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PAPER

Equivalent-Circuit Model with Retarded Electromagnetic Coupling
for Meta-Atoms of Wired Metallic Spheres

Katsuya OHISHI†, Student Member, Takashi HISAKADO†a), Tohlu MATSUSHIMA†, Members,
and Osami WADA†, Fellow

SUMMARY This paper describes the equivalent-circuit model of a
metamaterial composed of conducting spheres and wires. This model in-
volves electromagnetic coupling between the conductors, with retardation.
The lumped-parameter equivalent circuit, which imports retardation to the
electromagnetic coupling, is developed in this paper from Maxwell’s equa-
tion. Using the equivalent-circuit model, we clarify the relationship be-
tween the retardation and radiation loss; we theoretically demonstrate that
the electromagnetic retardation in the near-field represents the radiation
loss of the meta-atom in the far-field. Furthermore, this paper focuses on
the retarded electromagnetic coupling between two meta-atoms; we esti-
mate the changes in the resonant frequencies and the losses due to the
distance between the two coupled meta-atoms. It is established that the
dependence characteristics are significantly affected by electromagnetic re-
tardation.
key words: metamaterial, meta-atom, equivalent-circuit model, retarda-
tion, radiation, electromagnetic coupling

1. Introduction

Electromagnetic metamaterials are structures composed of
meta-atoms made of metals or dielectrics and produce ar-
tificial electromagnetic phenomena; the analyses of these
phenomena are highly complex and difficult because of
the complexity of their structures. To overcome this dif-
ficulty, equivalent-circuit models are used. These models
render the analysis easy and enable the understanding of the
metamaterial-phenomena, with respect to the circuit models
and theoretical discussion on these phenomena [1]–[7].

The partial element equivalent circuit (PEEC) [8] is a
well-known equivalent-circuit model theoretically derived
from Maxwell’s equation. Although the method provides
full-wave analysis for general structures, it requires many
circuit elements because it is based on mesh division. On
the other hand, the equivalent-circuit model proposed by [9]
focuses on the structures of the wired metallic spheres [10],
as shown in Fig. 1 and derives a simple equivalent-circuit
model, which has the same topology as that of the wires.
Although the equivalent-circuit model is derived from near-
field coupling, the model expresses the radiation from the
meta-atoms through the radiation resistance calculated at
far-field. In order to obtain a more consistent model, a new
model without radiation resistance is required.

We propose a consistent equivalent-circuit model for
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Fig. 1 Wired Metallic Spheres [9].

the wired metallic spheres by evaluating the electromagnetic
retardation between the conductors. The retardation for the
circuit model was introduced in [11], and discussed in the
EIT and the transmission line, in addition [12], [13]. Fur-
thermore, the relationship between the radiation loss, en-
ergy consumption, and retardation is discussed in [14], [15].
However, these examples are full-wave analyses and discuss
the retardation effects using only the results of simulation
with many meshes.

Using a consistent equivalent circuit with retardation
for a simple meta-atom, we demonstrate that the inductance
and potential coefficients are represented by complex num-
bers. Then, we theoretically estimate the loss described by
the real part of the impedances based on the retardation, us-
ing the Taylor expansion. The results show that the repre-
sentation of the loss by the retardation corresponds to the
radiation loss based on the far-field. Further, we discuss the
retarded coupling between meta-atoms with respect to the
natural angular frequencies and loss. We derive their de-
pendence due to the distance between the meta-atoms and
demonstrate that the characteristics of the dependence are
significantly affected by retardation.

This paper is organized as follows: In Sect. 2, we intro-
duce the equivalent-circuit equation of a metamaterial com-
posed of wired metallic spheres, considering the retardation
between the conductors. In Sect. 3, we compare the loss in
the equivalent-circuit equation generated by the retardation
with the radiation resistance of a meta-atom. In Sect. 4, we
analyze the effect of retardation on the natural angular fre-
quencies using the proposed model. Further, we compare
the results of the proposed model with the electromagnetic-
field analysis. In Sect. 5, we conclude the paper.

Copyright c© 2018 The Institute of Electronics, Information and Communication Engineers
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2. Equivalent-Circuit Equation with Retardation

2.1 Spatial Discretization

We review the spatial discretization of the wired metallic
spheres of the perfect conductor proposed in [9]. We dis-
cretize the current and charge using bases defined on the
central axis of the wire and on the center of the sphere,
respectively; an example with wired metallic spheres is
shown in Fig. 2. D is the length between the centers of two
spheres. The radii of the wire and sphere are denoted by
a and b, respectively. If λ is defined as the wavelength of
the incident wave, we assume that these parameters satisfy
a � b � D � λ; we approximate that the charges exist
on the centers of the spheres and the current exists along
the central axes of the wires with a uniform distribution, ex-
cept for the estimation of self-interactions such as the self-
inductance and self-capacitance. Denoting the bases of cur-
rent in the n-th wire and charge on the m-th sphere byΨn and
Φm, respectively [9], we can express the current and charge
densities as

J
(
r, t

)
=

∑
n

In
(
t
)
Ψn

(
r
)
,

ρ
(
r, t

)
=

∑
m

Qm
(
t
)
Φm

(
r
)
, (1)

where In is the current in the n-th wire, and Qm is the charge
on the m-th sphere. The bases, Ψn(r) and Φm(r), correspond
to the wire and sphere, respectively. The functions, Ψn(r)
and Φm(r), are related as follows:

∇ ·Ψn
(
r
)
=

∑
m

UmnΦm
(
r
)
, (2)

where Umn is the incident matrix. Then, the current continu-
ity equation is given by

∑
n

UmnIn
(
t
)
+
∂

∂t
Qm

(
t
)
= 0. (3)

We use the basis, Ψn(r), as a test function, except for the
self-interactions. When considering a self-interaction, we
use a test function, ΨS

n(r), defined on the surface of a wire.
A simple example depicting the locations of the test func-
tions is shown in Fig. 3. Similarly, we use the basis, Φm(r),
as a test function, except for self-interactions. When consid-
ering the self-interaction of a charge, a test function, ΦS

m(r),

Fig. 2 Discretization example. The charges exist on the centers of the
spheres and the currents exist along the central axes of the wires.

defined on the surface of the sphere is used. The test func-
tions, ΨW

n (r) and ΦW
m (r), are summarized as follows:

ΨW
n (r) =

{
ΨS

n(r) (n = n′)
Ψn(r) (n � n′), (4)

ΦW
m (r) =

{
ΦS

m(r) (m = m′)
Φm(r) (m � m′). (5)

2.2 Circuit Equation with Retardation

The equivalent-circuit equation of a structure excited by an
incident electric field, EE(r, t), is introduced by the bound-
ary condition [9] as

∑
n′

∂

∂t

∫
L̄nn′

(
t, t′

)
In′

(
t′
)
dt′

−
∑
m′

∑
m

∫
UmnP̄mm′

(
t, t′

)
Qm′

(
t′
)
dt′ = −VE

n
(
t
)
, (6)

where

L̄nn′
(
t, t′

)
= μ0

∫
V

∫
V ′
ΨW

n
(
r
)
G(r, t, r′, t′)Ψn′

(
r′
)
d3r′d3r, (7)

P̄mm′
(
t, t′

)
=

1
ε0

∫
V

∫
V ′
ΦW

m
(
r
)
G(r, t, r′, t′)Φm′

(
r′
)
d3r′d3r, (8)

VE
n (t) = −

∫
V
ΨW

n (r)EE(r, t)d3r. (9)

The function, G(r, t, r′, t′), is the Green’s function, ex-
pressed as

G(r, t, r′, t′) =
δ(t − t′ − |r−r′ |

c )

4π|r − r′| , (10)

where |r−r′ |
c is the retardation between the locations of the

basis and the test functions. If we neglect the retardation of
the Green’s function, the Green’s function is approximated
by

G(r, t, r′, t′) =
δ(t − t′)

4π|r − r′| , (11)

which is used in [9]. We import the concept of retarded
electromagnetic coupling given by Eq. (10), instead of that

Fig. 3 Locations of the base and test functions. Only the self-interaction
test functions are located on the surfaces of the structures.
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given by Eq. (11).
Next, we treat the equivalent-circuit equation in the

frequency domain. The operation of the delta function in
Eq. (10) indicates that the electromagnetic retardation is de-
picted in the frequency domain as the factor of

exp
(
−jω
|r − r′|

c

)
. (12)

From Eqs. (3) and (6), the equivalent-circuit equation with
retardation is given by

(−ω21 + L̂−1UT P̂U
)
I
(
ω
)
= −jωL̂−1VE(ω), (13)

where U is the incident matrix; matrices L̂ and P̂, and vec-
tor, VE(ω), are represented by

L̂nn′
(
ω
)

= μ0

∫
V

∫
V ′
ΨW

n
(
r
)exp(−jω |r−r′ |

c )

4π|r − r′| Ψn′
(
r
)
d3r′d3r, (14)

P̂mm′
(
ω
)

=
1
ε0

∫
V

∫
V ′
ΦW

m
(
r
)exp(−jω |r−r′ |

c )

4π|r − r′| Φm′
(
r′
)
d3r′d3r, (15)

VE
n
(
ω
)
= −

∫
V
ΨW

n (r)EE(r, ω)d3r. (16)

It is to be noted that the components, L̂nn′ and P̂mm′ , are
expressed by complex numbers.

3. Relationship between Retardation and Radiation
Loss

3.1 Real Part of the Impedance with Retardation

Using a simple meta-atom, which we call an I-shaped meta-
atom, as shown in Fig. 4, we discuss the relationship be-
tween the retardation and radiation loss. Matrices L̂ and P̂
in Eq. (13) are expressed as

L̂ =
[
L̂
]
, P̂ =

[
P̂11 P̂12

P̂21 P̂22

]
=

1
4πε0

⎡⎢⎢⎢⎢⎢⎢⎣
exp(−jω b

c )
b

exp(−jω D
c )

D
exp(−jω D

c )
D

exp(−jω b
c )

b

⎤⎥⎥⎥⎥⎥⎥⎦ .
(17)

Component, L̂, is the self-inductance and is expressed as

L̂ =
μ0

4π

∫ D−b

b

∫ D

0

cos(ω
√

(z−z′)2+a2

c )√
(z − z′)2 + a2

dz′dz

Fig. 4 I-shaped meta-atom

−j
μ0

4π

∫ D

0

∫ D

0

sin(ω
√

(z−z′)2+a2

c )√
(z − z′)2 + a2

dz′dz. (18)

The calculation details of L̂ are presented in Appendix A.
The incident matrix, U, is expressed as

U =
[

1
−1

]
. (19)

Instead of Eq. (13), we discuss the equivalent equation,

(
jωL̂ +

UT P̂U
jω

)
I
(
ω
)
= −VE(ω). (20)

From Eqs. (17) and (19), Eq. (20) is represented by

(
jωL̂ + 2

P̂11 − P̂12

jω

)
I1
(
ω
)
= −VE

1
(
ω
)
. (21)

Here, we define an impedance, Z, by

Z ≡ jωL̂ + 2
P̂11 − P̂12

jω
. (22)

Because components L̂, P̂11, and P̂12 are expressed as com-
plex numbers, we define the real and the imaginary parts by

L̂ = L r + jL j, P̂11 = P r
11 + jP j

11, P̂12 = P r
12 + jP j

12.

(23)

Then, Z r, which is the real part of Z, is expressed as

Z r = −ωL j + 2
P j

11 − P j
12

ω
. (24)

The real part, which expresses the loss in the equivalent cir-
cuit, consists of the imaginary parts of the inductance and
capacitances generated by the retardation.

3.2 Comparison of Z r with the Radiation Resistance

We evaluate Z r using the Taylor expansion. Components
L j, P j

11, and P j
12 are expressed as

L j=− μ0

4π

∫ D

0

∫ D

0

sin(ω
√

(z−z′)2+a2

c )√
(z−z′)2+a2

dz′dz

=− μ0

4π

∫ D

0

∫ D

0

{
ω

c
− (z−z′)2+a2

3!c3
ω3+ · · ·

}
dz′dz

=− μ0

4π

{
D2

c
ω− 1

3!c3

(
1
6

D4+D2a2

)
ω3+ · · ·

}
, (25)

P j
11=−

sin(ω b
c )

4πε0b

=− 1
4πε0b

{b
c
ω− 1

3!

(b
c

)3

ω3+
1
5!

(b
c

)5

ω5−· · ·
}

=− μ0

4π

{
cω− 1

3!
b2

c
ω3+

1
5!

b4

c3
ω5−· · ·

}
, (26)
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P j
12=−

sin(ωD
c )

4πε0D

=− 1
4πε0D

{D
c
ω− 1

3!

(D
c

)3

ω3+
1
5!

(D
c

)5

ω5−· · ·
}

=− μ0

4π

{
cω− 1

3!
D2

c
ω3+

1
5!

D4

c3
ω5−· · ·

}
. (27)

Using Eqs. (25), (26), and (27), we express Z r as the func-
tion of ω:

Z r =
μ0

4π

{(
2D2 + b2

3c

)
ω2 −

(
2D4 + 30D2a2 + 3b4

180c3

)
ω4 · · ·

}
.

(28)

The radiation resistance of the Hertzian dipole is expressed
as [16]

Rr =
μ0ω

2D2

6πc
. (29)

Because we assume that b � D, the term, ω2 in Eq. (28)
approximates the radiation resistance, Rr in Eq. (29). Thus,
the equivalent-circuit model with electromagnetic retarda-
tion expresses the radiation loss.

3.3 Comparison with Electromagnetic Simulation

We analyze the frequency response of the current of a wire
in the I-shaped meta-atom having the parameters, a = 0.01
mm, b = 1 mm, and D = 7 mm. The direction of the elec-
tromagnetic field and the result are shown in Fig. 5. The
wire between two spheres is excited by a linearly polarized
plane wave, EE = 1V/m. In order to specify the effect of
the retardation, we show the result of the model without the
retardation together. Because the model without the retar-
dation is a lossless circuit, the amplitude at the resonance
frequency goes to infinity.

We use MWstudio R© for the electromagnetic simula-
tions. The MWstudio R© electromagnetic-field analysis uses
the finite integration technique (FIT). The relative differ-
ence of the resonant frequencies and quality factor between
the proposed model and FIT are 3.0% and 3.8% respec-
tively. The main errors of the results come from the con-
dition D � λ between the distance D of the spheres and the
wavelength λ of the incident wave. However, it is noted that

Fig. 5 Frequency response of the current, I1.

the results from the proposed model are obtained by the very
simple model Eq. (21).

4. Retarded Electromagnetic Coupling

4.1 Mode Decomposition of the Circuit Equation

To clarify the retarded electromagnetic coupling, we ana-
lyze two coupled I-shaped meta-atoms, as shown in Fig. 6.
Matrix L̂ of the coupled meta-atoms is expressed as

L̂(ω) =

[
L̂ M̂
M̂ L̂

]
. (30)

The self-inductance, L̂, is expressed in Eq. (18). The mutual
inductance, M̂, is expressed as

M̂ =
μ0

4π

∫ D

0

∫ D

0

exp(−jω
√

(z−z′)2+h2

c )√
(z−z′)2+h2

dz′dz (31)

� exp
(
−jω

h
c

)
μ0D
2π

{
log

(
α+
√

1+α2
)
−

√
1+

1
α2
+

1
α

}
,

(32)

where α = D
h . M̂ is also a complex number and depends on

the frequency. Matrix P̂ is expressed as

P̂(ω) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
P̂11 P̂12 P̂13 P̂14

P̂21 P̂22 P̂23 P̂24

P̂31 P̂32 P̂33 P̂34

P̂41 P̂42 P̂43 P̂44

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (33)

where

P̂11 = P̂22 = P̂33 = P̂44 =
exp(−jω b

c )

4πε0b
, (34)

P̂12 = P̂21 = P̂34 = P̂43 =
exp(−jωD

c )

4πε0D
, (35)

P̂13 = P̂31 = P̂24 = P̂42 =
exp(−jω h

c )

4πε0h
, (36)

P̂14 = P̂41 = P̂23 = P̂32 =
exp(−jω

√
D2+h2

c )

4πε0

√
D2 + h2

. (37)

The incident matrix, U, is expressed as

Fig. 6 Coupled meta-atoms.
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U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−1 0
1 0
0 −1
0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (38)

In order to decompose the equivalent-circuit equation, we
define F̂ ≡ L̂−1UT P̂U in Eq. (13).

Because the coupled meta-atoms have even and odd
modes, if we define the mode decomposition matrix, K, as

K ≡ 1√
2

[
1 1
1 −1

]
, (39)

we can diagonalize the left-side of Eq. (13) as

(−ω21 + K̂−1F̂K̂)K̂−1I(ω)

=

{
−ω2

[
1 0
0 1

]
+

[
λ̂even

(
ω
)

0
0 λ̂odd

(
ω
)
]} [

Ieven
(
ω
)

Iodd
(
ω
)
]
,

(40)

where

λ̂even(ω) =
P̂ s + P̂ m

2πε0(L̂ + M̂)
, λ̂odd(ω) =

P̂ s − P̂ m

2πε0(L̂ − M̂)
,

(41)

and

P̂ s =
exp(−jω b

c )

b
− exp(−jωD

c )

D
, (42)

P̂ m =
exp(−jω h

c )

h
− exp(−jω

√
D2+h2

c )√
D2 + h2

. (43)

Because eigenvalues, λ̂even and λ̂odd, are functions of ω, the
natural angular frequencies of the even mode, ωeven and
those of the odd mode, ωodd, are calculated by solving

−ω2 + λ̂even(ω) = 0, − ω2 + λ̂odd(ω) = 0, (44)

respectively.

4.2 Natural Angular Frequencies of the Retarded Cou-
pling

The two natural angular frequencies are complex numbers
and are expressed as

ωeven = ω
r

even + jω j
even, ωodd = ω

r
odd + jω j

odd. (45)

The distance, h, dependencies of the real and imaginary
parts of the ωeven and ωodd are shown in Figs. 7 and 8, re-
spectively. The real parts in Fig. 7 show that the frequency
of ω r

even and ω r
odd changes, depending upon h. ω r

even and
ω r

odd have certain cross points and the coupling between the
two meta-atoms are neutralized at these cross points. Be-
cause the distances between the cross points are approxi-
mately 20 mm, which is half the wavelength, the sign of
the coupling between the two meta-atoms changes periodi-
cally. The cross points in Fig. 7 correspond to the maximal

Fig. 7 h dependencies of the real parts, ω r
even and ω r

odd, with retardation.

Fig. 8 h dependencies of the imaginary parts, ω j
even and ω j

odd, with retar-
dation.

and minimum points in Fig. 8, demonstrating the relation-
ship between the coupling and radiation loss. That is, the
effects of the mutual coupling in the eigenvalues in Eq. (41)
are represented by the M̂ and P̂m, and both the M̂ by Eq. (32)
and P̂m by Eq. (43) have h dependency of exp(−jω h

c ) and

exp(−jω
√

D2+h2

c ) on the complex plane. As a result, the res-
onant frequencies and radiation losses which correspond to
the real and imaginary parts of the natural angular frequen-
cies have such relationship in h dependencies.

4.3 Natural Angular Frequencies without Retardation

In order to estimate the effect of retarded coupling, we dis-
play the results of the model without retardation, in Fig. 9.
The natural angular frequencies, ωeven and ωodd, have only
real parts, ω r

even and ω r
odd because the inductances and po-

tential coefficients are not complex numbers, without retar-
dation. ω r

odd is always greater than ω r
even and they approach

each other, as the distance, h, increases. Thus, the sign of
the coupling between the two meta-atoms does not change,
when the retardation is neglected.

4.4 Electromagnetic Field Analysis

In order to confirm the existence of cross points in Fig. 7,
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Fig. 9 h dependencies of the real parts, ω r
even and ω r

odd, without retarda-
tion.

Fig. 10 Comparison of h dependencies of the real parts, ω r
even and ω r

odd,
by electromagnetic simulation with ANSYS HFSS.

Fig. 11 Comparison of h dependencies of the imaginary parts, ω j
even and

ω
j

odd, by electromagnetic simulation with ANSYS HFSS.

we calculate ωeven and ωodd by eigenmode analysis using
ANSYS HFSS. ωeven and ωodd obtained by electromagnetic-
field analysis are shown in Figs. 10 and 11, respectively. The
maximum relative differences between the proposed model
and HFSS are 3.9% in Fig. 10 and 15% in Fig. 11, respec-
tively. The large differences in the imaginary parts are due to
the small imaginary parts compared to the real parts. From
Fig. 10, it is confirmed that the frequency ω r

even and ω r
odd is

reversed at h = 28 mm and h = 48 mm. From Fig. 11, the
cross points in Fig. 10 correspond to the maximum and min-

imum points. Although the average values of the even and
odd modes of the model without the retardation in Fig. 9
give a better approximation of those in Fig. 10, the model
without the retardation does not have the cross points. Thus,
both the proposed model and the electromagnetic-field anal-
ysis agree in that there exist cross points in h dependency.

5. Conclusion

A simple equivalent-circuit model with retardation, for
wired metallic spheres, was proposed in this paper and the
effects of retarded electromagnetic coupling in simple meta-
atoms were clarified.

Retardation renders the inductances and potential co-
efficients complex numbers. It was demonstrated that the
imaginary components in the proposed model correspond
to the radiation loss. The formulation provides consistent
equivalent circuits only at the near-field without the radia-
tion estimation calculated at the far-field.

Further, the retarded electromagnetic coupling of two
meta-atoms renders the natural angular frequencies of the
even and odd modes complex numbers; the magnitude rela-
tionship between the two natural angular frequencies varies,
depending upon the distance, h. Thus, the proposed model
suggests that retarded electromagnetic coupling impacts the
modeling of the radiation and the coupling of meta-atoms.
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Appendix A: Calculation of the Self-Inductance with
Retardation

From Eq. (14), the real part of the self-inductance,

Real
{
L̂nn

}
, is expressed as

Real
{
L̂nn

}

= μ0

∫
V

∫
V ′
ΨS

n(r)
cos(ω |r−r′ |

c )

4π|r − r′| Ψn′ (r′)d3r′d3r. (A· 1)

Assuming that cos(ω |r−r′ |
c ) � 1, Eq. (A· 1) is approximated

by

Real
{
L̂nn

}
� μ0

∫
V

∫
V ′
ΨS

n(r)
1

4π|r − r′|Ψn′ (r′)d3r′d3r.

(A· 2)

Because Real
{
L̂nn

}
depends on the function 1

|r−r′ | , the thin

wire-part of the meta-atom is dominant for Real
{
L̂nn

}
and

we use the test functionΨS
n(r), which exists only on the wire,

for the calculation of the self-inductance in Eq. (4); i.e., we

calculate Real
{
L̂nn

}
as

Real
{
L̂nn

}
� μ0

4π

∫ D−b

b

∫ D

0

cos(ω
√

(z−z′)2+a2

c )√
(z − z′)2 + a2

dz′dz.

(A· 3)

On the other hand, the imaginary part, Imag
{
L̂nn

}
, is

expressed as

Imag
{
L̂nn

}

= μ0

∫
V

∫
V ′
ΨS

n(r)
sin(ω |r−r′ |

c )

4π|r − r′| Ψn′ (r′)d3r′d3r. (A· 4)

Assuming that sin(ω |r−r′ |
c ) is sufficiently small, we can use

the approximation

sin(ω
|r − r′|

c
) � ω |r − r′|

c
. (A· 5)

Hence, Eq. (A· 4) is approximated by

Imag
{
L̂nn

}
� μ0

∫
V

∫
V ′
ΨS

n(r)
ω

4πc
Ψn′ (r′)d3r′d3r.

(A· 6)

Because Imag
{
L̂nn

}
does not depend on the function 1

|r−r′ | ,
we have to consider the sphere-part in addition to the wire-

part. As a result, we calculate Imag
{
L̂nn

}
adopting the

length, D, as the interval of integration, similar to the mutual

inductances. Therefore, Imag
{
L̂nn

}
is calculated as

Imag
{
L̂nn

}
� μ0

4π

∫ D

0

∫ D

0

sin(ω
√

(z−z′)2+a2

c )√
(z − z′)2 + a2

dz′dz.

(A· 7)
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