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Abstract 

In Western Australia (WA), deepwater fishes are targeted by commercial and recreational 

fishers. Deepwater fisheries (~170-700 m) represent a large proportion of the market value 

of WA fisheries, consequently, impacts to these assemblages will have far-reaching 

economic and potentially long-lasting ecological effects. There is little information on the 

status, habitat use, and depth preferences of deepwater species or their connectivity to 

inshore habitats. Sustainable management requires an understanding of the dynamics of 

deepwater fisheries and the factors underpinning their structure and distribution.  

Because assessments of deepwater ecosystems are logistically challenging, time-consuming 

and expensive (the requirement for boats big enough to deploy and retrieve sampling 

equipment to depth), they tend to be data deficient. Many deepwater fishes have an 

inherent vulnerability to exploitation and environmental shifts due to a combination of life 

history characteristics and ecology (slow-growing, long life spans, late maturation and 

physiological constraints). Valuable data is gathered from extractive fishing catch and effort 

statistics. However, these sources can vary in data quality, target species and spatial scales 

making broader extrapolations and comparisons regarding ecosystem function problematic. 

Furthermore, few data sets incorporate environmental parameters such as habitat 

classification from in situ observations.  

The marine environment of Western Australia encompasses a wide latitudinal range from 

tropical to temperate climates, including regions of unique biogeography and are known for 

high levels of endemism. These marine bioregions encompass features such as offshore 

islands, reefs, submarine canyons and their proximity to the continental shelf and the 

length of the continental shelf in a general north/south orientation of the coastline makes 

Western Australia a good site for investigating factors influencing the structure of 

deepwater fish assemblages.  

This thesis assesses the distribution of deepwater fish assemblages in Western Australia 

encompassing continental shelf and upper slope depths over a 16° latitudinal range using 

Baited Remote Underwater Stereo-Video Systems (stereo-BRUVs) as a sampling tool. In 

doing so, I investigate the factors influencing the distribution, abundance, biomass and 

length characteristics of deepwater demersal fish to elucidate whether existing ecological 

paradigms apply to deepwater fish assemblages in Western Australia.  
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Depth is considered one of the primary drivers influencing the distribution of marine 

species. In Chapter 2 I examined the influence of depth from an offshore island to the 

upper slope of the continental shelf which had been incised by a submarine canyon. This 

sampling encompassed depths from 0-570 m. At this single location, benthic biota, depth 

and seabed relief explained the greatest proportion of the assemblage variation, with 

distributions identifying three distinct groups based on depth; corresponding with the 

continental shelf (5–199 m), margin (200-300 m) and upper slope (300-570 m). At the 

intersection of the continental margin (200-400 m), large-bodied meso-predators 

dominated the biomass and assemblage composition in correlation to sessile invertebrates 

and sponge dominated habitats. This pattern was also evident at six sites across 16° of 

latitude (Chapter 3) where a minority of larger-bodied species dominated depth ranges at 

approximately 300 m. Additional environmental parameters from the BRAN ocean model 

enhanced the explanatory power of covariates (Chapter 3). The fish assemblages were 

separated into north, mid and south along the western Australian coastline indicating the 

significant influence of latitude on distributions. Assemblage composition was strongly 

influenced by latitude and depth with deepwater assemblages becoming more similar with 

increasing depth. A combination of nine environmental and physical covariates best 

explained the assemblage distributions across all six surveys. At smaller spatial scales, 

benthic biota and seabed relief were more important. 

The data presented here has contributed to the ecological framework regarding fish 

distributions globally and is informative for ecosystem related fisheries management 

spanning the continental shelf and upper slope in Western Australia. 
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Background and Rationale 

Deepwater (> 170 m) environments represent the largest ecosystem on earth with a vast 

array of marine organisms, habitats and geological features (Koslow et al., 2000; Koslow, 

2007; Danovaro et al., 2010). Deepwater ecosystems around the continental margin (170-

300 m) and upper continental slope (300-700 m) are targeted by many commercial and 

recreational fishers. It is also a zone subject to a number of pressures through fisheries 

resource extraction, habitat disturbance, industrial development such as oil and gas, 

pollution and climatic shifts (Levin and Dayton, 2009; Danovaro et al., 2010; Vieira et al., 

2015). As these impacts proliferate through the ocean ecosystem, the consequences can 

include loss of resources (depleted stock levels), loss of biodiversity, and shifts in food webs 

and habitats (Ramirez-Llodra et al., 2011). The loss of fisheries resources, in particular, has 

negative economic implications, as well as impacts to the broader marine environment 

where ecosystem function supports fisheries recovery. 

There has been significant progress in research into deepwater habitats in recent decades, 

facilitated by developments in technology across many industries, but there is still much we 

do not understand (Levin and Sibuet, 2012; Da Ros et al., 2019). There remain questions 

about the drivers affecting deepwater fish assemblage diversity and abundance, their 

interactions with and the influence of environmental factors within these habitats. 

Ecological theories, in particular, remain comparatively scant and untested with some 

theories having been adapted from terrestrial or shallow water habitats (Levin and Sibuet, 

2012) leaving the ecological significance of deepwater habitats often underestimated. 

Consequently, there is a need to understand the mechanisms controlling deep sea 

biodiversity and how future impacts and changes (for example habitat disturbance, marine 

plastics, pollution and climate change) may alter these ecosystems (Haedrich, 1996; Levin 

and Dayton, 2009; Ramirez-Llodra et al., 2011).  

There is a critical need to understand deepwater fish distributions in an ecosystem-based 

context as a greater ecological understanding of the principles that govern species and 

ecosystems in deepwater can yield new insights in the mechanisms that control diversity, 

distribution and resilience on the continental shelf, margin and upper slope. Recognising 

how fish assemblage characteristics are influenced in deeper water and linking these 

understandings to existing knowledge of the shallow water environment will provide an 

interrelated understanding of how to manage areas of shared resources and use. 
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This deepwater ecosystem and the fishes that inhabit them are intrinsically linked to oceanic 

ecosystems globally. Yet, they are fragile with sparse and heterogeneous habitats subject to 

the same environmental pressures that we see in shallow water environments (Pauly et al., 

2005; Compton et al., 2013; Kuhnz et al., 2014). Many deepwater species of fish are 

inherently vulnerable to fishing exploitation due to their slow growth rates, late maturity 

and long life spans (Haedrich, 1996; Koslow et al., 2000; Gordon, 2001). 

Deepwater sampling is considered time-consuming and expensive due to vessel and 

equipment requirements as well as logistical complexities in accessing the environment. 

Scientific studies have used a variety of methods for sampling deepwater fish, the most 

common of which is trawling, traps and long lines, supplemented with acoustic sampling 

(Shortis et al., 2008). Valuable data is sourced this way and forms the basis of stock 

assessment statistics and fisheries resource data (Newman et al., 2015). However, data from 

extractive techniques such as traps, trawls or lines frequently only collect information on 

abundance, lengths and weight of target species. By-catch is not consistently recorded, and 

in-situ data such as habitat and other environmental parameters are rarely linked. As with all 

methods, selectivity exists with each of these approaches; net, hook or trap sizes and other 

gear choices influence the catch rate and species diversity, as does location and depth range. 

Such variation can make comparisons between datasets problematic. Traditional methods of 

sampling, such as demersal trawling, are often indiscriminate and are destructive of the 

benthos highlighting a need for the development of fishery-independent non-destructive 

sampling methods (Hutchings, 2000; Amoroso et al., 2018).  

There have been great strides in recent decades in the use of underwater cameras, video 

systems and baited camera systems, facilitated by developments in technology and industry, 

which have expanded the field of in-situ observations and data collection for the assessment 

of fish assemblages (Priede and Merrett, 1996; Cundy et al., 2017). From the use of remotely 

operated vehicles (ROVs), autonomous vehicles and landers which can be deployed for 

months at a time, systems have developed to cater to a wide range of scientific applications 

(Bailey et al., 2007). 

Underwater video techniques are broadening our understanding and knowledge base of fish 

behaviour, assemblage structure, habitat preferences, and provide an accurate tool for 

analysis in a non-destructive way (Harvey et al., 2013). Baited remote underwater stereo 

video systems (stereo-BRUVs) are a fisheries independent sampling tool that can provide a 

permanent record of a fish assemblage in time with associated habitat. Although any 
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technique utilising bait can have bias, stereo-BRUVs are highly effective at drawing in 

scavenging fish and subsequent predators while not diminishing the presence of omnivorous 

and herbivorous species (Harvey et al., 2007).  

Baited underwater cameras provide a relatively consistent methodology (Langlois et al., 

2018).  Calibration gives a high degree of accuracy, trained assessors relieve observer related 

biases, and stratified designs across a range of habitats mean there is a relatively high 

degree of representative sampling and comparable results. Abundance estimates can be 

derived a number of ways, depending on the objectives of the sampling program, locations, 

depths and treatments. Priede and Merrett (1996) developed the npeak model to estimate 

absolute density taking into account fish swimming speeds, bait plume and current 

velocities. Further work by Bailey and Priede (2002) expanded theoretical estimates that 

took into account variations in foraging behaviours for abyssal scavengers. However, 

applications of these models in shallow waters produced inverse results where arrival times, 

species diversity and abundances are much higher. Standard operating procedures across 

shallow water and shelf depths have therefore adopted MaxN (maximum number of a fish 

species in the field of view at one time) to derive relative abundance estimates (Harvey et 

al., 2013). 

The stereo-BRUVs cost per unit is relatively cheap, making the method replicable with sets 

of stereo-BRUVs being deployed at one time. However, to date, a great deal of the 

underwater visual assessments undertaken have been limited to shallow water 

deployments. 

Generalised trends in deepwater fish assemblage characteristics indicate abundance, 

biomass and diversity decrease with increasing depth (Stefanescu et al., 1994; Haedrich, 

1996). As depth increases, ecological factors such as resource availability, and environmental 

conditions such as temperature, light and pressure change, altering biological and 

physiological habitats (Massuti et al., 2004; Farré et al., 2016). A clear distinction in fish 

assemblage structure exists at 200 metres depth, representing the limit of photosynthesis 

across much of the ocean and the divide between continental shelf and slope (Bergstad, 

1990; Haedrich, 1996). Often, it is the local geographical and biological factors, influenced by 

the surrounding environment, that have been found to have a dominant influence on 

assemblage structure, abundance and biomass (Haedrich and Merrett, 1990; Gordon, 2001; 

Moranta et al., 2004). It, therefore, becomes necessary to study particular geographic 

locations, in order to comprehend and assess the assemblages within. 
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There has been relatively little research on deepwater fish assemblages on the west 

Australian coast (Williams et al., 2001; Last et al., 2011). Governance of fishery related 

resources in Western Australia is approached through a bioregional boundary structure 

using an Ecosystem-Based Fishery Management (EBFM) framework (Fletcher and Santoro, 

2014). While there has been an emerging deepwater fishery since the 1980s (Wakefield, 

2010; Wakefield et al., 2010) there has been only modest commercial interest in the 

deepwater demersal fish fauna (Jernakoff, 1988; Fletcher and Santoro, 2014).  

The Western Australian coastline encompasses a large latitudinal range, covering tropical to 

temperate biomes, including bathymetry and topographical features such as offshore 

islands, reefs, submarine canyons, and an accessible continental slope. Distinct assemblage 

patterns exist for deepwater fish on the west Australian coast delineated by depth and 

geographic biomes displaying high species diversity and endemism (Fox and Beckley, 2005; 

Last et al., 2011). The diversity of features makes the west Australian marine environment 

ideal for investigation into the primary drivers of deepwater fish assemblages. 

 

 

Study Area and Research Design 

The large Western Australian coast (ca 20,000 km) includes a wide latitudinal range (> 20°S) 

with marine climatic environments spanning tropical regimes in the north to temperate 

regimes in the south (Hutchins, 1994). The poleward flowing Leeuwin current brings warm, 

nutrient poor tropical water south along the western coast, and east along the southern 

coast. Surveys were designed to target geographic features along the continental shelf and 

upper slope of the west Australian coastline encompassing significant geomorphic features 

such as submarine canyons, offshore shoals and islands.  

Stereo-BRUVs can be used remotely to sample deep habitats, for long periods and in a cost-

effective manner (Langlois et al., 2010). These systems, which can be deployed remotely, 

were found to be a successful and economical way to sample fish assemblages (Cappo et al., 

2006). Each survey was designed to collect approximately 20 deployments using stereo-

BRUVs adapted for deepwater areas (robust frame, additional weight and illumination) 

across each 100 m depth range (100-199, 200-299, 300-399, 400-499, 500-599) (Fig. 1.1). 
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Within each depth range, a diversity of benthic geomorphology and rugosity was sought to 

sample varying factors of habitat, benthic biota and seabed relief. Specifically, these 

locations included the Rowley Shoals, Montebello Islands, Ningaloo Reef, Abrolhos Islands, 

Perth Canyon and the South West Capes (Fig. 1.2).  

 

Figure 1.1 Photograph illustrating the basic design of the stereo baited remote underwater video 
system (stereo-BRUVs) adapted for deepwater deployments. 
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Figure 1.2 Map of sampling locations on the West Australian coast. RS = Rowley Shoals, MB = 
Montebello Islands, NI = Ningaloo Reef, AB = Abrolhos Islands, RC = Perth Canyon, SC = South West 
Capes. 
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Aims and Objectives 

The purpose of this thesis is to investigate the effects of latitude and depth on the 

composition of deepwater continental slope fishes along the coast of Western Australia (Fig. 

1.3). I aim to address two specific questions about changes in assemblage composition over 

depth and latitudinal gradients. 1) How do fish assemblage compositions, i.e. species 

richness, abundance and biomass change with increasing depth? 2) How do assemblage 

patterns change with latitudinal variations, and what factors are influencing this variation?  

 

Figure 1.3 Thesis flow diagram outlining the background and rationale, aims and thesis structure. 

 

This information will provide much-needed knowledge about the ecology of the deepwater 

distribution and habitat use of demersal fishes along the west Australian coastline. There are 

increasing challenges in regards to the sustainable management of aquatic resources 

through such issues as expanding populations, fishing technology, changing climatic and 

oceanographic conditions, and increasing industrial and coastal development. An integrated 

approach to fisheries management can provide a robust process to inform regulation 

frameworks. The data herein will be used to enhance future management and conservation 
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of deepwater fisheries and build a body of knowledge about the west Australian coast and 

its unique confluence of environmental variables. The use of stereo-BRUVs overcomes many 

of the limitations set by other traditional methods, such as the selectivity inherent in 

extractive processes, the difficulty in sampling steep and uneven terrain and the limitations 

of depth. This method of sampling allows for accurate measurements and identification of 

fish, as well as a fishery-independent, permanent record of fish assemblages and their 

behaviour. 

In chapter two I investigate how the characteristics of demersal fish assemblages (i.e. 

teleosts and chondrichthyans) varied across the continental shelf and slope at a temperate 

latitude on the lower west coast of Australia and identify the influence of benthic habitat 

and other environmental variables on assemblage structure. Specifically, to assess how the 

species assemblage and richness, biomass, and mean length varied with depth. Based on 

established ecological theories I expected to find distinct changes in fish assemblages 

between the continental shelf and upper slope habitats, such that species richness and 

biomass would decrease with increasing depth, whereas average fish length would increase 

with depth. This chapter has been published in Continental Shelf Research in 2018 

(Wellington et al., 2018).  

In chapter three, I assess how the demersal fish assemblages on the Western Australian 

continental shelf and upper slope vary with regard to latitude and depth from tropical to 

temperate environments. In this chapter, I consider the effect of ocean variables such as 

temperature, salinity and currents, as well as benthic habitat factors on demersal fish 

assemblage structure across depth and latitude. Based on existing evidence, I expected to 

see latitudinal trends to be evident between tropical and temperate regimes, in keeping 

with bioregional information from Western Australia (Last et al., 2011) with species richness 

predicted to decrease with depth and with latitude. Overall, the data presented here will be 

informative for ecosystem related fisheries management spanning the continental shelf and 

upper slope in Western Australia, as well as contribute to the ecological frameworks 

regarding fish distributions globally. This chapter has been submitted to the Journal of 

Experimental Marine Biology and Ecology for publication.  
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Chapter 2 Peak in biomass driven by larger-bodied meso-

predators in demersal fish communities between shelf and 

slope habitats at the head of a submarine canyon in the 

south-eastern Indian Ocean
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Abstract 

This study investigated variations in the composition and biomass of demersal fish 

assemblages over a 570-metre depth gradient on the temperate, lower west coast of 

Australia (32˚ S) in the south-eastern Indian Ocean. Fish assemblages were sampled using 

Baited Remote Underwater Stereo Video systems (stereo-BRUVs, n = 284 deployments) 

from shallow waters around a mid-shelf island (Rottnest Island) to the continental slope 

within a submarine canyon (Perth Canyon). A total of 9,013 individual fishes (i.e. ΣMaxN) 

belonging to 179 species and 75 families were identified. Multivariate statistical analyses 

revealed three distinct fish assemblages associated with the continental shelf (5–199 m), 

margin (200-300 m) and upper slope (300-570 m). A distance-based linear model revealed 

that among environmental covariates, benthic biota (sessile invertebrates and macroalgae) 

accounted for the highest proportion of variation in fish assemblage composition (16.9%) 

followed by depth (12.5%) and seabed relief (10.5%). Generalised additive models indicated 

higher biomass of fish associated with habitats characterised by benthic biota. Species 

richness decreased with increasing depth across the continental shelf but remained constant 

with increasing depth on the continental slope. Average fish length was not correlated with 

depth but was greatest at 200–400 m depth. The continental margin and upper slope 

habitats revealed a distinct change in assemblage composition as well as a peak in biomass 

of species that was dominated by larger-bodied meso-predators at the continental margin. 

The trends exhibited in fish assemblage characteristics across this broad depth range can 

inform ecosystem-based management for deepwater fisheries resources. 

 

Keywords: Stereo-BRUVs; baited cameras; deepwater; continental margin; benthic biota; 

fish assemblage. 

 

Introduction 

Variations in fish assemblages can be influenced by a number of factors, including (but not 

limited to) depth, environmental conditions, and local geomorphology (Koslow et al., 2000; 

Newman and Williams, 2001; Johnson et al., 2013). These general patterns and theories 

explain much of the diversity, abundance and biomass of fish assemblages in many regions 

of the ocean globally, but relatively little is known about the assemblage structure of 
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deepwater demersal fishes in the temperate region of the west coast of Australia (Williams 

et al.; Williams et al., 2001). In a fisheries context, deepwater has broadly been defined as 

the continental shelf (~170 m), continental margin (170-300 m) and upper continental slope 

(300-700 m) which collectively is a depth zone occupied by the majority of commercial 

fisheries globally (Newman et al., 2016). Research in deepwater environments is typically 

expensive and problematic, with data traditionally sourced from extractive methods (e.g. 

trawls, traps and longlines; (Levin and Dayton, 2009; Fabri et al., 2014). Baited Remote 

Underwater Stereo Video systems (stereo-BRUVs) offer a cost-effective means of gathering 

fish abundance indices, biomass and benthic habitat data providing valuable information on 

the status of fish species, including those vulnerable to fishing exploitation or cryptic species 

rarely captured through traditional methods (McLean et al., 2016; Warnock et al., 2016).  

Depth is considered one of the strongest predictors of biodiversity in the deep sea 

(Haedrich, 1996; Bergstad et al., 2008; Gaertner et al., 2013). Trends in fish species richness 

in these deepwater habitats have been shown to generally decrease with increasing depth 

(Stefanescu et al., 1994; D'Onghia et al., 2004; Tolimieri, 2007). Relative biomass is thought 

to decrease with depth due to reductions in light, temperature, primary productivity and 

food (Haedrich, 1996; Carney, 2005; Bergstad et al., 2008). However, local epipelagic 

primary productivity can influence both species richness and biomass trends, with areas of 

low primary productivity exhibiting increased diversity and biomass at the continental 

margin before decreasing again with depth (Williams et al., 2001; Rennie et al., 2009a; 

Tolimieri and Anderson, 2010; Gaertner et al., 2013). Significant geomorphology such as 

submarine canyons can also facilitate a range of oceanic processes enhancing the transfer of 

energy and productivity in a localised region (Rennie et al., 2006; Danovaro et al., 2010). 

Canyons are unique geological features and have been reported to be areas of high local 

diversity for both fish and benthic habitat (Williams et al., 2010; Davies et al., 2014; De Leo 

et al., 2014).  

Many deepwater species are mid-level predators, feeding on smaller prey such as fishes and 

invertebrates. As meso-predators, they form an integral part of trophic flows and can have 

important consequences in trophic cascades (Sieben et al., 2011). These larger-bodied fish 

species are also important to recreational and commercial fisheries. Heincke’s law generally 

interpreted as the ‘bigger-deeper’ trend, postulates that larger species are generally found 

in deeper water environments. Heincke’s law has been the subject of much debate, 

depending on the species studied and the region/context examined (Macpherson and 
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Duarte, 1991; Merrett and Haedrich, 1997). Deepwater fish species typically have a higher 

inherent vulnerability to fishing exploitation than shallower water species due to potentially 

lower production potential inferred from life history characteristics (e.g. slower rates of 

growth, later maturation and longer life spans; Haedrich, 1996; Cheung et al., 2007; 

Wakefield et al., 2013a; Newman et al., 2016). These life history characteristics, coupled 

with a trend towards increased biomass in deepwater environments, highlight the potential 

vulnerability of deepwater species and the need for sustainable management. 

Sound governance, management and stock assessments require knowledge of species’ life-

history characteristics and an understanding of the environmental and ecological 

characteristics within which those species exist (Newman et al., 2017). Often the relevant 

biological and ecological information is limited or unknown. Fisheries management in 

deepwater areas can be further complicated if there are overlapping management 

jurisdictions governing the exploitation of shared stocks. For example, in Western Australia 

State and Commonwealth managed fisheries have the capacity to harvest the same fishery 

resources in depths greater than 200 m (Brayford and Lyon, 1995). It is therefore important 

to have a thorough understanding of the trends and factors influencing fish assemblage 

characteristics in deeper water environments, and how they relate to those in shallower 

water in order to comprehensively manage shared resources in this zone. 

The objective of this study was to investigate how the characteristics of demersal fish 

assemblages (i.e. teleosts and chondrichthyans) varied across the continental shelf and slope 

at a temperate latitude on the lower west coast of Australia and identify the influence of 

benthic habitat and other environmental variables on assemblage structure. Specifically, we 

aimed to assess how the species assemblage and richness, biomass, and mean length varied 

with depth. Based on established ecological theories we expected to find distinct changes in 

fish assemblages between the continental shelf and upper slope habitats, such that species 

richness and biomass would decrease with increasing depth, whereas average fish length 

would increase with depth. The trends exhibited in fish assemblage characteristics across 

this broad depth range and diverse habitats will be useful for informing ecosystem-based 

management for deepwater fisheries resources. 
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Material and methods 

Study site and sampling regime 

Sampling sites extended from the mid-shelf shallow waters (5 m) of Rottnest Island, across 

the continental shelf to the upper continental slope of the submerged Perth Canyon (to 570 

m depth, ~32°S, Fig. 2.1). Rottnest Island is located ~18 km off the coast of Perth, Western 

Australia, and is the only mid-shelf island on the lower west coast of Australia. The marine 

fauna and flora around Rottnest Island comprises a combination of subtropical and 

temperate marine species, many of which are endemic (Hutchins, 1994; Harry, 2001). The 

Perth Canyon, which is located 27 km west of Rottnest Island, constitutes a geological relict 

of the Swan River incised into the edge of the continental slope (Rennie et al., 2006). The 

shallowest point of this canyon occurs at the continental margin at ~200 m depth, with 

relatively steep slopes to ~1000 m deep. 

 

Figure 2.1 Sampling locations of stereo-BRUVs (blue circles) from shallow waters of Rottnest Island 
to the continental slope of the Perth Canyon on the lower west coast of Western Australia. The 
position and geographic features of the Perth Canyon are shown using overlayed bathymetry (> 200 
m, provided by the CSIRO). 

 

Stereo-BRUVs were used to record the composition, relative abundance and size of fishes 

and characteristics of the habitats they occupied (i.e. substrate type, seabed relief, and 
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dominant benthic biota). Sampling was completed during four research surveys in 

September 2007 and March, April, and November 2010. A total of 284 stereo-BRUVs were 

deployed during daylight (0800-1700 h) in sets of up to ten. Sampling was stratified into ten 

depth categories consisting of five categories in consecutive 20 m depth increments from 0-

100 m and five categories in consecutive 100 m depth increments from 100-599 m. At 

depths of 100 m or more, between 10 and 20 replicate samples were collected in each depth 

category. In depths greater than 200 m, the location of each stereo-BRUVs deployment was 

determined from a GPS overlay of the vessel position onto swath maps that displayed 

detailed bathymetry and backscatter (i.e. relative density of substrate, Fig. 2.1). This allowed 

soft, intermediate and hard substrate types to be sampled within each depth category. 

Habitats were further classified from recorded footage during video analysis. 

The stereo-BRUVs used two high-definition cameras (Sony® CX7 or CX12 models) inside 

waterproof camera housings. The configurations of the cameras were the same as that 

described in Watson et al. (2005) and Zintzen et al. (2012). In depths greater than 100 m, 

blue LED lights (CREE Inc. 420 nm Royal Navy) were used for illumination as they are 

considered to be below the visual sensitivity of most fish (Lythgoe et al., 1994; Douglas et al., 

1998). While red illumination (> 600nm) is thought to result in less disturbance to fishes 

(Raymond and Widder, 2007; Fitzpatrick et al., 2013), blue illumination was used in this 

instance as longer wavelengths do not attenuate in water as quickly, increasing the field of 

view for image analysis (Harvey et al., 2012). Lights were positioned on the top of the metal 

frame between the two cameras with a bait bag extended 1.2 m from the frame within the 

cameras field of view.  For each deployment, the bait bag was filled with 800 to 1000 g of 

Australian pilchards (Sardinops sagax), that were crushed to maximise the bait plume and 

facilitate comparisons with other stereo-BRUV studies (Westerberg and Westerberg, 2011; 

Dorman et al., 2012). Stereo-BRUVs were deployed at a minimum distance of 500 m from 

each other to reduce the potential for overlap of bait plumes and the likelihood of fish 

moving between baited videos during the same sampling period (Cappo et al., 2003; Langlois 

et al., 2011).  

 

Image analyses 

Stereo-BRUVs were calibrated before and after field trips using CAL software 

(www.seagis.com.au) to facilitate accurate length measurements during video analysis 
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following the procedures outlined by Harvey and Shortis (1998). EventMeasure Stereo 

software (see http://www.seagis.com.au/event.html) was used to record the relative 

abundance of fish and to measure fish lengths from the video imagery. The relative 

abundance of fish was determined as the maximum number of any one species recorded 

within the field of view at any one time (i.e. MaxN). This relative abundance measure is 

considered a conservative estimate that avoids recounting an individual fish that may re-

enter the field of view several times during a single deployment (Cappo et al., 2004; Harvey 

et al., 2007). For deployments < 100 m the first 60 minutes of video imagery was analysed 

from each deployment, commencing once the stereo-BRUV system had settled on the 

seafloor (Watson et al., 2005; Langlois et al., 2010). Deepwater deployments (> 100 m) were 

analysed for 90 minutes in order to allow slower-moving deepwater species time to move 

towards the bait (McLean et al., 2015; Zintzen et al., 2017). Fish species were identified to 

the lowest possible taxa using available literature and in consultation with ichthyologists and 

fisheries scientists in Australia (Gomon et al., 2008; Last and Stevens, 2009; Froese and 

Pauly, 2019). The lengths of individual fish were converted to weight using relationships 

obtained from local fisheries unpublished data or from Fishbase (Froese and Pauly, 2019). 

Where species-specific relationships were not available, the relationship of a similar 

congener was used. Biomass estimates were calculated from the MaxN of each species in 

each deployment. 

Images from each video deployment were used to categorise benthic habitat based on biota, 

substrate type and seabed relief. Biota was categorised into kelp, other macroalgae, or 

sessile invertebrates (which included a complex of sponges, corals, bryozoans, hydroids and 

ascidians). Substrate was classified as either sand or reef. Seabed relief was classified into 

high, moderate, low and flat profiles, with flat relief representing an absence of any gradient 

or underlying reef structure. Only the dominant habitat category was scored for each stereo-

BRUVs deployment.  

 

Statistical analyses 

Checking data and formatting EventMeasure outputs was under-taken using the R language 

for statistical computing (R Core Team, 2017) using scripts adapted from Langlois et al. 

(2015) with the dplyr (Wickham and Francois, 2016) and tidyr (Wickham, 2017) data 

handling packages. 
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The depth range of each fish family was plotted using the minimum and maximum depths at 

which they were observed from the videos. The mean number of species and average length 

of individual fishes was calculated for each depth category (± 1 SE).  

The distribution of total biomass and correlation with likely environmental variables was 

investigated using generalised additive models (GAMs; Hastie and Tibshirani, 1990). GAMs 

use a sum of smooth functions to model covariate effects, as opposed to a linear (or some 

other parametric) form, allowing for more flexible functional dependence of the response 

variable on the covariates. This makes GAMs useful for capturing the shape of a relationship 

without making prior assumptions about its parametric form. A full subsets approach was 

used to fit all combinations of predictor variables up to a maximum of three, preventing 

overfitting whilst ensuring models remained ecologically interpretable (Fisher et al., 2018). 

Biomass data was assessed using a Tweedie distribution within a GAM (Wood, 2017). Model 

sizes were limited to only three terms (size = 3), and k was limited to 5 (degrees of freedom). 

All analyses and plots were performed using the R language for statistical computing (R Core 

Team, 2017) with the statistics package mgcv (Wood, 2011), plotting package ggplot2 

(Wickham, 2009). 

Multivariate statistical analyses exploring differences in the abundance and biomass data 

were undertaken using PRIMER (version 6.1.13) (Clarke and Warwick, 2001) with the 

PERMANOVA + add on (version 1.0.3) (Anderson et al., 2008). A similarity matrix using the 

Modified Gower (log10) distance measure was chosen for both abundance and biomass data 

sets based on an optimal stress performance derived from Shepard diagrams. Shepard 

diagrams display the departure of pairwise distances from the best-fitting inclining linear 

regression from non-metric multi-dimensional scaling (nMDS). Modified Gower (log10) 

transformation minimises the effect of highly abundant species and schools of fish 

overwhelming the data set and differentiates between multiple zero entries making it 

suitable for use with community data as it emphasises species composition and relative 

abundances (Anderson et al., 2011). 

An unconstrained distance-based principal coordinate analysis (PCO) examined trends in the 

relative abundance and biomass of fish assemblages (at the family and species level, 

separately) with depth and substrate type. Depths were categorised into ten strata 

consisting of five consecutive 20 m increments from 0-99 m (i.e. 0-20, 21-40, 41-60, 61-80, 

81-99 m) and five consecutive 100 m increments from 100-599 m (i.e. 100-199, 200-299, 

300-399, 400-499, 500-599 m). Substrate type was classified into either sand or reef.  
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A distance-based linear model (DistLM) and associated distance-based redundancy analysis 

(dbRDA) plot measured and visualised the relationship between the fish assemblage 

structure and physical and biological environmental variables. Variables were pooled into 

their major categories (i.e. depth, biota and seabed relief) to identify them in order of their 

significance on the fish assemblages. DistLM is designed to determine how much of the 

variability is attributable to predictor indicators (Anderson et al., 2008). The BEST selection 

procedure was used to examine the value of the selection criterion for all possible 

combinations of predictor variables (Clarke and Warwick, 2001). The best overall model was 

found using the Akaike Information Criterion (AIC) in order to reveal the paramount 

combination of significant variables influencing the fish assemblage composition (Akaike, 

1973; Anderson et al., 2008). 

Canonical analyses of principal coordinates (CAP) ordinations further investigated trends in 

both the relative abundance of fish assemblages and biomass with relation to depth. This is 

a constrained ordination that allows a priori habitat classifications to be maintained in order 

to identify the variable with the strongest correlation. Spearman correlations of ≥ 0.6 were 

used to graphically present potential correlations between the data and variables relative to 

the canonical axes. 

 

Results 

Distribution of abundances and lengths of fish with relation to depth 

A total of 9,013 individual fish (ΣMaxN) were identified from 179 species and 75 families. The 

majority of families (45%) were recorded exclusively in continental shelf waters (i.e. < 200 m, 

Fig. 2.2). Eleven families were distributed in waters from the continental shelf to margin, 

nine families from the continental shelf to upper slope, and 21 families exclusively inhabited 

the upper slope (i.e. 300–600 m, Fig. 2.2). The largest depth ranges were recorded for the 

Urolophidae (8–440 m), Scyliorhinidae (28–440 m) and Sebastidae (108–523 m) with these 

three families distributed from continental shelf to slope habitats. A full species list is 

included in the Supplementary Material (Table S 2.1). 

The highest numbers of species were recorded in the 0–20 m depth range with an average 

of 16.0 species (± 1.2 SE) per stereo-BRUV (Fig. 2.3a). Species richness decreased with 

increasing depth across the continental shelf to 5.7 species (± 0.42 SE) per stereo-BRUV in 
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the 100-199 m depth range. In waters deeper than 200 m, species richness was relatively 

consistent between 4.6 (± 0.3 SE) and 5.4 (± 0.6 SE) species per stereo-BRUV (Fig.2.3a). In 

contrast, the average length of all fish observed was positively correlated with depth from 0 

to 300 m, where it peaked at an average of 479 mm, before decreasing with increasing 

depth (Fig. 2.3b). 

The most abundant species recorded (ΣMaxN by species) were Neatypus obliquus (ΣMaxN = 

1476) and Coris auricularis (ΣMaxN = 1176). The habitats occupied by these species were 

constrained to the continental shelf, whereas those of the third most abundant, 

Pseudocaranx spp. (ΣMaxN = 1087), extended across the shelf to the continental margin. 

Chrysophrys auratus (ΣMaxN = 320) was the most ubiquitous species and was encountered 

on 120 stereo-BRUVs (i.e. 42% of deployments) between depths of 13–316 m.  

 

Trends in biomass and significance of habitat variables  

The most parsimonious model for trends in total biomass included correlations with depth, 

seabed relief and benthos, which collectively explained 47% of the variance (Table 2.1). The 

second top model contained all four variables indicating that substrate type was also 

important across all possible models. The GAM revealed there was a strong non-linear 

relationship of biomass with depth indicating a significant peak in total biomass at the 

continental margin in 190–240 m depth (Fig. 2.4a).  

Total biomass increased with depth to ~240 m, then decreased precipitously with increasing 

depth on the upper slope from 300–570 m. Overall, total biomass was generally negatively 

correlated with depth, positively correlated with increasing seabed relief and generally 

lower in sand dominated habitats (Fig. 2.4a-c). 

 



20 
 

 

Figure 2.2 Depth ranges of each fish family recorded from stereo-BRUVs from shallow waters of 
Rottnest Island (~5 m) to the continental slope of the Perth Canyon (~600 m). Dashed lines 
represent depth ranges for continental shelf, continental margin and continental slope habitats 
derived from multivariate distinction of species compositions. 
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Figure 2.3 a. Average number of fish species per stereo-BRUVs (± 1 SE) in consecutive depth 
gradients from 0 to 599 m. b. Average length (mm) of fish measured from stereo-BRUVs imagery 
across each depth gradient. 
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Table 2.1 Top generalised additive models (GAMs) for predicting the total biomass from full subset analyses. Difference between lowest reported corrected Akaike 
Information Criterion (ΔAICc) and Bayesian Information Criterion (ΔBIC), both AICc and BIC weights (ωAICc and ωBIC), variance explained (R2), and effective degrees of 
freedom (EDF) are reported for model comparison. Model selection was based on the most parsimonious model (fewest variables) within two units of the lowest AICc. 

 Best models ΔAICc ΔBIC ωAICc ωBIC R2 EDF 

Total biomass Depth + Relief + 

Benthos 

0 0.996 0.562 0.26 0.472 19.41 

 Depth + Relief +  

Substrate Type 

0.563 1.564 0.04 0.029 0.333 20.07 
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Figure 2.4 a. Plots of the most parsimonious model found to predict the total biomass from all 
possible combinations of variables GAM analyses over depth (0–600 m) (see Table 2.1) b. Model of 
total biomass by seabed relief profiles 0 = flat 1= low 2= moderate 3= high seabed relief c. Model 
of total biomass by biota categories (Sessile Invert. – sessile invertebrates). Solid lines are fitted 
GAM curves, with dashed lines indicating standard error confidence bands. 

 

Multivariate significance of habitat variables for abundance and biomass among 

fish assemblages 

At the family level, the first two PCO axes explained 38% of the variation in fish 

assemblages, with the distribution of data points within the ordination showing a strong 

correlation between fish assemblages and depth (Fig. 2.5a). The relative abundances of the 

families Scorpididae and Labridae were strongly correlated with shallower continental shelf 

waters (Spearman correlation ≥ 0.6, Fig. 2.5b). In contrast, the relative abundances of 

Oplegnathidae, associated with both reef and sand substrate, and Squalidae with a 

preference towards sand habitat, were both strongly correlated with deeper continental 

margin and upper slope waters (Fig. 2.5b). 
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Figure 2.5 a. Principal coordinates analysis (PCO) of fish assemblage data using depth range and 
substrate type with b. Corresponding strength and direction of spearman correlation ≥ 0.6 of 
family taxa shown as line vectors. c. Principal coordinates analysis (PCO) ordination of fish 
abundance data using depth range and substrate type with d. Corresponding strength and 
direction of spearman correlation ≥ 0.6 of fish species shown as line vectors. Fish species 1-5 are 
Opthalmolepis lineolatus1, Pseudolabrus biserialis2, Notolabrus parilus3, Coris auricularis4, 
Neatypus obliquus5 e. Principal coordinates analysis (PCO) of biomass data using depth range and 
substrate type with f. corresponding strength and direction of spearman correlation ≥ 0.6 of 
habitat variables shown as line vectors. In all figures, the analysis was based on Modified Gower 
(log10) dissimilarities. Key is the same for all figures. 

 



25 
 

At the species level, 28.9% of the variation in the relative abundance among fish 

assemblages was explained by the first two PCO axes (PCO1 17.8%, PCO2 11%) (Fig.2.5c). 

There were six species with relative abundances strongly correlated with predominantly 

shallow reef habitats on the continental shelf that were distinguished by the first PCO axis 

(Fig. 2.5d). These species included Opthalmolepis lineolatus, Pseudolabrus biserialis, 

Notolabrus parilus, Coris auricularis, Neatypus obliquus and Pseudocaranx spp.. Again, there 

was a pronounced shift in the orientation of data points within the ordination between 

deployments on the continental shelf and those from the continental margin and slope. 

Chrysophrys auratus was highly correlated directly between the shallow water shelf 

deployments and continental margin depths. In depths > 200 m on the continental margin 

and upper slope, the relative abundances of two teleosts, Oplegnathus woodwardi and 

Nelusetta ayraud, were strongly associated with reef and sand in continental margin 

habitats whilst the abundance of three squalid shark species (i.e. Squalus edmundsi, S. 

megalops and S. montalbani) were strongly correlated with sand in upper slope habitats 

(Fig. 2.5d). 

Biomass of fish species among assemblages explained 29.4% of the variation within the first 

two PCO axes (PCO1 = 16.6% and PCO2 = 12.8% Fig. 2.5e). The shift in the orientation of 

data points within the ordination was once again pronounced between continental shelf 

habitats and those from the continental margin and upper slope habitats. Assemblages of 

fish species based on total biomass in shallower continental shelf locations (i.e. < 100 m) 

had a stronger correlation with kelp, reef, and low to medium seabed relief habitats as 

distinguished by the first PCO axis (Fig.2.5f). Whereas assemblages of fish species based on 

total biomass in deeper waters were associated with benthic sessile invertebrates at the 

continental margin (100-199 m depth) and sand habitats with flat seabed relief dominating 

the upper slope (200–570 m depth).   

DistLM identified all three environmental indicators (biota, depth, seabed relief) as 

significant in relation to abundance indices (p < 0.001, Table 2.2).  An overall best solution 

model revealed that biota, depth and seabed relief together explained the greatest amount 

of variation within the abundance data (Table 2.3). Biota alone accounted for the greatest 

proportion of the variation at 16.9%, followed by depth 12.5% and seabed relief 10.5%. The 

dbRDA plot explained 59% of the variation of the fitted model and 14.5% of the total 

variation on dbRDA1 where abundance data of the continental slope was strongly 

correlated with depth (Fig. 2.6a, b). On dbRDA2 the fitted model explained 22.9% of the 
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variation and 5.6% of the total variation where the habitat variables were correlated with 

sessile invertebrates at the continental margin. Kelp habitat (found exclusively on the shelf) 

and reef profiles with seabed relief were correlated with shallower water continental shelf 

communities (Fig.2. 6b). 

Table 2.2 Results of distance-based linear model (DistLM) relating species abundance with 
environmental indicators. 

 

Indicator SS(trace) Pseudo-F p value Proportion Res d.f 

Depth  24.371 40.366 0.001 0.125 282 

Biota 33.070 19.104 0.001 0.169 280 

Seabed Relief 20.541 11.012 0.001 0.105 280 

 

Table 2.3 Overall solution using best selection procedure with Akaikes Information Criterion (AIC). 

 

AIC R2 RSS No of indicators Selections 

-171.15 0.2450 146.94 3 1,2,3 
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Figure 2.6 a. A distance-based redundancy analysis (dbRDA) of the fish assemblage data with b. 
Corresponding strength and direction of spearman correlation ≥ 0.6 of environmental variables 
shown as line vectors. In all figures, the analysis was based on Modified Gower (log10) 
dissimilarities. Key as per Fig.2.5. 

 

 

Figure 2.7 Canonical analysis of principal coordinates (CAP) of a. Abundance and b. Biomass of fish 
assemblages based on Modified Gower (log10) dissimilarities in relation to depth and substrate 
type. Key as per Fig. 2.5. 

 

The distribution of data points in the CAP ordinations for both abundance and biomass 

exhibited distinct differences in assemblage compositions in relation to depth (Fig.2.7a, b). 

Three distinct assemblages were exhibited including those associated with both sand and 
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reef substrate in depths < 150 m, a transitional group at the continental margin where reef 

substrate was dominant and the third in depths > 250 m on the upper continental slope 

associated with sand substrate. 

 

Discussion 

Three distinct ecological fish communities were identified across a wide depth gradient (5–

570 m) from shallow waters of a mid-shelf island to the upper continental slope of a 

submarine canyon, with depth being the principal variable explaining the differences in 

their assemblage compositions. The shallowest community had the highest species richness 

and predominantly consisted of more abundant and smaller-bodied species associated with 

complex benthic habitat structures on the continental shelf, with maximum depth ranges of 

these species rarely exceeding 200 m. A second fish community was evident at the 

continental margin (i.e. 200-300 m depth) with lower species richness that was dominated 

by a greater biomass of larger-bodied meso-predators (predominantly C. auratus, O. 

woodwardi and N. ayraud) and associated with sessile invertebrate dominated habitats. 

The deepest occurring fish community had similar level of species richness to the 

continental margin group; however, it comprised almost an entire new suite of species. The 

average fish lengths negatively correlated with depth in this flat seabed relief and sand 

dominated habitat. These patterns in fish community characteristics from the continental 

margin to upper slope are similar to those identified in trawl catches by Williams et al. 

(2001) at a similar latitude. Building on this knowledge, we incorporated changes in 

community structure from shallower continental shelf waters and link information on the 

habitat characteristics associated with each fish community. The trend of decreasing 

species richness with increasing depth in the ranges we sampled supported our hypothesis 

and were consistent with similar studies (Stefanescu et al., 1994; D'Onghia et al., 2004; Sih 

et al., 2017). However, biomass and mean fish lengths did not conform to our hypotheses 

of a monotonically decreasing trend with depth.  

While fish assemblage structure was primarily driven by depth; biota and seabed relief also 

had a proportional effect on composition with all three factors significantly explaining 47% 

of the variance within the full model. The peak in total biomass of fishes between 190 and 

240 m depth was related to the presence of sessile invertebrate dominated habitats at the 

continental margin. Habitat structure in deeper water environments can support higher 
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abundance, biomass and species richness of fishes through mechanisms such as increased 

productivity or food resources, refuge and bioturbation (Williams et al., 2008). Benthic 

structures can alter water flows as well as support larval supply, geochemical and substrate 

conditions (Stefanescu et al., 1993; D'Onghia et al., 2004; Tolimieri, 2007). Removing the 

effects of each factor using the GAM did not change the presence of this rise in biomass at 

~200 m. This indicates that despite depth, biota and seabed relief factors being significant, 

there may be others that influence fish assemblage patterns. An investigation of the 

average length of individual fishes across each depth range revealed a peak in average 

length that corresponded with the rise in biomass at 190-240m depth at the continental 

margin. Although some of the shallower and deeper water species exhibited narrow depth 

ranges in this study, several meso-predator species were shown to occupy a large depth 

range and diverse habitats across the continental shelf. The typifying species of the 

continental margin community (i.e. Chrysophrys auratus, Nelusetta ayraud and 

Oplegnathus woodwardi) suggest it was predominantly larger meso-predators accounting 

for the higher biomass and mean fish length.  

These larger meso-predators that typified the continental margin community exhibit 

various life history attributes. Chrysophrys auratus is a recreationally and commercially 

important species in western Australia found offshore to depths of 320 m with spawning 

aggregations occurring in sheltered nearshore marine embayments (Wakefield, 2010; 

Wakefield et al., 2011). Adults have strong molar like teeth capable of consuming a range of 

hard-shelled invertebrates and small fishes. Nelusetta ayraud is the largest leatherjacket 

species in southern Australia (70 cm TL), found in depths of up to 360 m across the shelf 

and upper slope, and is considered endemic to Australia. With large, strong teeth, their diet 

is varied, commonly consisting of gastropods, fish, molluscs, crustaceans and salps (Froese 

and Pauly, 2019). Oplegnathus woodwardi is a deep-bodied offshore demersal species 

(depth range 50-400 m) common in temperate southern Australian waters with a beak-like 

jaw adapted for predation of invertebrates with a hard shell. They typically grow to an 

average of 48 cm TL (Gomon et al., 2008). It is likely that such plasticity in feeding strategies 

may provide some species greater flexibility to occur across multiple habitat types and 

depth profiles to access food resource availability.  

The west coast of Australia is characterised by an oligotrophic marine environment that 

supports relatively low catches of demersal finfish species but with high species diversity 

and endemism by global standards (Williams et al., 2001; Lenanton et al., 2009; Molony et 
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al., 2011). The overall trend in biomass shown in this study decreased with depth displaying 

substantially lower levels of biomass in depths of 300–570 m. Whilst this is likely a 

reflection of the relatively low epipelagic productivity in the region, the presence of the 

Perth Canyon and the effects of the nutrient poor, poleward-flowing Leeuwin current at the 

study site are influential in stimulating productivity in this otherwise oligotrophic 

environment (Rennie et al., 2006; Lenanton et al., 2009; Rennie et al., 2009a). Although 

upwelling does not normally extend into the euphotic zone within the Perth Canyon, higher 

productivity has been reported due to chlorophyll maxima at the base of the Leeuwin 

current (Hanson et al., 2007; Rennie et al., 2009a). Storm events and cyclonic eddies can 

also stimulate nutrients into the euphotic zone and together these processes are thought to 

support higher productivity factors within the canyon. 

Relatively stable environmental conditions at greater depths (such as temperature) 

increase the likelihood of there being greater connectivity across areas, and thus similarity 

in species distributions (Tolimieri, 2007; Levin and Dayton, 2009). The fish families recorded 

in the continental margin community typically exhibited the largest depth ranges, and thus 

this habitat represented a transition from shelf to upper slope assemblages. There were 

three fish families that extended across all three communities; the Scyliorhinidae, 

Urolophidae and Sebastidae. The Squalidae was the only family inhabiting depth ranges 

that commenced at the continental margin and extended into the upper slope community. 

Families in waters greater than 300 m depth mainly consisted of species with no shallow 

water congener. These distributions highlight the rapid and distinct change in fish 

assemblage composition at the continental margin. 

This is the first time stereo-BRUVs have been deployed to study demersal fish assemblages 

and ecological features over such a large depth range and in deepwater slope environments 

within Western Australia. Stereo-BRUVs are a useful sampling technique that can address 

knowledge gaps in understanding assemblages, distributions and behaviour of demersal 

fishes, including rare species, linking them with benthic habitat data and a host of other 

parameters to contribute toward ecosystem-based fisheries management (Wellington et 

al., 2017). Governance of deepwater fisheries resources would benefit from an integrated 

ecosystem-based approach across jurisdictions, especially where overlapping resource use 

can impact trophic levels and considering discarded bycatch from these depths most likely 

have a much greater mortality rate. Specific management of this transition zone may be 

required if it becomes an area increasingly targeted by multi-sector fisheries.  
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This makes stereo-BRUVs an appealing sampling tool; by using non-extractive, in situ 

imaging techniques we can determine and link fine-scale fishes’ distribution patterns with 

characteristics of their habitats, thus continuing to test ecological theories in remote and 

deeper areas where ecosystem data is fragmented or comparatively little is known. By 

incorporating surveys of shallow reef ecosystems with deepwater ecosystems beyond the 

continental shelf these fish/habitat linkages can be made explicit.  

There remains distinct spatial heterogeneity in deepwater fish assemblage structure. In this 

study, the demersal fish assemblages of the continental shelf and slope ecosystem are 

stratified with depth, biota and seabed relief. Additionally, we identified a peak in biomass 

dominated by larger-bodied meso-predator fish species within a narrow depth range. This 

assemblage was likely supported by associated sessile invertebrate habitats and the 

geomorphology of the submarine canyon on the continental margin.  
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Supplementary Material 

Supplementary material includes a full list of fish species identified in the study detailing 

minimum and maximum depths (m) and the number of stereo-BRUVs in which each species 

was observed (Table S 2.1). Also included is a summary of the number of stereo-BRUVs 

deployments in each depth range (Table S 2.2). 

Table S 2.1 List of fish species identified in stereo baited remote underwater video systems 
(stereo-BRUVs) from shallow waters around Rottnest Island (~5 m) to the continental slope of the 
Perth Canyon (~570 m) detailing minimum and maximum depth (m) and the number of stereo-
BRUVs in which each species was observed. 

 

Family 

 

Genus Species 

min depth 
(m) 

max depth 
(m) 

No. of 
deployments 
observed 

Acropomatidae Malakichthys sp 410 510 4 

Aplodactylidae Aplodactylus westralis 6 20 2 

Aracanidae Anoplocapros amygdaloides 103 109 4 

Aracanidae Anoplocapros lenticularis 8 104 13 

Aracanidae Anoplocapros robustus 63 63 1 

Arripidae Arripis georgianus 12 14 2 

Aulopidae Aulopus purpurissatus  35 96 12 

Balistidae Balistoides viridescens 40 40 1 

Berycidae Centroberyx gerrardi 35 210 7 

Berycidae Centroberyx lineatus 13 82 6 

Carangidae Pseudocaranx dentex 14 109 86 

Carangidae Pseudocaranx georgianus 102 222 26 

Carangidae Pseudocaranx sp 6 18 15 

Carangidae Seriola dumerili 205 205 1 

Carangidae Seriola hippos 6 289 44 

Carangidae Seriola lalandi 10 12 2 

Carangidae Seriola rivoliana 86 88 2 

Carangidae Seriola sp 104 104 1 

Carangidae Trachurus novaezelandiae 84 109 10 

Carcharhinidae Carcharhinus brachyurus 9 13 5 

Carcharhinidae Carcharhinus obscurus 210 210 1 

Carcharhinidae Carcharhinus sp 6 106 2 
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Centriscidae Centriscops humerosus 322 322 1 

Centrolophidae Hyperoglyphe antarctica 305 441 4 

Centrophoridae Centrophorus moluccensis 408 540 8 

Centrophoridae Centrophorus sp 382 508 6 

Centrophoridae Centrophorus westraliensis 418 510 3 

Chaetodontidae Chaetodon auriga  8 8 1 

Chaetodontidae Chaetodon lineolatus  12 12 1 

Chaetodontidae Chelmonops curiosus 6 83 15 

Cheilodactylidae Cheilodactylus gibbosus 38 84 7 

Cheilodactylidae Cheilodactylus rubrolabiatus 12 20 2 

Cheilodactylidae Dactylophora nigricans 11 46 4 

Cheilodactylidae Nemadactylus valenciennesi 20 192 23 

Chimaeridae Hydrolagus lemures 420 521 2 

Dasyatidae Dasyatis brevicaudata  8 215 46 

Dasyatidae Dasyatis sp 270 270 1 

Dinolestidae Dinolestes lewini 43 43 1 

Enoplosidae Enoplosus armatus 27 83 2 

Epinephelidae Hyporthodus octofasciatus 108 300 10 

Etmopteridae Etmopterus brachyurus 509 509 1 

Euclichthyidae Euclichthys polynemus 314 540 5 

Gempylidae Rexea solandri 325 523 12 

Gempylidae Ruvettus pretiosus 510 540 2 

Gempylidae Thyrsites atun 382 382 1 

Gerreidae Parequula melbournensis 12 101 14 

Glaucosomatidae Glaucosoma hebraicum 13 66 8 

Haemulidae Plectorhinchus flavomaculatus 32 46 7 

Heterodontidae Heterodontus portusjacksoni 7 108 48 

Hexanchidae Hexanchus nakamurai 300 408 3 

Kyphosidae Girella zebra 28 28 1 

Kyphosidae Kyphosus cornelii 8 10 2 

Kyphosidae Kyphosus sydneyanus 6 50 23 

Labridae Achoerodus gouldii 14 101 4 
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Labridae Anampses geographicus 8 42 11 

Labridae Austrolabrus maculatus 7 82 28 

Labridae Bodianus frenchii 6 82 34 

Labridae Bodianus vulpinus 84 241 13 

Labridae Chlorurus sordidus 8 8 1 

Labridae Choerodon rubescens 11 101 26 

Labridae Cirrhilabrus temminckii 55 105 10 

Labridae Coris auricularis 6 105 111 

Labridae Eupetrichthys angustipes 36 48 3 

Labridae Labropsis sp 32 32 1 

Labridae Notolabrus parilus 6 101 81 

Labridae Ophthalmolepis lineolatus 8 101 85 

Labridae Pictilabrus laticlavius 8 38 14 

Labridae Pictilabrus viridis 6 6 1 

Labridae Pseudolabrus biserialis 6 101 84 

Labridae Scarus chameleon 35 35 1 

Labridae Scarus ghobban 35 35 1 

Labridae Scarus schlegeli 20 20 1 

Labridae Suezichthys bifurcatus 87 103 2 

Labridae Suezichthys cyanolaemus 51 51 1 

Labridae Thalassoma lunare 10 27 3 

Labridae Thalassoma lutescens 8 20 6 

Labridae Xyrichtys sp 31 38 3 

Lamnidae Carcharodon carcharias 42 42 1 

Macrouridae Coelorinchus mirus 314 521 12 

Macrouridae Coryphaenoides sp 321 321 1 

Macrouridae Lepidorhynchus denticulatus 406 510 6 

Macrouridae Lucigadus nigromaculatus 334 521 15 

Molidae Mola ramsayi 308 508 2 

Molidae Mola sp 347 347 1 

Monacanthidae Acanthaluteres spilomelanurus 51 91 2 

Monacanthidae Eubalichthys mosaicus 20 20 1 



35 
 

Monacanthidae Meuschenia flavolineata 20 36 5 

Monacanthidae Meuschenia galii 6 48 43 

Monacanthidae Meuschenia hippocrepis 10 47 16 

Monacanthidae Nelusetta ayraud 55 241 61 

Monacanthidae Parika scaber 65 105 4 

Monodactylidae Schuettea woodwardi 10 12 2 

Moridae Pseudophycis barbata 322 322 1 

Mullidae Parupeneus spilurus 8 66 5 

Mullidae Upeneichthys vlamingii 32 101 10 

Muraenidae Gymnothorax prasinus 6 90 16 

Muraenidae Gymnothorax woodwardi 12 206 59 

Myliobatidae Myliobatis australis 6 108 35 

Myliobatidae Myliobatis sp 109 109 1 

Neosebastidae Neosebastes pandus 8 96 12 

Neosebastidae Neosebastes bougainvillii 54 109 8 

Odacidae Olisthops cyanomelas  6 40 19 

Odontaspididae Odontaspis ferox 410 440 3 

Ophidiidae Dannevigia tusca 308 308 1 

Ophidiidae Genypterus blacodes 334 502 2 

Oplegnathidae Oplegnathus woodwardi 63 335 70 

Orectolobidae Orectolobus halei 199 199 1 

Orectolobidae Orectolobus hutchinsi 7 20 4 

Orectolobidae Orectolobus maculatus 20 109 5 

Orectolobidae Orectolobus sp 34 210 3 

Parascylliidae Parascyllium variolatum 60 60 1 

Paraulopidae Paraulopus nigripinnis 352 523 4 

Pempherididae  Pempheris klunzingeri 6 56 13 

Pempherididae Pempheris multiradiata 20 42 2 

Pentacerotidae Parazanclistius hutchinsi 96 96 1 

Pentacerotidae Zanclistius elevatus 103 103 1 

Phosichthyidae Polymetme corythaeola 540 540 1 

Pinguipedidae Parapercis sp 55 212 2 
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Platycephalidae Platycephalus bassensis 108 108 1 

Platycephalidae Platycephalus conatus 270 270 1 

Platycephalidae Platycephalus sp 107 347 4 

Platycephalidae Platycephalus speculator 31 109 24 

Plesiopidae Paraplesiops meleagris 82 82 1 

Polymixiidae Polymixia sp 418 518 4 

Pomacentridae Chromis klunzingeri 11 48 13 

Pomacentridae Chromis westaustralis 18 51 19 

Pomacentridae Parma bicolor 46 46 1 

Pomacentridae Parma mccullochi 6 47 31 

Pomacentridae Parma occidentalis 14 32 2 

Rajidae Dipturus oculus 502 502 1 

Rajidae Dipturus sp 409 409 1 

Rhinidae Rhynchobatus djiddensis 48 96 2 

Scombridae Acanthocybium solandri 35 35 1 

Scorpididae Neatypus obliquus 6 101 102 

Scorpididae Scorpis aequipinnis 10 66 10 

Scorpididae Scorpis georgiana 8 46 23 

Scorpididae Tilodon sexfasciatus 13 90 9 

Scyliorhinidae Asymbolus occiduus 212 213 2 

Scyliorhinidae Aulohalaelurus labiosus 28 66 5 

Scyliorhinidae Galeus boardmani 202 440 30 

Sebastidae Helicolenus barathri 322 523 10 

Sebastidae Helicolenus percoides 108 329 4 

Sebastidae Helicolenus sp 109 508 5 

Serranidae Acanthistius serratus 6 8 3 

Serranidae Caesioperca sp 40 60 11 

Serranidae Callanthias australis 20 35 3 

Serranidae Epinephelides armatus 6 103 47 

Serranidae Lepidoperca filamenta 322 322 1 

Serranidae Lepidoperca occidentalis 210 210 1 

Serranidae Othos dentex 8 66 10 
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Sillaginidae Sillaginodes punctata 26 66 6 

Sparidae Chrysophrys auratus 13 316 120 

Sphyraenidae Sphyraena obtusata 6 47 7 

Sphyrnidae Sphyrna lewini 95 96 2 

Squalidae Squalus edmundsi 204 523 62 

Squalidae Squalus megalops 203 518 44 

Squalidae Squalus montalbani 202 510 47 

Squalidae Squalus nasutus 300 518 14 

Squalidae Squalus sp 222 500 11 

Synaphobranchidae Synaphobranchus kaupii 334 334 1 

Synaphobranchidae Synaphobranchus sp 408 523 4 

Synodontidae Synodus variegatus 52 84 3 

Tetraodontidae Lagocephalus sceleratus 27 106 8 

Tetraodontidae Omegophora armilla 94 103 2 

Tetraodontidae Torquigener vicinus 32 95 8 

Trachichthyidae Hoplostethus latus 300 510 12 

Triakidae Furgaleus macki 37 41 3 

Triakidae Mustelus antarcticus 204 328 6 

Triakidae Mustelus sp 234 329 5 

Triglidae Chelidonichthys kumu 95 95 1 

Trygonorrhinidae Aptychotrema vincentiana 106 108 2 

Trygonorrhinidae Trygonorrhina dumerilii 101 222 18 

Trygonorrhinidae Trygonorrhina fasciata 27 106 35 

Urolophidae Trygonoptera mucosa 63 95 2 

Urolophidae Trygonoptera ovalis 8 88 54 

Urolophidae Trygonoptera personata 32 101 4 

Urolophidae Trygonoptera sp 409 440 2 

Urolophidae Urolophus paucimaculatus 206 206 1 

Zeidae Zenopsis nebulosus 325 325 1 
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Table S 2.2 Summary table of stereo baited remote underwater video systems (stereo-BRUVs) in 
each depth range from shallow waters around Rottnest Island (~5 m) to the continental slope of 
the Perth Canyon (~599 m). 

Depth range (m) Number of deployments 

0-20 24 

21-40 48 

41-60 39 

61-80 9 

81-99 29 

100-199 31 

200-299 31 

300-399 35 

400-499 24 

500-599 14 
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Chapter 3 Latitude, depth and environmental variables shape 

deepwater fish assemblages along the broad and continuous 

coastline on the west coast of Australia 
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Abstract 

Continental shelf and upper slope fishes represent valuable resources globally. 

Understanding the drivers of their abundance and distribution are fundamental to 

sustainable management. Deepwater demersal fish assemblages were sampled using 

Baited Remote Underwater Stereo Video systems (stereo-BRUVs, n = 417 deployments) 

between depths of 9 -570 m at six locations along the Western Australian coastline 

spanning 16° of latitude (i.e. 17-34°S at the Rowley Shoals, Montebello Islands, Ningaloo 

Reef, Abrolhos Islands, Perth Canyon and South West Capes). A total of 5,965 individual 

fishes (i.e. ΣMaxN) were identified belonging to 252 species and 92 families. Assemblage 

composition data were assessed against modelled temperature, salinity, current speed and 

direction variables, and in-situ habitat data. Multivariate statistical analyses revealed that 

the composition of fish assemblages was mostly influenced by latitude (9.5% of variation), 

depth (7.3%) and salinity (7.2%). Three distinct assemblages were defined in response to 

latitude; a tropical, a sub-tropical and a southern temperate bioregion. Species richness 

declined with increasing latitude, and biomass was highest in the southern bioregion. A 

mid-depth peak in biomass and lengths indicated the dominance of meso-predator species 

in the 300-399 m depth range. The information provided by this study on the factors 

influencing the abundance and distribution of fish assemblages over an exceptionally broad 

depth and latitudinal range along a continuous coastline will be useful for predicting the 

effects of future climate shifts on this and similar teleost species occupying tropical and 

temperate oceans elsewhere. 

 

Keywords: Stereo-BRUVs, abundance, biomass, continental shelf, continental slope, 

demersal. 

 

Introduction 

The margins of continental and insular shelves (including outer shelf and upper slope 

regions) have a high diversity of organisms, a range of benthic and pelagic habitats and are 

recognised as areas of exceptional biological value (Levin and Dayton, 2009; Ramirez-Llodra 

et al., 2011).  These regions are also the focus for a range of competing resource sectors 

(particularly commercial fishing), with overlapping economic and regulatory elements 
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compounded the impacts and pressure on this resource (Levin and Sibuet, 2012; Newman 

et al., 2017). As a consequence, the continental shelf and upper slope is a focal point for 

fisheries and natural resource management. It is also a region that is data deficient even for 

larger well-known orders like fishes (Koslow, 2007) with studies on fish ecology rarely 

spanning shelf and slope habitats across tropical to temperate environments.  

Fish assemblages of the continental shelf and upper slope are linked not only through 

shared species and assemblage turnover, but by oceanic processes that determine the 

contemporaneous physical and environmental parameters (Levin and Sibuet, 2012; 

Gaertner et al., 2013). Predictors of fish distributions have primarily focussed on the effects 

of latitude, depth, ocean hydrology and bathymetry (Last et al., 2011; Zintzen et al., 2017; 

Travers et al., 2018). Depth is a robust predictor of fish distributions (Zintzen et al., 2017). 

However, across large spatial scales, latitude has been documented to be a key 

determinant in the composition and distribution of fish assemblages at larger scales. These 

broad-scale changes in latitude are correlated with fine-scale changes in water 

temperature, salinity and ocean currents. Decreasing biological diversity towards the poles 

is regarded as a fundamental ecological paradigm for both terrestrial and marine 

environments (Macpherson and Duarte, 1994; Willig et al., 2003). Benthic habitats and local 

geomorphologies in the form of submarine canyons, precipitous transition in bathymetry 

from shelf to slope, and offshore islands also shape assemblage patterns and ecology (Fabio 

et al., 2014; Bennett et al., 2018).  

Sampling in deepwater ecosystems can be challenging, as it is logistically complex as well as 

time and resource intensive. Sampling using trawls, traps and longline fishing gear have 

long been, and are still, the fundamental means of data collection for sampling fish 

providing valuable information on species identification, genetics and individuals for the 

assessment of population biology (Newman et al., 2015; Newman et al., 2017). However, 

these extractive techniques do not provide direct links between fish assemblages and 

detailed habitat characteristics (Moran and Stephenson, 2000; Fabri et al., 2014; Amoroso 

et al., 2018). Comparison of results between surveys using trawls, traps or longlines can be 

inconsistent due to gear selectivity, target species and other technical constraints (Gaertner 

et al., 2013). Non-extractive monitoring techniques that reduce benthic impacts and allow 

the collection of data on associated biota in a non-destructive manner can be advantageous 

in certain environments (Murphy and Jenkins, 2010; Merritt et al., 2011). 
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Many deepwater fish assemblages exist within fragile and sparse habitats requiring an 

alternative approach from traditional extractive techniques (Moran and Stephenson, 2000; 

Mallet and Pelletier, 2014). Baited remote underwater stereo-video systems (stereo-

BRUVs) have been used extensively in shallow water shelf environments and provide a non-

extractive means of gathering information and monitoring of threatened, rare and data 

deficient fish species (Wellington et al., 2017; Harvey et al., 2018; Wiltshire et al., 2018). 

Local ocean hydrology and geomorphic factors contribute significantly to the structure and 

diversity of assemblages demonstrating the need to study a region’s unique processes in 

order to assess the influences on assemblage patterns and drivers of abundance and 

biomass (D'Onghia et al., 2004; Menezes et al., 2006; Williams et al., 2010). On the west 

coast of Australia, the continental shelf and upper slope waters are strongly influenced by 

the Leeuwin current, a poleward-flowing eastern boundary current bringing warm, low 

salinity waters southwards (Caputi et al., 1996). The relatively shallow, low nutrient 

Leeuwin current flows strongly during the austral autumn and spring, bringing tropical 

marine fauna further south than expected for these latitudes (Pearce and Feng, 2013). The 

narrow equatorial-flowing Leeuwin undercurrent occurs between 250 and 450 m depth and 

contours strongly along the continental slope during the austral summer (Pattiaratchi, 

2006). These two currents combine to shape crucial heterogeneous habitats supporting 

high rates of fish diversity and endemism in an otherwise oligotrophic environment. Range 

shifts have been observed across latitudes and depth gradients along the west coast of 

Australia (Pearce and Feng, 2013; Wakefield et al., 2013b), facilitating vagrancy of tropical 

fishes and other marine fauna poleward to higher (cooler) latitudes. The extensive and 

continuous coastline within a single state-based management jurisdiction along the west 

coast of Australia provides an ideal model for exploring the ways in which the abundance 

and distribution of fish assemblages vary with latitude and depth. Management of marine 

resources in Western Australia utilises ecosystem-based fisheries management (EBFM) 

approaches. EBFM is a holistic approach that considers all ecological resources, from fish to 

habitats and protected species, as well as economic and social factors in determining 

fishery management arrangements. A primary step in this approach is to elucidate the 

underlying ecosystem structure by identifying the significant variables driving assemblage 

abundance and distribution.  

The objectives of this study were to assess how the demersal fish assemblages on the 

continental shelf and upper slope change with latitude and depth, and from tropical to 
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temperate environments, along the west coast of Australia (over 16° latitude). Specifically, 

this study aimed to investigate the effect of ocean variables such as temperature, salinity 

and currents, as well as benthic habitat characteristics on demersal fish assemblage 

structure across depth and latitude. Clear latitudinal trends between tropical and 

temperate regimes are anticipated, with a decrease in species richness predicted with 

depth and with latitude. Overall, the study provides valuable input into fisheries 

management of the continental shelf and upper slope in Western Australia, as well as 

contributes toward ecological frameworks relating to fish distributions globally. 

 

Materials and methods 

Study sites 

The deepwater fish assemblages of the continental shelf to upper slope along the west 

coast of Australia were surveyed between March 2010 and July 2012. Survey locations 

spanned 16 of latitude from tropical (17°S) to temperate (34°S) bioregions. Locations were 

selected based around geomorphic features encompassing submarine canyons, terraces, 

offshore islands and atolls along the Western Australian coastline (Fig. 3.1). Depth ranges 

sampled within each location included the continental shelf (90-170 m depth), continental 

margin (170-300 m) and the upper continental slope (300-570 m). Details of the locations 

sampled, dates, number of deployments and depth range for each survey are listed in Table 

3.1.  

In early 2011, the west coast of Australia experienced a marine heatwave event affecting 

much of the states shallow coastal waters. Of relevance to our study, the sampling of 

Ningaloo Reef and Montebello Islands took place during the peak of the heatwave event on 

the north west coast in March 2011 (Pearce and Feng, 2013; Wernberg et al., 2013). There 

is potential for temporal bias associated with sampling different locations at different 

times, and we acknowledge that the environmental conditions may have changed over the 

27-month survey period. However, we believe that the spatial scale of sampling 

incorporates larger variations in fish assemblage structure mitigating the potential for 

minor temporal bias. 
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Figure 3.1 Map of surveys of stereo-BRUV deployments along the western Australian coast from 
2010 to 2012. Key to locations: 1. Rowley Shoals (RS), 2. Montebello Islands (MB), 3. Ningaloo Reef 
(NI), 4. Abrolhos Islands (AB), 5. Perth Canyon (RC), 6. South West Capes (SC). 
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Table 3.1 Table summary of locations and dates surveyed, approximate latitude and longitude and minimum and maximum depth in which stereo-BRUVs were 
deployed between March 2010 and July 2012. The total number of samples across a location and depth range are in bold. 

Survey and Dates 

approx. 

latitude 

approx. 

longitude 

min 

depth 

max 

depth 

100-

199 m 

200-

299 m 

300-

399 m 

400-

499 m 

500-

599 m total 

Rowley Shoals, September 2011 (RS) -17.339°S 118.577°E 91 516 8 15 12 12 14 61 

Montebello Islands, March 2011 (MB) -19.715°S 115.362°E 98 572 19 26 11 8 8 72 

Ningaloo Reef, March 2011 (NI) -22.193°S 113.728°E 99 540 19 17 15 6 7 64 

Abrolhos Islands, November 2010 (AB) -28.599°S 113.469°E 111 535 6 8 18 7 10 49 

Perth Canyon, March & Nov 2010 (RC) -32.012°S 115.219°E 101 570 19 35 33 26 15 128 

South West Capes, March & July 2012 (SC) -34.084°S 114.562°E 102 553 8 12 8 8 7 43 

Total:         79 113 97 67 61 417 
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Sampling regime 

Non-extractive stereo-BRUVs were used to record the imagery from which fish could be 

identified, counted, and length measurements undertaken. Benthic habitat characteristics 

were also quantified from the stereo video imagery (substrate type, seabed relief, and 

benthic biota). A total of 417 stereo-BRUVs were deployed during daylight (0800-1700 h) in 

sets of up to ten stereo-BRUV units. Sampling was stratified into depth categories deploying 

1-2 sets (10-20 samples) in consecutive 100 m depth increments between 100-600 m. Each 

stereo-BRUV was spaced a minimum distance of 500 m from each other in order to reduce 

the potential overlap in bait plume dispersal and thus reduce the chance of species 

movements between BRUVs (Cappo et al., 2001; Harvey et al., 2007; Langlois et al., 2011). 

A balanced sampling design was prepared, a priori, to target a variety of reliefs and 

substrate types (i.e. soft sediment or hard rocky) within each depth range based on detailed 

bathymetry (i.e. depth contours) and backscatter (i.e. substrate density) maps.  

The stereo-BRUV systems used two high-definition cameras (Sony® CX7 or CX12 models) 

mounted securely inside waterproof camera housings. Blue LEDs were used to illuminate 

the field of view. The configurations of the cameras and the information pertaining to the 

use of the blue LED lights can be found in Wellington et al. (2018).  Each bait bag was filled 

with 800 to 1000 g of Australian pilchards (Sardinops sagax), crushed to amplify the bait 

plume (Westerberg and Westerberg, 2011; Dorman et al., 2012). Stereo-BRUVs were 

deployed for approximately two hours to allow longer analysis timeframes (90 minutes) 

and to allow for the time needed for the system to reach the seafloor. In deepwater, 

marine taxa tend to move slower and be more sparsely distributed than in shallow water 

habitats, which required longer sampling durations to achieve species saturation (McLean 

et al., 2015; Zintzen et al., 2017).  

 

Data collection 

Stereo-BRUVs were calibrated before and after each survey using CAL software 

(www.seagis.com.au) to enable accurate length measurements during video analysis, 

following the procedures outlined by Harvey and Shortis (1998). The relative abundance of 

fish and fish lengths were measured using EventMeasure Stereo software (see 

www.seagis.com.au). The relative abundances of fish were defined using MaxN, the 

maximum number of any one species recorded within the field of view at any one time. 
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Fish species were identified to the lowest possible taxa using the available literature 

(Gomon et al., 2008; Last and Stevens, 2009; Froese and Pauly, 2019) and in consultation 

with expert scientific knowledge. Weight estimates were calculated using the length 

measurement of individual fish and length-weight relationship estimates obtained from 

local fisheries unpublished data or via FishBase (Froese and Pauly, 2019). Where species-

specific relationships were not available, the relationship of a similar congener was used as 

a proxy. Biomass estimates for each species were summed for each deployment.  

Images from each video deployment were used to score benthic habitat using 

TransectMeasure (www.seagis.com.au). Percentage scores were determined using a 20-

point grid division within each image. Identification of the dominant habitat (within each 

grid) was recorded using Collaborative and Automated Tools for Analysis of Marine Imagery 

(CATAMI) classification definitions (Althaus et al., 2013). Categories were defined as; 

substrate type (consolidated and unconsolidated), seabed relief (gradients 0-5) and benthic 

biota (macroalgae, sponge, coral). 

Average temperature, salinity, current direction and speed were derived from data taken 

from Bluelink ReANalysis (BRAN). The global ocean model that underpins BRAN is called the 

Ocean Forecasting Australia Model (OFAM), and OFAM is combined with a data assimilation 

system that blends ocean observations of satellite altimetry, satellite sea-surface 

temperature, and temperature and salinity from floats and moorings (see 

http://wp.csiro.au/bluelink/global/bran/). The resulting BRAN provides a time-varying 

picture of the ocean circulation over the past 20 years. Subsets of BRAN data were 

extracted from the National Computing Infrastructure (NCI) Thredds server using the 

command-line program netCDF Kitchen Sink (ncks ) from the netCDF Operators (NCO ) 

program suite (see http://nco.sourceforge.net/; (Oke et al., 2013; THREDDS Data Server, 

2015). Data were extracted to match the date, depths and spatial coordinates of each 

stereo-BRUV deployment (see Table 3.1). BRAN data were matched to the closest 

corresponding BRUV depth and averaged across depth range categories between 100-599 

m. 

 

Statistical analyses 

Multivariate statistical analyses were performed using PRIMER 7 (version 7.0.10) (Clarke et 

al., 2014) with the PERMANOVA+ add on (version 1) (Anderson et al., 2008). The analysis of 

http://www.seagis.com.au/
http://wp.csiro.au/bluelink/global/bran/
http://nco.sourceforge.net/
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abundance and biomass data for each transect involved constructing a Bray Curtis similarity 

matrix following a square root transformation. Bray Curtis is a suitable measure for use in 

assemblage data sets where maintaining relative abundances and species composition are 

important (Anderson et al., 2011). Permutational multivariate analysis of variance 

(PERMANOVA) (Anderson, 2001) provided an initial test for significant differences in 

latitude and depth (fixed, two factors) using type III sums of squares with 9999 

permutations. Pair-wise comparisons were used to identify functional groups within depth 

ranges and latitudes. 

A distance-based linear model (DistLM) measured the relationship between the fish 

assemblage structure and environmental variables. A draftsman plot revealed a high 

correlation (> 0.9) between depth and temperature. In subsequent analyses we removed 

temperature as a covariate. The resulting DistLM and associated distance-based 

redundancy analysis (dbRDA) plot determined how much of the variability is attributable to 

the remaining predictor variables (Anderson et al., 2008). The BEST selection procedure 

was used to examine the value of the selection criterion for all possible combinations using 

normalised predictor variables (Clarke et al., 2014). The best overall model was found using 

the Akaike Information Criterion (AIC) to display the most parsimonious combination of 

variables influencing the assemblage composition (Akaike, 1973; Anderson et al., 2008). 

Canonical analyses of principal coordinates (CAP) ordinations (Anderson and Willis, 2003) 

investigated trends in the relative abundance of fish assemblages in relation to depth and 

latitude at a family (choice of m: 18) and species level (choice of m: 38), both with 417 

samples. This constrained ordination allowed a priori classifications to be maintained, 

providing a visual assessment of the PERMANOVA results, namely the interaction between 

latitude and depth. Pearson correlations of ≥ 0.4 were used to graphically present potential 

correlations between the assemblage data and variables relative to the canonical axes. 

Leave-one-out allocation (LOOA) tests were generated during the CAP analysis to assess the 

misclassification error based on the constrained analysis (i.e. minimising the 

misclassification error, which maximises the allocation success). 

The average number of species, number of individuals, mean length of individual fishes and 

relative total biomass were calculated for each depth range and across each survey (± 1 SE). 

A list is provided in the Supplementary Materials detailing species identified during the 

study. The table details species that were recorded outside their known depth range (depth 

extensions) along with the scientific name, common name, habitat, distribution, known 
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depth ranges and observed depth range, whether they are endemic species, and their 

respective IUCN classification (IUCN, 2012). The known depth ranges and locations were 

sourced from FishBase and compared to Fishes of Australia records, and other available 

literature (Last and Stevens, 2009; Gomon, 2015; Froese and Pauly, 2019). 

 

Results 

Assemblage composition 

A total of 5,965 individual fishes (i.e. ΣMaxN) were identified belonging to 252 species and 

92 families. Carangidae, Squalidae, Carcharhinidae, Labridae and Epinephelidae were most 

ubiquitous, each being identified in all six surveys. Fifty-six percent of the fishes counted 

were from five families; Carangidae (19.13%), Squalidae (11.89%), Sparidae (9.81%), 

Lutjanidae (8.05%) and Monacanthidae (7.96%). The remaining 43% of the fishes counted 

represented 69 families with another 18 families represented by single observations of 

species (0.3%). The two most abundant species were Nelusetta ayraud (∑MaxN = 475) 

recorded across the shelf break (100-247 m depth) and Oplegnathus woodwardi (∑MaxN = 

453), recorded across the shelf break and upper slope (103-416 m depth).  

Assemblage composition at a family and species level displayed significant differences by 

latitude (PERMANOVA, p < 0.0001) and depth (p < 0.0001), and for the interaction between 

these two factors (latitude x depth, p < 0.0001) (Table 3.2). Pair-wise comparisons of the 

interaction term (latitude x depth) in the family abundance data showed all combinations 

of pairs were significantly different except between the 400-499 and 500-599 m depth 

ranges for the South West Capes (SC, p > 0.6125) (Supplementary Material Table S 3.1). 

Pair-wise comparisons in the species abundance data showed all combinations of pairs 

were significantly different except between the 200-299 and 300-399 m depth ranges for 

the Rowley Shoals (RS, p > 0.0894), the 400-499 and 500-599 m depth ranges for the 

Montebello Islands (MB, p > 0.163) and between the 400-499 and 500-599 m depth ranges 

for the South West Capes (SC, p > 0.5838) (Supplementary Material Table S 3.1). 
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Table 3.2 PERMANOVA table of results of fish assemblages using a two-factor design (latitude, fixed, 6 levels) (depth range, fixed 5 levels), type III sums of squares with 
9999 permutations performed on family and species classifications of abundance data. 

Abundance data Family      Species         

Source  df         SS     MS pseudo-F P(perm) 
 Unique 

perms  df         SS     MS pseudo-F P(perm) 
 Unique 

perms 

Latitude 5 35.564 7.1127 19.301 0.0001 9810 5 299120 59823 27.317 0.0001 9806 

depth range 4 38.792 9.698 26.317 0.0001 9849 4 179030 44757 20.437 0.0001 9804 

latitude x depth range 20 56.042 2.8021 7.6039 0.0001 9676 20 413790 20690 9.4473 0.0001 9629 

Residuals 387 142.61 0.3685                         387 847530 2190                         

Total 416 292.27                                 416 2E+06                               
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Environmental influences on the distribution of fish composition 

The distance-based linear model (DistLM) identified the top one (latitude, 9.5%), two 

(latitude and depth, 16.9%) and three combinations of variables (latitude, depth, salinity; 

total contribution 20.3%, AIC = 3415.4, r2=0.2) influencing assemblage compositions (Table 

3.3). In marginal tests from the DistLM all variables had p values > 0.0001, with the 

exception of macroalgae (p > 0.6896) and coral (p > 0.0693) (Table 3.4). The total 

contribution of all variables was 44.2% (Table 3.4). A BEST solution model determined that 

the most parsimonious explanation of environmental influences was associated with nine 

variables, contributing 29.3% of the proportional variation in the assemblage (AIC = 3377.8, 

r2=0.29). In decreasing order of contribution, these were latitude, depth, salinity, current 

direction, current speed, longitude, sponge (habitat), unconsolidated (benthos), and 

consolidated (benthos). 

 

Table 3.3 DistLM solution using best selection procedure with Akaikes Information Criterion (AIC) 
for the top one, two and three combination of variables. 

AIC R2 RSS 
Number of 
variables Selections 

3463.8. 0.09552 6.73E+09 1 latitude 

3430.6 0.16882 5.37E+09 2 latitude, depth 

3415.4 0.20255 4.75E+09 3 latitude, depth, salinity 
 

Table 3.4 Marginal tests from DistLM for each variable showing SS(trace), Pseudo-F, p values 
(significant values (p < 0.05) are in bold) and proportion of variation explained as a percentage.  

No. Variable 
 
SS(trace) Pseudo-F      p     Prop. % 

1 Relief  (flat) 13822 3.1251 0.0001 0.0074741 0.74741 

2 Relief (grade 1) 34070 7.789 0.0001 0.018423 1.8423 

3 Relief (grade 2) 35386 8.0957 0.0001 0.019134 1.9134 

4 Macro algae 4207.5 0.94633 0.6896 0.0022751 0.22751 

5 Coral 6360.3 1.4322 0.0693 0.0034392 0.34392 

6 Sponge 40762 9.3532 0.0001 0.022041 2.2041 

7 Unconsolidated benthos 35353 8.0879 0.0001 0.019116 1.9116 

8 Consolidated benthos 16886 3.8243 0.0001 0.009131 0.9131 

9 Salinity 1.34E+05 32.304 0.0001 0.072218 7.2218 

10 Current speed 63589 14.778 0.0001 0.034385 3.4385 

11 Direction 77343 18.114 0.0001 0.041822 4.1822 

12 Depth 1.35E+05 32.567 0.0001 0.072764 7.2764 

13 Latitude 1.77E+05 43.83 0.0001 0.095525 9.5525 

14 Longitude 44072 10.131 0.0001 0.023831 2.3831 
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A distance-based redundancy analysis (dbRDA) of the fish assemblage data showed dbRDA1 

explained 37.1% of fitted and 10.9% of total variation and dbRDA2 described 26.5% of fitted 

and 7.7% of total variation (Fig. 3.2). Clear correlations were evident in the dbRDA 

ordination with data points distributed primarily in response to latitude along dbRDA1 and 

secondarily depth along dbRDA2 (Fig. 3.2a & b). The data points within the ordination were 

generally distributed into three groups with latitude sequentially correlated along the first 

axis, such that the two most southern and cooler water locations (i.e. South West Capes 

and Perth Canyon) were closely grouped to one side. The three northernmost locations (i.e. 

Rowley Shoals, Montebello Islands and Ningaloo Reef) were closely grouped at the opposite 

side, with the Abrolhos Islands data points grouped between them (Fig. 3.2a). 

 

 

 

Figure 3.2 A distance-based redundancy analysis (dbRDA) of A. fish assemblage data with B. 
Corresponding strength and direction of Pearson correlation ≥ 0.4 environmental variables shown 
as line vectors. The analysis was based on Bray Curtis resemblance after a square root 
transformation. 
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Interaction of latitude and depth on family & species composition 

Both family and species level compositions displayed distinct differences in relation to 

latitude and depth in the CAP ordinations (Fig. 3.3. p value < 0.0001, Trace statistic 7.02, 

delta 12 test statistic 0.9, Fig. 3.4. p value < 0.0001, Trace statistic 12.2, delta 12 test statistic 

0.96, respectively). The data points within the family level CAP ordination were generally 

distributed into three distinct groups (Fig. 3.3a). Samples from the Rowley Shoals, 

Montebello Islands, and Ningaloo Reef surveys were strongly distributed by depth along the 

CAP2 axis and were separated by higher abundances of Carcharhinidae and Sparidae in 

shallower waters (Fig. 3.3a & b). Samples from the Perth Canyon and the South West Capes 

surveys were strongly grouped by two distinct depth ranges; 100-199 m and 300-599 m. 

Abrolhos Islands samples were distributed centrally through the data cloud with respect to 

latitudinal correlations with the primary axis (Fig. 3.3a). The more southern surveys were 

separated by higher abundances of Squalidae, Centrophoridae and Macrouridae associated 

with the 300-599 m depth ranges, while the Monacanthidae and Oplegnathidae were 

correlated with shallower water assemblages (Fig. 3.3b). 

 

 

Figure 3.3 Canonical analysis of principal coordinates (CAP) of A. Abundance of fish assemblages 
using family level classifications, based on square-root transformed Bray-Curtis resemblance 
measure in relation to latitude and depth. B. Corresponding strength and direction of Pearson 
correlation ≥ 0.4 shown as line vectors. Key as per Fig. 3.2. 
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Figure 3.4 Canonical analysis of principal coordinates (CAP) of A. Abundance of fish assemblages 
using species level classifications based on Bray Curtis resemblance measure after square root 
transformation in relation to latitude and depth. B. Corresponding strength and direction of 
Pearson correlation ≥ 0.4 shown as line vectors.  1-7: Seriola rivoliana, Pristipomoides multidens, 
Gymnocranius grandoculis, Carangoides chrysophrys, Lutjanus sebae, Argyrops spinifer, 
Pristipomoides typus. Key as per Fig. 3.2. 

 

The CAP ordination of species abundance was strongly structured by depth and latitude. 

The CAP1 axis delineated variations in latitude separating shallow-water assemblages in the 

north from those in the south (Fig. 3.4a). The three northernmost surveys (Rowley Shoals, 

Montebello Islands and Ningaloo Reef) were distributed sequentially by depth along the 

secondary axis (CAP2 axis) (Fig. 3.4a). Species composition was more similar with increasing 
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Lucigadus sp. were the only correlation ≥ 0.4 associated with depth ranges 300-599 m 

across all surveys (Fig. 3.4b). 
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Rowley Shoals 87.5%, Perth Canyon 89.5%. However, there appeared to be no consistent 

pattern in the allocation success across depth or latitude with the Abrolhos Islands 500-599 

m depth range (90.0%) recording the highest overall percentage success. Remaining 

allocation successes ranged between 14.3% and 80.0%. The overall allocation success was 

highest at the species level (62.6%, Table 3.5). Allocation success was highest in the 100-

199 m depth ranges (63.2–100.0%) with the exception of the South West Capes (25.0%). 

Allocation success was 100.0% in the Rowley Shoals 100-199 m, and the Abrolhos 100-199 

and 200-299 m ranges. The lowest allocation success occurred at the Ningaloo 300-399 m 

(20.0%). Misclassifications were contained within the north and within the south 

bioregions, whereby the three northernmost surveys in the tropical region (RS, MB, NI) had 

no misclassifications in the two southernmost surveys (RC and SC), and Perth Canyon and 

South West Capes misclassifications were exclusive within the three temperate locations 

(AB, RC, SC). Whereas, the centrally located Abrolhos Islands samples were misclassified 

among all other locations (Table 3.5).  
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Table 3.5 Leave-one-out allocation to groups from canonical analysis of principal coordinates (CAP) using species level classifications of abundance data. Light green 
shading indicates the correct allocation group; dark green indicates samples successfully allocated to their group; orange shading indicates where samples were 
misclassified. Average allocation success across all groups was 65.59%. 
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RS100 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 100.00 

RS200 0 11 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 73.33 

RS300 0 5 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 12 33.33 

RS400 0 0 0 7 0 0 0 0 2 0 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 58.33 

RS500 0 0 0 0 11 0 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 78.57 

MB100 0 0 0 0 0 12 2 0 0 0 4 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 63.16 

MB200 0 0 0 0 0 0 14 3 0 0 0 6 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 26 53.85 

MB300 0 0 2 0 0 0 0 5 1 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 45.46 

MB400 0 0 0 0 1 0 0 0 4 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 50.00 

MB500 0 0 0 0 0 0 0 0 1 6 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 75.00 

NI100 0 0 0 0 0 3 0 0 0 0 15 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 78.95 

NI200 0 0 0 0 0 0 0 0 0 0 0 15 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 88.24 

NI300 0 1 3 1 0 0 2 3 0 0 0 1 3 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 15 20.00 

NI400 0 0 0 1 0 0 0 2 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 50.00 

NI500 0 0 0 0 3 0 0 0 2 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 28.57 

AB100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 100.00 

AB200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 8 100.00 

AB300 0 3 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 10 0 0 0 0 2 0 0 0 0 0 1 0 18 55.56 

AB400 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 1 0 0 0 0 0 7 71.43 

AB500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 8 0 0 0 0 0 0 0 0 0 1 10 80.00 

RC100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 2 0 0 0 0 0 0 0 0 19 89.47 

RC200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 19 1 0 0 7 6 0 0 0 35 54.29 

RC300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 7 3 0 0 1 0 0 33 66.67 

RC400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 0 0 3 15 3 0 0 0 0 1 26 57.69 

RC500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 2 4 7 0 0 0 0 0 15 46.67 

SC100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 2 0 0 0 2 3 0 0 0 8 25.00 

SC200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 10 1 0 0 12 83.33 

SC300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 1 0 8 87.50 

SC400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 3 3 8 37.50 

SC500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 4 2 7 28.57 
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Trends in species abundance, lengths and biomass 

The average number of species decreased with increasing depth, with the highest number 

of species occurring in the 100-199 m depth range (8.3 ± 0.45 SE) (Fig. 3.5a). The lowest 

average number of species occurred at 300-399 m (3.9 ± 0.19), increasing slightly at 400-

499 m (4.5 ± 0.22) and 500-599 m (5.1 ± 0.27). The average number of individuals followed 

a similar trend, with the highest average in the 100-199 m (24.1 ± 2.0 SE) depths, before 

dropping to 7.8 (± 0.5 SE) in 300-399 m, then increased slightly in the 400-499 and 500-599 

m depths (Fig. 3.5b). The average length of fishes increased with depth to a maximum of 

482 mm (± 12 SE) at 300-399 m, before decreasing to a minimum average of 374 mm (±- 15 

SE) in 500-599 m (Fig. 3.5c). Average biomass per deployment decreased sequentially with 

increasing depth categories from 36 kg (± 0.6 SE) in 100-199 m to 4 kg (± 0.8 SE) in 500-599 

m depth (Fig. 3.5d). 

 

 

Figure 3.5 Box plots display the average number of A) species, B) individuals, C) length (mm) and 
D) biomass weight (kg) over depth ranges from 100-199 to 500-599 m (L – R), sample numbers are 
displayed above box plots A and B. 
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In contrast, the trends in fish assemblage characteristics were not as consistent with 

latitude. The average number of species was highest in the Montebello Islands (6.4 ± 0.4 SE) 

and lowest in the South West Capes (3.6 ± 0.3 SE) (Fig. 3.6a). The average number of 

individuals within each survey was highest in the South West Capes (19.9 ± 2.6 SE) and 

lowest in the Rowley Shoals (10.6 ± 2.5 SE) (Fig. 3.6b). The highest average length of fishes 

within each survey were recorded in the three southern temperate regions of the Abrolhos 

Islands, South West Capes and Perth Canyon (462 mm ± 20 SE, 458 mm ± 10 SE, 452 mm ± 5 

SE respectively) (Fig. 3.6c). The Montebello Islands and Perth Canyon surveys displayed the 

highest average biomass per deployment (24 kg ± 6 SE and 23 kg ± 3 SE respectively) and 

the Abrolhos Islands the lowest (10 kg ± 4 SE) (Fig. 3.6d). 

 

 

Figure 3.6 Box plots display the average number of A) species, B) individuals, C) length (mm) and 
D) biomass weight (kg) across surveys (latitude) from north to south. Key from left to right Rowley 
Shoals (RS), Montebello Islands (MB), Ningaloo Reef (NI), Abrolhos Islands (AB), Perth Canyon (RC), 
South West Capes (SC). 
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Depth range extensions were recorded for 76 species (Supplementary Material Table S 3.3). 

Of fishes identified to species level, 32 (17. 3%) were endemic to Australia. Twenty species 

(10.8%) were classified to significant categories by the IUCN Red List of Threatened Species; 

Near Threatened (n=8), Vulnerable (n=9), Endangered (n=2) and Critically Endangered (n=1) 

(Froese and Pauly, 2019; IUCN, 2019). The remaining species identified were classified as 

Least Concern (LC, 54.0%), 29.2% were Not Evaluated (NE) and 6.0% identified as Data 

Deficient (DD) (Supplementary Material Table S 3.3). 

 

Discussion 

Assemblages defined by latitude 

Data collected with non-extractive stereo-BRUVs across 16-degrees of latitude 

(encompassing tropical and temperate ecosystems) between depths of ~100 to 600 metres 

exhibited distinct patterns in the composition of fish assemblages at both the family and 

species level primarily associated with latitude and depth. Fish assemblages were 

distributed into three broad latitudinal areas; a northern tropical bioregion 17-22°S (RS, 

MB, NI), a sub-tropical bioregion 28°S (AB) and a southern temperate bioregion 32-34°S 

(RC, SC), indicating significant differences in assemblage structure in response to latitude. 

This is a delineation supported by trawl studies in Western Australia. Last et al. (2011) 

identified three shelf provinces, while Williams et al. (2001) identified distinct community 

structures delineated at 26-28°S. Across Western Australia, the continental shelf and slope 

fish assemblages are rich and diverse in composition. Except for the Perth Canyon, species 

richness declined towards higher latitudes, a trend supported by numerous studies globally 

(Macpherson and Duarte, 1994; Zintzen et al., 2017). Average biomass was highest in the 

Rowley Shoals, driven predominantly by the 100-199 m depth range. Biomass decreased in 

mid-latitudes before it rose slightly in the southern two surveys along with higher average 

fish lengths. In this, we differed somewhat from the study of Williams et al. (2001) who 

found that fish density was lowest in northern latitudes and increased monotonically with 

latitude. We acknowledge that there are likely to be methodological biases associated with 

comparing studies using different survey methods. 

Depth driven structure of deepwater fishes is well defined in the literature (Koslow et al., 

1994; Zintzen et al., 2012). This structure is evident in our study, where assemblages were 
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delineated by depth within the three latitudinal regions identified above. In the northern 

tropical region, there was distinct vertical structure; surveys (RS, MB, NI) revealed a linear 

and gradual distribution (over a greater magnitude) in response to depth with delineation 

evident between the shelf (100-199 m) and the rest of the assemblage.  The southern 

temperate three surveys (AB, RC, SC) exhibited two distinct assemblages; one grouped 

continental shelf and margin depths together (100-199 m & 200-299 m), the other grouped 

remaining depth ranges on the slope (300-399 m, 400-499 m and 500-599 m). For the 

comparative depth ranges, Williams et al. (2001) delineated two groups within the shelf 

break, and a single cluster at the upper slope communities to ~350-500 m with both groups 

present in northern and southern latitudes. The patterns depicted in the current study are 

likely attributable to regional oceanography. The shelf margin coincides with the lower limit 

of the Leeuwin Current at 300 m and also the boundary between the south-flowing warm, 

low salinity Leeuwin Current and a deeper, northwards moving undercurrent (Pearce, 1991; 

Waite et al., 2007). 

 

Environmental influences 

Many environmental covariates were interrelated, being driven by the same physical 

processes. Here, the most influential variables were latitude, depth and salinity, noting that 

temperature was subsequently excluded from the DistLM model due to its high correlation 

with depth (> 0.9).  Variations in temperature and salinity control water density, which in 

turn is responsible for driving ocean and climate circulation on a global level (Riser et al., 

2008; Chen et al., 2018). Salinity was lowest at the Rowley Shoals, where Tropical Surface 

Water (TSW) brings low salinity water southwards, and higher rainfalls provide additional 

freshwater input (Fig. 3.7). In the 100-199 m depth range, salinity increased with increasing 

latitude. Surface waters are most strongly influenced by atmospheric events such as 

evaporation and precipitation, which readily impact salinity and temperature dynamics. 

Below 200 m, salinity values decreased with increasing depth, most notably in the southern 

temperate three surveys (AB, RC, SC) with values from all surveys converging to a similar 

range at a depth of 500-599 m (Fig. 3.7). In deepwater areas, ocean dynamics play a 

dominant role where deepwater currents and forces such as horizontal advection, mixing 

and entrainment drive localised ocean hydrology (Pattiaratchi, 2006; Chen et al., 2018). 
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Figure 3.7 Average salinity (ppt) over depth for each stereo-BRUV deployment based on Bluelink 
ReANalysis data. 

 

Ocean temperature is often highly correlated with depth and latitude. In this case, it was 

synonymous with depth. Overall, temperature decreased with increasing depth within each 

survey (Fig. 3.8). However, strong latitudinal patterns existed for temperature with 

decreasing average temperatures expected from tropical to temperate regions. An 

exception to this pattern occurred at a latitudinal range where the highest temperatures 

were recorded for the shallow shelf waters (100-199 m) at the Montebello Islands and 

Ningaloo Reef surveys (Fig. 3.8). This was most likely due to temporal differences as these 

two surveys were sampled during March 2011, coinciding with the marine heatwave event 

affecting the west Australian coast (Pearce and Feng, 2013; Wernberg et al., 2013).  

Currents, in both surface and intermediate-depth water masses continuously influence the 

mixing and distribution of fishes along the west coast of Australia (Pattiaratchi, 2006; 

Lenanton et al., 2009). Current speed and direction were significant variables contributing 

to the best solution model of assemblage distribution. Habitat factors, in particular, sponge 

(benthic biota), unconsolidated and consolidated benthos (substrate type), were minor 

components in the overall model, indicating that at large spatial scales benthic habitat and 

substrate type played only a minor role in determining fish assemblage distribution. This is 

in contrast to Wellington et al. (2018) where benthic biota, depth and seabed relief were 
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the determining factors in assemblage distribution over depth. This contrast highlights the 

importance of spatial scales, indicating that at scales of tens of kilometres, benthic habitat 

factors are important drivers of assemblage structure. The patterns and causal mechanisms 

detected in any study are dependent upon the spatial scales defined a priori (Newman et 

al., 2017). 

 

 

Figure 3.8 Average temperature (°C) over depth for each stereo-BRUV deployment based on 
Bluelink ReANalysis data. Key as per Fig. 3.7. 

 

 

Trends in species composition 

An inflexion point was evident at the 300-399 m depth range in the average number of 

individuals, species and lengths across all surveys. Specifically, this depth range represented 

the lowest average number of species and individuals, yet the highest average lengths. 

Average biomass remained steady between the 200-299 m and the 300-399 m depth 

ranges spanning the continental margin and upper slope, before decreasing substantially. 

The decrease in the average number of species and individuals within the 300-399 m depth 

range coupled with increased average fish length and biomass indicate the higher 

abundance of larger-bodied meso-predator species.  

Some of the typifying species in this 300-399 m depth range included the cryptic Etelis 

carbunculus/E. sp in the north, Oplegnathus woodwardi and Seriola sp. in the mid and 
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south bioregions, with four species of Squalus present throughout the full latitudinal range. 

These meso-predator species are important commercial and recreational species in 

Western Australia. Squalus are also a significant by-catch species of several fisheries in 

Australia (Graham et al., 2001). Similarly, on the south-eastern slope of Australia, a few 

relatively large pelagic species of similar trophic level dominate the slope community (May 

and Blaber, 1989; Koslow, 1997). This pattern has also been observed at high latitudes in 

the north Pacific (Pearcy et al., 1982). Williams et al. (2001) found that fish density in 

Western Australia was highest at the shelf break (200-400 m), which contrasts with other 

studies where peak density was at depths between 750-1400 m (Merrett et al., 1991; 

Gordon, 2001). Globally, fishing effort has intensified, and species tend to be more 

commercially valuable in the first ~700 m, highlighting the significance of the continental 

margin for fisheries, and the increased pressure on catch and effort in this depth zone 

(Graham et al., 2001; Clarke et al., 2015; Newman et al., 2016). These findings support 

Wellington et al. (2018), where a small number of larger-bodied meso-predators dominated 

mid-depth ranges at 200-299 m in the Perth Canyon in the temperate region. Although a 

shallower depth range than the present study, this may have been attributable to the 

presence of the Perth Canyon where a confluence of the Leeuwin Current, increased biota 

and upwelling support higher productivity and species diversity at a slightly shallower depth 

(Wellington et al. 2018). 

 

Assemblage composition and species 

Eleven species were identified as being data deficient (DD) through their IUCN 

categorisation. This study provides information on relative abundance, distribution, lengths 

and habitat use along the coast of Western Australia. Seven of these were sharks 

(Carcharhinus altimus, Centrophorus moluccensis, Centrophorus westraliensis, Etmopterus 

brachyurus, Hexanchus nakamurai, Squalus megalops and Squalus nasutus). Centrophorus 

westraliensis, endemic to Western Australia, and Centrophorus moluccensis were identified 

as species requiring urgent evaluation in regard to the location and size of gulper shark 

populations in Australia (Williams et al., 2012). Populations in Western Australia are 

deemed sustainable; however, the population on the east coast of Australia is considered 

Near Threatened, having been subject to more intense fishing pressure in recent decades 

(Graham and Daley, 2011). Due to increasing pressure from fishing, and vulnerability due to 

life history traits (such as late maturation, low fecundity and slow growth rates) certain 
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species of sharks and rays are experiencing significant population declines (Finucci et al., 

2019). Of the 20 species identified in this study to have an IUCN classification of concern, 19 

were species of sharks or rays. The teleost Polyprion americanus has a high inherent 

vulnerability to fishing exploitation (e.g. (Wakefield et al., 2013a) and is considered  

Critically Endangered in some locations according to IUCN, with most populations 

considered Data Deficient (Cornish and Peres 2003). Stereo-BRUVs have provided a 

valuable and effective means of gathering critical information on these deepwater species 

without the need for extractive measures.  

Over 40% of the fish identified to species level in this study were found in depths outside of 

their published ranges. Accurate records on depth distributions are possible through the 

use of stereo-BRUVs, providing data that can be precisely matched to habitat information 

and bathymetric features. Furthermore, accurate depth distributions are increasingly 

valuable as climate driven range shifts (across both latitude and depth) potentially become 

more frequently reported.  

The relatively high number of species and families identified are an indicator of the high 

diversity of the shelf and upper slope species in Western Australia (Lenanton et al., 2009; 

Langlois et al., 2011; Last et al., 2011). The high species diversity in the northern warmer 

latitudes is likely a product of overlapping tropical species with Indo-Pacific origins, in 

contrast to southern temperate fishes with higher levels of endemism, having evolved from 

ancient marine fish lineages and coupled with low primary productivity conditions (Langlois 

et al., 2011; Molony et al., 2011). Although the fish assemblage patterns are similarly 

defined to other Western Australian studies, the species identified are different (Williams 

et al., 1996; Last et al., 2011). For example, few species of demersal fish were found in 

depths below 400 m. Instead, sharks, eels, hagfish and small whiptails dominated 

assemblages. Differences in species composition between studies are likely an effect of 

sampling techniques (i.e. trawl vs stereo-BRUVs), and the inclusion of different depth 

ranges between studies. Where slow trawls can omit larger, more mobile species, overall, 

they can detect a greater number of species and individuals (Williams et al., 1996). Stereo-

BRUVs may also miss some of the more sparsely dispersed, cryptic species that are spatially 

discreet in deepwater environments. While deepwater stereo-BRUVs are adept at capturing 

the broad ecological patterns at regional and geographical scales, a combination of 

techniques may be valuable in capturing the full ecological suite of fish assemblage 

information (Stat et al., 2019). 
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Conclusion 

Finding cost-effective, non-extractive ways to assess the distribution and ecology of 

deepwater fish assemblages is vital for an ecosystem already impacted by intersecting 

economic interests and environmental influences. At large spatial scales (100 kilometres), 

latitude, depth (highly correlated with temperature) and salinity were the primary 

determinants of assemblage composition and distribution. Studies encompassing large 

latitudinal ranges and depths in the distribution of marine species such as this are rare. We 

used a structured sampling design spanning depth ranges linking the continental shelf and 

upper slope, encompassing an extensive latitudinal range from tropical to temperate 

regions. The occurrence of the marine heatwave may have revealed valuable insights into 

how readily oceanic hydrology can affect fish distributions, beyond expected latitudinal 

patterns (Feng et al., 2013). However, only through repeated sampling will we know if these 

deepwater assemblages were affected by this climatic event and whether any effects are 

temporary or persistent. Nonetheless, it raises crucial questions regarding resilience to 

future climate shifts, and whether depth and latitude may provide a refuge for deepwater 

fish assemblages. 
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Supplementary Material 

Table S 3.1 Pair-wise comparison tests between depth ranges across all surveys using family and species classifications of square root transformed abundance data. 
Significant values (P< 0.05) are in bold. Key: Rowley Shoals (RS), Montebello Islands (MB), Ningaloo Reef (NI), Abrolhos Islands (AB), Perth Canyon (RC), South West 
Capes (SC). 

  Family      Species      

  RS MB NI AB RC SC RS MB NI AB RC SC 

Groups (depth ranges) P(perm) P(perm) P(perm) P(perm) P(perm) P(perm) P(perm) P(perm) P(perm) P(perm) P(perm) P(perm) 

100-199, 200-299 0.0001 0.0001 0.0001 0.0007 0.0001 0.0007 0.0001 0.0001 0.0001 0.0004 0.0001 0.001 

100-199, 300-399 0.0001 0.0001 0.0001 0.0001 0.0001 0.0004 0.0001 0.0001 0.0001 0.0001 0.0001 0.0003 

100-199, 400-499 0.0001 0.0001 0.0001 0.0007 0.0001 0.0002 0.0001 0.0001 0.0001 0.0005 0.0001 0.0003 

100-199, 500-599 0.0001 0.0001 0.0001 0.0002 0.0001 0.0003 0.0001 0.0001 0.0001 0.0006 0.0001 0.0003 

200-299, 300-399 0.0186 0.0001 0.0001 0.0001 0.0001 0.0001 0.0894 0.0001 0.0001 0.0001 0.0001 0.0001 

200-299, 400-499 0.0001 0.0001 0.0001 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0001 0.0001 

200-299, 500-599 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0001 0.0001 0.0001 

300-399, 400-499 0.0004 0.0088 0.0016 0.0001 0.0001 0.0003 0.0034 0.0019 0.0011 0.0044 0.0001 0.0009 

300-399, 500-599 0.0001 0.0003 0.0005 0.0001 0.0001 0.0016 0.0001 0.0001 0.0004 0.0001 0.0001 0.0005 

400-499, 500-599 0.0001 0.0498 0.0016 0.0012 0.0016 0.6125 0.0001 0.163 0.0007 0.0023 0.003 0.5838 
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Table S 3.2 Leave-one-out allocation to groups from canonical analysis of principal coordinates (CAP) using family level classifications of abundance data. Light green 
shading indicates the correct allocation group, dark green indicates samples successfully allocated to their group, orange shading indicates where samples were 
misclassified. Average allocation success across all groups was 53.72%. 
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RS100 7 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 87.50 

RS200 0 12 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 80.00 

RS300 0 5 3 3 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 25.00 

RS400 0 0 0 6 1 0 0 2 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 50.00 

RS500 0 0 0 0 11 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 78.57 

MB100 3 0 0 0 0 5 0 0 0 0 6 4 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 19 26.32 

MB200 0 0 0 0 0 0 13 2 0 0 0 6 4 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 26 50.00 

MB300 0 0 2 0 0 0 0 6 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 54.55 

MB400 0 0 0 0 1 0 0 1 4 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 50.00 

MB500 0 0 0 0 1 0 0 0 2 3 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 37.50 

NI100 2 0 0 0 0 2 0 0 0 0 13 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 19 68.42 

NI200 0 0 0 0 0 1 1 0 0 0 0 12 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 17 70.59 

NI300 0 1 3 0 0 0 1 1 1 0 0 2 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 33.33 

NI400 0 0 0 1 0 0 0 1 0 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 50.00 

NI500 0 0 0 1 2 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 14.29 

AB100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 2 0 0 0 1 0 0 0 0 0 0 0 0 0 6 50.00 

AB200 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 8 75.00 

AB300 0 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 8 0 0 0 0 1 0 0 0 0 0 2 1 18 44.44 

AB400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 1 0 0 0 0 0 0 0 0 1 1 7 57.14 

AB500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 9 0 0 0 0 0 0 0 0 0 0 10 90.00 

RC100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 0 0 0 0 2 0 0 0 0 19 89.47 

RC200 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 19 0 0 0 7 7 0 1 0 35 54.29 

RC300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 8 4 2 0 0 11 1 5 33 24.24 

RC400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 0 0 0 2 13 3 0 0 0 2 2 26 50.00 

RC500 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 10 0 0 0 0 1 15 66.67 

SC100 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 3 2 0 0 0 8 37.50 

SC200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 1 8 1 0 0 12 66.67 

SC300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 6 0 1 8 75.00 

SC400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 3 1 8 37.50 

SC500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 2 3 7 42.86 
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Table S 3.3 Family, genus and species name, common name, habitat, known distribution and published depth range (min and max), maximum observed depth range in 
this study**, whether there is an extension in depth ranges from these observations, classification = species endemic to Australia, and IUCN categories. 

Family Genus species Common name Habitat Distribution 
 min 
(m) 

max 
(m) 

depth 
(m)** 

Depth 
Extension? 

Classification IUCN Categories 

Acanthuridae 

Naso annulatus Ringtail Unicornfish reef Indo-Pacific Tropical 1 60 91.9 DEPTH EXT   LC (Least Concern) 

Naso brevirostris Spotted Unicornfish reef Indo-Pacific Tropical 1 122 107     LC (Least Concern) 

Naso lopezi Slender Unicornfish reef Western Pacific Tropical 20 50 92.6 DEPTH EXT   LC (Least Concern) 

Aracanidae 

Anoplocapros 
amygdaloides 

Western Smooth Boxfish demersal Eastern Indian Ocean 5 100 109 DEPTH EXT endemic NE (Not Evaluated) 

Anoplocapros 
lenticularis 

Whitebarred Boxfish demersal Eastern Indian Ocean 10 220 104   endemic NE (Not Evaluated) 

Ariidae 
Neoarius graeffei Blue Catfish marine-estuarine Western Pacific Tropical 18 30 122 DEPTH EXT   NE (Not Evaluated) 

Netuma thalassina Giant Sea Catfish marine-estuarine Indian Ocean 10 195 120     NE (Not Evaluated) 

Balistidae 

Abalistes stellatus Starry Triggerfish reef Indo-Pacific Tropical 7 350 126     NE (Not Evaluated) 

Sufflamen 
fraenatum 

Bridled Triggerfish reef Indo-Pacific Tropical 8 186 120     LC (Least Concern) 

Xanthichthys 
caeruleolineatus 

Blueline Triggerfish reef Indo-Pacific Tropical 50 200 92.6     NE (Not Evaluated) 

Berycidae 

Beryx splendens Alfonsino benthopelagic Circumglobal 25 1300 524     LC (Least Concern) 

Centroberyx 
australis 

Yelloweye Redfish benthopelagic Eastern Indian Ocean 80 300 120   endemic NE (Not Evaluated) 

Centroberyx 
gerrardi 

Bight Redfish reef Eastern Indian Ocean 10 500 210   endemic NE (Not Evaluated) 

Centroberyx lineatus Swallowtail rocky reefs Indian Ocean 15 280 120     NE (Not Evaluated) 

Bramidae Brama brama Ray’s Bream pelagic neritic Indian Ocean 0 1000 336     LC (Least Concern) 

Carangidae 

Carangoides 
chrysophrys 

Longnose Trevally reef Indo-Pacific 30 60 141 DEPTH EXT   LC (Least Concern) 

Carangoides 
caeruleopinnatus 

Onion Trevally reef Indo-West Pacific 1 60 204 DEPTH EXT   LC (Least Concern) 

Carangoides 
orthogrammus 

Thicklip Trevally reef Indo-Pacific 3 168 128     LC (Least Concern) 

Carangoides 
plagiotaenia 

Barcheek Trevally reef Indo-Pacific 2 200 110     LC (Least Concern) 

Caranx lugubris Black Trevally benthopelagic Circumtropical 12 354 128     LC (Least Concern) 
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Family Genus species Common name Habitat Distribution 
 min 
(m) 

max 
(m) 

depth 
(m)** 

Depth 
Extension? 

Classification IUCN Categories 

Carangidae 

Gnathanodon 
speciosus 

Golden Trevally reef Indo-Pacific 0 80 110 DEPTH EXT   LC (Least Concern) 

Pseudocaranx 
georgianus 

Silver Trevally reef Indo-Pacific 10 238 222     LC (Least Concern) 

Seriola dumerili Amberjack reef Indo-West Pacific 1 360 246     LC (Least Concern) 

Seriola hippos Samsonfish pelagic neritic Indo-Pacific 1 100 320 DEPTH EXT endemic LC (Least Concern) 

Seriola lalandi Yellowtail Kingfish benthopelagic Indo-Pacific 3 825 200     LC (Least Concern) 

Seriola rivoliana Highfin Amberjack reef Indo-West Pacific 4 245 303 DEPTH EXT   LC (Least Concern) 

Seriolina 
nigrofasciata 

Blackbanded Amberjack reef Indo-West Pacific 20 150 120     LC (Least Concern) 

Carcharhinidae 

Carcharhinus 
albimarginatus 

Silvertip Shark reef Indo-Pacific 1 800 128     VU (Vulnerable) 

Carcharhinus 
altimus 

Bignose Shark reef Circumglobal 12 810 276     DD (Data Deficient) 

Carcharhinus 
falciformis 

Silky Shark reef Circumtropical 0 4000 332     
NT (Near 
Threatened) 

Carcharhinus 
galapagensis 

Galapagos Shark reef Circumtropical 1 286 117     
NT (Near 
Threatened) 

Carcharhinus 
limbatus 

Common Blacktip Shark reef Indo-Pacific 0 100 336 DEPTH EXT   
NT (Near 
Threatened) 

Carcharhinus 
obscurus 

Dusky Whaler reef Indo-West Pacific 0 400 210     VU (Vulnerable) 

Carcharhinus 
plumbeus 

Sandbar Shark benthopelagic Indo-Pacific 0 500 421     VU (Vulnerable) 

Galeocerdo cuvier Tiger Shark benthopelagic Circumglobal 0 800 91.9     
NT (Near 
Threatened) 

Rhizoprionodon 
acutus 

Milk Shark benthopelagic Indo-West Pacific 1 200 110     LC (Least Concern) 

Centrolophidae 

Hyperoglyphe 
antarctica 

Blue-eye Trevalla benthopelagic Western Australia 40 1500 519     NE (Not Evaluated) 

Centrophorus 
moluccensis 

Endeavour Dogfish bathydemersal Indian Ocean 125 823 540     DD (Data Deficient) 

Centrophorus 
westraliensis 

Western Gulper Shark bathydemersal Western Australia 616 750 513 DEPTH EXT endemic DD (Data Deficient) 

Chaetodontidae 
Chaetodon 
lineolatus 

Lined Butterflyfish reef Indo-Pacific 2 171 92.6     LC (Least Concern) 
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Family Genus species Common name Habitat Distribution 
 min 
(m) 

max 
(m) 

depth 
(m)** 

Depth 
Extension? 

Classification IUCN Categories 

Chaetodontidae 
Heniochus 
acuminatus 

Longfin Bannerfish reef Indo-Pacific 2 178 128     LC (Least Concern) 

Cheilodactylidae 
Nemadactylus 
valenciennesi 

Blue Morwong demersal Australia 40 240 192   endemic NE (Not Evaluated) 

Chimaeridae 
Chimaera argiloba Whitefin Ghostshark bathydemersal Northwestern Australia 370 520 408   endemic LC (Least Concern) 

Hydrolagus lemures Blackfin Ghostshark bathydemersal Indo-West Pacific 146 510 548 DEPTH EXT   LC (Least Concern) 

Dasyatidae 

Bathytoshia 
brevicaudata 

Smooth Stingray demersal Indo-West Pacific 0 476 215     LC (Least Concern) 

Taeniurops meyeni Blotched Fantail Ray reef Indo-West Pacific 1 500 92.6     VU (Vulnerable) 

Echeneidae Echeneis naucrates Sharksucker reef Circumtropical 1 85 121 DEPTH EXT   LC (Least Concern) 

Enoplosidae Enoplosus armatus Old Wife reef Indo-Pacific 0 90 120 DEPTH EXT endemic NE (Not Evaluated) 

Epinephelidae 

Cephalopholis 
miniata Coral Rockcod reef Indo-Pacific 2 150 120     LC (Least Concern) 

Cephalopholis 
sonnerati Tomato Rockcod reef Indo-Pacific 0 150 102     LC (Least Concern) 

Epinephelus 
amblycephalus Banded Grouper reef Northwestern Australia 80 130 120     LC (Least Concern) 

Epinephelus 
areolatus Yellowspotted Rockcod reef Indo-Pacific 6 200 121     LC (Least Concern) 

Epinephelus bleekeri Duskytail Grouper demersal Indo-West Pacific 30 105 122 DEPTH EXT   DD (Data Deficient) 

Epinephelus 
malabaricus Blackspotted Rockcod reef Indo-Pacific 0 150 107     LC (Least Concern) 

Epinephelus miliaris Netfin Grouper reef Indo-West Pacific 1 200 128     LC (Least Concern) 

Epinephelus 
multinotatus Rankin Cod reef Indian Ocean 1 110 336 DEPTH EXT   LC (Least Concern) 

Epinephelus 
radiatus Radiant Rockcod demersal Indo-West Pacific 18 383 244     LC (Least Concern) 

Epinephelus tukula Potato Rockcod reef Indo-West Pacific 10 400 94.3     LC (Least Concern) 

Hyporthodus 
octofasciatus Eightbar Grouper bathydemersal Indo-West Pacific 150 300 302 DEPTH EXT   LC (Least Concern) 

Variola louti 
Yellowedge Coronation 
Trout reef Indo-Pacific 3 300 126     LC (Least Concern) 
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Family Genus species Common name Habitat Distribution 
 min 
(m) 

max 
(m) 

depth 
(m)** 

Depth 
Extension? 

Classification IUCN Categories 

Etmopteridae 

Etmopterus 
brachyurus 

Short-Tail Lanternshark bathydemersal Indo-West Pacific 400 610 509     DD (Data Deficient) 

Etmopterus evansi 
Blackmouth 
Lanternshark 

bathypelagic Eastern Indian Ocean 430 550 522     LC (Least Concern) 

Euclichthyidae 
Euclichthys 
polynemus 

Eucla Cod bathydemersal 
Australia North West 
Shelf 

250 920 540   endemic NE (Not Evaluated) 

Gempylidae 

Rexea solandri Gemfish benthopelagic Southwestern Australia 100 800 523     NE (Not Evaluated) 

Ruvettus pretiosus Oilfish benthopelagic 
Circumtropical and 
Temperate Seas 

100 800 572     LC (Least Concern) 

Thyrsites atun Barracouta benthopelagic Eastern Indian Ocean 0 550 382     NE (Not Evaluated) 

Ginglymostomatidae Nebrius ferrugineus Tawny Shark reef Indo-Pacific 0 70 108 DEPTH EXT   VU (Vulnerable) 

Glaucosomatidae 
Glaucosoma 
buergeri 

Northern Pearl Perch benthopelagic Western Australia 0 146 200 DEPTH EXT   NE (Not Evaluated) 

Haemulidae 
Diagramma pictum 
labiosum 

Painted Sweetlips benthopelagic Indo-West Pacific  0 88  108 DEPTH EXT   NE (Not Evaluated) 

Heterodontidae 
Heterodontus 
portusjacksoni 

Port Jackson Shark demersal Oceanodromous 0 275 108     LC (Least Concern) 

Hexanchidae 
Hexanchus griseus Bluntnose Sixgill Shark bathydemersal Oceanodromous 1 2500 210     

NT (Near 
Threatened) 

Hexanchus 
nakamurai 

Bigeye Sixgill Shark bathydemersal Indian Ocean 0 600 408     DD (Data Deficient) 

Kyphosidae 
Neatypus obliquus Footballer Sweep reef Eastern Indian Ocean 0 60 120 DEPTH EXT endemic NE (Not Evaluated) 

Tilodon sexfasciatus Moonlighter demersal Eastern Indian Ocean 1 120 199 DEPTH EXT endemic NE (Not Evaluated) 

Labridae 

Bodianus 
bilunulatus 

Saddleback Pigfish reef Indo-West Pacific 3 160 119     LC (Least Concern) 

Bodianus perditio Goldspot Pigfish reef Australia 10 120 119     LC (Least Concern) 

Bodianus vulpinus Western Pigfish reef Eastern Indian Ocean 100 250 259 DEPTH EXT endemic LC (Least Concern) 

Coris auricularis Western King Wrasse reef Eastern Indian Ocean 1 45 120 DEPTH EXT endemic LC (Least Concern) 

Halichoeres 
chloropterus 

Pastel-green Wrasse reef Indo-Malayan Region 0 10 92.6 DEPTH EXT   LC (Least Concern) 

Labroides 
dimidiatus 

Common Cleanerfish reef Indo-Pacific 1 40 91.9 DEPTH EXT   LC (Least Concern) 
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Family Genus species Common name Habitat Distribution 
 min 
(m) 

max 
(m) 

depth 
(m)** 

Depth 
Extension? 

Classification IUCN Categories 

Labridae 
Suezichthys 
bifurcatus 

Striped Rainbow Wrasse demersal Eastern Indian Ocean 80 100 103 DEPTH EXT endemic DD (Data Deficient) 

Leiognathidae Gazza minuta Toothed Ponyfish demersal Indo-Pacific 10 110 332 DEPTH EXT   LC (Least Concern) 

Lethrinidae 

Gymnocranius 
euanus 

Paddletail Seabream reef Indo-Pacific 15 50 112 DEPTH EXT   LC (Least Concern) 

Gymnocranius 
grandoculis 

Robinson’s Seabream reef Indo-Pacific 20 170 128     LC (Least Concern) 

Lethrinus 
amboinensis 

Ambon Emperor reef Northwestern Australia 5 30 128 DEPTH EXT   LC (Least Concern) 

Lethrinus miniatus Redthroat Emperor reef Northwestern Australia 5 30 108 DEPTH EXT   LC (Least Concern) 

Lethrinus nebulosus Spangled Emperor reef Indo-West Pacific 10 75 120 DEPTH EXT   LC (Least Concern) 

Lethrinus olivaceus Longface Emperor reef Indo-West Pacific 1 185 119     LC (Least Concern) 

Lethrinus 
rubrioperculatus 

Spotcheek Emperor reef Indo-Pacific 10 198 108     LC (Least Concern) 

Lethrinus 
xanthochilus 

Yellowlip Emperor reef Indo-Pacific 5 150 94.3     LC (Least Concern) 

Wattsia 
mossambica 

Mozambique Seabream reef Indo-West Pacific 100 200 204 DEPTH EXT   LC (Least Concern) 

Lutjanidae 

Aphareus furca Smalltooth Jobfish reef Indo-Pacific 1 122 107     LC (Least Concern) 

Aprion virescens Green Jobfish reef Indo-Pacific 0 180 108     LC (Least Concern) 

Etelis carbunculus / 
E. sp. 

Ruby Snapper benthopelagic Indo-Pacific 90 400 383     LC (Least Concern) 

Lutjanus 
argentimaculatus 

Mangrove Jack reef Indo-West Pacific 1 120 111     LC (Least Concern) 

Lutjanus bohar Red Bass reef Indo-Pacific 4 180 128     LC (Least Concern) 

Lutjanus 
erythropterus 

Crimson Snapper reef Indo-West Pacific 5 100 113 DEPTH EXT   NE (Not Evaluated) 

Lutjanus 
malabaricus 

Saddletail Snapper reef Indo-West Pacific 12 100 126 DEPTH EXT   NE (Not Evaluated) 

Lutjanus sebae Red Emperor reef Indo-West Pacific 5 180 122     LC (Least Concern) 

Lutjanus vitta Brownstripe Snapper reef Indo-West Pacific 10 72 102 DEPTH EXT   LC (Least Concern) 

Pinjalo pinjalo Pinjalo reef Indo-West Pacific 15 100 128 DEPTH EXT   NE (Not Evaluated) 
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Family Genus species Common name Habitat Distribution 
 min 
(m) 

max 
(m) 

depth 
(m)** 

Depth 
Extension? 

Classification IUCN Categories 

Lutjanidae 

Pristipomoides 
auricilla 

Goldflag Snapper benthopelagic Indo-Pacific 90 360 244     LC (Least Concern) 

Pristipomoides 
filamentosus 

Rosy Snapper benthopelagic Indo-Pacific 40 400 217     LC (Least Concern) 

Pristipomoides 
multidens 

Goldband Snapper demersal Indo-Pacific 40 350 220     LC (Least Concern) 

Pristipomoides 
typus 

Sharptooth Snapper demersal Eastern Indian Ocean 40 120 277 DEPTH EXT   LC (Least Concern) 

Pristipomoides 
zonatus 

Oblique-banded 
Snapper 

benthopelagic Indo-Pacific 70 300 244     LC (Least Concern) 

Symphorus 
nematophorus 

Chinamanfish reef Northern Australia 20 100 120 DEPTH EXT   LC (Least Concern) 

Macroramphosidae 
Centriscops 
humerosus 

Banded Bellowsfish bathydemersal Circumglobal Temperate 35 1000 322     LC (Least Concern) 

Macrouridae 

Coelorinchus mirus Gargoyle Fish demersal Indo-Pacific 130 400 523 DEPTH EXT endemic  NE (Not Evaluated) 

Lepidorhynchus 
denticulatus 

Toothed Whiptail bathypelagic Eastern Indian Ocean 180 1000 510     NE (Not Evaluated) 

Lucigadus 
nigromaculatus 

Blackspot Whiptail bathydemersal Indo-West Pacific 200 1463 521     NE (Not Evaluated) 

Malacanthidae 

Branchiostegus 
sawakinensis 

Freckled Tilefish demersal Indo-West Pacific 45 180 311 DEPTH EXT   NE (Not Evaluated) 

Malacanthus 
brevirostris 

Flagtail Blanquillo reef Indo-Pacific 5 50 92.6 DEPTH EXT   NE (Not Evaluated) 

Molidae Mola ramsayi Short Sunfish pelagic-oceanic Indian Ocean 0 300 508 DEPTH EXT   NE (Not Evaluated) 

Monacanthidae Nelusetta ayraud Ocean Jacket demersal Eastern Indian Ocean 0 360 247   endemic NE (Not Evaluated) 

Moridae 
Pseudophycis 
barbata 

Bearded Rock Cod demersal Southern Australia 0 300 322 DEPTH EXT   NE (Not Evaluated) 

Mullidae Parupeneus spilurus Blacksaddle Goatfish reef Western Australia 10 80 112 DEPTH EXT   LC (Least Concern) 

Muraenidae 

Gymnothorax 
cribroris 

Sieve Moray reef Indo-West Pacific 1 78 119 DEPTH EXT   NE (Not Evaluated) 

Gymnothorax 
javanicus 

Giant Moray reef Indo-Pacific 0 50 102 DEPTH EXT   NE (Not Evaluated) 

Gymnothorax 
rueppellii 

Banded Moray reef Indo-Pacific 1 40 113 DEPTH EXT   NE (Not Evaluated) 

Gymnothorax 
woodwardi 

Woodward's Moray reef Eastern Indian Ocean 0 182 259 DEPTH EXT endemic NE (Not Evaluated) 
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Family Genus species Common name Habitat Distribution 
 min 
(m) 

max 
(m) 

depth 
(m)** 

Depth 
Extension? 

Classification IUCN Categories 

Myctophidae Electrona risso Risso’s Lanternfish bathypelagic Oceanodromous 90 1485 404     LC (Least Concern) 

Myliobatidae Myliobatis australis Australian Eagle Ray reef Eastern Indian Ocean 1 85 108 DEPTH EXT   NE (Not Evaluated) 

Nemipteridae 
Nemipterus 
bathybius 

Yellowbelly Threadfin 
Bream 

demersal Northwestern Australia 35 300 224     NE (Not Evaluated) 

Neosebastidae Neosebastes pandus Bighead Gurnard Perch reef Eastern Indian Ocean 15 593 124   endemic NE (Not Evaluated) 

Odontaspididae Odontaspis ferox Sandtiger Shark benthopelagic Indo-Pacific 10 2000 440     VU (Vulnerable) 

Ophidiidae 
Dannevigia tusca Tusk benthopelagic Eastern Indian Ocean 115 400 308     NE (Not Evaluated) 

Genypterus 
blacodes 

Pink Ling bathydemersal Southern Australia 22 1000 502     NE (Not Evaluated) 

Oplegnathidae 
Oplegnathus 
woodwardi 

Knifejaw demersal Eastern Indian Ocean 50 400 416 DEPTH EXT endemic DD (Data Deficient) 

Orectolobidae 

Orectolobus halei Gulf Wobbegong demersal Eastern Indian Ocean 0 195 312 DEPTH EXT endemic LC (Least Concern) 

Orectolobus 
maculatus 

Spotted Wobbegong reef Eastern Indian Ocean 0 248 243     LC (Least Concern) 

Orectolobus ornatus Banded Wobbegong reef Indo-Pacific 0 100 105 DEPTH EXT   LC (Least Concern) 

Paraulopidae 
Paraulopus 
nigripinnis 

Blacktip Cucumberfish demersal 
Australia and New 
Zealand 

50 600 529     NE (Not Evaluated) 

Pentacerotidae Zanclistius elevatus Blackspot Boarfish demersal Southern Australia 30 500 103     NE (Not Evaluated) 

Phosichthyidae 
Polymetme 
corythaeola Rendezvous Fish benthopelagic Indo-West Pacific 165 800 540     NE (Not Evaluated) 

Platycephalidae 

Platycephalus 
bassensis Southern Sand Flathead demersal Indo-Pacific 1 100 108 DEPTH EXT endemic NE (Not Evaluated) 

Platycephalus 
conatus Deepwater Flathead demersal Indo-Pacific 70 490 408   endemic NE (Not Evaluated) 

Platycephalus 
speculator 

Southern Bluespotted 
Flathead demersal Eastern Indian Ocean 1 30 108 DEPTH EXT endemic NE (Not Evaluated) 

Polymixiidae Polymixia berndti Berndt’s Beardfish demersal Indo-Pacific 18 585 524     NE (Not Evaluated) 

Polyprionidae 

Polyprion 
americanus Bass Groper demersal Oceanodromous 40 600 423     

CR (Critically 
Endangered) 

Polyprion 
oxygeneios Hapuku demersal 

Circumglobal Southern 
Waters 50 854 472     NE (Not Evaluated) 

Pomacanthidae 
Apolemichthys 
trimaculatus Threespot Angelfish reef Indo-West Pacific 3 60 92.6 DEPTH EXT   LC (Least Concern) 
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Family Genus species Common name Habitat Distribution 
 min 
(m) 

max 
(m) 

depth 
(m)** 

Depth 
Extension? 

Classification IUCN Categories 

Pomacanthidae 
Chaetodontoplus 
personifer Yellowtail Angelfish reef Indo-West Pacific 8 40 112 DEPTH EXT endemic LC (Least Concern) 

Priacanthidae 
Priacanthus 
sagittarius Arrow Bigeye demersal Indo-West Pacific 10  350 406 DEPTH EXT   LC (Least Concern) 

Pristiophoridae 
Pristiophorus 
cirratus Common Sawshark demersal Eastern Indian Ocean 37 310 147   endemic LC (Least Concern) 

Rajidae Dipturus oculus Ocellate Skate benthopelagic Eastern Indian Ocean 200 389 502 DEPTH EXT   LC (Least Concern) 

Rhinobatidae 

Aptychotrema 
vincentiana Western Shovelnose Ray demersal Eastern Indian Ocean  0 125 108   endemic LC (Least Concern) 

Trygonorrhina 
dumerilii Southern Fiddler Ray demersal Eastern Indian Ocean 5 205 222 DEPTH EXT endemic LC (Least Concern) 

Rhynchobatidae 
Rhynchobatus 
australiae Whitespotted Guitarfish demersal Indo-West Pacific 0 60 112 DEPTH EXT   VU (Vulnerable) 

Scaridae 
Hipposcarus 
longiceps Longnose Parrotfish reef Rowley Shoals 2 40 112 DEPTH EXT   LC (Least Concern) 

Scombridae 

Gymnosarda 
unicolor Dogtooth Tuna reef Oceanodromous 10 250 240     LC (Least Concern) 

Scomberomorus 
commerson Spanish Mackerel pelagic-neritic Indo-West Pacific 10 70 183 DEPTH EXT   

NT (Near 
Threatened) 

Scyliorhinidae Asymbolus occiduus 
Western Spotted 
Catshark pelagic-oceanic Eastern Indian Ocean 98 400 213     LC (Least Concern) 

Figaro boardmani Sawtail Catshark bathydemersal Indo-West Pacific 128 823 504   endemic LC (Least Concern) 

Sebastidae 
Helicolenus barathri Bigeye Ocean Perch bathydemersal Southern Australia 285 739 523     NE (Not Evaluated) 

Helicolenus 
percoides Reef Ocean Perch demersal Southern Australia 50 750 535     NE (Not Evaluated) 

Serranidae 

Epinephelides 
armatus Breaksea Cod reef Eastern Indian Ocean 0 100 120 DEPTH EXT endemic 

NT (Near 
Threatened) 

Lepidoperca 
filamenta Western Orange Perch demersal Eastern Indian Ocean 128 220 322 DEPTH EXT   LC (Least Concern) 

Lepidoperca 
occidentalis Slender Orange Perch demersal Eastern Indian Ocean 40 200 210 DEPTH EXT   NE (Not Evaluated) 

Pseudanthias sheni Shen's Basslet reef Eastern Indian Ocean 25 46 120 DEPTH EXT endemic NE (Not Evaluated) 

Sparidae 
Argyrops notialis Western Frypan Bream demersal Indo-West Pacific 1 450 126     LC (Least Concern) 

Chrysophrys auratus Snapper reef Indo-Pacific 0 200 327 DEPTH EXT   LC (Least Concern) 
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Family Genus species Common name Habitat Distribution 
 min 
(m) 

max 
(m) 

depth 
(m)** 

Depth 
Extension? 

Classification IUCN Categories 

Sparidae Dentex carpenteri Yellow Snout Seabream benthopelagic Indo-Pacific 100 264 331 DEPTH EXT   LC (Least Concern) 

Sphyraenidae 
Sphyraena 
barracuda Great Barracuda reef Indo-Pacific 1 100 97.3     LC (Least Concern) 

Sphyrnidae 
Sphyrna lewini Scalloped Hammerhead pelagic-oceanic Circumglobal 0 1000 310     VU (Vulnerable) 

Sphyrna mokarran Great Hammerhead pelagic-oceanic Oceanodromous 1 300 383 DEPTH EXT   EN (Endangered) 

Squalidae 

Squalus edmundsi Edmund's Spurdog pelagic-oceanic Eastern Indian Ocean 204 850 535     
NT (Near 
Threatened) 

Squalus megalops Spikey Dogfish demersal Eastern Indian Ocean 30 750 535     DD (Data Deficient) 

Squalus montalbani Philippine Spurdog bathydemersal Eastern Indian Ocean 154 1370 535     VU (Vulnerable) 

Squalus nasutus 
Western Longnose 
Spurdog pelagic-oceanic Eastern Indian Ocean 300 850 535     DD (Data Deficient) 

Stegostomatidae Stegostoma 
fasciatum Zebra Shark reef Indo-West Pacific 0 90 121 DEPTH EXT   EN (Endangered) 

Sternoptychidae 
Argyropelecus gigas Giant Hatchetfish bathypelagic Indian Ocean 300 1000 514     LC (Least Concern) 

Synaphobranchidae Synaphobranchus 
kaupii Kaup's Cut-throat Eel bathydemersal Indo-West Pacific 120 4800 513     LC (Least Concern) 

Synodontidae Saurida 
undosquamis Largescale Saury reef Eastern Indian Ocean 1 350 216     LC (Least Concern) 

Tetraodontidae 

Lagocephalus 
lunaris Rough golden Toadfish demersal Indo-West Pacific 5 150 215 DEPTH EXT   LC (Least Concern) 

Lagocephalus 
sceleratus Silver Toadfish reef Indo-West Pacific 18 100 212 DEPTH EXT   LC (Least Concern) 

Omegophora 
armilla Ringed Toadfish demersal Eastern Indian Ocean 0 146 103   endemic LC (Least Concern) 

Trachichthyidae 
Hoplostethus latus Palefin Sawbelly bathypelagic Eastern Indian Ocean 146 586 510     NE (Not Evaluated) 

Triakidae 

Hemitriakis falcata Sicklefin Houndshark demersal Eastern Indian Ocean 0 150 244 DEPTH EXT   LC (Least Concern) 

Mustelus 
antarcticus Gummy Shark demersal Eastern Indian Ocean 0 350 328     LC (Least Concern) 

Mustelus ravidus Grey Gummy Shark benthopelagic Eastern Indian Ocean 106 300 213     LC (Least Concern) 

Triglidae Bovitrigla 
leptacanthus Bullhead Gurnard demersal Indo-West Pacific 0 500 307     NE (Not Evaluated) 

Urolophidae Urolophus 
paucimaculatus 

Sparsely-Spotted 
Stingaree demersal Eastern Indian Ocean 5 150 206 DEPTH EXT   LC (Least Concern) 
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Family Genus species Common name Habitat Distribution 
 min 
(m) 

max 
(m) 

depth 
(m)** 

Depth 
Extension? 

Classification IUCN Categories 

Zeidae Zenopsis nebulosa Mirror Dory benthopelagic Indo-Pacific 30 800 548     NE (Not Evaluated) 
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General thesis summary 

This thesis aimed to contribute to the knowledge of deepwater fish assemblages in 

Western Australia and our understanding of the ecological function and value of the 

continental shelf and upper slope environment. This work represents the first large scale 

deepwater stereo-BRUVs survey in Western Australia and the largest latitudinal range study 

for deepwater stereo-BRUVs in Australia to date. The following section outlines the major 

findings from each chapter and a summary of this research, limitations encountered and a 

brief discussion of future research directions as summarised in Figure 4.1. 

In chapter two, I assessed the abundance, distribution and habitat factors affecting fish 

assemblages across a depth profile of ~600 m. This depth profile encompassed an offshore 

island, continental slope and submarine canyon, in an environment where a poleward 

flowing boundary current brings warmer water further south. Three distinct assemblages 

were identified consistent with the shelf, margin and upper slope depths of the continental 

shelf, with depth and habitat strong factors influencing assemblage composition. Benthic 

biota and depth had the greatest influence on the assemblage structure at this scale. It was 

also evident that large meso-predator species dominated the assemblage in the 200-400 m 

depth range coinciding with the presence of sessile invertebrate habitat and possible 

upwelling effects at the head of the Perth Canyon. This has important implications, not only 

for understanding biodiversity in this zone but for sustainable management of fishing stocks 

where boundaries overlap and straddling stocks can be, even unintentionally, overfished. 

Awareness of these influencing factors on a fine-scale have not only furthered our 

understanding of the ecological influences present in the region but consequently can 

influence our approaches to sustainable management of these environments. 

This raised the question, do these trends with depth and patterns of high biomass and large 

meso-predator species exist at other latitudes in Western Australia? And if so, what other 

factors are influential? Globally it has been shown that temperature, salinity, current speed 

and direction, and habitat features all interact to influence the distribution of fish 

assemblages across latitude and depth (Levin and Dayton, 2009).   

In chapter three, I assessed the distributions of deepwater fishes across six locations at 

depths between 100-600 m. I found that fish assemblages were distributed into three 

broad latitudinal areas; a north tropical bioregion, a sub-tropical bioregion and a south 

temperate bioregion. This was a demarcation supported by previous trawl studies in 
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Western Australia (Williams et al., 2001; Last et al., 2011) indicating significant differences 

in assemblage structure in response to latitude. The north tropical bioregion had distinct 

vertical structure in response to depth, with separation between the shallow water shelf 

(100-199 m) and the rest of the assemblage. In the sub-tropical and south temperate 

bioregions depth structure was separated into two distinct assemblages; grouping the 

continental shelf and margin depths (100-199 m & 200-299 m) and the remaining depth 

ranges on the upper slope (300-399 m, 400-499 m and 500-599 m). Latitude, depth and 

salinity were the three most influential variables impacting assemblage composition. 

Although removed from the final model, ocean temperature was highly correlated with 

depth in this study and temperature decreased with increasing depth within each survey. 

Currents, in both surface and intermediate-depth water masses continuously influence the 

mixing and distribution of fishes along the west coast of Australia (Pattiaratchi, 2006; 

Lenanton et al., 2009). The patterns depicted were likely attributable to regional 

oceanography, in particular where the shelf margin meets the lower limit of the Leeuwin 

Current and the deeper, northwards moving undercurrent at 300 m (Pearce, 1991; Waite et 

al., 2007). 

In chapter three, current speed and direction were significant variables contributing to the 

assemblage distribution whereas habitat factors were minor components in the overall 

model, indicating that at large spatial scales benthic habitat and substrate type played only 

a minor role in determining fish assemblage distribution. The differences between the 

findings of chapter two and three highlight the importance of spatial scales. Across large 

spatial scales, latitude and depth appeared to be the most significant influences in 

deepwater fish abundance distributions across Western Australia. Ocean hydrology was 

also significant with salinity and temperature influencing spatial distributions in deepwater 

environments. 

Over all six latitudes, the lowest average number of species and individuals occurred within 

the 300-399 m depth range coupled with increased average fish length and biomass, 

indicating the presence of larger-bodied meso-predator species. Some of the typifying 

meso-predator species in this 300-399 m depth range included important commercial and 

recreational species in Western Australia. In addition, through the novel application of 

stereo-BRUVs in deepwater, this work recorded many vulnerable, threatened and rare taxa, 

as well as numerous extensions to depth range records (over 40% of identification, see 

Chapter 3; Supplementary Material Table S 3.3). In particular, a number of deepwater 
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sharks, some of which are subject to impacts from fisheries both as target species and 

bycatch, were recorded (Pajuelo et al., 2016). A notable identification in this regard was the 

recording of Odontaspis ferox, the smalltooth sandtiger shark, on three video deployments 

in the Perth Canyon. This species is both rarely caught or sighted, and listed as vulnerable 

by the IUCN categorisation, highlighting the importance of reporting range extensions and 

the value of non-extractive techniques for gathering data. The publication of this short note 

is reproduced in the Appendix. 

In 2017 I had the opportunity to present and participate in an international workshop on 

advancing methods to overcome challenges associated with life history and stock 

assessments of data-poor deep-water snappers and groupers (Newman et al., 2017). The 

workshop provided a forum to discuss the use and application of stereo-BRUVs in 

deepwater, the limitations and challenges I had encountered and how techniques could be 

improved and combined with other existing methods to answer pivotal questions relating 

to stock assessment and management strategies for deepwater species. In particular, it 

raised questions about how can we improve the quality of data collection and techniques.  

In Australia, ecosystem based fisheries management encompasses a broad, risk-based 

framework inclusive of all ecological resources and values within a bioregion to assess 

where management practices are warranted. Stock assessments, distributions and fishing 

related activities are a foundational aspect of this, along with assessments of impacts, 

habitats, ecosystem functioning and other external factors. Collectively the assessment of 

these factors and the risk they impose, provide a sound basis for regulatory prioritisation 

and planning (Fletcher et al., 2016). Outcomes from this body of work are providing much 

needed knowledge of deepwater fish assemblages and their ecosystem function that can 

inform appropriate catch and boundary limits, gear restrictions and conditions for 

sustainable management of fisheries resources. The following section details some of the 

limitations encountered in using stereo-BRUVs in this study and directions for future 

development and refinement. 
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Limitations of research 

Stereo-BRUVs have been found to provide valuable data for ecological studies, fisheries 

management, monitoring and biodiversity research inclusive of temporal and spatial factors 

in shallow shelf waters (Misa et al., 2016). They provide the ability to make depth specific 

identifications, and there has been a plethora of research into various aspects of 

methodology but, these are almost exclusively based on shallow water stereo-BRUV data 

(Mallet and Pelletier, 2014). Although deepwater stereo-BRUVs work (beyond 100 m) is still 

infrequent, there are specific aspects related to deepwater environs (light, water 

movement, target species biology, distribution and movement) that would benefit from 

further exploration. 

Gathering a very large data set such as this comes with inherent challenges in balancing 

temporal aspects against logistical constraints and costs. Temporal differences for this 

sampling were unavoidable, with the most obvious impact on two surveys occurring during 

the unprecedented heatwave event in 2011. I planned a balanced sampling design across 

depths, sites and locations; however, the loss of stereo-BRUV units, camera and lighting 

failures, or post-processing issues resulted in variations to the final number of videos 

available for analysis. Nonetheless, this has resulted in a statistically robust dataset, which 

contributes to the knowledge of deepwater fishes in Western Australia, complementing 

existing data sets gathered from trawl, trap and line fisheries records in Australia.  

Lighting effects on deepwater fishes  

Each stereo-BRUVs was fitted with a blue light (CREE Royal Navy at 420 nm). The use of 

blue light was chosen for use in deepwater as it struck a balance between the glare and 

potential impact of white light and the low attenuation of red light through the water 

column. Blue light at 420nm is considered to be below the visual sensitivity of most fish 

(Von der Emde et al., 2004), however evidence for the use of blue light for deepwater 

stereo-BRUVs is still scarce, and the consensus on appropriate lighting is divided (Kendrick 

et al., 2005; Fitzpatrick et al., 2013). Birt et al. (2019) found no effects of lighting choices 

(red, white or blue) on mesophotic fishes at depths between 109-142 m, concluding that 

white light provided the best image quality for fish identification. Lighting choices may have 

impacted on species attraction to the bait and observations within the stereo-BRUVs vision, 

but the effects are still not well understood for deepwater species (Harvey et al., 2018). 
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Effects of bait 

Stereo-BRUVs rely on opportunistic placement (habitat, other organisms) or attractant 

(bait). There exists evidence for their ability to attract and observe a range of trophic 

groups (herbivores, omnivores and predators) with the use of a relatively small amount of 

oily fish bait (e.g. Sardinops sagax) (Dorman et al., 2012; Hardinge et al., 2013; Wraith et al., 

2013). In deepwater environments, many species are slow-moving, widely dispersed and 

take time to move within the vicinity of the attractant. These factors can, therefore, affect 

methods due to bait type, dispersal patterns and soak times. There is a need to better 

understand bait dispersal in deepwater environments to define the limitations and 

standardise methods in regards to bait type, dispersal method and amount across 

deepwater environments. 

Accuracy of identifications  

Species identifications from imagery have always posed a challenge (Mallet and Pelletier, 

2014). In the present study, there were many species, particularly small species such as in 

the family Myctophidae, as well as rarely encountered species that pose particular 

challenges in making precise identifications. Smaller fish with many congeners of similar 

morphological characteristics can be challenging to differentiate, even with taxonomic 

reference specimens. However, confidence in identifications can be greatly enhanced by 

robust baseline knowledge of the regional fisheries. Concurrent trap and longline sampling 

during field collection can aid this, where appropriate, in providing type specimens for 

imagery identifications and confirmations. Identification of cryptic and rare species may 

require other solutions such as the collection of eDNA water sampling in conjunction with 

stereo-BRUVs deployments (Stat et al., 2019). 

Deepwater stereo-BRUVs design  

During the study, improvements were made to the stereo-BRUV design for deepwater 

environments to increase the robustness of the frame and allow additional weight to be 

added and repositioned to each side of the unit. These units were substantially heavier 

than their shallow-water counterparts (> ~90 kg), which was necessary for deepwater 

environments where rope drag, current, tide and wave energy at the surface substantially 

impacted on the movement of the units at depth. Additional weight and ‘footholds’ helped 

stabilise the BRUVs, but these issues continued to be a challenge under certain 

environmental conditions. Consequently, future developments in the deepwater stereo-
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BRUV systems used in this study are exploring the feasibility of ‘rope-less BRUVs’ by 

employing alternative measures such as acoustic, timed or chemical release mechanisms 

(Harvey et al. 2018). The balance remains to find a relatively cheap yet reliable mechanism 

for each stereo-BRUV to maintain efficient cost per unit and reduce any loss of stereo-

BRUVs at sea.  

Optimal length of analysis 

Another key aspect for efficient deepwater stereo-BRUVs research is defining the optimal 

length of analysis or ‘soak time’. Video recordings were 90 minutes in lengths to maximise 

the opportunity to record at these depths. However, extending video analysis time is costly; 

both in the time taken to capture and analyse the data. Optimal soak time analysis has 

been conducted for many shallow-water communities, resulting in reductions to minimal 

analysis timeframes (Gladstone et al., 2012; Harasti et al., 2015).  

Optimising the length of analysis time frames has several benefits, particularly in reducing 

the time required for analysis (and thereby reducing costs). Additionally, reductions in 

project turnaround times provide other opportunities such as the collection of more 

samples or alternative applications of time, staff and funds. There is also the potential for 

automated image processing to reduce the volume of image data required to be reviewed 

by analysts (Shafait et al., 2017; Siddiqui et al., 2017). However, there remains a trade-off 

between shorter soak times and more video samples, and the statistical power that comes 

from longer soak times, which in turn provide opportunities to take more length 

measurements of species within a video sample (Misa et al., 2016). 

Optimal analysis time will always be dependent on the specific goals of the project, in 

species and size targets (Misa et al., 2016). Depth, habitat factors, bait plume dispersal and 

other environmental correlates likely influence optimal windows for analysis and need to 

be taken into account. I suspect that larger, common ‘target’ species are accurately 

represented within the first 40 minutes of analysis, even in deepwater, but in areas of the 

open ocean or when targeting rare, slow-moving species, or even the full biodiversity suite 

for a baseline, the window required for detection is likely longer (Santana-Garcon et al., 

2014).  
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Future directions 

Aside from their fundamental economic value, deepwater fishes provide an integral 

ecological function, with their distribution and abundance affecting trophic changes across 

habitats and evolving environmental conditions. Further sampling in these deepwater 

regions will provide the ability to resamples these locations to see if there are changes in 

assemblage structure over time, and whether observed patterns are temporary or 

sustained in deepwater. Deeper deployments are also necessary to continue this work 

beyond the continental slope. Building from the knowledge gathered in this work, targeted 

sampling in the future will allow us to explore the fundamental questions surrounding 

sustainable management of deepwater fishes. 

Further investigation into whether depth provides a sustainable refuge for certain 

deepwater species, and the limits of an expected poleward shift in fish distributions under 

varying climatic conditions in the future, are topics of much needed future research. The 

effect of the heatwave during 2011 was an unexpected influence in this study and 

highlights the need to explore deepwater resilience and the long-term effects of climate 

shifts. 

We can continue to gather a more accurate and comprehensive picture of deepwater fish 

assemblages with improvements in the design of stereo-BRUVs, refinements in the 

methodology and by embracing technological developments. Information for fisheries 

management is required across many fields in understanding fishing exploitation levels, 

biology, population trends for key indicator species as well as environmental perturbations. 

Species information that is regionally specific and multi-scaled; across size classes, depths, 

latitudes and habitats, are therefore vital for sustainable management.  

By combining techniques, such as ocean modelling data, in-situ water parameter 

measurements and, for example, collection of eDNA in conjunction with stereo-BRUVs, we 

can continue to expand the power of this data collection technique. Strategic planning in 

future research initiatives using stereo-BRUVs that complement extractive techniques such 

as trawl, trap and longline fishing can yield a powerful and comprehensive data set. Within 

appropriate boundaries and spatial scales, the optimisation and integration of multiple data 

collection tools can enhance the depth of analysis and continue to broaden understandings 

of deepwater fish ecology.  
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Figure 4.1 Thesis flow diagram outlining the outcomes and future directions identified in this 
thesis. 
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Chapter 5 Appendix 

 

First record of Odontaspis ferox (Risso, 1810) in the temperate south-

eastern Indian Ocean from in situ observations in a deep-water canyon 

using baited video 

 

Introduction 

The smalltooth sandtiger shark Odontaspis ferox (Risso, 1810) is rarely encountered (or 

captured) and thus its relative abundance appears low, patchy and disjunct, despite a 

worldwide distribution in relatively deep-water (up to ~800 m) throughout warm-

temperate to tropical oceans (Fergusson et al., 2008). Overall the biology of O. ferox is 

poorly understood. There are relatively few (~160) reported captures of O. ferox globally, 

along with only eight in situ observations that are limited to shallow waters by divers 

(Fergusson et al., 2008). Of these records, there is only a single capture of this species 

recorded from the west coast of Australia in the 1980s (Fergusson et al., 2008). Although 

this species inhabits shallower depths along insular shelf waters elsewhere (<100 m), there 

have been no reports of this species from the relatively wide continental shelf of north-

western Australia, despite a long history of independent observations on commercial trawl 

vessels since the 1970s (Wakefield et al., 2014). In addition, there are no records of this 

species from the temperate waters of the south-eastern Indian Ocean, there have been no 

records in ~30 years from the west coast of Australia, and there have been no in situ 

observations in deep-water. This study presents a non-extractive method for collecting in 

situ behavioural observations, relative abundances and length measurements of a rare 

species in difficult to sample undulating topography of a deep-water canyon. 
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Materials and Methods  

Study site 

The Perth Canyon is the largest submarine canyon on the west coast of Australia and is 

incised into the continental slope in temperate waters at ~32°S, with the continental shelf 

being ~27 km wide at this latitude (Fig. 5.1). The steep embankments of this canyon fall 

from ~200 to 1000 m deep before opening onto an abyssal plain at >4000 m (Rennie et al., 

2009b). This geomorphology facilitates increased productivity through a confluence of 

oceanic processes (e.g. upwelling) providing enhanced pelagic production and aggregation 

of plankton in the vicinity of the canyon (Rennie et al., 2009a). Whilst this is an attractant 

for many pelagic species, it also provides ideal habitat and a dietary source for deep-water 

demersal fishes (Rennie et al., 2009a; Nguyen et al., 2015).  

 

Figure 5.1 Bathymetry map and sampling locations in the Perth Canyon (blue circles and red 
triangles, 200-540 m, n=66). Red triangles indicate stereo-BRUVs locations with Odontaspis ferox 
sightings (n=3). 

 

Sampling 

During a research survey in the Perth Canyon in March 2010, 66 stereo-BRUVs (baited 

remote underwater video systems) were deployed for 90 minutes each in depths of 200-

540 m (Fig. 5.1), following the methods of (Harvey and Shortis, 1998). Each stereo-BRUV 
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was situated a minimum distance of 500 m apart to avoid potential overlap in bait plume. 

Swath maps detailing bathymetry and backscatter (i.e. relative density of substratum) were 

used to identify various habitat types and thus position each stereo-BRUV accordingly.  

The stereo-BRUVs were constructed of a base bar supporting two Sony® high-definition 

cameras (1920 x 1080, CX7 or CX12 models) inside waterproof camera housings, positioned 

horizontally within a trestle shaped galvanised metal frame (0.7 m apart, inwardly 

converged at 7° to optimise the field of view). This provided stereo-video coverage from 0.5 

m to the maximum depth of field depending on light and turbidity. The use of two cameras 

in stereo facilitated obtaining length measurements of fish (Harvey et al., 2003). Each 

system was baited with approximately 800 g of Australian pilchards (Sardinops sagax) 

extended 1.2 m perpendicular from the cameras within the field of view, which was 

illuminated with blue LED lights (420 nm Royal Navy, CREE Inc.). 

The stereo-BRUVs were calibrated pre- and post-field trips (CAL software; 

www.seagis.com.au) to facilitate accurate length measurements during video analyses 

following the procedures outlined by (Harvey and Shortis, 1998). Imagery software 

(EventMeasure, PhotoMeasure; www.seagis.com.au) was used to calculate the lengths of 

each fish from paired stereo images. Information on the relative abundances of O. ferox, 

the characteristics of their associated benthic habitat, and the type and timing of 

behavioural events were also recorded. 

 

Results and Discussion 

Odontaspis ferox was observed on three concurrent videos deployed simultaneously in 410-

440 m depth from 0616–0642 hr on 12 March 2010. The first observation was a single pass 

of a 265 cm total length (TL) individual in 410 m. On an adjacent video (750 m apart) 11 

minutes later in 430 m, a 185 cm TL individual made several passes within the field of view 

(~8 m from the camera) before approaching the stereo-BRUV to within 1 m with an overall 

interaction time of 114 seconds (Fig. 5.2). The final observation occurred 14 minutes later 

on the next sequentially located video (960 m from the previous video) at a depth of 440 m. 

During this video, a single individual of 185 cm TL, thus the same length as the individual 

observed on the previous video, appeared from behind the camera. Within the same frame, 

a second O. ferox of indeterminate TL could be observed further from the camera (~6 m). It 
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thus appears that at least two O. ferox individuals were recorded to move between three 

video samples covering a distance of 1.7 km during the 90 minute deployments. These 

sharks appeared to be attracted by the bait, but no feeding was observed.  

 

Figure 5.2 O. ferox (185 cm TL) recorded using stereo-BRUVs in 430 m deep at 0628 hr on 12 March 
2010. 

 

The estimated weights of these two individuals based on TLs of 185 and 265 cm, were 37 

and 116 kg, respectively, using the relationship determined by Fergusson et al. (2008). Both 

of these O. ferox are within the range of the few immature individuals recorded elsewhere 

for females, i.e. 109-280 cm TL (n = 8), but larger than those for males, i.e. 107-168 cm TL 

(n=5, Fergusson et al., 2008). Claspers were not conspicuous on either of these O. ferox 

from video observations, which would be expected for mature males. Thus, it is likely that 

both these individuals were immature females.  

These three recorded observations occurred on the southern margin (~1.5 km) of the head 

of the Perth Canyon, where it is incised into the continental shelf. Here the topography 

descends into the canyon with steep ravines extending precipitously to the canyon floor. 

The stereo-BRUVs were positioned at 410-440 m depth at the top of these ravines on 

rugose but relatively low profile terrain. Habitat imagery confirmed a layer of loose 
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sediment with detritus evident on an undulating sea floor. There was an absence of any 

macro sessile invertebrates within the field of view of the three videos, although 

bioturbation and meiofauna were evident throughout. Odontaspis ferox appears to have a 

preference for locations proximal to steep and rough terrain that descends rapidly into 

deep-water, which may not be preferential for other sampling methods (e.g. trawling, 

Bonfil, 1995; Fergusson et al., 2008). These observations of O. ferox are consistent with 

those reported by Fergusson et al. (2008), whereby important nursery areas are commonly 

associated with deep offshore habitats of upper continental and insular slopes. 

This is the first record of O. ferox within the temperate south-eastern Indian Ocean and the 

first record in ~30 years for the west coast of Australia. Considering, O. ferox is listed as 

Vulnerable on the IUCN’s Red List of Threatened Species (Pollard et al., 2009); these 

observations provide important insights into the distribution of this species. On the west 

coast of Australia, populations of O. ferox are highly likely to be in a relatively unfished 

state considering the negligible amount of commercial fishing effort, particularly trawling, 

in continental slope waters in recent decades (Fletcher and Santoro, 2014).  

Significant topographic seascapes, such as submarine canyons, may improve the potential 

for the occurrence of rarely encountered species that inhabit the continental slope given 

their increased productivity and greater prevalence of diverse habitat types. Technological 

advances and increased affordability of video equipment are improving the accessibility of 

in-situ observations of such species in these highly dynamic environments. Ongoing 

refinements of these methods will undoubtedly improve our understanding of 

distributions, relative abundances, ecology and behaviour of deep-water marine fauna, and 

continue to yield significant and/or novel observations and outcomes. The limited number 

of observations of O. ferox over many decades throughout its global distribution highlights 

the difficulties in assessing its conservation status and emphasises the importance of 

reporting range extensions and advances in non-extractive methods to document in-situ 

behavioural observations, relative abundances and length measurements of such rare 

species in difficult to sample habitats. 
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Additional Materials 

 

YouTube videos: Department of Fisheries WA channel 

Underwater video of fish assemblages using baited cameras in the Perth Canyon, 

Western Australia  

https://youtu.be/2d27m1ECzxA  

(over 194,773 views as of October 2019) 

 

Baited underwater video from the continental slope, Abrolhos Islands, Western 

Australia  

https://youtu.be/Rt9awTJJ6UM 

(over 27,125 views as of October 2019) 

 

 

 

 

 

 

 

 

 

 

 

  

https://youtu.be/2d27m1ECzxA
https://youtu.be/Rt9awTJJ6UM
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