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ABSTRACT
Chronic disruption of the intestinal microbiota in adult cystic fibrosis (CF) patients is associated
with local and systemic inflammation, and has been linked to the risk of serious comorbidities.
Supplementation with high amylose maize starch (HAMS) might provide clinical benefit by
promoting commensal bacteria and the biosynthesis of immunomodulatory metabolites.
However, whether the disrupted CF gut microbiota has the capacity to utilise these substrates
is not known. We combined metagenomic sequencing, in vitro fermentation, amplicon sequen-
cing, and metabolomics to define the characteristics of the faecal microbiota in adult CF patients
and assess HAMS fermentation capacity. Compared to healthy controls, the faecal metagenome of
adult CF patients had reduced bacterial diversity and prevalence of commensal fermentative
clades. In vitro fermentation models seeded with CF faecal slurries exhibited reduced acetate
levels compared to healthy control reactions, but comparable levels of butyrate and propionate.
While the commensal genus Faecalibacterium was strongly associated with short chain fatty acid
(SCFA) production by healthy microbiota, it was displaced in this role by Clostridium sensu stricto 1
in the microbiota of CF patients. A subset of CF reactions exhibited enterococcal overgrowth,
resulting in lactate accumulation and reduced SCFA biosynthesis. The addition of healthy micro-
biota to CF faecal slurries failed to displace predominant CF taxa, or substantially influence
metabolite biosynthesis. Despite significant microbiota disruption, the adult CF gut microbiota
retains the capacity to exploit HAMS. Our findings highlight the potential for taxa associated with
the altered CF gut microbiotato mediate prebiotic effects in microbial systems subject to ongoing
perturbation, irrespective of the depletion of common commensal clades.
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Introduction

Cystic fibrosis (CF) is an autosomal recessive disor-
der that results in altered transport of electrolytes
and fluid across epithelial surfaces. Chronic sup-
purative respiratory disease, arising due to impaired
clearance of dehydrated airway secretions, is typi-
cally the principal cause of morbidity andmortality.1

However, CF is also associated with chronic gastro-
intestinal (GI) disease.2–4 Impairedmucin hydration,
reduced bicarbonate secretion, abnormal bile salt
physiology, and impaired fat absorption, all contri-
bute to GI dysfunction and chronic inflammation.2,5

In turn, GI inflammation is implicated in mucosal
abnormalities and increased intestinal permeability2,

and contributes to an increased risk of a range of
intestinal morbidities, including cancer.6 Indeed,
rates of GI malignancy are significantly higher in
patients with CF compared with the general
population.7–9 Chronic local inflammation also con-
tributes to a systemic pro-inflammatory state, with
GI inflammation linked to elevated circulating cyto-
kines and chemokines, soluble adhesion molecules,
and acute phase reactants.10

The abnormal CF gut environment caused by
intestinal exocrine malfunction, combined with
the effects of antibiotic therapies for chronic lung
infections, results in significant alteration of the
gut microbiota.11-18 As a consequence, CF patients
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exhibit a reduced relative abundance of commen-
sal fermentative bacteria, including members of
the Bifidobacterium genus11,12,15,16 and
Clostridium clusters XIVa and IV (which include
Faecalibacterium prausnitzii and Ruminococcus
bromii).11,15-17 At the same time, the relative abun-
dance of pro-inflammatory or potentially patho-
genic taxa, particularly Proteobacteria (including
Escherichia coli) and enterococci (including
Enterococcus faecalis and Enterococcus faecium) is
increased.13,14,16,17

Altered CF gut microbiology is likely to com-
pound the pro-inflammatory effects of the under-
lying disease. In non-CF contexts, alterations to the
intestinal microbiota, sometimes referred to as “dys-
biosis”, has been shown to contribute to the dysre-
gulation of mucosal immunity19, and an increase in
levels of genotoxic, pro-inflammatory, and hepato-
modulatory metabolites.20 By preventing carbohy-
drate fermentation by members of the colonic
microbiota, changes in microbiota composition can
also result in reduced production of protective meta-
bolites, including short chain fatty acids
(SCFAs).21,22 SCFAs have a wide range of anti-
inflammatory properties, including the ability to
increase colonic regulatory T cells23, alter dendritic
cell and macrophage function24, and reduce produc-
tion of pro-inflammatory cytokines.25,26 SCFAs are
also important in the regulation of glycaemic
responses and triglyceride metabolism27, are essen-
tial for colonic epithelial homeostasis28, and barrier
function29, and contribute substantially to energy
reclamation from the gut.30 Reduced SCFA produc-
tion might therefore be critical in CF, where patients
experience chronic inflammation and nutritional
malabsorption.

Prebiotics are non-digestible compounds that
confer health benefits by promoting the prolifera-
tion of commensal gut species or the production of
beneficial metabolites. These compounds include
resistant starches (RS); complex carbohydrates that
are not digested and absorbed in the small intes-
tine, but pass into the large bowel and act as
substrates for bacterial fermentation.31 By increas-
ing the levels of fermentation substrate in the
colon, supplementation with compounds such as
high amylose maize starch (HAMS) can increase
both the abundance of potentially beneficial
microbes32, and the production of SCFAs.33 RS

supplementation has proven to be effective in
reducing the risk of both cancer and diabetes by
suppressing the development of epithelial adducts
34, and reducing insulin resistance and markers of
systemic inflammation.35

However, despite a growing interest in the
potential clinical benefits of dietary prebiotics in
CF, it is not known whether the CF intestinal
microbiota retains the capacity to exploit these
substrates. Clinical prebiotic use typically assumes
the competence of the recipient’s microbiome in
utilising the supplemented substrates. A failure to
assess microbial capacity prior to supplementation
potentially contributes to inter-subject differences
in prebiotic response.36 Prebiotic approaches also
typically fail to consider the potential to cause
detrimental changes in individuals in whom the
gut microbiota is already substantially disrupted,
such as the selective promotion of potentially
pathogenic taxa.

Our aim was to investigate the potential for
HAMS supplementation to provide microbiome-
mediated benefit in patients with CF. We under-
took a detailed metagenomic analysis of the faecal
microbiome composition and functional capacity
in adult CF patients. Utilising an in vitro fermen-
tation model, we then assessed the response to
HAMS of faecal microbiota from CF patients and
healthy non-CF controls, including the resulting
changes in microbiota structure, global metabolo-
mic output, and SCFA production.

Results

Faecal microbiota characteristics in adults with
CF

Faecal microbiota composition differed signifi-
cantly between CF patients and healthy non-CF
controls (Figure 1A-B). Taxa richness was reduced
in CF samples (median observed OTUs, CF: 272
[IQR: 107], control: 496 [IQR: 102], p < 0.0001), as
was Faith’s phylogenetic diversity (median diver-
sity, CF: 10.1 [IQR: 3.3]; control: 16.4 [IQR: 3.7],
p < 0.0001). Simpson’s evenness did not differ
significantly between groups (p = 0.27). Beta diver-
sity, assessed based on weighted UniFrac distances,
also differed significantly between CF samples and
controls (P(perm) = 0.0001, square root estimated
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components of variation (ECV) = 0.19, 9,919 per-
mutations; Figure 1B). Differences in microbiota
composition were characterised by a significantly
greater relative abundance of important commen-
sal taxa, such as Faecalibacterium prausnitzii,
Eubacterium rectale, Prevotella copri, and
Ruminococcus bromii in non-CF subjects, and a
greater relative abundance of Clostridium symbio-
sum, Veillonella parvula, Enterococcus faecalis, and
Ruminococcus gnavus in patients with CF (alpha
< 0.05 for Kruskal-Wallis test and LDA> 4, data
not shown).

The representation of functional genes within
both CF and healthy faecal metagenomes also dif-
fered significantly (P(perm) = 0.0019, ECV = 6.15,
9,939 permutations). This divergence included sig-
nificant differences in the proportion of normalised
reads that mapped to individual KEGG pathways,
including important genes involved in carbohydrate
metabolism (Supplementary Figure1). The gene
encoding phosphotransacetylase (pta), an enzyme
that catalyses the conversion of acetyl-CoA to
acetyl-phosphate in the acetate biosynthesis path-
way, was significantly lower in CF metagenomes
compared to healthy controls (Supplementary
Figure 2A). In contrast, galA, the gene that encodes
alpha-galactosidase in the galactose metabolic path-
way, was significantly more highly represented in CF
metagenomes (Supplementary Figure 1). No signifi-
cant differences were observed in the representation
of normalised levels of butyrate or propionate bio-
synthesis pathway genes in CF and healthy controls
(Supplementary Figure 2B-C), suggesting that the

fermentation pathways resulting in the production
of these SCFAs is conserved in the CF metagenome.

SCFA production during in vitro fermentation of
HAMS

Levels of acetate, butyrate, propionate, and total
SCFA were determined before and after in vitro
HAMS fermentation by CF and control faecal slur-
ries (Figure 2A-D). Acetate levels were significantly
lower in CF reactions compared to controls (median
concentration, CF: 9.36mmol/L [IQR: 6.63], control:
21.48 mmol/L [IQR: 11.40], p = 0.0007, Figure 2A).
While total SCFA levels were also significantly
reduced (median concentration, CF: 15.03 mmol/L
[IQR: 12.77], control: 28.74 mmol/L [IQR: 5.89],
p = 0.0001, Figure 2D), levels of butyrate and pro-
pionate did not differ significantly between groups.

SCFA production was associated with changes in
the relative abundance of different bacterial taxa in CF
and control reactions following HAMS fermentation
(Figure 3A-F; Supplementary Figure 3). In healthy
controls, acetate concentration showed a strong posi-
tive correlation with the relative abundance of Dorea
(r = 0.78, p = 0.021, Figure 3A) and Anaerostipes
(r = 0.72, p = 0.039, Supplementary Figure 3); butyrate
concentrations were positively correlated with relative
abundance of theFaecalibacterium (r = 0.84, p= 0.007,
Figure 3B); and propionate concentration was signifi-
cantly correlated with the relative abundance of the
Bacteroides (r = 0.77, p = 0.049, Figure 3C). In reac-
tions using CF faecal inocula, butyrate levels were
strongly correlated with the relative abundance of

Figure 1. Microbiota characteristics of CF (red) and non-CF (black) faecal samples at baseline (pre-fermentation). A) Observed OTUs
between microbiota community of CF and non-CF samples. B) Principal coordinate analysis (PCoA) derived from weighted UniFrac
distance of CF and non-CF samples, PERMANOVA, P(perm) = 0.0001, Pseudo-F = 7.27.
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Clostridium sensu stricto cluster 1 (Clostridium ss1,
r = 0.83, p = 0.0036, Figure 3E) and an unclassified
member of theClostridiales order (r = 0.67, p= 0.0036,
Supplementary Figure 3). Propionate concentrations
in CF reactions were significantly correlated with the
relative abundance of the Veillonella genus (r = 0.87,
p = 0.0071 Figure 3F). Acetate concentrations did not
correlate significantly with any bacterial taxa in CF

reactions, although a positive trend with the unclassi-
fied member of the Clostridiales order was observed
(r = 0.67, p = 0.12, Figure 3D). Taxa that showed
positive correlations with SCFA production in healthy
controls, including Dorea, Anaerostipes,
Faecalibacterium, Bacteroides, were all significantly
lower in post-fermentation CF samples
(Supplementary Figure 4).

Figure 2. SCFA production of non-CF control and CF samples during the in vitro fermentation. Net production (post-fermentation
subtracted from pre-fermentation) of A) acetate; B) butyrate; C) propionate; and D) total SCFA. *** p < 0.001, **** p < 0.0001.

Figure 3. Representative taxa that were most stongly correlated with SCFA concentration post fermentation for non-CF control
(black) and CF (red) samples (Full data of correlation between taxa and SCFA is included in Supplementary Figure 3). P values were
from spearman correltaion adjusted by Benjamini-Hochberg FDR procedure.
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Inter-subject variation in SCFA production

HAMS fermentation reactions were highly repro-
ducible, both in terms of SCFA production
(R = −0.0006, p = 0.42, ANOSIM for experiment
run 1 and run 2) and shifts in microbiota compo-
sition (R = −0.037, p = 0.69, ANOSIM for experi-
ment run 1 and run 2). However, substantial inter-
subject differences in SCFA biosynthesis were
observed within both CF and control groups
(Supplementary Figure 5A-H). CF and healthy
control subjects were each divided into “high
responder” (high-R) and “low responder” (low-R)
groups according to changes in median acetate,
butyrate, propionate and total SCFA concentra-
tions during fermentation (Supplementary
Figure 5A-H). In reactions involving faecal slurries

from healthy individuals, high butyrate production
was associated with a high relative abundance of
Faecalibacterium (Figure 4A). In contrast, low
butyrate production was associated with a high
relative abundance of Clostridium ss1
(Figure 4B), with a significant inverse correlation
between these two taxa (Figure 4C). While a simi-
lar dichotomy was seen for CF samples, the bac-
terial taxa associated with high and low responder
status were different. CF high-R samples (for both
acetate and butyrate) were associated with a high
relative abundance of Clostridium ss1, while CF
low-R samples showed a high relative abundance
of Enterococcus (Figure 4D-E). Again, a significant
negative correlation was observed between these
taxa (r = −0.62, p = 0.005, Figure 4F).

Figure 4. Butyrate production associated bacteria in low- and high- responder (low-R and high-R) control and CF reactions A)
Relative abundance of Faecalibacterium in control low-R and high-R. B) Relative abundance of Clostridium ss1 in non-CF low-R and
high-R. C) Correlation between relative abundance of Clostridium ss1 and Faecalibacterium (spearman) in non-CF sample (black). D)
Relative abundance of Clostridium ss1 in CF low-R and high-R. E) Relative abundance of Enterococcus in CF low-R and high-R. F)
Correlation between relative abundance of Clostridium ss1 and Enterococcus (spearman) in CF sample (red).
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1H-NMR metabolomic analysis

Significant changes in metabolome composition
occurred during fermentation in both CF slurry
and healthy control slurry reactions
(Supplementary Figure 6A-B). While metabolic
pathways associated with HAMS fermentation
were broadly comparable between CF and control
groups (Supplementary Figure 6C-D), significant
differences in relative abundance of specific meta-
bolites were observed. Levels of acetate, formate,
trimethylamine, and tyramine were all signifi-
cantly higher in control post-fermentation meta-
bolomes compared to CF reactions (Figure 5A-D).
In contrast, the relative contributions of cystine,
glycine, methionine, and proline to the metabo-
lome were all significantly higher in post-fermen-
tation CF reactions compared to control reactions
(Figure 5E-H). Metabolites that were significantly
elevated in CF reactions were all of relatively low
abundance, with their elevation potentially reflect-
ing lower levels of the high abundance metabolites,
such as acetate and formate. Post-fermentation
levels of lactate, a precursor of acetate, butyrate
and propionate, trended higher for CF low-R com-
pared to CF high-R, but did not achieve signifi-
cance (median peak intensity, CF low-R: 260.9
[IQR: 110.2]; CF high-R: 26.5 [IQR:35.9],
p = 0.058, Supplementary Fig. 7D).

Impact of healthy microbiota on SCFA
biosynthesis in CF samples

The extent to which the addition of microbiota from
healthy control samples could influence taxon pre-
dominance and SCFA production by CF faecal slur-
ries was then investigated. The addition of
microbiota from high-R control samples to high-R
CF samples prior to fermentation did not, however,
lead to the displacement of Clostridium ss1 by
Faecalibacterium as the taxonmost closely correlated
with post-fermentation butyrate levels
(Supplementary Fig. 8). SCFA levels were also not
changed significantly. The impact of introducing
microbiota from high-R healthy control samples to
low-R CF samples was then assessed. Again, despite
the addition of material from samples that contained
abundant fermentative commensal taxa, no signifi-
cant increase in SCFA biosynthesis, or decrease in
the post-fermentation relative abundance of
Enterococcus, was observed (Figure 6A-B).

Discussion

We investigated the relative ability of faecal micro-
biota from adult CF patients and healthy non-CF
controls to produce SCFAs through HAMS fer-
mentation, and the bacterial taxa responsible. We
report that the CF gut microbiota retains the

Figure 5. Metabolites that differed significantly between non-CF control (black) and CF (red) samples post HAMS fermentation (A-H).
P values were from Mann-Whitney test adjusted by Benjamini-Hochberg FDR procedure. *, p < 0.05; **, p < 0.01; *** p < 0.001.
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ability to ferment HAMS in many cases, but that
taxa that are characteristic of the altered CF faecal
microbiota replace common commensal taxa in
undertaking this role. In a subset of CF patients,
the presence of HAMS leads to enterococcal over-
growth and the accumulation of lactate, suggesting
that a prebiotic strategy would not be appropriate
in all instances.

In keeping with previous analyses of the faecal
microbiome in paediatric and adult CF patients-
11,14–17, we found the relative abundance of com-
mon fermentative commensal taxa to be
substantially reduced in CF subjects, compared to
healthy adults. Particularly notable was the
absence of important commensal taxa, such as
Faecalibacterium prausnitzii, Eubacterium rectale,
and Ruminococcus bromii. These are considered to
be keystone species in the degradation of complex
carbohydrates and the biosynthesis of SCFA in
healthy individuals.37,38 Although diet is an import
factor for shaping the gut microbiota, other fac-
tors, such as antibiotic exposure and disease
related gastrointestinal dysfunction, contribute to
an altered gut microbiota in patients with CF. To
reflect the requirement for any potential clinical
prebiotic approach to provide benefit despite var-
iations in disease, diet, and antibiotic exposure, we
conducted our analysis using samples collected

within the context of routine care. HAMS was
selected as a fermentation substrate based on its
potential as a candidate for clinical translation (in
addition to its low cost, HAMS has Food and Drug
Administration “generally regarded as safe”
status).

Despite the low relative abundance of common
fermentative taxa, SCFA biosynthesis was still
evident in reactions using CF faecal slurries.
Perhaps surprisingly, levels of butyrate and pro-
pionate production were not significantly lower
than those obtained using healthy control slur-
ries. This production of butyrate by the CF faecal
microbiota was strongly associated with increases
in the relative abundance of Clostridium ss1, a
large cluster of Clostridium species that includes
both commensal and pathogenic species.39

Members of Clostridium ss1 vary in their
response to fermentation substrates, but exhibit
a consistent capacity to synthesise butyrate.40,41

Clostridial abundance in CF faeces has been the
focus of previous investigations, due to high rates
of asymptomatic carriage of hypervirulent toxi-
genic strains of Clostridium difficile (Clostridium
cluster XIa).42 The increased abundance of mem-
bers of the Clostridium genus observed here was
not unexpected and might reflect their ability to
form spores that are highly resilient to

Figure 6. Total SCFA production (A) and relative abundance of Enterococcus (B) for CF low-Responder (low-R) faecal sample
supplemented with non-CF control high-Responder (high-R) sample in a ratio of 1:0.1 of bacterial cells in the in vitro fermentation
with HAMS. *Control is the combination of the top 3 non-CF control high-R.
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antibiotics. Indeed, reports of increasing C. diffi-
cile carriage rates43–47 possibly reflect increases in
cumulative antibiotic exposure that accompany
improved CF patient longevity.48 In contrast,
commensal members of the Clostridiales order
that are not capable of sporulation, such as the
Faecalibacterium and Ruminococcus genera,
showed reduced relative abundance compared to
healthy controls. Clostridium ss1 exhibited a
trend towards negative correlation with butyrate
production in healthy controls, in whom butyr-
ogenesis was primarily associated with
Faecalibacterium. These findings suggest a com-
petitive relationship between Clostridium ss1 and
Faecalibacterium in the fermentation of HAMS.
In the absence of Faecalibacterium in CF
patients, Clostridium ss1, where present, is able
to exploit HAMS as a fermentation source,
resulting in high levels of butyrate production.

Propionate levels following in vitro fermenta-
tion were not significantly lower in CF patients
compared to healthy controls. However, the bac-
terial taxa that were associated with this process
were again different. Rather than members of the
genus Bacteroides, which were strongly associated
with propionate levels in control reactions, pro-
pionate biosynthesis in CF reactions were asso-
ciated with the relative abundance of members of
the genus Veillonella. While most Veillonella spe-
cies are unable to ferment carbohydrates, they can
produce propionate by fermenting succinate pro-
duced by other taxa.49 The replacement of
Bacteroides by Veillonella in the CF microbiota
might be due, in part, to the acquisition of anti-
biotic resistance by members of the Veillonella
genus.49–51

In contrast to butyrate and propionate, post-
fermentation levels of acetate were significantly
reduced in CF reactions compared with healthy
controls. Acetate can be synthesised by a number
of enteric bacteria52 mainly via the CoA-trans-
ferase pathway, involving the combined activities
of phosphotransacetylase (PTA) and acetate
kinase (AckA).53 Acetate production in healthy
controls was positively correlated with the rela-
tive abundance of Anaerostipes and Dorea gen-
era; taxa that were substantially less prevalent in
post-fermentation CF microbiota. The combina-
tion of reduced levels of genes encoding acetate

biosynthesis, and a low prevalence of taxa that
are able to metabolise acetate (e.g.
Faecalibacterium, Roseburia and Coprococcus),
suggests that acetate levels in CF reactions
reflected reduced production, rather than
increased bacterial utilisation.

To further understand the fermentation capa-
city of CF faecal microbiota, we compared the
post-fermentation metabolome CF and healthy
control reactions. The lower levels of acetate, and
its intermediate formate, in CF reactions support
our findings based on GC-FID results that CF has
reduced capacity to produce acetate. Other meta-
bolomic differences relating to non-starch compo-
nents of the growth medium differed between CF
and control reactions, including a reduced synth-
esis of trimethylamine and tyramine, and reduced
utilisation of cystine and glycine, although these
metabolites were observed in low abundance.

The failure of a subset of CF samples (CF low-
R) to produce appreciable levels of SCFA was
strongly associated with high Enterococcus relative
abundance in post-fermentation microbiota.
Enterococcal overgrowth is a common conse-
quence of antibiotic exposure, in both animal
models54,55 and humans.56 Enterococci are capable
of lactate biosynthesis and their high relative
abundance was strongly associated with high lac-
tate concentrations. Lactate can be further con-
verted to acetate, butyrate and propionate by
lactate-utilising bacteria.57,58 While this process
does not typically occur at low pH (< 5.2)57,
post-fermentation pH did not differ significantly
between CF low-R and high-R samples (data not
shown). These findings suggest that lactate accu-
mulation, observed in CF low-R reactions, where
Enterococcus was predominant, resulted from
reduced abundance of lactate-utilising taxa.

The implications of potential lactate accumula-
tion on host physiology remain unclear. Luminal
lactate has been shown to influence dendritic
differentiation,59 stimulate enterocyte hyper-pro-
liferation in starvation-refed mice,60 and to mod-
ulate LPS-dependent monocyte activation in
vitro.61,62 Clinically, high faecal lactate concentra-
tions have been reported in ulcerative colitis63 and
in chronic fatigue syndrome, along with an
increased abundance of Enterococcus faecalis.64

Our metagenomic analysis indicated that high
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enterococcal abundance was also associated with
the presence of genes capable of raffinose metabo-
lism. Raffinose is a trisaccharide composed of
galactose, glucose, and fructose, which is part of
the FODMAP group of oligosaccharides.65

Raffinose, is particularly abundant in leguminous
seeds,66 and the ability to degrade raffinose as a
source of glucose might therefore provide an addi-
tional benefit in Enterococcus-dominated dysbiotic
CF microbiota.

While our analyses suggest that HAMS supple-
mentation in patients with CF would result in
increased microbial production of SCFAs or lac-
tate, it is important to also consider potential
deleterious changes in intestinal microbiology.
Increases in the relative abundance of
Clostridium ss1 might include potential pathogens,
such as C. perfingens,, while the Enterococcus
genus contains species that are capable of causing
serious infections, such as E. faecium.
Asymptomatic carriage of toxigenic C. difficile is
common in patients with CF and was detected in
two of the CF samples analysed in this study,
although the relative abundance of this pathogen
did not increase in during HAMS fermentation
(assessed by qPCR, data not shown). However,
the potential for HAMS to confer a selective
advantage on potential pathogens suggests dietary
supplementation in CF patients would require
careful microbiological monitoring.

Where prebiotic strategies fall short of their
desired clinical impact, the low abundance of
taxa that are able to exploit them might be a
contributory factor. Interest in synbiotic
approaches (preparations that combine prebiotics
with viable commensal bacteria) therefore con-
tinues to grow. However, we found that the intro-
duction of microbiota from healthy control
samples had little impact on the microbiota com-
position or fermentation productivity of CF slur-
ries. How Clostridium ss1 or Enterococcus are able
to remain numerically predominant during starch
fermentation, even in the presence of genera such
as Faecalibacterium and Roseburia, remains
unclear. However, the out-competition of other
bacteria during a rapid growth phase, combined
with an ability to produce inhibitory compounds,
such as bacteriocins,67 might be contributory
factors.

Our study had a number of limitations. We
assessed stool, a sample that, while convenient,
only approximates the intestinal microbiota.
Furthermore, in vitro fermentation represents
only a broad approximation of conditions within
the colon.68 Despite these limitations, we demon-
strate that the highly dysbiotic CF gut microbiota
retains the ability to exploit HAMS as a growth
substrate, and a basis for SCFA production, in
many cases. This ability is conferred by bacteria
whose prevalence results from CF-associated
changes in in the faecal microbiota .
Manipulation of intestinal microbiota composition
and function using dietary prebiotic supplementa-
tion offers exciting opportunities to achieve clin-
ical benefit in CF. However, enterococcal
overgrowth and lactate accumulation in micro-
biota from a subset of CF patients in response to
HAMS suggests that a precision approach to clin-
ical deployment would be most appropriate.

Conclusions

Despite significant alterations in composition, the
adult CF gut microbiota retains the capacity to
generate health-associated metabolites through
HAMS fermentation. These findings suggest that
the clinical potential of HAMS supplementation in
adult CF patients warrants investigation. Our
study also highlight that prebiotic effects can be
mediated by taxa that are characteristic of dis-
rupted microbial systems, despite ongoing pertur-
bation, a finding that is contrary to the common
assumptions that the persistence of commensal
fermentative clades is necessary for such an effect.
Finally, this study shows the potential for prebiotic
effects to differ significantly depending on an indi-
vidual’s starting gut microbiota and underlines
importance of personalised approaches to their
deployment.

Materials and methods

Study population

This study was approved by Mater Hospital Ethics
Board (HREC/15/MHS/131). Adult CF patients
were recruited from the Mater Adult Cystic
Fibrosis Clinic, Brisbane. Healthy non-CF adult
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controls were recruited from Mater Hospital staff
and associates. Subject characteristics are pre-
sented in Table 1. Stool samples were frozen and
transported to the South Australian Health and
Medical Research Institute, Adelaide, for analysis.

In vitro fermentation

To simulate gastric and small intestinal starch
digestion, HAMS (Hylon VII, Ingredion ANZ,
Pty Ltd) was subjected to in vitro pre-digestion
(detailed in Supplementary Methods). Pre-digested
HAMS was air-dried and UV-sterilised. The in
vitro fermentation procedure was developed
based on previously described method69 with
modifications. In brief, a basal medium (pH 6.8)
containing tryptone (2.5g/L), yeast extract (0.5g/
L), and mineral salts (detailed in Supplementary
Methods) adapted from McSweeney et al70 was
used as fermentation medium. The medium was
boiled and cooled under anaerobic conditions,
prior to the addition of cysteine HCl.
Fermentation medium (10 mL) was transferred
to Hungate tubes (16 x 125 mm) under anaerobic
conditions (10% CO2 and 10% H2 in N2), which
were stoppered and autoclaved. Faecal sample and
pre-digested HAMS were dissolved in anaerobic
diluent (pH 6.8)70 to create a slurry. Faecal slurry
(10% w/v) containing with 100 mg of faeces and

HAMS slurry (20% w/v) containing 100 mg of
HAMS were injected to fermentation tubes under
anaerobic conditions. Control fermentation tubes
contained 500 µl of anaerobic diluent, in place of
HAMS slurry. Hungate tubes were incubated at
37°C for 24 h with shaking. Fermentation medium
and anaerobic diluent compositions are detailed in
Supplementary Methods.

DNA extraction and 16S rRNA gene amplicon
sequencing

DNA extractions were performed using a DNeasy
PowerSoil HTP 96 DNA Isolation kit (Qiagen), as
described previously.71 DNA concentration was
quantified fluorometrically with a Quant-iT
dsDNA Assay kit (Life Technologies). Amplicon
sequencing of the V4 hypervariable region of the
bacterial 16S rRNA gene was performed as
described previously71 using an Illumina MiSeq
platform. Paired-end 16S rRNA gene sequence
reads were analysed with the Quantitative
Insights into Microbial Ecology (QIIME) software
(v1.8.0)72 following a previously published study.71

Operational taxonomic units (OTUs) were
assigned to the reads using an open reference
approach with UCLUST algorithm against the
SILVA reference dataset (release 123)73 that clus-
tered at 97% identity. 16S rRNA gene sequence
data and Metagenomic sequence data were sub-
mitted to the Sequence Read Archive under acces-
sion number SRP136140 and SRP136140,
respectively. Negative controls were included in
all DNA extraction, PCR amplification, and DNA
sequencing processes.

Metagenomic sequencing

Metagenomic libraries were fragmented and
indexed using Nextera XT DNA Library Prep
Kit (Illumina Inc.), and Nextera XT Index kit
(Illumina Inc.), respectively as per manufac-
turer’s instructions. Amplicon libraries were
then sequenced on the Illumina HiSeq 2500 plat-
form at the SAHMRI David R Gunn Genomics
Suite using Illumina HiSeq SBS 2 x 125bp v4 kit
(Illumina Inc.). The sequencing resulted in an
average of 18,586,781 ± 4,793,413 reads per sam-
ple. Bioinformatic processing of shotgun

Table 1. Study population characteristics.

CF (n = 19)
Control
(n = 164) P value

Age (years) 30 (19, 53) 37 (30, 55) 0.0102

Male (percentage) 47% 56% > 0.993

BMI 22.0 (18.1,
34.6)

26.2 (20.9,
31.3)

0.0272

ΔF508 homozygous
(percentage)

53% -

ΔF508 heterozygous
(percentage)

47% -

FEV1% 54 (28, 114) -
Pancreatic insufficiency
(percentage)

95% -

Antibiotics for acute
exacerbation
within one month of sample
collection

58% 0%

Long-term maintenance
antibiotics

95% 0%

1Values are in median (min, max) or percentage. 2 P values were
calculated from Mann-Whitney test. 3 P values were calculated from
Fisher’s exact test. 4 non-CF control group has 2 missing values for
age, gender and BMI.
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metagenomic sequence data was performed as
described previously74, with minor modifications
(Supplementary Methods). Relative gene abun-
dances were estimated by dividing the number
of the gene-length normalized read counts for
each gene by the total of reads from that sample
that uniquely mapped to any gene in the catalo-
gue. For analysis of functional capacity, genes
annotated against the KEGG database were col-
lapsed row-wise, based on their KEGG orthology
identifiers, and summed for each pathway.

SCFA measurement

Pre- and post-fermentation samples were centri-
fuged at 13,000 g, 4 °C, for 10 min and supernatants
collected for SCFA analysis. SCFA concentrations
were measured by gas chromatography fitted with a
flame ionisation detector (GC-FID, Flinders
Analytical, Adelaide) using 4-Methylvaleric acid
(Sigma-Aldrich) as internal standards.

Metabolomic analysis

Supernatants obtained from the in vitro fermenta-
tion were used for metabolomic analysis. Prior to
the analysis, supernatants were frozen at −80°C,
lyophilized at −58°C, and resuspended in 600 μl
D2O. Subsequently, 1H NMR spectra were
acquired under automation at 298 K and
700 MHz on a Bruker Avance II 700 NMR spec-
trometer (Bruker BioSpin) equipped with a 5-mm
helium-cooled quadruple resonance cryoprobe
and a cooled SampleJet sample changer.

Statistical analysis

Differences in alpha-diversity, SCFA, specific taxa,
genes and metabolites between Control and CF
groups were assessed using Mann-Whitney test
(GraphPad Prism version 7.00). Group differences
in microbiota beta diversity were assessed using the
permutational analysis of variance (PERMANOVA)
model with 9999 permutations based on the para-
meters permutation of residuals under a reduced
model and a type III sum of squares (Primer-E
v.7; Primer-E Ltd.).75 Differences in taxa at the
species level, generated from shotgun sequencing
between groups at baseline, were analysed by linear

discriminant analysis (LDA) effect size (LEfSe)
method.76 Correlation between SCFA concentra-
tions and taxa were performed using Spearman
non-parametric correlation (GraphPad Prism).
Benjamini-Hochberg false discovery rate control
(BH-FDR), with a threshold of 0.05, was applied
to analysis involving multi-testing. Differences in
the metagenomics gene between groups were deter-
mined using Limma package in R77, followed by
pathway enrichment using MinPath.78 Several cri-
teria were applied; 1) a gene has to be detected in at
least 60% of the samples, 2) a gene has to be sig-
nificantly different between CF and healthy
(P ≤ 0.05, with −2 ≤ Log[Fold Change] ≥ 2), and
3) MiniPath-enriched pathways consisted of more
than two genes. For metabolomic data, shifts of
metabolites during the fermentation were presented
in volcano plots with the indication of significantly
changed metabolites determined by Mann-Whitney
test adjusted with BH-FDR. Impacted pathways
were analysed using pathway analysis by
MetaboAnalyst 3..079
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