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S U M M A R Y
Fault ruptures in the Earth’s crust generate both elastic and electromagnetic (EM) waves. If
the corresponding EM signals can be observed, then earthquakes could be detected before the
first seismic waves arrive. In this study, I consider the piezomagnetic effect as a mechanism
that converts elastic waves to EM energy, and I derive analytical formulas for the conversion
process. The situation considered in this study is a whole-space model, in which elastic
and EM properties are uniform and isotropic. In this situation, the governing equations of
the elastic and EM fields, combined with the piezomagnetic constitutive law, can be solved
analytically in the time domain by ignoring the displacement current term. Using the derived
formulas, numerical examples are investigated, and the corresponding characteristics of the
expected magnetic signals are resolved. I show that temporal variations in the magnetic field
depend strongly on the electrical conductivity of the medium, meaning that precise detection
of signals generated by the piezomagnetic effect is generally difficult. Expected amplitudes of
piezomagnetic signals are estimated to be no larger than 0.3 nT for earthquakes with a moment
magnitude of ≥7.0 at a source distance of 25 km; however, this conclusion may not extend to
the detection of real earthquakes, because piezomagnetic stress sensitivity is currently poorly
constrained.

Key words: Electromagnetic theory; Magnetic and electrical properties; Wave propagation;
Early warning.

1 I N T RO D U C T I O N

Fault ruptures in the Earth’s crust generate both elastic and electromagnetic (EM) signals. Following the ruptures, ground motions (i.e. seismic
waves) propagate through the solid Earth and deform the crust. This generates EM waves through a variety of mechanisms, including the
motional induction effect (e.g. Gershenzon et al. 1993; Gao et al. 2014), the electric kinetic effect (e.g. Ishido & Mizutani 1981; Pride 1994),
the piezomagnetic effect (Yamazaki 2011a,b), the piezoelectric effect (e.g. Bishop 1981; Huang 2002), and the resonance of ions (Honkura
et al. 2009; Kuriki et al. 2011; Matsushima et al. 2013). Because the maximum speed of EM wave propagation is c (3.0 × 108 m s−1), much
faster than elastic waves (∼104 m s−1), EM signals generated by any of these mechanisms should appear before seismic wave arrivals at any
point where they can be detected.

A key aspect of earthquake-related EM phenomena is just how large the EM signals are likely to be. In particular, would the EM signals
that precede the arrival of seismic waves be of sufficient amplitude for detection. If the answer is yes, then it would be possible to use EM
observations to provide early warnings of earthquakes. At present, early earthquake warning is completely reliant on seismic observations.
A number of authors have reported EM signals coetaneous with earthquake ground motion (e.g. Eleman 1965; Nagao et al. 2000; Skordas
et al. 2000; Abdul Azeez et al. 2009; Honkura et al. 2009); however, some of these signals may be due to physical motion of the EM sensor.
In contrast, few reports have been published on EM phenomena that precede seismic wave arrivals, except for a recent report for the Mw

6.9 Iwaki-Miyagi, Japan earthquake (Okubo et al. 2011). However, because geomagnetic observations are sparse compared with seismic and
geodetic observations, it is possible that such phenomena have not been reported simply because of insufficient opportunities for observation.
Therefore, theoretical approaches are required, along with efforts to refine observations.

Theoretical approaches involve calculations of the expected amplitudes of EM signals generated from elastic waves by a variety of
conversion mechanisms. Earlier works have established a theoretical framework for mechanisms such as the electrokinetic effect (e.g. Pride
& Haartsen 1996; Haartsen & Pride 1997; Garambois & Dietrich 2001, 2002; Ren et al. 2012; Gao et al. 2013a,b), motional induction (e.g.
Gershenzon et al. 1993, 2014; Gershenzon & Bambakidis 2001; Yamazaki 2012; Gao et al. 2014), and the piezoelectric effect (e.g. Russell
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& Barker 1991; Ogawa & Utada 2000a,b). However, these studies have not covered the entire possible range of EM sources in the Earth’s
crust; thus, studies of unconsidered mechanisms are still required to fully characterize elastic-EM conversions due to seismic waves.

This study focuses on the piezomagnetic effect as a mechanism of generating EM phenomena through the conversion of elastic waves.
The piezomagnetic effect describes changes in magnetization of ferromagnetic minerals under the application of mechanical stresses (e.g.
Stacey 1964; Nagata 1970a,b; Stacey & Johnston 1972; Zlotnicki et al. 1981). Many previous studies of geophysical phenomena related to
the piezomagnetic effect are considered in a framework of elasto-statics, meaning that only the offsets in values before and after the stress
changes are considered. The procedures and useful formulae for calculations in this framework have already been derived (e.g. Sasai 1991;
Utsugi et al. 2000). This effect has been used to explain offsets in the geomagnetic field before and after earthquakes (e.g. Stuart et al. 1995;
Sasai & Ishikawa 1997), and during magma intrusion at active volcanoes (e.g. Ueda et al. 2006; Napoli et al. 2008). In contrast, few studies
have investigated the time-dependent EM field caused by the piezomagnetic effect. An earlier work by Utsugi (2010) has dealt with this topic,
but it ignores the effects of finite conductivity of Earth’s crust. Recent works by Yamazaki (2011a,b) have also dealt with the time-dependent
EM field caused by the piezomagnetic effect, but they only considered far-field seismic waves. Evaluating the amplitudes of EM signals
generated by the piezomagnetic field, including near-field contributions and the effects of finite conductivity, is an important challenge in
investigations of earthquake-related EM signals.

The remainder of this paper is organized as follows. In Section 2, the problem is framed and the governing equations are derived. In
Section 3, I derive a set of analytical solutions in the time domain. In Section 4, numerical examples are used to analyse the behaviour of the
solution. In Section 5, the implications of the results are discussed. Finally, the conclusions are presented in Section 6.

2 D E F I N I T I O N S O F T H E P RO B L E M A N D G OV E R N I N G E Q UAT I O N S

The situation is considered in which external forces are applied to a point in an elastic whole-space medium with a uniform magnetization.
The following phenomena are expected. First, elastic deformation and stress changes propagate within the medium. Next, changes in
magnetization are associated with elastic deformation by the piezomagnetic effect. Finally, variations in the EM field are excited by changes
in magnetization. Therefore, the expected phenomena can be described by the momentum equation, the stress–strain relationship for elastic
media, the constitutive law for the piezomagnetic effect, and Maxwell’s equations for EM fields. Below, each equation is given, together with
additional assumptions required for analytical solution.

2.1 Displacement and stress in a homogeneous elastic medium

It is assumed that the displacement vector field u = (ui) and stress tensor field τ = (τ ij) are related by Hooke’s law:

τi j = λδi j
∂uk

∂xk
+ μ

(
∂ui

∂x j
+ ∂u j

∂xi

)
, (1)

where λ and μ are scalar elastic constants and δij is the Kronecker delta. Herein, the Einstein summation convention for subscripts are applied.
The displacement field u obeys the momentum equation:

ρ
∂2

∂t2
u(x, t) = F(x, t) + (λ + 2μ)∇[∇ · u(x, t)] − μ∇ × ∇ × u(x, t), (2)

where ρ is mass density, x is position, t is time and F is external forces applied to the medium (e.g. Aki & Richards 2002). Because a uniform
medium is considered, λ, μ and ρ do not depend on location x. In this situation, solution of eq. (2) for a single force at a point can be expressed
analytically as described in the next section, and the stress field τ is determined in terms of eq. (1).

2.2 Changes in magnetization via the piezomagnetic effect

A change in stress induces a change in magnetization via the piezomagnetic effect. Experimental results and theoretical considerations of
the piezomagnetic effect (e.g. Stacey 1964; Nagata 1970a,b; Stacey & Johnston 1972; Zlotnicki et al. 1981) can be summarized by a simple
linear relationship between changes in magnetization vector �J = (�Ji) and deviatoric stress tensor T = (Tij) (Sasai 1991):

�Ji = 3

2
βTi j J j , (3)

where β is a proportionality coefficient referred to as ‘stress sensitivity’, and J = (Ji) is the initial magnetization vector of the medium without
applied stress. Now we consider a uniform medium; that is where J does not depend on location. For a uniform medium, the deviatoric stress
tensor is given by

Ti j = τi j − 1

3
δi jτkk . (4)

The relationship (3) holds with sufficient accuracy when the magnitudes of applied stresses are within the range of those in the Earth’s
crust (e.g. Sasai 1991); thus, this is treated as the correct governing equation.
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2.3 EM fields generated by time-varying magnetization

Temporal and spatial variations in the EM field are described by Maxwell’s equations. In this study, the time-varying magnetization density
�J is the source of EM variations. Maxwell’s equations involving �J can be expressed in differential form as

∇ · E(x, t) = 1

ε
ρe(x, t) (5)

∇ · B(x, t) = 0 (6)

∇ × E(x, t) + ∂

∂t
B(x, t) = 0 (7)

∇ × {B(x, t) − μm�J(x, t)} = μmI(x, t) + εμm
∂

∂t
E(x, t), (8)

where E is the electric field, B is the magnetic field, I is electric current density, ρe is charge density, ε is electric permeability and μm is
magnetic permeability. Variables x and t denote location and time, respectively. The magnetic permeability is usually denoted by μ with no
subscript; however, in this manuscript the symbol μ has already been used for an elastic constant. For the same reason, charge density is
denoted by ρe, to distinguish it from density.

Some simplification of the problem is required to derive analytical solutions. First, an isotropic form of Ohm’s law for electric current
density I is assumed, described by

I(x, t) = σE(x, t), (9)

where σ is scalar electrical conductivity. Because a whole-space medium is considered, σ is a constant. Second, it is assumed that the
displacement current term (i.e. the second term in the right-hand side of eq. 8) is negligible. This assumption is reasonable because the
dominant frequency of seismic waves is up to hundreds of Hz and the displacement current term is negligible compared with other terms,
unless the frequency is extremely large (i.e. ≥104 Hz). In fact, this is commonly assumed for EM phenomena in the solid Earth (e.g. Nabighian
1988, p. 8). Third, I assume μm does not depend on B and is equal to the magnetic permeability of a vacuum (μ0 = 4π × 10–7 H m−1). This
assumption is reasonable in the present problem, in which B fields generated by seismic waves are too small to affect μm.

Under the above assumptions, the governing equation of the magnetic field B is summarized by a single EM diffusion equation:

∇2B(x, t) − μ0σ
∂

∂t
B(x, t) = −μ0∇ × ∇ × �J(x, t). (10)

Thus, the problem is to derive �J for a given F in terms of eqs (1)–(4), then to determine B from eq. (10). Once B is determined, then the
electric field E follows from eqs (8) and (9); rearranging these and combining terms yields

E(x, t) = 1

σ
∇ ×

[
1

μ0
B(x, t) − �J(x, t)

]
. (11)

3 D E R I VAT I O N O F T H E G E N E R AT E D M A G N E T I C F I E L D

In this section, a solution to eq. (10) is derived that describes variations in the magnetic field generated by external forces via the piezomagnetic
effect in a whole-space medium.

3.1 Expression of the source term

We can easily derive an expression for the source term of the governing equation; that is the right-hand side of eq. (10). Combining Hooke’s
law (eq. 1) with the constitutive law for the piezomagnetic effect (eqs 3 and 4), the changes in magnetization �J in terms of u are

�J = βμ

[
−(∇ · u)J + 3

2
∇(u · J) + 3

2
(J · ∇)u

]
. (12)

Because we assume that J is constant, taking the curl of eq. (10) twice gives the expression

∇ × (∇ × �J(x)) = βμ

[
−∇ × {∇ × (∇ · u(x))}J + 3

2
(J · ∇){∇ × (∇ × u(x))}

]
. (13)

Note that the argument t is omitted because this equation holds in both the frequency and time domains.
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3.2 Impulse responses of the magnetic field

First, an expression is derived for B generated by a single force at the point x = (0, 0, 0). The explicit form of u is known as Stokes’ solution,
which appears in most seismology textbooks (e.g. Aki & Richards 2002, p. 101). For the case that the force Fp is expressed as δ(t) f p , with
Dirac Delta function δ(t), an explicit form of the solution is given by

un(x, t) = 1

4πρ
(3xn x p − δnpr 2)

1

r 5
t

{
H

(
t − r

vP

)
− H

(
t − r

vS

)}
f p

+ 1

4πρ

1

v2
P

xn x p
1

r 3
δ

(
t − r

vP

)
f p

− 1

4πρ

1

v2
S

(xn x p − δnpr 2)
1

r 3
δ

(
t − r

vS

)
f p, (14)

where r = |x|, H is the Heaviside step function, and vP and vS represent seismic P- and S-wave velocities, respectively. Seismic velocities vP

and vS can be expressed in terms of λ and μ in eq. (2) as

v2
P = 1

ρ
(λ + 2μ), v2

S = 1

ρ
μ. (15)

The divergence and curl of u are given by

∇ · u(x, t) = 1

4πρv2
P

(F · ∇)

{
1

r
δ

(
t − r

vP

)}
, (16)

∇ × u(x, t) = − 1

4πρv2
S

(F × ∇)

{
1

r
δ

(
t − r

vS

)}
, (17)

respectively. Derivations of the above equations are given in Appendix A of the supporting information. Using (16) and (17), the bracketed
terms on the right-hand side of eq. (13) become

∇ × ∇ × {(∇ · u(x))J} = 1

4πρv2
P

[
(J · ∇)(F · ∇)∇

{
1

r
δ

(
t − r

vP

)}
− (F · ∇)∇2

{
1

r
δ

(
t − r

vP

)}
J

]
, (18)

∇ × ∇ × {(J · ∇)u(x)} = 1

4πρv2
S

[
(J · ∇)(F · ∇)∇

{
1

r
δ

(
t − r

vS

)}
− (J · ∇)∇2

{
1

r
δ

(
t − r

vS

)}
F

]
. (19)

Substituting the above into eq. (10), the governing equation of B can be written as

∇2B(x, t) − μ0σ
∂

∂t
B(x, t) = + 1

4π
βμ0

v2
S

v2
P

[
(J · ∇)(F · ∇)∇

{
1

r
δ

(
t − r

vP

)}
− (F · ∇)∇2

{
1

r
δ

(
t − r

vP

)}
J

]

− 1

4π
βμ0

3

2

[
(J · ∇)(F · ∇)∇

{
1

r
δ

(
t − r

vS

)}
− (J · ∇)∇2

{
1

r
δ

(
t − r

vS

)}
F

]
. (20)

To find the solution, consider a two-variable function a with a parameter v, which satisfies the equation

∇2a(r, t ; v) − μ0σ
∂

∂t
a(r, t ; v) = −1

r
δ
(

t − r

v

)
, (21)

and the condition that a(r, t ; v) = 0 for t < 0. Using the function a, let us consider two vector functions BP and BS, given by

BP(x, t) = − 1

4π
βμ0

v2
S

v2
P

[
(F · ∇)(J · ∇)∇a(r, t ; vP) − (F · ∇)∇2a(r, t ; vP)J

]
,

BS(x, t) = 1

4π
βμ0

3

2

[
(F · ∇)(J · ∇)∇a(r, t ; vS) − (J · ∇)∇2a(r, t ; vS)F

]
.

By applying the differential operator ∇2 − μ0σ ∂/∂t to both sides, we obtain the differential equations

∇2BP(x, t) − μ0σ
∂

∂t
BP(x, t) = 1

4π
βμ0

v2
S

v2
P

[
(F · ∇)(J · ∇)∇

{
1

r
δ

(
t − r

vP

)}
− (F · ∇)∇2

{
1

r
δ

(
t − r

vP

)}
J

]
,

∇2BS(x, t) − μ0σ
∂

∂t
BS(x, t) = 1

4π
βμ0

3

2

[
(F · ∇)(J · ∇)∇

{
1

r
δ

(
t − r

vS

)}
− (J · ∇)∇2

{
1

r
δ

(
t − r

vS

)}
F

]
.
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The sum of the right-hand sides of these two equations is equal to the right-hand side of eq. (20); therefore, the solution to eq. (20) is given
by BP + BS:

B(x, t) = 1

4π
βμ0

(
−v2

S

v2
P

) [
(J · ∇)(F · ∇)∇a(r, t ; vP) − (F · ∇)∇2a(r, t ; vP)J

]
+ 1

4π
βμ0

3

2

[
(J · ∇)(F · ∇)∇a(r, t ; vS) − (J · ∇)∇2a(r, t ; vS)F

]
. (22)

It remains to solve eq. (21). To simplify the problem, we can introduce two variables t∗ and r∗, defined by

r∗ ≡ μ0σvr,
t∗ ≡ μ0σv2t,

(23)

and a two-variable function a∗ defined by

a∗(r∗, t∗) ≡ 1

v
a(r, t ; v). (24)

Eq. (16) is then recast in a form that does not involve v:

∇∗2a∗(r∗, t∗) − ∂

∂t∗ a∗(r∗, t∗) = − 1

r∗ δ(t∗ − r∗). (25)

The analytical solution of this differential equation is given by

a∗(r∗, t∗) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 t∗ ≤ 0

1

2r∗ [q∗(r∗, t∗) − 2 + 2 exp(t∗ − r∗)] 0 < t∗ ≤ r∗

1

2r∗ q∗(r∗, t∗) r∗ < t∗

, (26)

where the function q∗ is defined by

q∗(r∗, t∗) = exp(t∗ + r∗)erfc

(√
t∗ +

√
r∗

2
√

t∗

)
− exp(t∗ − r∗)erfc

(√
t∗ −

√
r∗

2
√

t∗

)

+ 2erf

(
r∗

2
√

t∗

)
+ r∗

√
π t∗3

exp

(
− r∗2

4t∗

)
, (27)

and erf and erfc are the error function and complementary error function, respectively (e.g. chapter 13 of Arfken et al. 2013), defined by

erf (z) = 1√
π

z∫
0

exp
(
−z′2

)
dz′,

erfc (z) = 1 − erf z,

respectively. Derivation of this solution is given in Appendix B of the Supporting Information.
Next, an expression is derived for B for a mechanical source applied at the point x = (0, 0, 0). Eq. (22) is rewritten in the form

Bi (x, t) = gi jk(r, t)Jj fk, (28)

where gijk is a Green’s function. The explicit form of gijk is

gi jk(x, t) = − 1

4π
μ0β

[
v2

S

v2
P

{∂i∂ j∂ka(r, t ; vP) − δi j∂k∇2a(r, t ; vP)} − 3

2
{∂i∂ j∂ka(r, t ; vS) − δik∂ j∇2a(r, t ; vS)}

]
. (29)

When a moment tensor M is the source of the displacement field u, rather than a single force F, u can be determined by differentiating eq. (14)
with respect to xq and replacing fp by Mpq. The generated magnetic field B can then be expressed as

Bi (x, t) = gi jk,l (x, t)Jj Mkl , (30)

where gi jk,l (x, t) ≡ ∂gi jk(x, t)/∂xl .

3.3 Step response of the magnetic field

In general, applied single forces and double-couple sources depend on time, and have a finite spatial extent. The general expression for the
generated magnetic field is

Bi (x, t) =
∫ t

−∞
dt ′

∫
V ′

dV (x′)gi jk,l (x − x′, t − t ′)Jj Mkl (x
′, t ′), (31)

0
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where V ′ is the source volume. When temporal variations in Mkl can be expressed using the Heaviside step function H by

Mkl (x
′, t ′) =

N∑
n=1

M (n)
kl δ3(x′ − x′(n))H (t ′ − t ′(n)), (32)

the expression for Bi becomes

Bi (x, t) =
N∑

n=1

Gi jk,l (x − x′, t − t ′)Jj Mkl , (33)

where Gijk,l are defined by

Gi jk,l (x, t) = − 1

4π
μ0β

[
v2

S

v2
P

{∂i∂ j∂k∂l A(r, t ; vP) − δi j∂k∂l∇2 A(r, t ; vP)} − 3

2
{∂i∂ j∂k∂l A(r, t ; vS) − δik∂ j∂l∇2 A(r, t ; vS)}

]
, (34)

and

A(r, t ; v) ≡
∫ t

−∞
a(r, t′; v)H(t′)dt′ =

∫ t

0
a(r, t′; v)dt′. (35)

Using the regularized parameters r∗ and t∗ from eq. (23), the explicit form of A is given by

A(r, t ; v) = 1

μ0σv
A∗(r∗, t∗) (36)

with the function A∗ defined by

A∗(r∗, t∗) = 1

2r∗ ×
{

Q∗(r∗, t∗) − 2t∗ + 2 exp(t∗ − r∗) − 2 exp(−r∗) t∗ ≤ r∗

Q∗(r∗, t∗) − 2r∗ + 2 − 2 exp(−r∗), t∗ > r∗ (37)

and Q∗ defined by

Q∗(r∗, t∗) ≡
∫ t∗

0
q∗(r∗, t∗)dt ′∗

= exp(t∗ + r∗)erfc

(√
t∗ + r∗

2
√

t∗

)
− exp(t∗ − r∗)erfc

(√
t∗ − r∗

2
√

t∗

)

− 2erfc

(
r∗

2
√

t∗

)
− r∗2erfc

(
r∗

2
√

t∗

)
+ 2r∗

√
t∗

√
π

exp

(
− r∗2

4t∗

)

+ 2 exp(−r∗) + 2t∗erf

(
r∗

2
√

t∗

)
. (38)

In certain extreme situations, the spatial derivative of A∗ has an especially simple form. Let us analytically consider some of these special
cases. The final expression of B contains only the spatial derivatives of A; thus, it is only necessary to evaluate ∂ A/∂r . By considering the
asymptotic behaviour of A∗ at t∗ � 1, we have

lim
t∗→∞

∂

∂r∗ A∗(r∗, t∗) = −1

2
. (39)

We can also evaluate A in cases where σ is very small; here, r∗ and t∗ are also small because of their definition (eq. 23). By considering
the Taylor’s series expansion of A∗ for small values of r∗ and t∗, we obtain the expression

lim
σ→+0

∂

∂r∗ A∗(r∗, t∗) =
{

− t∗2

2r∗2 t∗ ≤ r∗,
− 1

2 t∗ > r∗.
(40)

Note that ∂ A∗/∂r∗ = ∂ A/∂r because of the definitions of A∗ and r∗. As t → ∞ and σ → 0, ∂ A∗/∂r∗ converges to the same value and
does not depend on σ or v. This is as expected, because these values should be equal to that of the static problem, which should not depend
on the electrical conductivity or elastic properties of the medium.

4 N U M E R I C A L E X A M P L E S

Using the formulas derived above, some numerical examples are now considered to explore the behaviour of the solutions. Two example
geometries (i.e. combinations of directions of double-couple moment tensor and initial magnetization) are shown in Figs 1(a) and (b). The
direction from the epicentre to the site (i.e. X-axis) lies in the plane in which mechanical forces act in the first geometry (i.e. the X–Y plane),
and perpendicular to this plane in the second geometry (i.e. the Y–Z plane). Because of the symmetry of the solution, only the x-component
of �B (Bx) for geometry 1 and the y-component of �B (By) for geometry 2 have non-zero values.

In the calculation, the following parameter values are employed. The values of stress sensitivity and P-wave velocity for these examples
are β = 2 × 10–9 Pa−1 and vP = 5 × 103 m s−1, respectively. The crust is assumed to be a Poisson solid, for which vP/vS = √

3. The seismic
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Figure 1. Two geometries considered in numerical examples. Both the observation point and the source are on the x-axis in both cases. (a) Geometry
1: The non-zero component of M is M12 = M21 = M and the initial magnetization is J = (0, J, 0). The generated magnetic field only has an x-component.
(b) Geometry 2: The non-zero component of is M23 = M32 = M and the initial magnetization is J = (0, 0, J ). The generated magnetic field only has a
y-component.

Figure 2. Source and receiver for a source approximated by a single point.

moment (M) is set to 4.0 × 1019 Nm, which corresponds to Mw 7 earthquakes. Results are determined for four values of electrical conductivity
(σ = 1 × 10−1, 10–2, 10–3 and 10–4 S m−1, respectively), which correspond to the possible range of values in the Earth’s crust. Note that the
expression for �B (eq. 22) does not depend on rigidity, as long as we fix the seismic moment.

As the simplest model, consider a source approximated by a single point (Fig. 2). Two source–time functions are considered: a step
function (Fig. 3a) and a ramp function (Fig. 3b). The source distance L = 25 km, meaning that the P-wave arrives at t = 5.0 s. Numerical
examples corresponding to the step and ramp source–time functions are given in Figs 4 and 5, respectively. Results for the ramp source–time
function were obtained by summing the results of step functions.

As a more realistic model, cases are considered in which the source consists of multiple points (Fig. 6). Fig. 7 shows two illustrative
examples in which a rupture propagates toward (Fig. 7a) and away (Fig. 7b) from the observation site. The source distance L, measured from
the centre of the sources to the observation point, is set to 25 km, meaning that the P wave arrives at t = 6.0 s in the first example (Fig. 7a), and
t = 4.0 s in the second (Fig. 7b). Numerical examples corresponding to the first and second situations are shown in Figs 8 and 9, respectively.

Note that the magnetic field arising from any double-coupled moment and initial magnetization, with the same intensity but an arbitrary
direction, can be found by rotating the results. Thus, the above examples are sufficient to describe the piezomagnetic effect for an arbitrarily
rotated geometry.

(a) Step function 

t = 0 
Figure 3. Schematics explaining the point source problem considered in the numerical example. (a) A source–time function given by a step function. (b) A
source–time function given by a ramp function. In these examples, L and T are set to 25 km and 10 s, respectively.
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Figure 4. Temporal variations in the generated magnetic field when the source–time function is a ramp function. In the calculations, the ramp function is
approximated by multiple step functions with intervals of 0.05 s. In this figure, and in Figs 5, 8, and 9, subpanels (a) and (b) show results for geometries 1 and
2 (see Fig. 1), respectively, and broken and dashed lines represent S- and P-wave arrival times, respectively.

Figure 5. Temporal variations in the generated magnetic field when the source–time function is a ramp function. The jagged shapes in the curves are artefacts
due to the step approximation of the ramp function.

5 D I S C U S S I O N

The following discussion considers the characteristics of magnetic ‘early signals’ generated by the piezomagnetic field (�B). Here, ‘early
signals’ mean temporal variations in �B before the arrival of the seismic P wave. In addition, after a P-wave arrival, observation of �B is
generally difficult because the seismic waves induce mechanical vibrations in magnetic sensors. Therefore, it is of interest to focus on ‘early
signals’; that is, �B before the P-wave onset.

Let us examine the dependency of �B on electrical conductivity (σ ). The numerical examples in Figs 4, 5, 8 and 9 demonstrate that
temporal variations in �B are quite different for different values of σ . In a highly conductive medium (i.e. σ = 10−1 S m−1), signals only
appear just before the P-wave arrival. In resistive media (i.e. σ = 10−4 or 10–3 S m−1), the rise time of EM signals is earlier than for a

Figure 6. Locations of sources and receivers considered in the multiple source problem.
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Figure 7. Two sets of source time functions considered in the multiple source problem. Sites 0 to N correspond to sites in Fig. 6. The set shown in (a) represents
the case where rupture propagates toward the site. In (b), rupture propagates away from the site.

Figure 8. Temporal variations in the generated magnetic field when the source location moves in the +x direction (i.e. toward the receiver).

conductive medium. In some cases, even the polarities (i.e. signs of Bx or By) of early signals are different for conductive and resistive models
(e.g. Figs 4, 5a, 8a and 9a).

The differences between rise times in conductive and resistive media can be interpreted as follows. Using the diffusion equation for �B
(eq. 10), we can estimate that large changes in �B will appear approximately T = μ0σX2 seconds after the source (i.e. right-hand side of
eq. 10) appears. At X = 25 × 103 m, T = 0.05, 0.5, 5 and 50 s for σ = 10–4, 10–3, 10–2 and 10−1 S m−1, respectively. A large �B appears well
before the P-wave arrival time (TP) for σ = 10–4 and 10–3 S m−1, and well after TP for σ = 10−1 S m−1.

Figure 9. Temporal variations in the generated magnetic field when the source location moves in the −x direction (i.e. away from the receiver).
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The high dependency on electrical conductivity means that precise calculation of �B is difficult unless the conductivity of the crust is
uniform. If we ignore the electrical conductivity, estimates of �B will be considerably different from actual values. Moreover, the electrical
conductivity of the Earth’s crust is generally heterogeneous, which makes precise estimation a difficult problem. It is natural to expect that
assuming a heterogeneous structure would considerably alter estimates of �B. Therefore, accurate estimation of �B is difficult in general.
Nevertheless, it is meaningful to estimate the amplitudes of early �B signals, as this will help us to understand whether observed early signals
in the magnetic field (e.g. Okubo et al. 2011) could arise from the piezomagnetic effect.

If the source is a point (e.g. Fig. 2) and the source–time function is a step function (Fig. 3a), then the expected amplitude of �B is large
enough to observe. We can refer to Fig. 4 to observe the expected result. When the medium is resistive (σ = 10–4 or 10–3 S m−1), the early
signal of �B is emergent, but reaches 0.5 nT before the seismic wave arrival (i.e. t = 5 s). The amplitude of 0.5 nT is approximately half of
the piezomagnetic field at t = ∞. When the medium is conductive (σ = 10–4 S m−1), the large early signal (≥0.5 nT) appears only in the last
0.1 s before the P-wave arrival, but reaches amplitudes as large as 2.5 nT. In both cases, the amplitude is large enough to be observed.

However, from Figs 5, 8 and 9, the amplitudes of �B for the step source–time function are probably overestimated. If the source is a
point (Fig. 2) and the source time function is a ramp function (Fig. 3b), then expected early signals of �B are hardly large enough to observe.
We can refer to Fig. 5 to observe the result: in both conductive and resistive media, the early signal is emergent and the amplitude is as small
as 0.3 nT, smaller than for a step function. Because complete fault rupture is not instantaneous but occurs over a finite duration of time, the
ramp function is more appropriate than the step function for representing real seismic source processes. Therefore, it is likely that Fig. 5
captures the piezomagnetic effect more realistically than Fig. 4.

Even when the spatial extent of the sources is considered, the expected amplitudes of �B are not considerably enhanced. When a source
consists of multiple points (Fig. 6) and the moment release occurs successively (Fig. 7), early signals are as large as 0.3 nT. The amplitudes
are similar to those obtained for a ramp function (Fig. 5), although the waveforms are different. This example is rather simple; however, it
demonstrates that no prominent rupture directivity effect, like that which appears in seismology (e.g. fig. 3.1 of Agarwal & Shrikhande 2006),
is expected for early EM signals.

Based on these discussions, it is concluded that observation of the early signal is generally difficult. The numerical calculation is
performed by assuming a moment magnitude of 7. With increasing moment magnitude, the total amount of expected EM signals should
increase. However, the situation is different when we focus on early EM signals. Note that only the moment released in the few seconds after
the onset of rupture contributes to the generation of early EM signals. Even for a Mw 9 earthquake, the seismic moment released during the
first 10 s is not very large (e.g. Ammon et al. 2005; Koketsu et al. 2011), being comparable to a Mw 7 earthquake. Therefore, the early EM
signals of Mw 8 or Mw 9 earthquakes are unlikely to be much larger than those for Mw 7 earthquakes.

Because of uncertainty about the piezomagnetic stress sensitivity (β), that the above examples, which reflect rather poorly on signal
detectability, may be incorrect. I used β = 2.0 × 10–9 Pa−1 in the numerical examples, a typical value for studies of the piezomagnetic effect
(e.g. Sasai 1991). However, simulations using this value underestimate the observed piezomagnetic field in many cases (e.g. Zhan 1989;
Oshiman et al. 1990; Nishida et al. 2004). Moreover, it has been proposed that β depends on the timescale of stress change (Uyeshima 2007).
Because amplitudes of �B are proportional to β, we cannot draw definite conclusions about the amplitude of �B until values of β in the real
Earth are more precisely determined.

The effects of heterogeneities on initial magnetization should also be noted. Heterogeneous initial magnetization enhances the signal
strength of the piezomagnetic effect (e.g. Oshiman 1990; Yamazaki 2011b). Therefore, observations at suitable locations may detect magnetic
signals arising from the piezomagnetic effect, which could enable the detection of seismic events before the first seismic waves arrive.
Quantitative discussion of this possibility is beyond the scope of this study, but will be the subject of future work.

6 C O N C LU S I O N S

A set of analytical expressions was derived for EM signals generated by the piezomagnetic effect for a double-couple seismic source.
Numerical examples calculated using the obtained formula resolve quantitative features of the expected magnetic field. Temporal variations
in the magnetic field depend strongly on the electrical conductivity of the medium, meaning that precise determinations of piezomagnetic
effect amplitudes are generally difficult. The expected amplitudes of piezomagnetic signals that precede the arrival of seismic waves are no
larger than 0.3 nT for earthquakes with a moment magnitude of ≥7.0 at a source distance of 25 km. However, this may underestimate the
expected amplitude of signals, because the true value of piezomagnetic stress sensitivity remains poorly constrained.
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