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Abstract
A new method is proposed for generating projections for sparse populations by 
locality, age cohort and gender. An adaptation of the cohort replacement method, 
the approach uses a Tobit model with varying censoring limits to model population 
changes by cohort. As an applied example, projections are generated for 2016 Indig-
enous populations in communities in regional and remote Australia, and then com-
pared to actual 2016 Census population counts. We argue the approach has consid-
erable potential, with the model performing well in out-of-sample projection while 
offering projections at a much finer-grained level of disaggregation than currently 
available to planners and policy-makers.

Keywords  Population modelling · Population projections · Cohort replacement · 
Regional and remote · Indigenous · Australia

JEL Classification  C530 · J110

1  Introduction

Demographers and policy-makers are often faced with the challenge of projecting 
sparse populations in order to plan for the provision of infrastructure and basic ser-
vices. This is especially the case in remote regions within a country. Without accu-
rate spatial information regarding current and future population levels, it is almost 
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impossible to appropriately plan the provision of utilities and services such as water, 
housing, health and education. In this paper, we propose a new empirical approach 
to modelling sparse populations, illustrated through its application to projecting 
Indigenous populations of communities in regional and remote Australia.

By way of context, substantial disparities between Indigenous and non-Indige-
nous populations exist across virtually all indicators of social and economic well-
being (Steering Committee for the Review of Government Service Provision 2016). 
The role of remoteness in narratives surrounding Indigenous disadvantage is both 
pivotal and controversial. Relative to other Australians, a far higher proportion of 
the Indigenous population—consisting of Aboriginal and Torres Strait Islander peo-
ples—is found in remote areas of the continent. While large population centres offer 
greater access to services, infrastructure and labour market opportunity, for many 
Indigenous Australians those centres cannot offer the connections to homelands, 
culture and kinship networks intrinsic to their well-being.

Australia’s current policy discourse includes reservations over the sustainability 
of remote Indigenous communities. Implicitly, and in some cases explicitly, it seems 
governments would prefer a rationalisation of these communities, with migration 
out of the smaller and more remote communities, and their eventual disappearance 
(see, for example, NT-Government 2009; Regional-Services-Reform-Unit 2016). 
Clearly the effectiveness of policy and funding allocations for remote communities 
relies upon a degree of consistency between assumed and actual population trends. 
That is, there is a paramount need for separate projections for the Indigenous pop-
ulation as a result of their vastly differing demography, service requirements and 
migration patterns relative to the mainstream population (Taylor et al. 2006; Wilson 
2009; Raymer et al. 2017). Projections of the age structure of individual communi-
ties are important in determining the likely mix of services required, such as the 
number of school places and aged care facilities. As set out in the following section, 
such forecasting exercises are inherently difficult for sparse populations, with added 
complications in the context of Australia’s Indigenous population. No projections 
currently exist at the community level to guide policy and planning.

2 � Background

The Census of Population and Housing, conducted every 5 years by the Austral-
ian Bureau of Statistics (ABS), is the principal source of estimates of Australia’s 
population and its demographic composition. It is also the main means by which the 
Indigenous population is counted, and since 1971, the intention has been for a full 
enumeration of that population (Wilson 2009). The 2011 Census recorded 548,000 
people of Aboriginal or Torres Strait Islander descent, representing 2.5% of the total 
population. Table  1 shows how the Indigenous share of the population increases 
with remoteness. Only 34% of Indigenous Australians lived in major cities and 14% 
lived in areas classified as Very remote. In contrast, 71% of other Australians lived 
in major cities and less than 1% in areas classified as Very remote. So while Indig-
enous Australians made up around 2.5% of the overall population in 2011, they rep-
resented almost 41% of people living in Very remote Australia.
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One of the main approaches to population projection is the cohort component 
method (see Booth 2006 for a review). For given age cohorts in a base year, assump-
tions regarding deaths, births, immigration and emigration are applied to arrive at pro-
jections for that group at a future point in time. For a range of reasons, applying this 
method to project Indigenous populations in remote communities, which is done in this 
study, is fraught with additional complications likely to compound projection errors.

First, the accuracy of even the baseline data is questionable. There is evidence 
that earlier censuses undercounted young children and young to middle-aged adults, 
with inaccuracies more pronounced in remote areas (Taylor 1997). Despite consid-
erable efforts on the part of the ABS, such problems persisted for more recent cen-
suses (Wilson and Barnes 2007). In the 2011 Census, and again in 2016, there were 
twice as many people for whom Indigenous status was not stated as there were peo-
ple who identified as being of Aboriginal or Torres Strait Islander descent, meaning 
error margins around those population estimates are very large.

The issue of identification creates a further source of population change within a 
cohort in addition to the three standard components of mortality, fertility and migra-
tion. This includes the question of how children from mixed families are likely to be 
identified, or identify themselves, in future censuses and the impact of policy changes 
on the propensity to identify (Taylor 1997; Wilson 2009; Biddle and Wilson 2013; 
Raymer et al. 2018). These challenges are specific to the enumeration of Indigenous 
Australians. On top of these, Taylor (2014) notes general problems associated with 
projecting populations for sparsely populated areas, including that they are more vul-
nerable to vagaries of exogenous impacts, such as weather events and policy changes; 
data collection is more resource-intensive; and proportional errors in projections tend 
to increase the smaller the population size of the units being analysed and if there is 
rapid change occurring in the period in which baseline data are compiled.

Further, most projection methodologies are based on the assumption of large 
population counts and cannot be applied to small populations. Taylor et al. (2006) 
suggest a regional population size of around 10,000 people is required to meaning-
fully apply age-conditional mortality analyses. Wilson (2011) suggests that expo-
nential models have favourable properties over linear ones. However, if there are 

Table 1   Australian population estimates by Indigenous status and remoteness, 2011 census Source: ABS 
CData online table builder facility

Columns sum to less than the total as the categories of migratory–offshore–shipping and no usual 
address have not been reported. Rows do not sum, as people for whom Aboriginal and Torres Strait 
Islander status was not stated have not been reported

Remoteness area (ARIA level) Indigenous Non-Indigenous Total Indigenous share

People % People % People %

Major cities (1) 188,537 34.4 14,094,903 70.8 15,006,519 69.8 1.3
Inner regional (2) 121,301 22.1 3,695,423 18.6 3,998,424 18.6 3
Outer regional (3) 118,491 21.6 1,735,627 8.7 1,963,404 9.1 6
Remote (4) 39,751 7.2 234,833 1.2 300,107 1.4 13.2
Very remote (5) 77,493 14.1 98,564 0.5 190,266 0.9 40.7
Total 548,366 100 19,900,767 100 21,507,719 100 2.5



	 A. M. Dockery et al.

1 3

zero counts in any component gender-by-age categories exponential models cannot 
be used, and inferences can be distorted by extreme values in terms of percentage 
change where counts are small.

An example of how these difficulties impact upon population forecasts for 
sparsely populated areas is provided by Taylor (2014)’s assessment of the accuracy 
of ABS projections for the Northern Territory from the 1970s through to 2012. Even 
at this territory level, Taylor (2014) found the mean absolute percentage errors in 
the ABS projections to be far higher than for Australia as a whole. Several rela-
tively naive models, based on simple extrapolation of growth trends, outperformed 
the more sophisticated ABS cohort replacement model.

Most projections of the Indigenous population provide estimates at the national or 
state/territory level (see Wilson 2009). Taylor et al. (2006) nominate methodological 
developments in the treatment of small areas and subsequent small number analysis 
as a key imperative to improving demographic information for the Indigenous popu-
lation in desert Australia. To the best of our knowledge, the smallest level at which 
projections of the Indigenous population have been provided in existing studies is 
from Biddle and Taylor (2009), covering 37 ABS-defined Indigenous Regions with 
as few as 2248 people, followed by projections from Taylor and Bell (2002) for the 
Cape York Peninsula with a baseline Indigenous population of 6500.

In contrast, the purpose of this research is to produce population projections for 
communities with as few as nine inhabitants and to apply this to remote Indigenous 
communities. This paper defines a modelling approach that has been developed specif-
ically to deal with small population counts, and focuses on an intercensus (5-year) pro-
jection horizon. It thus aims to provide projections at a spatial level and time horizon 
crucial for policy formulation and planning, and where none currently exist. We note 
that although we are projecting Census estimates, this is of more policy relevance as it 
is exactly these numbers which form the basis for funding and other policy decisions.

3 � Data

This study models intercensal changes based on the ABS-defined geography of 
Indigenous Locations:

Indigenous Locations (ILOCs) are aggregates of one or more Statistical Areas 
(Level 1). ILOCs generally represent small Aboriginal and Torres Strait 
Islander communities with a minimum population of 90 Aboriginal and Tor-
res Strait Islander usual residents. An ILOC is an area designed to allow the 
production of census statistics relating to Aboriginal and Torres Strait Islander 
people with a high level of spatial accuracy while maintaining the confiden-
tiality of individuals. For the 2011 Census, 1116 ILOCs have been defined 
to cover the whole of geographic Australia. There are non-spatial ILOCs for 
migratory–offshore–shipping and no usual address in each state and territory 
(ABS 2011).

The approach is to develop an empirical model of the 2011 Indigenous population 
counts for communities based on 2006 Census counts and selected characteristics 
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of the communities. With the census undertaken every 5 years, and data available 
in 5-year age ranges, population changes for each community can be derived by age 
group. Census population estimates were downloaded from the ABS Table Builder 
online facility for all 1098 spatial ILOCs defined in 2011 and 838 spatial ILOCs 
defined for 2006. Data extracted for each ILOC include the population in 5-year age 
groups by sex and Indigenous status. An ABS-provided concordance was used to 
generate 2006 population estimates corresponding to the 2011 geography.

The resulting data include 2006 and 2011 population estimates for 1098 ILOCs 
that are geographically comparable between the 2 years. Census counts of the num-
ber of people identifying as Aboriginal, Torres Strait Islander or both Aboriginal 
and Torres Strait Islander were aggregated to a single Indigenous population esti-
mate. For each ILOC in each census year, population data are available for 42 gen-
der-by-age cohorts: 21 age groups (0–4, 5–9, ..., 95–99, 100+) each for males and 
females. For the older cohorts, a large proportion of these cells have either zero or 
very small population counts, and these were aggregated as shown in Fig. 1.

A key motivation was to generate projections for remote Indigenous communi-
ties. Given that population changes in the major cities and regional centres are likely 
to be driven by markedly different processes, only ILOCs in outer regional, Remote 
and Very remote Australia were included in the sample for estimation (correspond-
ing to Accessibility/Remoteness Index of Australia [ARIA] levels of 3, 4 and 5). A 
small number of other ILOCs were excluded due to the fact that there were almost 
no Indigenous persons present at the time of the census. These exclusions were Lord 
Howe Island, Christmas Island, Cocos Islands and Apatula (Finke) Homelands and 
Walungurru Outstations (NT).

The final sample is based on data from 618 ILOCs, generating 19,776 obser-
vations for the regression analysis (32 observed cohort changes per ILOC). Also 
included in the model is the natural logarithm of the total population of the ILOC 
(including non-Indigenous people) to capture differences by community size; 
dummy variables for cohort age, gender, ARIA and state/territory; the gender- and 
age-specific 5-year survival rate for each cohort; and interaction terms between age 
group and ILOC size, and between age group and ARIA.

It is worth mentioning that census data used in this analysis have been checked 
for quality. Two measures of data quality in a census are response rates and under-
counting. For the 2016 census, the response rate was 95.1% and the net undercount 
was 1%. This is a good result when compared to other countries such as Canada, 
UK and New Zealand. With regard to Indigenous populations, The Census is the 
only comprehensive source of small area data on the Aboriginal and Torres Strait 
Islander population (ABS 2018).

Fig. 1   Cohort structure of the census population data
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4 � Method

Following the cohort component approach, note that the number of Indigenous per-
sons aged 5–9 in a given ILOC in 2011 will be the number who were aged 0–4 
in 2006 minus deaths, net migration (includes internal migration) and net changes 
associated with identification of Indigenous status.1 The data set-up is demonstrated 
in Fig. 1, where the arrows trace the cohort movement through time. Using j to index 
the age group categories, it can be seen that there are 16 such cohort progressions or 
flows in which the population (P) in 2011 (t) can be related to the population in the 
earlier age category in 2006 ( t − 1):

With population data for males and females, this gives 32 flows observed for each 
ILOC. This can be treated as a multi-level regression framework in which there are 
32 observations for each ILOC. Following the convention in the econometric multi-
level modelling literature (Rabe-Hesketh and Skrondal 2008,  p. 65), the entity or 
cluster is denoted by subscript i and the occasions providing repeat observations for 
that cluster by subscript j. Hence, in this case communities are denoted by subscript 
i (i = 1–618) and the 2011 age groups by subscript j (j = 2–17). For convenience, 
the gender distinction is ignored for the purposes of setting out the model. From 
Eq. 1, a modelling framework can be developed which incorporates clustering at the 
ILOC level,

At this stage, the cohort model does not take into account any changes in popula-
tion due to births, deaths, migration and identification issues of Indigenous individu-
als. However, clearly all of these components will affect observed population levels. 
In the empirical approach described more fully below, we have an explicit fertility 
model to account for the former, and we include death rates in the model to address 
the second issue. However, it is not clear how to address the final two points in the 
empirical strategy, and therefore, we make the assumption that these rates are rela-
tively constant over time, such that when we model changes (see below) in popula-
tion levels, such systematic biases in the population level counts are effectively “dif-
ferenced out”.

Here, we suggest that the functional relationship between Pijt and Pi,j−1,t−1 can be 
estimated taking into account both observable and unobservable ILOC character-
istics and effects. A range of options are available for modelling changes in cohort 
populations between 2006 and 2011. Exploration of these indicated that it is prefer-
able to model changes in linear terms (or levels) rather than in growth terms. Models 
based on proportionate change are highly sensitive to extreme values that mostly 
arise where cell counts are small. For example, percentage changes in some age cat-
egories in smaller communities were in the thousands and are likely to be affected 

(1)Pj−1,t−1 → Pjt.

(2)Pijt = f (Pi,j−1,t−1).

1  It is assumed that the net migration rates are constant over the short to medium term.
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by concordance and enumeration issues. Modelling changes in growth rates also 
means omitting observations for which the base number is zero, even though that is 
a legitimate and common value.

However, modelling current population levels as a function of past levels, espe-
cially over a short number of time observations, raises several econometric con-
cerns, such as endogeneity, non-stationarity and the spurious regression problem. 
Indeed, in a simple regression, the lagged dependent variable clearly exhibited signs 
of these issues, with the estimated coefficient being very close to unity in value and 
with an extremely high t-statistic. Thus, the preferred strategy is to model the change 
in population for each cohort. That is, the dependent variable becomes:

As such there are 32 observations of cijt for each ILOC ( i = 2 to 17 for males and 
females). Referring back to Fig. 1, the model estimates changes in the population of 
people aged 5–9 in 2011 from the number aged 0–4 in 2006; of people aged 10–14 
in 2011 from the number aged 5–9 in 2006; and so on. However, it cannot provide 
estimates for the population aged 0–4 in 2011, as there is no younger cohort in 2006 
to use as the baseline. To enable projections for the total populations by ILOC, a 
separate fertility model is developed to generate estimates of the number of males 
and females aged 0–4 in 2016, which we detail below.

4.1 � Apparent fertility rates

Regarding fertility trends for Indigenous Australians, these have been decreas-
ing overall for both remote and non-remote regions. Additionally, the biggest drop 
has occurred in the 15–19 age group. Researchers have attributed this change to 
increased educational attainment (Venn and Dinku 2019). The evidence also seems 
to suggest that the Indigenous fertility rates are converging to non-Indigenous rates 
over time. Based on this, we attempt to model the fertility component of the pro-
posed population model.

To develop a model to predict the Indigenous population aged 0–4 in each ILOC, 
a linear regression model was estimated across ILOCs with the 2011 Indigenous 
population aged 0–4 as the dependent variable. Models were tested with a variety of 
specifications that included summations of the male and female Indigenous popula-
tions in the ILOC in 2006, initially focusing on what were considered to be adults 
of childbearing age. However, experimenting with which age groups to include and 
allowing differential effects by age and by region to maximise the model fit returned 
the relatively simple model set out in Eq. (4). A model that included the number of 
Indigenous children aged 0–14 in the ILOC in 2006 interacted with ARIA dummies 
was found to have the best predictive capability. For the full sample of ILOCs across 
all of Australia, the model returned an adjusted R-squared of 0.9599.

The number of Indigenous males aged 15–34 marginally added to the predic-
tive power, but this component of the model applied only to projections for ILOCs 
in the major cities (i.e. ARIA level 1). For ILOCs in outer regional, Remote and 

(3)cijt = Pijt − Pi,j−1,t−1.
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Very remote Australia, the predicted number of Indigenous people aged 0–4 years is 
given by:

where P1,P2 and P3 denote the Indigenous population aged 0–4, 5–9 and 10–14, 
respectively. OREG, REM and VREM are dummy variables indicating that the 
ILOC is in outer regional, Remote and Very remote Australia. In the estimated 
model of the 2011 population on 2006 values, each of the estimated coefficients 
(including the intercept term) was significant at the 1% level. The coefficients were 
applied to the 2011 data to obtain projections for the population aged 0–4 in 2016 
for each ILOC in our analysis sample. The projected population was allocated as 
50% boys and 50% girls. The cases where the predicted population was negative, the 
projection was set to zero.

4.2 � Statistical model

Stochastically then, population changes can be modelled as:

and �i,j,t−1 represents a vector containing the independent variables (all defined in 
the base year 2006); � is a vector of coefficients to be estimated; ui and �j denote 
the unobservable community-level (ILOC) and cohort effects. Lastly, �ijt denotes the 
usual errors in the model.

The above model (Eq. 5) can be estimated by simple linear regression. However, 
this is not appropriate for the “small numbers” model we are dealing with here, as 
the data will be necessarily truncated in many instances as the dependent variable 
has an effective lower bound. That is, any population cannot decrease by more than 
the starting value. For example, consider an ILOC with five Indigenous males aged 
20–24 in 2006. The change in the population from 2006 to 2011 can only range 
from −5 upwards, given that the population of males aged 25–29 in 2011 cannot be 
less than zero.

Note also that if the population of males aged 25–29 in 2011 is also five, then 
there has been no change and the dependent variable cijt equals zero. This zero 
is a legitimate value indicating no change in the population, and indeed in any 
estimation, the expected value of cijt would (should) accordingly be close to zero. 
However, consider the case in which there are no individuals in a particular age-
by-gender category in 2006, as is common for older age cohorts. In this case, the 
population can increase (cijt > 0) , but has a lower bound of zero, and the prob-
ability of observing zero change is much higher than for observations with a posi-
tive initial population. In such situations where there is a ‘latent’ potential change 
in the population that cannot be observed because of the effective lower bound, 
linear regression models will produce biased and inconsistent results, which will 

(4)

P1,j,t = −2.37 + 0.42 ∗ OREGj

3
∑

i=1

Pi,j,t−1 + 0.35 ∗ REMj

3
∑

i=1

Pi,j,t−1 + 0.35 ∗ VREMj

3
∑

i=1

Pi,j,t−1,

(5)cijt = �

�

i,j,t−1
� + ui + �j + �ijt where �ijt ∼ N(0, �2)
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worsen with the extent of such censoring/boundary observations (Amemiya 1984; 
Greene 2003).

A preferable approach is to implement a Tobit model with varying censor-
ing limits. As noted above, in the current context the limit is equal to the 2006 
population for a specific gender-by-age group at a given ILOC. This differs from 
the usual Tobit model set-up, where lower (and/or upper) limits are usually fixed 
(commonly at zero) and the same for all observations in the sample.

To be clear, a standard Tobit model typically has a fixed lower (upper) limit, 
which is often a lower bound at zero. However, in the suggested approach, as 
alluded to above, the situation here is subtly, but importantly, different. With 
a starting population of X (with X ≥ 0 ), then (the negative of) this provides an 
effective lower bound for the change in the next period: by definition, the change 
cannot be −Y  where |Y| > X as it is not possible to have negative actual pop-
ulation levels. That is, while population changes can lie anywhere on the real 
number line, population levels must be strictly ≥ 0 . However, this latter condi-
tion has direct implications for the allowable range of the former. Unfortunately, 
the situation is somewhat complicated here as in the cohort component model 
employed—as defined by Eqs. (1) and (2)—the cohort necessarily ages from j − 1 
to j, as in equation (3). In this way, each cijt observation faces an effective, and 
binding, lower bound of not −Pi,j,t−1 , but −Pi,j−1,t−1 , due to the necessary ageing of 
the cohort. Thus, the usual fixed lower limit Tobit model has to be amended to an 
observation-varying one defined by the variable −Pi,j−1,t−1.

The previous model (Eq. 5) can be updated to reflect this possible censoring as

and c∗
ijt

 now denotes the latent underlying change in ILOC i for age group j at time t 
(2011). However, this cannot be fully observed due to the fact that the change cannot 
be less than the current population. In other words, there is lower tail censoring such 
that only cijt is observed. Hence,

In contrast to the standard Tobit model in which the lower limit is assumed to be a 
fixed value for all i and j, the proposed framework contains the 2006 population as a 
varying lower limit for each observation. Like the linear model, the Tobit model can 
be estimated assuming either random or fixed effects, although the latter will suffer 
from the well-known incidental parameters problem, if the dimension over which 
these are constant is ’small’ (Greene 2012). Additionally, estimating fixed effects for 
a large number of ILOCs (over 600) is problematic. With regard to modelling cohort 
effects, these were incorporated into the explanatory variables. Hence, after exten-
sive modelling, it was established that the Tobit model with random effects provided 
a better fit.

The data used for developing the model contains only one observation on each cijt , 
i.e. the change from 2006 ( t − 1 ) to 2011 (t). In this sense, the model is cross-sectional 
rather than longitudinal, and as such, the time subscript can be omitted. With 2016 

(6)c∗
ijt
= �i + �

�

i,j,t−1
� + �ijt where �ijt ∼ N

(

0, �2
)

(7)if c∗
ijt
< −Pi,j−1,t−1 then cijt = −Pi,j−1,t−1.
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Census data now available, further work is planned to move to a true multi-level panel 
structure that should provide more rigorous estimation of community-level unobserved 
effects. For now, the random-effects Tobit model can be expressed as

Following usual practice, the identifying assumption is that �ij and ui are both nor-
mally distributed, with zero means and variances of �2 and �2 , respectively. The 
data are observed as cij = max(Lij, c

∗
ij
) where Lij = −Pi,j−1 . In this context, this is an 

example of lower tail censoring: the change in population in the next time period 
cannot be less than the number of people (in an age group) currently residing in the 
ILOC. As per usual, the �ij is assumed to be uncorrelated across ILOCs. To derive 
the log likelihood function, the focus here is on the conditional distribution of 
f (cij|ui) . Let the dummy variable, dij = 1 indicate that cij > Lij . This is the uncen-
sored case and dij = 0 for censored cases. Based on the above identifying assump-
tions, the conditional density of cij can then be expressed as

for censored cases and

for uncensored cases (Greene 2012), where Φ and � , respectively, denote the c.d.f 
and p.d.f of the standardised normal distribution. Combining the above two cases,

Assuming independence, the joint density of all observations in a group can be 
expressed as

Based on the above results, the log likelihood function of this model can be written 
as

(8)c∗
ij
= �

�

ij
� + �ij + ui.

f (cij|ui, dij = 0) = P(c∗
ij
≤ Lij|ui) = Φ

(

Lij − �

�

ij
� − ui

�

)

f (cij|ui, dij = 1) =
1

�
�

(

cij − �

�

ij
� − ui

�

)

f (cij|ui) = [f (cij|ui, dij = 0)]1−dij × [f (cij|ui, dij = 1)]dij .

f (ci1, ci2,… , ciTj |ui) =

Tj
∏

j=1

f (cij|ui).

log L =

n
�

i=1

log

⎧

⎪

⎨

⎪

⎩

∫
∞

−∞

1

�
√

2�
exp

�

−
ui

2�2

�

Tj
�

j=1

⎡

⎢

⎢

⎣

Φ

⎛

⎜

⎜

⎝

Lij − �

�

ij
� − ui

�

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

1−dij
⎡

⎢

⎢

⎣

1

�
�

⎛

⎜

⎜

⎝
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ij
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�
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⎟
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⎠

⎤

⎥
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⎦

dij

dui
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⎪

⎬

⎪
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Lastly, find values of �, � and � such that this function is maximised. The integrals 
can be computed using Gauss–Hermite quadrature (or by simulation) and the func-
tion can be maximised using standard nonlinear optimisation methods.2

We note that although the above statistical models are rather complex, they can 
be estimated routinely in standard commercial software. For example, here we used 
the Limdep/Nlogit version 6 package, although Stata version 16 could also be used. 
For these reasons, the suggested approach is easy to use and implement, and could 
therefore be widely applicable to any other research areas characterised by sparse 
populations.

In order to model change, several variables were considered. For example, a pri-
ori one can expect the initial population size of the ILOC to be a factor that affects 
change. In addition to this, age group, remoteness level, state and gender are also 
factors. Furthermore, the interaction terms are included to allow for possible differ-
ential effects of age by ILOC size and remoteness. Previous studies have identified 
trends in which younger Indigenous people tend to move away from smaller, more 
remote communities into larger regional centres, while older people tend to move 
back to country (Biddle 2009). As such, we tested all available variables and vari-
ous interaction terms to allow for a flexible specification. The results indicated that 
interaction terms were clearly preferred since majority of them were significant. For 
example, in the case of ILOC size and age group, 11 of interaction terms are signifi-
cant out of 15 possible terms.

A dummy variable was also included to indicate whether the community was 
nominated as a Territory Growth Town under the Northern Territory Governments’ 
2009 Working Future policy (Sanders 2010).

Also included in the model as a covariate are survival rates for each age group 
(taken from separately available ABS projections of the total Indigenous population 
by age). As expected, these rates are an important factor for modelling population 
change. The survival rates are calculated for each gender and age group. It is the 
ratio of the number of individuals in age group i at time t to the number of individu-
als in age group i − 1 at time t − 1 . The survival rates are close to unity for younger 
cohorts and decline to under 0.7 for cohorts beyond the age of 70 years. Not surpris-
ingly, this variable is highly significant in the final model. Note that we assume the 
survival rates for each gender and age group are constant over the short to medium 
term. For further details on all the variables included in the model, please refer to 
Table 2. Descriptive statistics for all variables are provided in “Appendix 1”.

5 � Results

The model coefficients and standard errors of the Tobit model with varying 
lower limits are provided in “Appendix 2”. Note that these results pertain to 
the pooled version of the model. Having conditioned on all the observed het-
erogeneity, there seemed to be very little remaining unobserved heterogeneity 

2  The results for these are available upon request.
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Table 2   Definitions of variables in the data set

Variable(s) Description

ILOC size The natural logarithm of the resident total popula-
tion of the ILOC in 2006 (including Indigenous, 
other Australians and those for whom Indigenous 
status is not stated)

Remote, Very remote Two mutually exclusive dummy variables indicating 
whether the ILOC is in ARIA level 4 (Remote) or 
ARIA level 5 (Very remote). The omitted or ‘ref-
erence’ category is outer regional (ARIA level 3)

Victoria, Queensland, South Australia, Western 
Australia, Tasmania, Northern Territory

Six mutually exclusive dummy variables indicat-
ing the state or territory of the ILOC. New South 
Wales is the omitted category. There are no outer 
regional, Remote or Very remote ILOCs in the 
Australian Capital Territory

Female Dummy variable is equal to 1 if the observation is 
for a female cohort and is equal to 0 if it relates to 
a male cohort

Growth town Dummy variable taking on a value of 1 if the ILOC 
contains or corresponds to one of the communities 
nominated as growth towns under the Northern 
Territory Government’s Working Future policy 
announced in 2009. While the policy named 20 
towns, one of these (Daguragu–Kalkarindji) falls 
across two ILOCs (Daguragu and Kalkarindji), 
meaning there are 21 ILOCs coded with a value 
of 1

Age 10–14; Age 15–19, ... Age 75–79, Age 80+ Sixteen mutually exclusive dummy variables indi-
cating the age of the cohort in 2011. The omitted 
category is age 5–9

Survival rate Based on ABS Catalogue 3238.0—Estimated and 
projected Aboriginal and Torres Strait Islander 
population Series B for Australia (ABS 2014). 
The ratio of the estimated population in each age 
cohort i in 2011 to the estimated population of age 
cohort i − 1 in 2006. This gives an age-specific 
apparent survival rate and is calculated separately 
for males and females

ILOC size*age interaction terms Fifteen separate variables are generated by interact-
ing the continuous ILOC size variable with the 
age group dummies. The omitted age category is 
age 5–9. The coefficients on these variables indi-
cate whether, within each specific age group, there 
is any further effect of community size in addition 
to the average effect of community size observed 
across all age cohorts
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(at the ILOC level) such that statistically the pooled version of the Tobit model 
was preferred. The model specification consisted of ILOC size, survival rate for 
each age cohort, dummy variables for gender, level of remoteness, state and age 
cohort (to capture heterogeneity across age groups). Also included in the model 
were interaction terms between age cohorts, ILOC size and remoteness levels. In 
addition to this, a policy variable (growth town) was also included in the model. 
Given these variables, the model’s primary purpose was to generate population 
projections. Based on the results presented, the significant drivers of the model 
include ILOC population size, survival rate, some of the age cohort dummies 
and most of the interaction terms.

The proposed Tobit model does perform better than a simpler specification such 
as a linear regression model. The added feature of censoring through varying lower 
limits enables the proposed model to always produce meaningful predictions. A 
comparison between the proposed model and the simple model was made. This was 
done by comparing the predictions resulting from both models to actual values. The 
correlation coefficient for actual versus fitted values from the simple model was 23% 
versus 33% for the proposed model. Additionally, the simple model predicts nonsen-
sical results for 15% of the observations. This implies that the change in population 
numbers for a given age group is larger than the censored value. As such, the simple 
model predicts a change that is not possible. The proposed model accommodates 
the censored value and hence produces a meaningful prediction. Indeed, for obser-
vations where the change in population is equal to their lower limit, i.e. censored 
cases (30% of all cases), the correlation between actual versus fitted is 61% for the 
proposed model versus 3% of the simple model. Thus, the proposed model clearly 
provides a significantly better specification.

6 � Out‑of‑sample Projections

The development sample for the proposed model was 2006 to 2011. The result-
ing model was used to conduct in-sample testing as well as out-of-sample testing. 
Both in-sample and out-of-sample testing shows that the proposed model can cap-
ture trends across one and two census horizons. In-sample testing consists of simply 

Table 2   (continued)

Variable(s) Description

Outer regional × age and Remote × age interac-
tion terms

Thirty separate dummy variables generated by 
interacting the outer regional dummy variable 
(ARIA level 3) with age cohort and the Remote 
dummy variable (ARIA level 4) with age cohort. 
The omitted categories are Very remote (ARIA 
level 5) and Age 5–9. The coefficients on these 
variables indicate whether, within each specific 
age group, there is any further effect of remote-
ness in addition to the average effects observed 
across all age cohorts
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adding the predicted change to the actual 2006 values to obtain the predicted popu-
lation numbers for 2011 and then comparing these values to actual population num-
bers for 2011 for all age groups across all ILOCS. Figure 2 shows the actual 2011 
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Fig. 2   Actual 2011 values versus predicted 2011 values
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values versus predicted 2011 values produced by the Tobit model for all 19,776 
ILOC-by-gender-by-age cases.

The critical test of the methodology is how well it performs in out-of-sample 
prediction of the Indigenous populations. Recall the model is developed using 
only data from the 2006 and 2011 Censuses. Applying the estimated coefficients 
from the cohort and fertility models to the 2011 data, including estimated ILOC-
specific effects, generates projections of the 2016 populations by gender and 5-year 
age group for every ILOC. These can simply be summed to produce predictions of 
the total 2016 population for each ILOC, or to other aggregated levels. The release 
of the 2016 Census by Indigenous geography subsequent to the model develop-
ment provides actual population outcomes against which to compare the model 
predictions.3

As set out above, the model has been developed to enable use of panel tech-
niques. In its current application, however, we have only one observation on popu-
lation changes (the cijts). So while we exploit the availability of data in two time 
periods to calculate population changes between 2006 and 2011, the estimation is 
a cross-sectional one. In our data, the aggregate Indigenous population across the 
regional and remote ILOCs increased by 13.4 per cent from 2006 to 2011. By con-
struction, the model projects forward broadly similar growth from 2011 to 2016, 
at 14.8 per cent. The actual change in the Census count of the Indigenous popula-
tions from 2011 to 2016 turned out to be an increase of just 3.2 per cent. Hence, at 
the aggregate level, we over-predict the population. However, comparison of actual 
versus predicted outcomes shows that the model performs extremely well in picking 
up key trends. Table 3 shows that this over-prediction at the aggregate level is evi-
dent at each ARIA level, but the general pattern is replicated with population growth 
predicted to be strongest in outer regional Australia and lower in Remote and Very 
Remote Australia, with the latter the lowest by a small margin.

Table 3   Indigenous populations: 2006 and 2011 census estimates and 2016 projections, by remoteness

ARIA No. of ILOCs Population Pop. growth (%)

Actual Predicted 2006–
2011 
Actual

2011–2016 
predicted

2011–2016 actual

3-Outer regional 245 126,142 139,953 19.4 19.7 7.9
4-Remote 95 38,412 43,073 9.5 10.6 − 1.3
5-Very remote 278 75,947 84,384 7.1 9.3 − 1.6
Total 618 240,501 267,409 13.4 14.8 3.2

3  There were a number of changes to the ILOC boundaries between the 2011 and 2016 Censuses. In 
two cases, two 2011 ILOCs were amalgamated to a single ILOC in the 2016 data, while in two other 
cases the reverse occurred—a single 2011 ILOC was split into two 2016 ILOCs. Either the baseline data 
or projections were aggregated to ensure comparability of actual and predicted populations. However, 
adjustments have not been made for numerous fractional concordance changes for ILOCs existing in both 
the 2011 and 2016 data.
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For the individual ILOC-by-gender-by-age cells, the average difference between 
the actual and predicted population values is −1.37 persons, reflecting the noted 
over-prediction of populations in aggregate. The correlation between actual and pre-
dicted values is approximately 0.95. As can be seen in the actual versus predicted 
plot (Fig. 3), the model predictions are around the 45-degree line (shown in red), 
suggesting minimal systematic bias.

More importantly, the model does a remarkable job in accurately predicting small 
populations. In fact, there are seven cases where the actual outcome is equal to zero 
and the model predicts exactly that. Furthermore, if the least accurate 1% of the pre-
dictions are removed, the maximum and minimum differences between actual versus 
predicted outcomes improve significantly: the minimum error increases from −96 to 
−25 and the maximum error drops from 134 to 25.

When the projections are aggregated to the ILOC level (Fig.  4), the correla-
tion between the actual and projected populations is 0.983, indicating the model is 
extremely robust in forecasting community population levels over a 5-year horizon.

In terms of the changes in ILOC populations between 2011 and 2016, the cor-
relation between the actual and predicted changes is 0.49 and highly significant 
( p < 0.0001 ). Closer inspection reveals encouraging forecasting successes given the 
random nature of population changes in remote communities. Out of the 616 ILOCs 
for which actual and predicted comparisons can be made, the largest actual increase 
occurred in Thuringowa, a suburban area of Townsville in regional northern Queens-
land, with growth in the Indigenous population of 1605 persons. Remarkably, this 

Fig. 3   Actual 2016 values versus predicted 2016 values
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is also the ILOC projected by the model to have the largest increase, although it 
substantially underestimates the increase at 888 persons. The ILOC projected to 
have the largest decrease in population was remote Miali Brumby–Warlpiri on the 
outskirts of Katherine in the Northern Territory. The Indigenous population was 
projected to decline by 38 persons, compared to an actual decline of 44 persons as 
recorded in the census. However, it must be acknowledged that a number of ILOCs 
experienced much larger declines that were not predicted by the model.

Finally, Fig. 5 shows the actual and projected Indigenous population for regional 
and remote Australia when the ILOC estimates are aggregated to 5-year age groups 
by gender. The structure of the age pyramid is well captured by the projections, with 
the exception of the discord between the 2016 actual and projected number of males 
in the oldest category. Indeed, in this case the actual Census figures seem somewhat 
anomalous to the baseline data, with the number of males aged 75 and over in 2016 
being around two-thirds the number in the 70–74-year age group. In previous years, 
the count of males aged 75+ was in fact larger than the number aged 70–74 years.

The primary policy variable included in the analysis was the indicator of whether 
the ILOC included one of 20 towns nominated as a Northern Territory Growth 
Town. As reported in “Appendix 2”, the coefficient on this variable was negative 
and insignificant, meaning that these towns were associated with population changes 
between 2006 and 2011 no different to what would have been expected given their 
characteristics. Accordingly, the 2016 census indicates that the growth in the pop-
ulation of these ILOCs, at 2.7 per cent, grew marginally slower than the overall 

Fig. 4   Actual 2016 values versus predicted 2016 values at ILOC level
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average. While we do not intend to put great store in this result, it demonstrates 
how variables can be readily incorporated into the framework to assess the impact of 
policy measures.

With regard to longer-term projections, based on our experience, governments at 
all levels (local, state and federal) as well as other policy-makers are all focussed on 
short to midterm population projections. This information is used to assess the feasi-
bility of proposed regional developmental programs. Long-term population projec-
tions appear to be rarely useful in this context. Furthermore, almost all models will 
produce inaccurate long-term forecasts. As such, we produce projections for one and 
two census horizons.

7 � Discussion

This paper proposes an approach for generating population projections at a level 
of spatial and demographic detail that would typically be precluded using existing 
methods because of the small numbers involved. The approach is a variant of the 
cohort replacement model, but focuses on changes in population levels within a 
regression framework. The focus on changes in population levels negates difficul-
ties associated with models based on growth rates when handling small and zero 
population counts. The regression model specification—a Tobit model with varying 
censoring limits—ensures the regression estimates are not biased due to ignoring 
the censored observations, while at the same time eliminating the possibility of the 
model projecting negative populations. The model can be used to generate detailed 
projections and provide additional information of relevance to policy-makers from 

Fig. 5   Age structure of the Indigenous population by gender: actual 2011 and 2016 and forecast 2016
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the effects implied by regression coefficients, such as characteristics associated with 
fast-growing or declining areas.

The approach was developed and used to generate projections of Indigenous pop-
ulations in remote communities in Australia. We use that work as an example of the 
application of the methodology and to test its performance although the approach 
may be applied to other such characterised population profiles, depending on the 
availability of necessary data and scope of application. The techniques, although 
quite complex in nature, can be applied using standard statistical/econometric pack-
ages, making them easy to use and therefore widely applicable across a broad range 
of end-users. Projections of community populations for 2016 by age and gender are 
generated from a model developed with 2006 and 2011 Census data, and the robust-
ness of those projections tested through comparison with subsequently released 
2016 Census data. Given the high degree of randomness in population changes in 
such communities and extensive concordance adjustments required to align the 2006 
and 2011 data, we believe the model is shown to perform remarkably well in out-of-
sample projection, with some scope for further enhancement of the model.

The proposed model was compared to a simple model and it was shown that the 
proposed model clearly outperforms the latter one. Next, the predictions from the 
proposed model were subject to in-sample as well as out-of-sample testing. In both 
cases, the proposed model performed remarkably well as shown in Figs. 2 and 3. 
There are, however, certain factors pertaining to both the data and model which 
could impact the projections. These include issues regarding data accuracy (under-
counting Indigenous populations in the census and identification of Indigenous indi-
viduals) as well as model assumptions on fertility, net migration and death/survival. 
We have attempted to address each of these in most pragmatic way possible.

As noted by Wilson (2011): Probably the logical starting point in the design of 
any projection system is to consider its purpose ...what question or problems does 
it need to solve? What projections are required to solve these problems? And of the 
required outputs, what is the most important and should be prioritised given the 
resources available? Our application responds to a pressing need for sparsely popu-
lated area estimates for practical purposes of policy and planning for remote Aborig-
inal communities and for methodological advances in small number analysis more 
generally to meet the demographic informational needs of Indigenous Australians. 
Existing projections of Australia’s Indigenous population disaggregated by detailed 
age group are available on a regular basis only at the level of the 8 states and ter-
ritories, a far cry from the community level projections possible with this approach.

While demographic projections are often prepared 20, 30 or even 50 years into 
the future, this paper has focused on generating projections 5 years ahead of a 
baseline census, namely projecting 2016 populations based on 2011 data. It is 
quite straightforward to use the method to project to 2021 and beyond, by taking 
those 2016 projections as the baseline and reapplying the model coefficients. Of 
course, projection errors will increase with the forecasting horizon and we would 
have no way yet of testing the accuracy of those projections. In any case, a pro-
jection horizon of around 5 years seems more in line with policy and planning 
cycles impacting upon the Indigenous communities in regional and remote Aus-
tralia, and we suspect that would be true of many other potential applications for 
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this methodology. The approach is also very economical in its resource require-
ments, requiring essentially only past population data by region and age. In our 
example, almost all the input data came from the ABS Census and are publicly 
accessible from the ABS website.

Most importantly, while we have estimated a cross-sectional model, the frame-
work was conceived to be longitudinal in nature. We anticipate that for most 
potential applications analysts would have more extensive time series data availa-
ble and could therefore model additional dimensions of unobserved heterogeneity.

Finally, as is always the case with such projections, we caution that estimates 
for small areas should be interpreted with appropriate recognition of their limita-
tions. Projections based on modelling results for local communities should only 
be used in decision-making following corroboration through alternative data 
sources, local knowledge and local consultation.

Acknowledgements  The work reported in this publication was supported by funding from the Australian 
Government Cooperative Research Centres Program (CRC) through the CRC for Remote Economic Par-
ticipation (REP). The views expressed herein do not necessarily represent the views of the CRC–REP or 
Ninti One Limited or its participants. Errors or omissions remain with the authors.

Compliance with ethical standards 

Conflict of interest  The authors declare that they have no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​
ses/by/4.0/.

Appendix 1: Descriptive statistics for all variables included 
in the regression model ( n = 19,776)

Variable Mean SD Min. Max.

Population change (dep. var.) − 0.0295 6.0961 − 79.71 100.78
ILOC size (log) 6.9704 1.6393 2.17 11.36
Remote 0.1537 0.3607 0 1
Very remote 0.4498 0.4975 0 1
Victoria 0.0162 0.1262 0 1
Queensland 0.2104 0.4076 0 1
South Australia 0.0744 0.2625 0 1
Western Australia 0.2120 0.4087 0 1

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


1 3

A methodology for projecting sparse populations and its…

Variable Mean SD Min. Max.

Tasmania 0.0356 0.1853 0 1
Northern Territory 0.2961 0.4566 0 1
Female 0.5000 0.5000 0 1
Growth town 0.0340 0.1812 0 1
Age 10–14 0.0625 0.2421 0 1
Age 15–19 0.0625 0.2421 0 1
Age 19–24 0.0625 0.2421 0 1
Age 25–29 0.0625 0.2421 0 1
Age 30–34 0.0625 0.2421 0 1
Age 35–39 0.0625 0.2421 0 1
Age 40–44 0.0625 0.2421 0 1
Age 45–49 0.0625 0.2421 0 1
Age 50–54 0.0625 0.2421 0 1
Age 55–59 0.0625 0.2421 0 1
Age 60–64 0.0625 0.2421 0 1
Age 65–69 0.0625 0.2421 0 1
Age 70–74 0.0625 0.2421 0 1
Age 75–79 0.0625 0.2421 0 1
Age 80+ 0.0625 0.2421 0 1

Survival rate 0.9012 0.1252 0.60 1.00
ILOC size × Age 10–14 0.4356 1.7364 0 11.36
ILOC size × Age 15–19 0.4356 1.7364 0 11.36
ILOC size × Age 19–24 0.4356 1.7364 0 11.36
ILOC size × Age 25–29 0.4356 1.7364 0 11.36
ILOC size × Age 30–34 0.4356 1.7364 0 11.36
ILOC size × Age 35–39 0.4356 1.7364 0 11.36
ILOC size × Age 40–44 0.4356 1.7364 0 11.36
ILOC size × Age 45–49 0.4356 1.7364 0 11.36
ILOC size × Age 50–54 0.4356 1.7364 0 11.36
ILOC size × Age 55–59 0.4356 1.7364 0 11.36
ILOC size × Age 60–64 0.4356 1.7364 0 11.36
ILOC size × Age 65–69 0.4356 1.7364 0 11.36
ILOC size × Age 70–74 0.4356 1.7364 0 11.36
ILOC size × Age 75–79 0.4356 1.7364 0 11.36
ILOC size × Age 80+ 0.4356 1.7364 0 11.36
Outer regional × Age 10–14 0.0248 0.1555 0 1
Outer regional × Age 15–19 0.0248 0.1555 0 1
Outer regional × Age 19–24 0.0248 0.1555 0 1
Outer regional × Age 25–29 0.0248 0.1555 0 1
Outer regional × Age 30–34 0.0248 0.1555 0 1
Outer regional × Age 35–39 0.0248 0.1555 0 1
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Outer regional × Age 40–44 0.0248 0.1555 0 1

Outer regional × Age 45–49 0.0248 0.1555 0 1
Outer regional × Age 50–54 0.0248 0.1555 0 1
Outer regional × Age 55–59 0.0248 0.1555 0 1
Outer regional × Age 60–64 0.0248 0.1555 0 1
Outer regional × Age 65–69 0.0248 0.1555 0 1
Outer regional × Age 70–74 0.0248 0.1555 0 1
Outer regional × Age 75–79 0.0248 0.1555 0 1
Outer regional × Age 80+ 0.0248 0.1555 0 1
Remote × Age 10–14 0.0096 0.0975 0 1
Remote × Age 15–19 0.0096 0.0975 0 1
Remote × Age 19–24 0.0096 0.0975 0 1
Remote × Age 25–29 0.0096 0.0975 0 1
Remote × Age 30–34 0.0096 0.0975 0 1
Remote × Age 35–39 0.0096 0.0975 0 1
Remote × Age 40–44 0.0096 0.0975 0 1
Remote × Age 45–49 0.0096 0.0975 0 1
Remote × Age 50–54 0.0096 0.0975 0 1
Remote × Age 55–59 0.0096 0.0975 0 1
Remote × Age 60–64 0.0096 0.0975 0 1
Remote × Age 65–69 0.0096 0.0975 0 1
Remote × Age 70–74 0.0096 0.0975 0 1
Remote × Age 75–79 0.0096 0.0975 0 1
Remote × Age 80+ 0.0096 0.0975 0 1

Appendix 2: Model coefficients and significance

Variable Coefficient SE

ILOC size 2.313*** 0.45
Female 0.044 0.17
Growth town − 0.685 0.91
Survival rate 8.972* 5.26
Cohort age (2011)
Age 5–9 –
Age 10–14 4.851*** 1.66
Age 15—19 10.965*** 2.23
Age 19–24 13.38*** 2.70
Age 25–29 7.256*** 2.63
Age 30—34 5.931** 2.58
Age 35–39 6.318** 2.46
Age 40–44 6.566** 2.62
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Variable Coefficient SE

Age 45–49 4.513* 2.31
Age 50–54 5.695** 2.39
Age 55–59 4.764* 2.68
Age 60–64 1.303 2.69
Age 65–69 − 2.835 2.59
Age 70–74 − 1.526 2.95
Age 75–79 − 5.648* 3.06
Age 80+ − 5.262 3.69
ILOC size by Age Interaction terms
ILOC size × Age 10–14 − 1.409*** 0.32
ILOC size × Age 15–19 − 2.382*** 0.39
ILOC size × Age 19–24 − 2.623*** 0.47
ILOC size × Age 25–29 − 1.642*** 0.46
ILOC size × Age 30–34 − 1.449*** 0.45
ILOC size × Age 35–39 − 1.532*** 0.43
ILOC size × Age 40–44 − 1.537*** 0.46
ILOC size × Age 45–49 − 1.248*** 0.40
ILOC size × Age 50–54 − 1.437*** 0.42
ILOC size × Age 55–59 − 1.434*** 0.47
ILOC size × Age 60–64 − 0.859* 0.46
ILOC size × Age 65–69 − 0.418 0.43
ILOC size × Age 70–74 − 0.744 0.47
ILOC size × Age 75–79 − 0.296 0.45
ILOC size × Age 80+ − 0.640 0.58

***p ≤ 0.01 ; **p ≤ 0.05 ; * p ≤ 0.001

Variable Coefficient Standard Error

ARIA
Outer regional –
Remote 0.062 1.03
Very remote 3.209*** 1.02
State/territory
New South Wales –
Victoria − 0.786 0.75
Queensland 0.102 0.39
South Australia − 0.602 0.42
Western Australia 0.266 0.36
Tasmania − 0.587 0.42
Northern Territory − 0.052 0.35
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Variable Coefficient Standard Error

ARIA by Age interaction terms
Outer regional × Age 10–14 6.272*** 1.18
Outer regional × Age 15–19 3.621*** 1.03
Outer regional × Age 19–24 1.532 1.10
Outer regional × Age 25–29 3.266*** 1.01
Outer regional × Age 30–34 3.007*** 0.97
Outer regional × Age 35–39 3.746*** 1.04
Outer regional × Age 40–44 3.27*** 1.03
Outer regional × Age 45–49 2.901*** 0.97
Outer regional × Age 50–54 3.458*** 1.01
Outer regional × Age 55–59 3.443*** 1.14
Outer regional × Age 60–64 1.42 1.13
Outer regional × Age 65–69 1.113 1.18
Outer regional × Age 70–74 1.324 1.24
Outer regional × Age 75–79 0.878 1.33
Outer regional × Age 80+ 0.128 1.56
Remote × Age 10–14 3.119*** 1.08
Remote × Age 15–19 2.572** 1.10
Remote × Age 19–24 1.653 1.14
Remote × Age 25–29 2.324** 0.98
Remote × Age 30–34 2.318** 0.95
Remote × Age 35–39 3.075*** 1.02
Remote × Age 40–44 3.508*** 0.97
Remote × Age 45–49 2.917*** 0.95
Remote × Age 50–54 2.953*** 0.97
Remote × Age 55–59 2.913*** 1.08
Remote × Age 60–64 1.717 1.08
Remote ×× Age 65–69 2.405** 1.12
Remote × Age 70–74 2.544** 1.19
Remote × Age 75–79 1.44 1.30
Remote × Age 80+ 2.177 1.48
Constant − 24.267*** 6.2

***p ≤ 0.01 ; **p ≤ 0.05 ; * p ≤ 0.001
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