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PAPER

Equivalent-Circuit Model for Meta-Atoms Consisting of Wired
Metallic Spheres

Takashi HISAKADO†a), Member, Keisuke YOSHIDA†, Student Member, Tohlu MATSUSHIMA†, Member,
and Osami WADA†, Fellow

SUMMARY An equivalent-circuit model is an effective tool for the
analysis and design of metamaterials. This paper describes a systematic
and theoretical method for the circuit modeling of meta-atoms. We fo-
cus on the structures of wired metallic spheres and propose a method for
deriving a sophisticated equivalent circuit that has the same topology as
the wires using the partial element equivalent circuit (PEEC) method. Our
model contains the effect of external electromagnetic coupling: excitation
by an external field modeled by voltage sources and radiation modeled by
the radiation resistances for each mode. The equivalent-circuit model pro-
vides the characteristics of meta-atoms such as the resonant frequencies
and the resonant modes induced by the current distribution in the wires by
an external excitation. Although the model is obtained by a very coarse
discretization, it provides a good agreement with an electromagnetic simu-
lation.
key words: metamaterial, meta-atom, equivalent circuit, wired metallic
spheres, PEEC

1. Introduction

There has been growing interest in the design and synthesis
of meta-atoms and metamaterials. To properly design them,
it is very important to elucidate the electromagnetic nature
produced by the geometric complexity of structured con-
ductors. An equivalent-circuit model is a powerful tool for
describing electromagnetic phenomena in a physically intu-
itive manner [1]–[7]. However, the equivalent-circuit mod-
els for meta-atoms and metamaterials are usually heuris-
tic, and studies on formal constructions from Maxwell’s
equations to the equivalent-circuit model are limited. We
consider a systematic method for deriving a sophisticated
equivalent-circuit model using the partial equivalent electric
circuit (PEEC) method [8]–[12].

The PEEC method is an integral equation approach,
which is the so-called method of moments [13] and was
first introduced in [8]. The method systematically provides
equivalent-circuit models from Maxwell’s equations and is
useful for interconnection modeling in VLSI design. How-
ever, the conditions for the basis functions require small
meshes to model the general metallic structures, and the
number of circuit elements becomes very large, making the
model very complicated for design. In order to derive a
simple equivalent-circuit model, we introduce a structure of
wired metallic spheres [14]. An example of the structure is
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shown in Fig. 1.
When the size of each component in the structure is

sufficiently smaller than the wavelength of the incident field,
and the radii of the spheres are sufficiently smaller than
the lattice constant, we assume that induced currents exist
only at the center of thin wires with a uniform distribution
and that the charges exist only at the centers of spheres,
except for the estimation of self-interactions such as self-
inductances and self-capacitances. On the basis of this
approximation, we derive a very simple equivalent-circuit
model that has the same topology as the wires. That is, the
wires and spheres correspond to the branches and nodes in
the equivalent-circuit model, respectively.

This paper provides a theoretical and systematic
method for deriving a simple equivalent circuit model from
Maxwell’s equation with sufficient flexibility for different
geometric parameters. The simple model enables us to esti-
mate the electromagnetic characteristics of the meta-atoms
and provides physical insights. The proposed circuit equa-
tion includes not only the electromagnetic couplings be-
tween the wires and between the spheres in the structure,
but also external coupling, i.e., excitation by an external
field and radiation. The model provides characteristics of
meta-atoms such as the resonant frequencies and resonant
modes induced in the wires due to an external excitation.
Although the model is obtained by a very coarse discretiza-
tion, it agrees sufficiently with electromagnetic simulation.

This paper is organized as follows. In Sect. 2, we
present a systematic method for deriving the circuit equation
of the wired metallic spheres from Maxwell’s equations. In
Sect. 3, we analyze the resonance frequency using a simple
example of the model. In Sect. 4, we propose a method for
modeling the radiation by the radiation resistance, which is

Fig. 1 Metamaterial with wired metallic spheres.

Copyright c© 2017 The Institute of Electronics, Information and Communication Engineers
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essential for the metamaterial model. In Sect. 5, we compare
the structures for ten examples of meta-atoms and present a
comparison with an electromagnetic analysis.

2. Derivation of the Circuit Equation

2.1 Electric-Field Integral Equation

To derive the circuit equation in the Lorenz gauge, we start
the derivation from the Maxwell’s equations expressed as a
set of wave equations

�2 A = μ0 J, (1)

�2φ =
ρ

ε0
, (2)

where �2 is the d’Alembert operator; A and φ denote the
vector and scalar potentials, respectively; J and ρ denote
the current and charge densities, respectively; and ε0 and μ0

are the vacuum permittivity and permeability, respectively.
Equations (1) and (2) are coupled by the continuity equation

∇ · J + ∂ρ
∂t
= 0, (3)

which expresses the conservation of charge.
The Green’s function of the wave equation is given by

G(r, t, r′, t′) ≡
δ
(
t − t′ − |r−r′ |

c

)
4π|r − r′| , (4)

where c is the speed of light. Then, the potentials A and φ
in Eqs. (1) and (2) are written by

A(r, t) = μ0

∫ ∫
G(r, t, r′, t′)J(r′, t′)d3r′dt′, (5)

φ(r, t) =
1
ε0

∫ ∫
G(r, t, r′, t′)ρ(r′, t′)d3r′dt′. (6)

Because the electric field is given by

E = −∂A
∂t
− ∇φ, (7)

the boundary condition in the tangential direction on the sur-
face of a perfect conductor is expressed as

μ0
∂

∂t

∫ ∫
G(r, t, r′, t)J(r′, t′)dr′dt′

+
1
ε0
∇

∫ ∫
G(r, t, r′, t)ρ(r′, t′)dr′dt′ = EE(r, t), (8)

where EE is the incident electric field. We formulate the
circuit equation using Eqs. (3) and (8).

2.2 Spatial Discretization

We assume that the structure consists of a perfect conductor
and that the lattice constant D in Fig. 1 is sufficiently smaller
than the wavelength λ of the incident field. For simplicity,

Fig. 2 Parameters for a simple structure of wired spheres.

Fig. 3 Model with line currents and a point charge.

we explain the spatial discretization of Eqs. (3) and (8) us-
ing a simple structur of the meta-atom shown in Fig. 2. The
radius of the wire, the radius of the spheres, and the length
of the wire are denoted by a, b, and l = D − 2b, respec-
tively. We assume that these parameters satisfy a � b �
l � λ and approximate that the charges exist at the cen-
ters of the spheres and current exists along the central axis
of the wire with a uniform distribution, except for the esti-
mation of self-interactions such as the self-inductance and
self-capacitance. Then, the model of the structure in Fig. 1
is represented by Fig. 3, and we formulate a circuit equa-
tion in which the wires and spheres correspond to the cir-
cuit branches and nodes, respectively. On the other hand,
the self-interactions are estimated with the parameters a, b,
and l.

We introduce a very coarse discretization for Eqs. (3)
and (8), in which one wire in the structure corresponds to
one branch in the circuit in order to derive the very simple
model. Although the model includes errors caused by ap-
proximating the uniform distribution of the currents on the
wires and the charges on the spheres, the condition is ap-
proximately satisfied for the structure with a � b � l � λ.
As a result, the resonant frequencies of the proposed model
and that of the electromagnetic simulation shown in later
sections differ by several percent.

For example, the basis for the wire current in Fig. 2 is
described by

Ψ1(r) ≡ δ(x)δ(y){h(z) − h(z − D)} ẑ, (9)

where ẑ is a unit vector in the z direction, h(z) is the
Heaviside unit-step function, and δ is the Dirac delta func-
tion. The basis for the charges in the two spheres in Fig. 2 is
represented by

Φ1(r) ≡ δ(x)δ(y)δ(z), Φ2(r) ≡ δ(x)δ(y)δ(z − D). (10)
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Using such bases for the currents and charges, we ex-
press the current density J(r, t) and the charge density ρ(r, t)
as

J(r, t) =
∑

n

In(t)Ψn(r), (11)

ρ(r, t) =
∑

m

Qm(t)Φm(r), (12)

where In is the current in the n-th wire, and Qm is the charge
on the m-th sphere. Here, the bases Ψn(r) and Φm(r) satisfy

∇ ·Ψn(r) =
∑

m

UmnΦm(r), (13)

where Umn is the incidence matrix

Umn =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if Ψn(r) leaves Φm(r)
−1 if Ψn(r) enters Φm(r)
0 otherwise,

(14)

which represents the topology of the wired spheres.
By substituting Eqs. (11) and (12) into Eq. (3) and us-

ing Eq. (13), we obtain

∑
m

⎧⎪⎪⎨⎪⎪⎩
∑

n

UmnIn(t) +
∂

∂t
Qm(t)

⎫⎪⎪⎬⎪⎪⎭Φm(r) = 0. (15)

Then, the conservation of charge on the sphere is rewritten
by the relationship between the currents In and the charges
Qm at the nodes

∑
n

UmnIn(t) +
∂

∂t
Qm(t) = 0. (16)

2.3 Formulation of the Boundary Condition on the Wire
Branches

In order to apply the boundary condition in Eq. (8) to the
wire branches, we use the current basis function Ψn(r) for
the test functionΨW

n (r), except for the self-interactions. The
test function ΨS

1(r) for the self-interactions is defined on the
surface of the wire, e.g.,

ΨS
1(r) ≡ δ(x − a)δ(y) {h(z − b) − h(z − D + b)} ẑ, (17)

for Fig. 2 becaues the thin wire is dominant in the self-
inductance by the relation a � b. By substituting Eqs. (11)
and (12) into Eq. (8) and using the test function ΨW

n (r), we
rewrite Eq. (8) as∫
ΨW

n (r)μ0
∂

∂t

∫∫
G(r, t, r′, t′)

∑
n′

In′ (t
′)Ψn′ (r′)dr′dt′dr

+

∫
ΨW

n (r)
1
ε0
∇

∫∫
G(r, t, r′, t′)

∑
m′

Qm′ (t
′)Φm′ (r′)dr′dt′dr

=

∫
ΨW

n (r)EE(r, t)dr. (18)

Here, the test function is summarized as

ΨW
n (r) =

{
ΨS

n(r) (n = n′)
Ψn(r) (n � n′). (19)

Further, in order to simplify Eq. (18), we introduce the
function ΦS

m(r) that satisfies the relationship in Eq. (13) for
the test function ΨW

n (r), e.g.,

ΦS
1(r) ≡ δ(x − a)δ(y)δ(z − b), (20)

ΦS
2(r) ≡ δ(x − a)δ(y)δ(z − D + b), (21)

for the test function in Eq. (17) in Fig. 2. Then, Eq. (18) is
expressed as

∑
n′

∂

∂t

∫
L̄nn′ (t, t

′)In′(t
′)dt′

+
∑
m′

∫
S̄ nm′ (t, t

′)Qm′ (t
′)dt′ = −VE

n (t), (22)

where

L̄nn′ (t, t
′) ≡ μ0

∫
V

∫
V ′
ΨW

n (r)G(r, t, r′, t′)Ψn′ (r′)d3r′d3r,

S̄ nm′ (t, t
′)

≡ 1
ε0

∫
V
ΨW

n (r) · ∇
∫

V ′
G(r, t, r′, t′)Φm′ (r′)d3r′d3r

= − 1
ε0

∫
V

∫
V ′

{
∇ ·ΨW

n (r)
}
G(r, t, r′, t′)Φm′ (r′)d3r′d3r

= −
∑

m

Umn
1
ε0

∫
V

∫
V ′
ΦW

m (r)G(r, t, r′, t′)Φm′ (r′)d3r′d3r,

VE
n (t) ≡ −

∫
V
ΨW

n (r)EE
n (r, t)d3r. (23)

Here, the function ΦW
m (r) is summarized as

ΦW
m (r) =

{
ΦS

m(r) (m = m′)
Φm(r) (m � m′). (24)

After introducing the potential coefficient matrix defined by

P̄mm′ (t, t
′) ≡ 1
ε0

∫
V

∫
V ′
ΦW

m (r)G(r, t, r′, t′)Φm′ (r′)d3r′d3r

(25)

to Eq. (22), we obtain the discretized boundary condition
∑

n′

∂

∂t

∫
L̄nn′ (t, t

′)In′(t
′)dt′

−
∑
m′

∑
m

∫
UmnP̄mm′ (t, t

′)Qm′ (t
′)dt′ = −VE

n (t). (26)

2.4 Neglecting Retardation

For simplicity, if we neglect the retardation in the Green’s
function in Eq. (4), we approximate Eq. (4) as

G(r, t, r′, t′) ≡ δ(t − t′)
4π|r − r′| , (27)

resulting in



308
IEICE TRANS. ELECTRON., VOL.E100–C, NO.3 MARCH 2017

L
d
dt

I − UT PQ = −VE, (28)

where I and Q are the current and charge vectors, respec-
tively; U is the incidence matrix; and T indicates the matrix
transpose operation. The inductance matrix L and the po-
tential coefficient matrix P are defined by

Lnn′ ≡ μ0

∫
V

∫
V ′
ΨW

n (r)
1

4π|r − r′|Ψn′ (r′)d3r′d3r, (29)

Pmm′ ≡ 1
ε0

∫
V

∫
V ′
ΦW

m (r)
1

4π|r − r′|Φm′ (r′)d3r′d3r,

(30)

respectively. Equations (16) and (28) are the equivalent-
circuit equations with charges and currents. Further, by
eliminating Q in Eq. (28) with Eq. (16), we obtain the
equivalent-circuit equation for the current I as

d2

dt2
I + L−1UT PUI = −L−1 d

dt
VE. (31)

Because this equivalent-circuit equation is represented by
the incidence matrix U, the circuit model has the same topol-
ogy as the structure of the wired spheres.

3. Resonant Frequencies and Modes

3.1 Resonant Frequency

In the frequency domain, Eq. (31) is expressed as

(−ω21 + L−1UT PU)Î(ω) = −jωL−1V̂
E
(ω), (32)

where ω denotes the angular frequency, and 1 is an identity
matrix. The eigenvalues of the matrix L−1UT PU represent
the resonant angular frequencies of wired metallic spheres.

We show an example of the resonant frequency using
the simple structure shown in Fig. 2. Although the exam-
ple has only one wire, it provides an estimate in borderline
case of the condition l � λ between the wire length l and
the wavelength λ of the incident wave on the resonant fre-
quency. In this case, Eq. (32) is an equation with one vari-
able I1, and the matrix L−1UT PU is expressed as

L−1UT PU =
1
Ls

[1,−1]

[
Ps Pm

Pm Ps

] [
1
−1

]
, (33)

where

Ls =
μ0

4π

{
l

(
log

D2 − l2

a2
− 1

)
+ D

(
log

D + l
D − l

− 1

)}
,

Ps =
1

4πε0b
, Pm =

1
4πε0D

. (34)

First, we fix the wire and sphere radii at constant values
of a = 0.01 mm and b = 1 mm, respectively, and calculate
the resonance frequencies as a function of the wire length
l using the equivalent-circuit model. The results are shown
in Fig. 4, and the function is compared with the results from

Fig. 4 Resonance frequencies as a function of the wire length l. FIT
indicates the results from an electromagnetic simulation with a finite inte-
gration technique calculated by CST MW SUITE.

Fig. 5 Resonance frequencies as a function of the sphere radius b.

an electromagnetic simulation that uses a finite integration
technique (FIT) by CST MW SUITE. Although the time re-
quired for calculation for every dot in the electromagnetic
simulation is greater than one hour, it is noteworthy that the
result of the proposed model is obtained only by manual
calculation from Eq. (33). In the region of short l, there is a
relative difference because the condition b � l is not satis-
fied. However, the relative difference between the results is
small for the rest of the range of l.

Second, we fix the wire radius and length at constant
values of a = 0.01 mm and l = 5 mm, respectively, and cal-
culate the resonance frequencies as a function of the sphere
radius b. The results for the equivalent-circuit model and
FIT are shown in Fig. 5. The relative difference between the
results is small, except in the region of large b, where the
condition b � l is not satisfied.

Third, we fix the wire length and sphere radius at con-
stant values of l = 5 mm and b = 1 mm, respectively, and
calculate the resonance frequencies as a function of the wire
radius a. The results in Fig. 6 show that the relative differ-
ence is small; however, the difference becomes larger as a
increases. This difference is explained by the requirement
a � b.

3.2 Resonant Modes

Using the eigenvectors of the matrix L−1UT PU, we obtain
the diagonalization of the matrix as

(−ω21 + K−1L−1UT PUK)K−1 Î = −jωK−1L−1V̂
E
,

(35)
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Fig. 6 Resonance frequencies as a function of the wire radius a.

Fig. 7 Simple example of a meta-atom.

where the matrix K is a mode decomposition matrix. The
matrix K−1L−1UT PUK is a diagonalized matrix, and the

vector −jωK−1L−1V̂
E

on the right-hand side represents the
excitation of each mode by an incident field.

As a simple example with multiple modes, we find res-
onant modes of the simple meta-atom shown in Fig. 7. The
example consists of mutually coupled parallel wires, and
the spheres are located with strong couplings. Because the
structure has three wires, the equivalent circuit model has
three modes for the structure. In this case, the matrices in
Eq. (32) are given by

U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0
−1 1 0
0 −1 1
0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , L =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Ls 0 Lm

0 Ls 0
Lm 0 Ls

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,

P =
1

4πε0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
b

1
D

1√
2D

1
D

1
D

1
b

1
D

1√
2D

1√
2D

1
D

1
b

1
D

1
D

1√
2D

1
D

1
b

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Ls =
μ0

4π

{
l

(
log

D2 − l2

a2
− 1

)
+ D

(
log

D + l
D − l

− 1

)}
,

Lm =
μ0D
2π

{
log(1 +

√
2) − √2 + 1

}
.

Because the matrix L−1UT PU is a 3 × 3 matrix, we obtain
three resonant modes. Figure 8 shows the resonant frequen-
cies and current distribution on each wire. Thus, we easily
find the resonant modes by the equivalent-circuit model.

Fig. 8 Three calculated modes of the structure in Fig. 7.

4. Modeling of Radiation

4.1 Radiation Resistance

The equivalent-circuit model in Eq. (31) does not contain
the resistance because we assume the wires and spheres to
be perfect conductors. However, the current induced on the
wires is attenuated by radiation, even if the ohmic loss is
neglected. To estimate the amplitude of the current induced
on the wires, we add the radiation loss to the equivalent-
circuit model using the radiation resistances that are given
with respect to each mode.

We define Îk by the k-th component of the mode current
vector K−1 Î in Eq. (35). Then, the radiated power for the k-
th mode is represented by

PR
k =

1
2
|Îk |2RR

k , (36)

where RR
k is the radiation resistance with respect to the k-th

mode.
In order to calculate the radiated power for each mode,

we use a Poynting vector in the far field. We assume that
a small structure of the wired spheres exists around the co-
ordinate origin and calculate the far field at an observation
point

ξ = (r sin θ cosϕ, r sin θ sin φ, r cos θ). (37)

We define the center point of the n-th wire as (xn, yn, zn).
Then, the distance between the wire and the observation
point is approximated by

rn � r − xn sin θ cosϕ − yn sin θ sinϕ − zn cos θ. (38)

If we represent the current of the n-th wire for the k-th mode
by În = [Îx

n , Î
y
n , Îz

n]T, the vector potential Â at the observation
point is approximated by

Â � μ0D
4πr

∑
n

Îne−jω rn
c . (39)

From Eq. (39) and H = 1
μ0
∇× A, the far-zone magnetic field

is given by
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Ĥr = 0, (40)

Ĥθ =
jωD
4πcr

∑
n

{
−Îx

n sinϕ + Îy
n cosϕ

}
e−jω rn

c , (41)

Ĥϕ = − jωD
4πcr

∑
n

{
Îx
n cos θ cosϕ + Îy

n cos θ sinϕ

−Îz
n sin θ

}
e−jω rn

c . (42)

From the real part of the Poynting vector, we obtain the ra-
diated power PR

k with

PR
k =

1
2

√
μ0

ε0

∫ 2π

0

∫ π

0
(|Ĥϕ|2 + |Ĥθ |2)r2 sin θdθdϕ.

(43)

Then, the radiation resistance is calculated by

RR
k =
|Îk |2
2PR

k

. (44)

To add the damping factor of the k-th mode for the ra-
diation, we assume that K−1L−1K is approximately diagonal
and introduce a diagonal resistance matrix RR that has RR

k as
the diagonal components. Then, Eq. (35) with the radiation
loss is expressed as

(−ω21 + jωK−1L−1KRR + K−1L−1UT PUK)K−1 Î

= −jωK−1L−1V̂
E
. (45)

This is the complete equivalent-circuit model including the
radiation. The damping of the k-th mode is estimated
by the k-th diagonal component of the diagonal matrix
K−1L−1KRR.

4.2 Estimation of Meta-Atoms

Equation (45) gives not only the resonant frequencies and
modes but also the current induced by an external incident
field. Here, we show an example of the estimation of the
geometric layout for meta-atoms that consist of three wires,
as shown in Fig. 9. “Type” in Fig. 9 represents the form of
the meta-atoms, and (a), (b), and (c) represent the differ-
ence in the excitation by a linearly polarized plane wave.
A comparison of the resonant frequencies, external excita-
tions, radiation resistances, and damping of the lowest mode
by calculating the ratio to Type I is shown in Fig. 10. The
damping is estimated by the diagonal component of the ma-
trix K−1L−1KRR.

Although the difference in the resonant frequencies is
small, the orthogonalized wires decreases the inductance,
and the resonant frequencies increase. The external excita-
tion is the strongest for Type I and the weakest for Type IV-
b. The excitation depends on the number of excited wires
and the positional relationship. The radiation resistance and
damping are the largest for Type I and the smallest for Type
IV, and in fact, depend on the coupling of each wire. Thus,
the proposed equivalent-circuit model clarifies the differ-
ences in the electromagnetic behavior that depends on the

Fig. 9 Examples of three-wire structures excited by a linearly polarized
plane wave.

Fig. 10 Comparison of the resonant frequencies, external excitations, ra-
diation resistances, and damping of the lowest mode (using the ratio to
Type I).

geometric layout of the meta-atoms.

4.3 Frequency Characteristics of a Meta-Atom

We show an example of the frequency characteristics Î2(ω)
for Type IV-b in Fig. 11. The characteristics include all
of the modes from the equivalent-circuit model; however,
Mode 2 in Fig. 8 is not excited for this excitation. The re-
sults from the electromagnetic field simulation with an FIT
are also shown in Fig. 11. It is noted that the results from
the proposed model are obtained by using simultaneous lin-
ear algebraic equations only with 3 unknowns. Although the
equivalent-circuit model is very simple, it provides good ap-
proximation. The difference between the resonant frequen-
cies of the proposed model and that of the electromagnetic
simulation in Fig. 10 for Mode 3 in Fig. 8 is larger than that
for Mode 1. The assumption of uniform current distribu-
tion in the wires provides a better approximation for lower
frequency based on the condition l � λ between the wire
length l and wavelength λ of the incident wave.

5. Conclusion

We have proposed a systematic method for deriving an
equivalent-circuit model from Maxwell’s equations for a
structure of wired metallic spheres using the PEEC method
under some restrictions. This approach led to a very sim-
ple equivalent circuit that has a small degree of freedom and
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Fig. 11 Comparison of the frequency characteristics of the current Î2(ω)
for Type IV-b.

the same incidence matrix as the topology of the wires. We
also modeled the radiation loss using the radiation resistance
with respect to each mode. The equivalent-circuit model
provided the resonant frequencies, the resonant modes, the
distribution of the current induced in the wires by an exter-
nal excitation, and so on. Although the model was obtained
by a very coarse discretization, it provides a good agreement
with the electromagnetic simulation.
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