as
measured by the OTOC. If correct, this important
progress provides a necessary condition for a CFT to
behave holographically. It is then important to test OTOC
in known models and understand why they are good
measures of quantum chaos and the smoking gun of
holography.
The out-of-time-ordered thermal correlator can be

defined as the inner product between two states:
WðtÞVj0iβ and VWðtÞj0iβ where the “generic” operators
W and V are separated in space by x and in Lorentzian time

t, and β is an inverse temperature.3 The OTOC has then a
form of the normalized four-point correlator

Cβðx; tÞ≡ hV†W†ðtÞVWðtÞiβ
hV†ViβhW†Wiβ

: ð1:1Þ

As for any Lorentzian correlator in quantum field theory,
the out-of-time ordered correlator can be obtained from the
Euclidean four point function by analytical continuation
[10]. More precisely, starting from hV†

1V2W
†
3W4iβ (where

Oi ≡Oðzi; z̄iÞÞ we “order” the operators along the
imaginary time: ϵ1 < ϵ3 < ϵ2 < ϵ4, and then analytically
continue to the real time such that the insertion points of the
operators on the thermal cylinder are

z1 ¼ e
2π
β ðtþiϵ1Þ; z̄1 ¼ e−

2π
β ðtþiϵ1Þ;

z2 ¼ e
2π
β ðtþiϵ2Þ; z̄2 ¼ e−

2π
β ðtþiϵ2Þ;

z3 ¼ e
2π
β ðxþiϵ3Þ; z̄3 ¼ e

2π
β ðx−iϵ3Þ;

z4 ¼ e
2π
β ðxþiϵ4Þ; z̄4 ¼ e

2π
β ðx−iϵ4Þ: ð1:2Þ

From these points, we form the standard conformal cross-
ratios ðz; z̄Þ, (see Appendix) such that, as time progresses,
the chiral conformal cross-ratio crosses a branch-cut

1 − z → e−2πið1 − zÞ; ð1:3Þ
whereas the antichiral remains approximately zero z̄≃ 0.
We refer to this continuation as the OTO continuation.
In order to extract the chaotic features of the OTOC, we
focus on the “late time” behavior of the continued corre-
lator by taking1This was further formalized by Kitaev [6] that connected

OTOC with older semiclassical diagnose of quantum chaos
in the form of the expectation value of the square of the
commutator [7].

2See also [8] for the CFT computation.

3The definition that we take here is the original that appeared
in the context of black holes [5]. Clearly, OTOC can be
generalized to zero temperature and arbitrary operators.
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z; z̄ → 0; with z̄=z − fixed: ð1:4Þ
The explicit dependence on the inverse temperature β
enters through the late time expressions

z≃ −e−
2πðt−xÞ

β ϵ�12ϵ34; z̄≃ −e−
2πðtþxÞ

β ϵ�12ϵ34; ð1:5Þ

where ϵij ¼ iðe2πi
β ϵi − e

2πi
β ϵjÞ and x is the separation between

operators that keeps the ratio z̄=z fixed.
From the explicit computations of the OTOC (see an

early review in, e.g., [11]), it is believed that in chaotic
models with a large separation of scales between t ¼ β and
t� ∼ β log c (the so-called scrambling time), the early
exponential decay of the OTOC is governed by bounded
the Lyapunov exponent λL ≤ 2π=β which is saturated by
holographic models with “maximal chaos”. Then, after the
scrambling time, the OTOC in chaotic systems decay to
zero exponentially. Nevertheless, the complete classifica-
tion of the OTOC evolutions in quantum many-body
systems is now a very active area of research that will
further elucidate their importance.
From the very beginning the OTOCs attracted a lot of

attention and found important applications in various
physical scenarios (see, e.g., [10–14]). In this work we
use them as a tool to classify CFTs from the point of view
of quantum information spreading. More precisely, we
focus on the features of OTOCs in a family of CFTs defined
by the sigma model whose target space is the cyclic
orbifold ðT2Þn=Zn. In this setup, in addition to “generic”
primary operators, we have another “natural” candidates for
the operatorsW and V, namely the twist operators σn. Since
the twist operators are directly used to compute entangle-
ment measures (and their evolution) in 2d CFTs, on may
expect that they should also be good operators to probe
quantum chaos. In this work, we employ them in the
computation of the OTOC and make a modest progress in
sharpening this intition.
Last but not least, in [15], we studied the time evolution

of Renyi entanglement entropy for a locally excited state
created by a twist operator in this orbifold CFT. We showed
that depending on the square of the compactification radius
R denoted as η ¼ R2, Renyi entropies either increase by the
amount of the quantum dimension for rational compacti-
fication parameters η ¼ p=p0, following the general rules
found in [16], which also looks similar to the free CFTs
[17]. For irrational compactification parameters η ≠ p=p0,
interestingly it grows as a double logarithm of time
log log t, which is milder than the logarithmic growth
log t [18] of the holographic CFTs. Therefore it is very
interesting to understand if this new class of entanglement
growth (probably characteristic for irrational CFTs) is
already enough to classify these CFTs as chaotic ones
from the OTOC point of view. This is our main motivation
and below we shed more light on this question.
This paper is organized as follows. In Sec. II we present a

general definition of the OTOC in our setup. Section III

contains results for n ¼ 2 orbifolds computed in two
different approaches and in Sec. IV we present a direct
computation for higher n orbifolds. Finally, in Sec. V we
summarize our findings and conclude.

II. OTOC IN ðT2Þn=ℤn

In this work, we focus on the cyclic orbifold CFT
ðT2Þn=Zn, where T2 ¼ S1 × S1 is the c ¼ 2 CFT defined
by two scalar bosons which are compactified on the same
radius R. We consider four-point OTOCs where we choose
as the operators W and V the primary operator σn

Vðz; z̄Þ ¼ Wðz; z̄Þ ¼ σnðz; z̄Þ; ð2:1Þ

where σn is the twist operator for the cyclic transformation
of n copies of T2, which has the conformal dimension
Δn ¼ Δ̄n ¼ 1

12
ðn − 1

nÞ. Our main aim will be to explore how
the OTOCs evolve with time depending on the compacti-
fication parameter η ¼ R2. In general, we will distinguish
between rational η ¼ p=p0 and irrational η ≠ p=p0 or
rational and irrational CFTs respectively.
According to the general arguments in [13,14], in

rational CFTs, the Lyapunov exponent is zero and the
OTOC approaches to a constant at late time. The constant is
equal to the (0, 0) element of the monodromy matrix and
for our twist operators is expected to be

Cβðx; tÞ → M00 ¼
S�σnσn
S00d2σn

; ð2:2Þ

where the modular S-matrix components (complex con-
jugate) and the quantum dimensions correspond to the
twist operators. Even though there exists a general
(formal) expression for the S�σnσn in orbifold theories
[19], we have not been able to extract the explicit data to
match our setup4 and we proceeded with direct compu-
tation instead. In irrational CFTs the general character-
istics of the OTOCs are not known and our model is an
analytic setup where this computation can be performed
for the first time.
Let us now briefly review the main correlator that we

will need in this work (since we only review the
necessary minimum, for more details see [15,20]). The
Euclidean four-point function that we will use has a
general form

hσnðz1; z̄1Þσ̄nðz2; z̄2Þσnðz3; z̄3Þσ̄nðz4; z̄4Þi
¼ jz12z34j−4Δn j1 − zj−4ΔnFnðz; z̄Þ; ð2:3Þ

4More precisely, the formulas in [19] are given for arbitrary
orbifolds and are expressed in terms of formal mathematical
objects. We were neither able to evaluate them nor find their
explicit forms in the literature for our particular setup.
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where the conformal cross-ratios are defined in the usual
way as z ¼ z12z34

z13z24
and z̄ ¼ z̄12z̄34

z̄13z̄24
, and the main information

about the theory is encoded in function Fnðz; z̄Þ.
For the cyclic orbifold CFT ðT2Þn=Zn the function

Fnðz; z̄Þ is expressed as follows [20]

Fnðz; z̄Þ≡ Θ2ð0jTÞQ
n−1
k¼1 fk=nðzÞfk=nðz̄Þ

: ð2:4Þ

In the above, the Riemann-Siegel theta function is
expressed in terms of matrix matrix T that is itself a
function of τ and τ̄ (see [20] for details) in a way that the
function reads

Θð0jTÞ≡ X
m;n∈Zn−1

e
πi
2
ðn ffiffi

η
p þmffiffi

η
p Þ·τ·ðn ffiffi

η
p þmffiffi

η
p Þe−

πi
2
ðn ffiffi

η
p −mffiffi

η
p Þ·τ̄·ðn ffiffi

η
p −mffiffi

η
p Þ;

ð2:5Þ

where n and m are (n − 1)-dimensional vectors and the
expression for the period matrix is

ðτÞij ¼
2

n

Xn−1
k¼1

�
i
fk=nð1 − zÞ
fk=nðzÞ

�
sin

�
πk
n

�
cos

�
2πkði − jÞ

n

�
:

ð2:6Þ

and analogously for τ̄. Finally, the function in the denom-
inator is the hypergeometric function

fk=nðz; z̄Þ ¼ 2F1ðk=n; 1 − k=n; 1; zÞ; ð2:7Þ

In the following, we focus on the OTOCs that are written
in terms of the above data as

Cβðx; tÞ ¼ j1 − zj−4ΔnFnðz; z̄Þ; ð2:8Þ

with the cross-ratios defined in the Appendix. In order to
understand the general implications of this correlator for
OTOC, it will be instructive to consider the n ¼ 2 first and
we begin with this case.
Before we proceed, let us point out that there are several

reasons to consider OTOC with twist operators. Most
importantly, using the replica approach, they are naturally
linked to the quantum information measures like entangle-
ment entropy and mutual information so we can compare
the information from all these quantities with OTOC.
Moreover, for n ¼ 2 the four-point correlators are directly
expressed by the partition function of the seed theory.
Therefore, in the light of quantum chaos measures, these
correlators should be useful in confronting the information
from the spectral from factor.5

III. THE n= 2 ORBIFOLD

The n ¼ 2 orbifold is very special and universal in terms
of the four-point function of the twist operators. The Θ
function becomes

Θð0jTÞ ¼
X
μ;ν∈Z

exp

�
πiτ
2

�
ν

ffiffiffi
η

p þ μffiffiffi
η

p
�

2
�

× exp

�
−
πiτ̄
2

�
ν

ffiffiffi
η

p
−

μffiffiffi
η

p
�

2
�
; ð3:1Þ

and in fact the correlator can be directly written in terms of
the partition function of the seed theory as6

F2ðz; z̄Þ ¼
Θ2ð0jTÞ

f1=2ðzÞf1=2ðz̄Þ
¼ 2−4=3jzð1 − zÞj1=3Z2

ηðτ; τ̄Þ:

ð3:2Þ

The partition function of the compactified boson is

Zηðτ; τ̄Þ ¼
Θð0jTÞ
jηðτÞj2 ¼ 1

jηðτÞj2
X
μ;ν∈Z

q
η
4
ðμþν

ηÞ2 q̄
η
4
ðμ−ν

ηÞ2 ; ð3:3Þ

where ηðτÞ is the Dedekind eta function and q ¼ e2πiτ while
q̄ ¼ e−2πiτ̄. The modular parameter is related to the cross-
ratios as

τ ¼ i
f1=2ð1 − zÞ
f1=2ðzÞ

¼ i
Kð1 − zÞ
KðzÞ ; ð3:4Þ

with KðzÞ is the complete elliptic integral of the first kind.
In order to obtain the out-of-time-ordering we first have

to perform the analytic continuation (1.3) in our expression
and then take the appropriate limit of the vanishing cross-
ratios. To do that, we first have to translate the analytic
continuation to the operation on the modular parameters.
For that, we will need the fact that under the OTO
continuation ð1 − zÞ → e−2πið1 − zÞ the hypergeometric
functions undergo a well-known monodromy [22]

f1=2ðzÞ → f1=2ðzÞ þ 2if1=2ð1 − zÞ;
f1=2ð1 − zÞ → f1=2ð1 − zÞ: ð3:5Þ

This way, using the (3.4), we can derive that this continu-
ation corresponds to the modular ST̄2S transformation

τ →
τ

1þ 2τ
: ð3:6Þ

5Wewould like to thank Gabor Sarosi for explaining the details
of the spectral form factors [21] and preliminary confirmation of
the consistency with our results.

6In general, in the n ¼ 2 orbifolds the four-point function of
the twist operators is proportional to the partition function of the
seed theory which in our case is the square of the compactified
boson partition function.

OUT-OF-TIME-ORDERED CORRELATORS IN A … PHYSICAL REVIEW D 96, 046020 (2017)

046020-3



After this transformation we take the z; z̄ → 0 which
translates to τ → i∞, τ̄ → −i∞.
Up to this point, the discussion has been general but now

we will distinguish two computations for rational and
irrational η. In the rational case, we can use the power
of RCFTs and we begin with that. Next, we confirm that a
direct computation leads to the same result and proceed
with direct approach to irrational CFTs.

A. Rational η = p=p0

Here we compute the OTOC by first using the RCFT
techniques and then by direct evaluation of the Riemann-
Siegel Θ function with the OTO continuation (1.3) in the
late time limit (1.4). The second approach will turn out to
be more powerful and will be applied for irrational
compactification parameters η and higher n orbifolds.

1. RCFT approach

For the rational compactification parameter η ¼ p=p0
with integers p and p0, we can write the partition function
as a finite sum of characters [4]

Zp=p0 ðτ; τ̄Þ ¼
XN−1

λ¼0

KλðτÞKω0λðτ̄Þ; ð3:7Þ

where the characters are defined as

KλðτÞ ¼
1

ηðτÞ
X
ν∈Z

q
ðνNþλÞ2

2N ; ð3:8Þ

and N ¼ 2pp0, ω0 ¼ p0r0 þ ps0 mod N and ðr0; s0Þ is a
unique pair in the range 1 ≤ r0 ≤ p − 1, 1 ≤ s0 ≤ p0 − 1,
ps < p0r satisfying p0r0 − ps0 ¼ 1 and ω2

0 ¼ 1 mod 2N.
Next, we apply the ST̄2S transformation to τ which

yields the transformed partition function

Zp=p0

�
τ

1þ2τ
; τ̄

�
¼
XN−1

λ¼0

XN−1

ν¼0

ðST̄2SÞλνKνðτÞKω0λðτ̄Þ; ð3:9Þ

with the explicit transformation matrix (using formulas
from [4])

ðST̄2SÞλν ¼
1

N
e
πi
6

XN−1

μ¼0

e2πi
μðλþν−μÞ

N : ð3:10Þ

Finally, once we expand the characters for vanishing q and
q̄, the dominant contribution comes from the vacuum
characters and we have

Zp=p0

�
τ

1þ 2τ
; τ̄

�
→ ðST̄2SÞ00q− 1

24q̄−
1
24

¼ ðST̄2SÞ0022=3jzj−1=6: ð3:11Þ

where in the last step we used the relation between τ and z
in the limit of z → 0

τ ¼ i
Kð1 − zÞ
KðzÞ ≃ i

π
log

�
16

z

�
þOðzÞ; ð3:12Þ

and similarly for q̄ and z̄.
This way, putting all the terms together we conclude

that for n ¼ 2 the OTOCs exponentially approach to a
constant

Cβðx; tÞ → e4πiΔ2e−
πi
3 ðST̄2SÞ200: ð3:13Þ

It is instructive to be slightly more explicit and unpack
this formula. For that, let us compute the (0, 0) element of
the transformation matrix explicitly. Even though the
expression appears as a simply-looking sum, it is by no-
means trivial. In fact the sum has an old history in
mathematics. Namely, Gauss proved that [23,24]

XN−1

μ¼0

e−
2πiμ2

N ¼

8>>>>><
>>>>>:

ffiffiffiffi
N

p
; if N ≡ 1ðmod 4Þ;

0; if N ≡ 2ðmod 4Þ;
−i

ffiffiffiffi
N

p
; if N ≡ 3ðmod 4Þ;

ð1 − iÞ ffiffiffiffi
N

p
; if N ≡ 0ðmod 4Þ;

ð3:14Þ

whereN is any natural number. Then using this identity, we
can derive

ðST̄2SÞ00 ¼
(

1ffiffiffiffiffiffi
pp0

p e−
πi
12; if pp0 ∈ even;

0; if pp0 ∈ odd:
ð3:15Þ

As we can see, the constant that OTOC approaches can
actually be zero so let us also take the subleading terms into
account.
For the subleading contributions, it becomes important to

specify if we are working in the large or small temperature
limit. Namely, in our formulas, if we are interested in terms
of order q1=2N, for small temperatures we should also take
into account terms that scale as q̄1=2N . This issue of limits is

of course specified by the ratio z̄=z ∼ e−
4πx
β and we will

assume that x=β is large, i.e., high temperatures.
This way, in the high temperature limit, there are two

subleading terms of order q
1
2N and we have

Zp=p0

�
τ

1þ 2τ
; τ̄

�
→ ½ðST̄2SÞ00 þ ððST̄2SÞ01
þ ðST̄2SÞ0;N−1Þq 1

2N�q− 1
24q̄−

1
24: ð3:16Þ

For odd pp0, where the first component vanishes, we can
use the generalized Landsberg-Schaar identity [23] to
show that
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ðST̄2SÞ01 ¼ ðST̄2SÞ0;N−1 ¼
1ffiffiffiffiffiffiffiffi
pp0p e−

πi
12e

iπ
4pp0 : ð3:17Þ

Summarizing, we have shown that for the rational com-
pactification parameter η ¼ p=p0, the OTOC approaches
exponentially to a constant (3.13). For odd pp0, the (0, 0)
matrix element vanishes and the OTOC decays exponen-
tially to zero. In terms of the pp0 we can write it then as

Cβðx;tÞ

→ e4πiΔ2

8>>><
>>>:
−

i
pp0 ; if pp0 ∈ even;

−
4i
pp0

�
−iϵ�12ϵ34

16

� 1

pp0
e−

2π
pp0βðt−xÞ; if pp0 ∈ odd:

ð3:18Þ

This our main result for the rational compactification
parameter that we obtained using the fact that the theory
is a RCFT and its partition function can be written in terms
of finite number of characters. Below we will generalize
this derivation so that it can be also applied to irrational
compactification parameters and higher n orbifolds.

2. Direct approach

Another way to extract the OTOC is by performing
the continuation (1.3) and take the limit ðz; z̄Þ≡
ð16e−π

δ; 16e−
π
δ� Þ → ð0; 0Þ with fixed ratio z̄=z. In the above,

we introduced δ and δ� which are both taken to zero but
with relative “speed” that depends on the temperature.
As a result, we have to evaluate (3.1) directly as a

function of the period matrix

τ≃ 1

2 − iδ
; τ̄≃ −

i
δ�

: ð3:19Þ

The dominant contribution in the limit δ� → 0 from the
antiholomorphic part of Θð0jTÞ can be evaluated by the

saddle point approximation, which yields the following
condition

νη − μ ¼ 0: ð3:20Þ

For η ¼ p
p0 with p, p0 two positive, coprime integers, this

condition can be satisfied by μ ¼ p ~μ; ν ¼ p0 ~μð~μ ∈ ZÞ.
Similarly, the subleading contribution is obtained when
the following condition is satisfied

νη − μ ¼ 1: ð3:21Þ
Let us recall the fact that the integers p and p0 being
coprime, Bezout’s lemma states that there exists a couple of
integers ðx; yÞ such that

p0x − py ¼ 1; ð3:22Þ
and if we find the pair ðx; yÞ, all pairs satisfying (3.22) are
expressed as

ðxþ kp; yþ kp0Þ; k ∈ Z: ð3:23Þ
In order to make the following calculation clear, we define

p0x� − py� ¼ �1; ð3:24Þ
where ðx�; y�Þ is one pair satisfying this equation.
As a result of the above arguments, we can approximate

(3.1) expressed by OTO continued τ and τ̄ in (3.19) as

Θð0jTmonoÞ≃
X
~μ∈Z

e2πipp
0 ~μ2 1

2−iδ

þ
X
α¼�

e−
π

2pp0δ�
X
k∈Z

e
πiτ
2pp0ðp0xαþpyαþ2kpp0Þ2 ; ð3:25Þ

where we introduced a label Tmono to distinguish from
matrix T before the OTO continuation.
Now the crucial point is that the sums in this expression

can be expressed as the Jacobi theta function and using its
modular properties yields

Θð0jTmonoÞ ¼ θ3

�
2pp0

2 − iδ
; 0

�
þ

X
α¼�

e−
π

2pp0δ�e
πi

2pp0
1

2−iδðp0xαþpyαÞ2θ3

�
2pp0

2 − iδ
;
p0xα þ pyα

2 − iδ

�

≃

8>>>>>><
>>>>>>:

ffiffiffiffiffiffiffiffiffiffiffi
δ

pp0iδ

s
; if pp0 ∈ even;

ffiffiffiffiffiffiffiffiffiffiffi
δ

pp0iδ

s
ð2e− π

2pp0δ� þ 2e−
π

2pp0δÞ; if pp0 ∈ odd:

ð3:26Þ

Finally, we focus on the high temperature limit, which is equivalent to

z̄
z
¼ e−

4πx
β → 0; ð3:27Þ
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which means δ ≫ δ�. In this limit, we can neglect the first
term of (3.26) and after inserting to the OTOC we
reproduce (3.18).
We verify our formulas numerically and plot the absolute

value of the F2ðtÞ≡ F2ðzðtÞ; z̄ðtÞÞ in Fig. 1.

B. Irrational η ≠ p=p0

For irrational compactification parameters η ≠ p=p0, we
can only use the direct computation which is based on
extracting the limit (3.19) from the Θ function. Following
the same steps as in the previous section we arrive at
condition (3.20) which for η ≠ p=p0 is only satisfied by
μ ¼ ν ¼ 0. Practically, this amounts to approximating
Θð0jTmonoÞ≃ 1 or, in other words, reduces the partition
function to (the square of) the partition function for non-
compactified boson given by the inverse of the jηðτÞj2.
The relevant function F2ðz; z̄Þ that governs the four-point

correlator can be approximated in this limit by

F2ðz; z̄Þ≃ 1

f1=2ðzÞ
: ð3:28Þ

Therefore, using (3.5), after the OTO continuation and at
late time, function F2ðz; z̄Þ decays logarithmically with the
holomorphic cross-ratio

F2ðz; z̄Þ →
1

f1=2ðzÞ þ 2if1=2ð1 − zÞ≃
iπ

2 logð z
16
Þ : ð3:29Þ

Finally, inserting the explicit form of the cross-ratios (1.5)
with Lorentzian time and inverse temperature β, gives the
OTOC for irrational η

Cβðx; tÞ → e4πiΔ2
iπ

2 log ð−ϵ�12ϵ34
16

e−
2πðt−xÞ

β Þ
: ð3:30Þ

Clearly, the OTOC decays polynomially at late time.
We have verified this formula numerically for several

irrational η and in Fig. 2 we plot the ImF2ðtÞ for η ¼
ffiffiffi
2

p
.

As far as we are aware, this behavior of the OTOC has
not been observed before (for all temperatures) and is also
our main result for the irrational η. This finding suggests
that, from the perspective of the OTOC, irrational CFTs can
be classified as an intermediate step between rational and
truly chaotic, holographic CFTs.
Let us also remind the reader that this behavior nicely

complements our results for the evolution of the second
Renyi entropy [15]. In that work, we found a new scaling
with time of the entropy in the form of double logarithm of
time, log log t. It is tempting to conjecture that, for irra-
tional CFTs, the loglog evolution of entropies after local
operator excitations implies the polynomial decay of the
OTOC at late time. We leave a verification of this claim
(or a converse statement) as an interesting future problem.

IV. HIGHER n ORBIFOLDS

Similarly as in the previous sections, for higher n
orbifolds, we distinguish between rational and irrational

FIG. 2. Left: Full numerical late time plots of ImF2ðtÞ for
η ¼ ffiffiffi

2
p

(blue) and plots of the analytically approximated formula
(orange).

FIG. 1. The plots of the absolute value jF2ðtÞj for even η ¼ 2, 4, 6, 8 (left) and odd η ¼ 1, 3, 5, 7(right). We set jt − 1j < 10−8;
x ¼ 1; β ¼ 0.1; ϵ1 ¼ ϵ2=6 ¼ ϵ3=4 ¼ ϵ4=8 ¼ 10−10.
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compactification parameter η. In principle, for rational η,
the OTOC should again approach to the monodromy
constant and, by employing the transformation rules of
the higher genus partition functions, one should be able to
generalize the RCFT derivation above. In practice, we were
not able to perform this algorithm in a simple way and
instead we perform a direct computation in the late time
limit. Therefore, generalizing our direct approach, we
obtain results for both, rational and irrational η and verify
them numerically.
The main difficulty here is again to perform the OTO

continuation and we briefly summarize the relevant steps.
For higher n, we have to deal with Θ functions expressed in
terms of ðn − 1Þ × ðn − 1Þmatrices that are functions of the
two independent, complex cross-ratios z and z̄. It turns out
that, in order to perform the OTO continuation in z, it is
sufficient to know how the degenerate hypergeometric
functions 2F1 behave under the OTO continuation. This
can be done as follows. As shown in [22] vol. I,
section 2.10, Eqs. (14) and (15), we can rewrite fk=nðzÞ as

fk=nðzÞ ¼
sin π k

n

π

X
μ∈Z

ðknÞμð1 − k
nÞμ

μ!2
ðh̄μ − ln ð1 − zÞÞð1 − zÞμ;

ð4:1Þ

where

h̄n ¼ 2ψð1þ nÞ − ψðk=nþ μÞ þ ψð1 − k=nþ μÞ: ð4:2Þ
From this expression, we can show that under the OTO
continuation (1.3), we have

fk=nðzÞ → fk=nðzÞ þ 2i sin

�
π
k
n

�
fk=nð1 − zÞ: ð4:3Þ

Next, when we consider the late time limit and parametrize
the cross-ratios by ðz; z̄Þ≃ ðe−π

δ; e−
π
δ� Þ → ð0; 0Þ, the

approximate form of fk=n in the limit δ → 0 becomes

fk=nðzÞ →
δ→0

1; fk=nð1 − zÞ →
δ→0 1

δ
sin

�
π
k
n

�
: ð4:4Þ

As a result, the expressions for the transformed period
matrices become

ðτÞij ≃ 2

n

Xn−1
k¼1

sin

�
π
k
n

��
sinπ k

n

2sin2ðπ k
nÞ− iδ

�
cos

�
2π

k
n
ði− jÞ

�
;

ðτ̄Þij ≃−2i
nδ�

Xn−1
k¼1

sin

�
π
k
n

�
sin

�
π
k
n

�
cos

�
2π

k
n
ði− jÞ

�
:

ð4:5Þ

Analogously to how we proceeded in the n ¼ 2 case,
we first investigate the dominant contribution in the limit

δ� → 0 from the anti-holomorphic part. We find that this
contribution is obtained when the following condition is
satisfied,

nη −m ¼ 0: ð4:6Þ

For η ¼ p
p0 with p, p0 two positive, coprime integers, this

condition holds form ¼ p ~m;n ¼ p0 ~mð ~m ∈ Zn−1Þ. Hence
we can get the following approximate form

Θð0jTmonoÞ≃
X
~m∈Zn−1

e2πipp
0 ~m·τ· ~m

≃ X
~m∈Zn−1

exp

�
−
2πipp0

n

Xn−1
i;j¼1

~mi ~mj

−
1

2

4πpp0

n
δ
Xn−1
i;j;k¼1

�
cosð2π k

nði− jÞÞ
2sin2ðπ k

nÞ
�
~mi ~mj

�
:

ð4:7Þ

It is clear from the first term in this expression that the
answer should be a function of pp0 only and will differ
depending if pp0 is a multiple of the orbifold number n or
not. In fact the same constraint was observed for n ¼ 2. It is
not immediately clear to us what this condition implies
physically for the spectrum of the underlying CFT. We have
checked that the spectral form factor is also sensitive to this
issue but it would be interesting to provide a more physical
interpretation for this distinction. Below, we discuss the
two cases separately.
If pp0 is a multiple of n, the first term in the exponent

vanishes and, since δ is small, we can approximate the
summation by a Gaussian integral. For that, we can
introduce a matrix A

ðAÞij ≡
Xn−1
k¼1

cosð2π k
n ði − jÞÞ

2sin2ðπ k
nÞ

¼ 1

6
ðn2 − 1Þ þ ji − jj2 − nji − jj; ð4:8Þ

which has a simple form for the determinant

detA ¼ 2n−1nn−4: ð4:9Þ

This way, after performing the Gaussian integration, the
result for the Θ function in our limit is written as follows

Θð0jTmonoÞ≃
�

n
2pp0δ

�n−1
2 ðdetAÞ−1

2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n3

ð4pp0δÞn−1

s
:

ð4:10Þ

Moreover, after the OTO continuation, the denominator of
Fnðz; z̄Þ can be approximated in the late time limit as
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1Q
n−1
k¼1ðfk=nðzÞ þ 2i sinðπ k

nÞfk=nð1 − zÞÞfk=nðz̄Þ

≃ ð−2δiÞn−1
n2

: ð4:11Þ

Finally, putting all ingredients together, we obtain the late
time constant for Fnðz; z̄Þ in the nth orbifold with pp0 being
a multiple of n

Fnðz; z̄Þ≃ n
ð2pp0iÞn−1 : ð4:12Þ

If pp0 is not a multiple of n, we have to evaluate
the complicated summation that appears in function
Θð0j 2pp0

n BÞ, where

Bij ≡ −1þ iδAij

¼ −1þ iδ

�
1

6
ðn2 − 1Þ þ ji − jj2 − nji − jj

�
: ð4:13Þ

The analytical approach seems very hard but, after exten-
sive numerical checks, we can estimate this sums as
follows. We introduce a ratio Rðpp0; nÞ

Rðpp0; nÞ ¼ lim
δ→0

Fpp0
n ðz; z̄Þ

Kpp0
n ðz; z̄Þ

; ð4:14Þ

where Fpp0
n ða; z̄Þ is just the function Fnðz; z̄Þ for η ¼ p=p0

and also we defined

Kpp0
n ðz; z̄Þ≡ n

ð2pp0iÞn−1 ; ð4:15Þ

which is the result for pp0 divisible by n. Then for several
small values of pp0 the results for the ratio are summarized
in Table I.
Based on these results, we can conjecture that, for

general n, Rðpp0; nÞ only depends on the ratio pp0
n

Rðpp0; nÞ ¼ R

�
pp0

n

�
: ð4:16Þ

Clearly, this is consistent with Table I.
Moreover, let us reduce the ratio pp0

n into α
β so that α and β

are coprime with each other

pp0

n
¼ α

β
; such that g:c:d:ðα; βÞ ¼ 1: ð4:17Þ

then, in this general setup, we conjecture that Rðpp0
n Þ ¼ RðαβÞ

is given by

If β ¼ 4Z∶ R

�
pp0

n

�
¼ 2

β
· ðiÞαþ2;

If β ¼ 4Zþ 1∶ R

�
pp0

n

�
¼ 1

β
;

If β ¼ 4Zþ 2∶ R

�
pp0

n

�
¼ 0;

If β ¼ 4Zþ 3∶ R

�
pp0

n

�
¼ −

1

β
: ð4:18Þ

This conjecture also reproduces Table I and it would be
very interesting to compare it directly with the monodromy
constant and the elements of the modular S-matrix [19].
Let us now discuss higher n orbifolds with irrational η. In

that case, we only have a direct limit computation at our
disposal and we carefully extract the limit and compare
with numerics.
Similarly to n ¼ 2, if η is irrational, the condition (4.6)

holds only if m and n vanish. This reduces the higher
dimensional Θ function to identity in this limit and we can
approximate function Fnðz; z̄Þ as

Fnðz; z̄Þ≃ 1Q
n−1
k¼1 fk=nðzÞ

: ð4:19Þ

Now, after taking the OTO continuation and using (4.3) we
derive

Fnðz; z̄Þ≃
�
2πi
ln z

�
n−1 1

n2
: ð4:20Þ

Inserting the explicit form of the cross-ratios yields our
final formula for Fnðz; z̄Þ in the nth orbifold for irrational η

Fnðz; z̄Þ≃ 1

n2

0
B@ 2πi

log
�
−ϵ�12ϵ34e

−2πðt−xÞ
β

�
1
CA

n−1

: ð4:21Þ

TABLE I. A table of the ratio Rðpp0
n Þ for various n and pp0. We

only presented the result for n ≥ pp0 because the results opposite
case can be obtained from the periodicity.

n
pp0 1 2 3 4 5 6 7 8 9 10

1 1 0 − 1
3

− i
2

1
5

0 − 1
7

− i
4

1
9

0

2 1 − 1
3

0 1
5

− 1
3

− 1
7

− i
2

1
9

1
5

3 1 i
2

1
5

0 − 1
7

i
4 − 1

3
0

4 1 1
5

− 1
3

− 1
7

0 1
9

1
5

5 1 0 − 1
7

− i
4

1
9

0

6 1 − 1
7

i
2

− 1
3

1
5

7 1 i
4

1
9

0

8 1 1
9

1
5

9 1 0
10 1
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This is again the polynomial decay at late time, but interestingly the power of the polynomial increases with n. The larger
the orbifold number n becomes, the faster the four-point function Fn decays.
For convenience, we finish this section with a summary of the results for the OTOCs in general n cyclic orbifolds

Cβðx; tÞ → e4πiΔn

8>>>>>>><
>>>>>>>:

n
ð2pp0iÞn−1 ; if η ¼ p

p0 ∈ Q and pp0 ∈ nZ;

n
ð2pp0iÞn−1 · Rðpp

0; nÞ; if η ¼ p
p0 ∈ Q and pp0 ∉ nZ;�

2πi
ln z

�
n−1 1

n2
; if η ∉ Q:

ð4:22Þ

Notice that comparing to the evolution of the second Renyi
entropy after local operator excitations [15], OTOCs appear
to be more sensitive. Namely, for the Renyi entropies we
only distinguished the rational and irrational η but OTOCs
are very sensitive to pp0 already in the rational case. Again,
in the spirit of quantum chaos measures, we believe that this
fact is related to the sensitivity of the OTOC to the statistics
of the spectrum and it would be interesting to verify it
directly using for example spectral form factor.

V. CONCLUSIONS

In this work, we studied the out-of-time-ordered correla-
tors (OTOCs)with twist operators in the cyclic orbifold CFT.
We have managed to obtain analytical results for arbitrary n
orbifolds that we also confirmed numerically. We verify that
for rational compactification parameters the OTOCs behave
as expected from the rational CFT. On the other hand, for
irrational parameters we find a new, polynomial decay at late
time. In Table II we present a summary of our OTOC
classification results compared to rational CFTs [13,14] as
well as large c, holographicCFTs [10,11]. In the last column,
we show the results for the evolution of the second Renyi
entropy [15,16,18]. In the table we denoted by ΔO, the
conformal dimension of the operators used in the OTOC and
by dO and dσn quantum dimension of the local operators. For
n ¼ 2 the late time constant is expressed in terms of the
ðST̄2SÞ00 as in (3.13). Function Rðpp0; nÞ was discussed in
the previous section and for n ¼ 2 we have Rðpp0; 2Þ ¼ 0,
such that for pp0 ∈ odd OTOC decays exponentially to zero
as in (3.18).

At this point, a comment on the Lyapunov coefficients for
irrational η is in order. In order to see the initial exponential
growth of the OTOC in holographic CFTs, the fact that there
is a large separation between the collision time β and the
scrambling time ∼β log c seems very important. In our
setup, such a hierarchy is not obvious for all n and indeed
our numerical plots (also of the expectation value of the
commutator square itself) did not allow us to draw a
sufficient conclusions about the Lyapunov exponents form
the OTOC. On the other hand, it is possible that in the class
of our setup is subexponential as for weak chaos (see, e.g.,
[25]) (at most polynomial, similarly to the polynomial decay
at late time) and it is not clear if the OTOC itself is a useful
probe in such cases (see also discussion and generalization
in [26]). We hope to return to this problem in the future.
There are several interesting extensions of our work.

First, since the correlation function is expressed by the
Θð0jTÞ function where the orbifold rank n determines the
size of matrix T, it is difficult to understand how the OTOCs
behave in the large n limit. This would be crucial to see the
Lyapunov exponent in the irrational case and we leave it as
an important future work.
Second, it would be very interesting to generalize our

analysis for the case of symmetric orbifolds of Sn. Some
results for OTOCs are already known in that setup [11] and
suggest that the Lyapunov exponent vanishes. It would be
interesting to check if the (more)universal OTOCs with
twists confirm such behavior for large n.
Last but not least, it might be possible to classify 2d

CFTs by the way they spread entanglement and quantum

TABLE II. Summary of our results in comparison with the increase in the second Renyi entropy. The blank for the Lyapunov
coefficient means that we were not able to draw any conclusions from neither numerics nor analytic arguments.

CFT Lyapunov Late times ΔSð2ÞA

RCFT λL ¼ 0 M00 log dO
ðT2Þn=Zn, η ¼ p

p0, pp0 ¼ nZ λL ¼ 0 e4πiΔn n
ð2pp0iÞn−1 log dσn

ðT2Þn=Zn, η ¼ p
p0, pp0 ≠ nZ λL ¼ 0 e4πiΔn n

ð2pp0iÞn−1 · Rðpp0; nÞ log dσn

ðT2Þn=Zn with η ≠ p
p0 e4πiΔn

n2
ð2πiÞn−1

ðlog ð−ϵ�
12
ϵ34e

−2πðt−xÞ
β ÞÞ

n−1
ðn − 1Þ log logðtϵÞ

Holographic CFT λL ¼ 2π
β exp ð− 2πΔO

β tÞ 2ΔO log t
ϵ
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information (hence their potential to describe black holes).
The evolution of Renyi entropies and OTOCs make this
more concrete and exploring them in other interesting 2d
CFTs should fill the gaps in this exciting project.
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APPENDIX: CROSS-RATIOS

The out-of-time-ordered correlators can be obtained from
the standard four-point functions by analytic continuation.
This is done by ordering operators along imaginary time
with ϵ’s and continuing to the real time (see the main text).
The conformal cross ratios on the cylinder become

z ¼ z12z34
z13z24

¼
sinhðπiðϵ1−ϵ2Þβ Þ sinhðπiðϵ3−ϵ4Þβ Þ

sinhðπðt−xþiϵ1−iϵ3Þ
β Þ sinhðπðt−xþiϵ2−iϵ4Þ

β Þ
;

z̄ ¼ z̄12z̄34
z̄13z̄24

¼ sinhðπiðϵ1−ϵ2Þβ Þ sinhðπiðϵ3−ϵ4Þβ Þ
sinhðπðtþxþiϵ1−iϵ3Þ

β Þ sinhðπðtþxþiϵ2−iϵ4Þ
β Þ

: ðA1Þ

The ϵ’s are ordered such that ϵ1 < ϵ3 < ϵ2 < ϵ4, and
as time progresses, the operators change their relative
position on the complex plane (see Fig. 3). This is
equivalent to the OTO continuation. Then, at late time
we can approximate the denominators such that the cross
ratios approach to 0 as

z≃ −e−
2πðt−xÞ

β ϵ�12ϵ34; z̄≃ −e−
2πðtþxÞ

β ϵ�12ϵ34; ðA2Þ

where ϵij ¼ iðe2πi
β ϵi − e

2πi
β ϵjÞ.
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