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Abstract

Palaeogeographic reconstruction is an essential aspect of earth sciences because

it provides the necessary context for a wide range of Earth-related studies such

as supercontinent cycles, palaeontology, palaeoclimatology, and ore genesis etc.

Among the various methods employed to reconstruct Precambrian palaeogeog-

raphy, palaeomagnetism remains the most essential and straightforward. This

thesis contains a series of palaeomagnetic investigations on selected Precambrian

igneous rocks in Australia and East Antarctica, aimed to improve the palaeo-

magnetic database and Precambrian palaeogeography, and to test competing

hypotheses.

This thesis presents four newly defined, and one improved, palaeomagnetic

poles from three study regions. The oldest amongst them is the ca. 2.62 Ga

pole from the Yandinilling dyke swarm of the Yilgarn Craton, Western Australia.

The Yandinilling pole, together with other available poles of similar age, allows

palaeogeographic reconstructions showing that the Archaean-Proterozoic transi-

tion time was characterised by either two consecutive but short-lived superconti-

nents, or two smaller but more stable supercratons. Either way, it appears that

Archaean geodynamics were fundamentally different from that of more recent

supercontinent cycles.

The ca. 1.89 Ga pole from the Boonadgin dyke swarm puts the Yilgarn Craton

at an equatorial region, similar to that of the Dharwar Craton of southern India.

Apart from their similar palaeolatitudes, these two cratons also share coeval ca.

1.89 Ga dyke swarms which can be interpreted as different arms of a plume
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centre located between the two cratons then. Therefore, the West Australian

Craton (consisting of the Yilgarn and Pilbara cratons) and the South Indian

Block (consisting of the Dharwar, Bastar, and Singhbhum cratons) were likely

together ca. 1.89 Ga.

The primary origin of the palaeopole from the a. 1.39 Ga Biberkine dyke

swarm remains to be demonstrated. If this pole is indeed of a primary origin,

it would require either a major revision for the Mesoproterozoic apparent polar

wander path of Australia, or a post-1.39 Ga assembly of proto-Australia. These

two alternatives consequently imply that either proto-Australia rifted away from

Nuna prior to 1.39 Ga, or that the West Australian Craton only joined Nuna

after 1.39 Ga.

The ca. 1.59 Ga pole from the Gawler Range Volcanics (GRV) of South Aus-

tralia is established to be a reliable pole by a positive fold test and a tentative

positive baked contact test. The relative positions between Australia and Lau-

rentia are refined using both the new palaeomagnetic constraints and geological

evidence.

The ca. 1.14 Ga pole from the Bunger Hills dykes of the Mawson Craton

(East Antarctica) provides the first Precambrian palaeomagnetic constrains for

this continental block. A comparison between the new Bunger Hills pole and that

of the ca. 1.14 Lakeview dolerites of North Australia constitutes a positive test

for the proposed Neoproterozoic ∼40° intraplate rotation within Australia.
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Chapter 1

Introduction

1.1 Background

The plate tectonics revolution was undoubtedly the greatest paradigm shift of

Earth Sciences in the last century. Although Alfred Wegener proposed the hy-

pothesis of continental drift and its resulting product, the supercontinent Pan-

gaea, over a century ago (Wegener, 1912), his theory was not well-received by the

science community until the 1960s mainly because he failed to provide a convinc-

ing mechanism for continents to move relative to each other. The breakthrough

was a series of global mapping of the ocean floor in the 1950s, which led Hess

(1962) to propose the idea of seafloor spreading complimenting the continental

drift hypothesis. Unifying continental drift and seafloor spreading, Wilson (1966)

proposed a model of the opening and closure of ocean basins later referred to as

the “Wilson Cycles”. In the 70s, conceptual models resembling plate tectonics as

we understand it today were established.

Subsequent work demonstrated that the episodic assembly and breakup of

most of the continental blocks may have occurred, known as supercontinent cy-

cles. Although the idea of the supercontinent cycle had long been envisaged (e.g.,

Worsley et al., 1984), its importance was not broadly recognised until recently

(e.g., Bradley, 2011; Evans et al., 2016; Li and Zhong, 2009; Li et al., 2019; Nance
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et al., 2014). It is now widely accepted that supercontinent cycles carries great

significance: (i) it implies the existence of a fundamental mechanism operating

on Earth, which, if understood, can yield a better understanding of the entire

Earth system; (ii) it can provide a spatial and temporal global context for the

environmental and biological evolution, including events such as the Great Oxi-

dation (Gumsley et al., 2017; Lyons et al., 2014) and Snowball Earth (Hoffman,

2013); and (iii) the periodicity embedded in related global geotectonic processes

can provide guidance for mineral and petroleum exploration.

Palaeogeography plays an essential role in studying supercontinent cycles.

Bleeker and Ernst (2006) noted that “A complete time series of palaeogeographic

maps, at least back to ∼2.6Ga ... would be a crowning achievement of the

plate tectonic revolution...”. Among the three generally accepted superconti-

nents, i.e., Pangaea, Rodinia and Nuna (also known as Columbia), Pangaea is

well-reconstructed (e.g., Seton et al., 2012) mainly because it is the most recent

supercontinent and thus preserve abundant evidences. The Neoproterozoic super-

continent Rodinia is reasonably constrained (e.g., Li et al., 2008; Merdith et al.,

2017), although its exact configuration is still the subject of ongoing research

(e.g., Salminen et al., 2018; Wen et al., 2018). While the Mesoproterozoic super-

continent Nuna is less understood, the situation has been improving rapidly (e.g.,

Evans and Mitchell, 2011; Kirscher et al., 2019; Meert, 2002; Meert and Santosh,

2017; Nordsvan et al., 2018; Pisarevsky et al., 2014; Pourteau et al., 2018; Zhang

et al., 2012; Zhao et al., 2002). Due to the fact that many Archaean cratons have

Palaeoproterozoic rifted margins (Bleeker, 2003), an even older supercontinent,

tentatively named Kenorland (Williams et al., 1991), was suspected to have ex-

isted prior to Nuna. Contrary to the hypothesised supercontinent-like Kenorland,

an alternative model featuring several supercratons was proposed based on the

grouping of cratonisation ages and magmatic records of different cratons (Bleeker,

2003; Pehrsson et al., 2013). Overall, the palaeogeography prior to Nuna is more

speculative.
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1.2 Targets and study area

1.2.1 Large igneous provinces

Although suffering from the hemispheric ambiguity and the lack of constrains

for palaeolongitude, palaeomagnetism remains the most direct approach for re-

constructing palaeogeography. Large igneous provinces (LIPs), especially related

mafic dyke swarms, provide ideal palaeomagnetic targets for various reasons. Do-

lerite dykes are typically fast-cooled, fine-grained intrusions, which likely contain

sub-micron scale single-domain magnetite as a dominant magnetic carrier. Single-

domain grains can preserve stable magnetisation for billions of years whereas

multi-domain grains are vulnerable to remagnetisation, and tend to produce soft

components. Mafic dyke swarms penetrate deep into cratonic cores (Bleeker,

2004; Fahrig, 1987; Halls, 1982), far from metamorphic margins and their associ-

ated palaeomagnetic overprints. As vertical structures (Emerman and Marrett,

1990), dyke swarms have not been eroded away, thus preserving numerous tar-

gets apt for compiling a composite, almost continuous APW path. Dykes are

also suited for integration with geochronologic studies. We can now routinely

obtain high-precision U-Pb ages using microbaddeleyite, which unlike zircon, is

an abundant zirconium-oxide in mafic rocks (Chamberlain et al., 2010; Heaman

and LeCheminant, 1993; Söderlund and Johansson, 2002). The orientation of

dyke swarms of coeval age provides additional palaeogeographic constraints in-

dependent of palaeomagnetic data (Ernst and Bleeker, 2010; Ernst et al., 2010).

1.2.2 Study regions

This project involves five main targets and three study regions (Figure 1.1). The

first three targets are located in the southwestern Yilgarn Craton. Like other

Archaean cratons, Yilgarn was intruded by numerous mafic dykes with various

trends. However, unlike other Archaean cratons such as the Superior where a

substantial amount of palaeomagnetic studies has been conducted already (e.g.,
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Evans and Halls, 2010), the Yilgarn Craton had insufficient palaeomagnetic in-

vestigations on its mafic dykes so far. The southwestern Yilgarn Craton has a

particularly dense network of mafic dykes, making it an ideal field area for palaeo-

magnetic investigations. Prior to the current project, only one systematic study

has been conducted on these dykes in the 70s (Giddings, 1976). A recent com-

prehensive geochronological investigations in this region (Stark, 2018), which is

a parallel project to this PhD program, identified three new generations of mafic

dyke, i.e., the ca. 2.62 Ga Yandinilling dyke swarm (Stark et al., 2018c), the ca.

1.89 Ga Boonadgin dyke swarm (Stark et al., 2019) and the ca. 1.39 Ga Biberkine

dyke swarm (Stark et al., 2018a). This project report on palaeomagnetic analyses

of all three dyke swarms.

The second study region, the Gawler Craton of South Australia, contains the

ca. 1.59 Ga Gawler Range Volcanics (GRV, Figure 1.1). The GRV is a felsic-

dominant large igneous province that covers an area >25,000 Km2 and occupies

>100,000 Km3 in volume (Blissett et al., 1993). Two previous palaeomagnetic

studies of the GRV reached contradicting conclusions. While Chamalaun and

Dempsey (1978) suggested that the magnetic remanence of GRV are primary due

to the lack of post-extrusion deformation and metamorphism, Schmidt and Clark

(1992, 2011) argued that the GRV were remagnetised during the Devonian based

on a negative fold test. The interpretation of the negative fold test, however, was

called into question (Wingate and Evans, 2003). This project intended to resolve

the debate with a more extensive sampling and carefully designed field tests.

The Bunger Hills terrane of East Antarctica is the third study region of this

project (Figure 1.1). Due to limited outcrop exposures and logistical difficulties

in conducting field work in East Antarctica, the Mawson part of East Antarctica

(Figure 1.1) did not have any Precambrian palaeomagnetic data until this project.

Samples in this area were collected from a suite of NW-trending mafic dykes,

which were recently dated at ca. 1.14 Ga (Stark et al., 2018b).
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1.3 Major aims and objectives

• To improve the Australian and Antarctic Precambrian palaeomagnetic data

situation by acquiring new high-quality data.

• Using palaeomagnetic constraints, while honouring the geological evidence,

to refine the tectonic evolution of proto-Australia, e.g., when and how did

the major cratonic elements of Australia assemble?

• To build and improve the global palaeogeographic reconstructions for the

Archaean-Proterozoic time.

1.4 Thesis structure

The thesis contains eight chapters. This first chapter presents an introduction

and background of this project. The second chapter summarises the methods

employed in this project. The next five chapters (Chapter 3−7) constitute the

main body of this thesis, each of which presents a palaeomagnetic pole and the

related implications. Among them, Chapter 5 and 7 are accepted publications in

Precambrian Research (Liu et al., 2019) and Scientific Reports (Liu et al., 2018),

respectively. Chapters 3, 5, and 6 are ready-for-submission. As these five main

chapters are all written in a format suitable for peer-reviewed journals, a certain

degree of repetition is inevitable. The concluding chapter (Chapter 8) presents

a synthesis that summarises the major outcomes of this thesis in the context of

supercontinent cycles. Copies of the published papers and the relevant co-author

approvals are in Appendix E. Brief outlines of each chapter are given below.

Chapter 3. Archaean geodynamics: Ephemeral supercontinents or stable su-

percratons? This chapter present a 2.62 Ga palaeomagnetic pole for the Yilgarn

Craton based on studying the Yandinilling dyke swarm. The new palaeomagnetic

pole supports the previously proposed connection between the Yilgarn and Zim-

babwe cratons. Based on palaeogeographic reconstructions, this study shows that
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the Archean-Proterozoic transition featured either two successive but ephemeral

supercontinents or two stable supercratons. This means that Archaean geody-

namics were fundamentally different from later times that feature supercontinent

cycles.

Chapter 4. Palaeomagnetism of the 1.89 Ga Boonadgin dykes of the Yilgarn

Craton: Possible connection with India. This chapter present a 1.89 Ga palaeo-

magnetic pole for the Yilgarn Craton. A possible connection between the Western

Australia Craton and the South India Block at ca. 1.89 Ga is proposed based on

their similar palaeolatitudes and a radiating pattern of coeval dyke swarms when

the two cratons are juxtaposed together in a palaeomagnetically permitted con-

figuration. Using available 1.89−1.87 palaeomagnetic data worldwide, a global

palaeogeographic reconstruction for this interval is also presented in this chapter.

Chapter 5. A palaeomagnetic reconnaissance in the southwestern Yilgarn

Craton with a special focus on the 1.39 Ga Biberkine dyke swarm. Except for the

data presented in Chapter 3 and 4, the remaining palaeomagnetic data from the

southwestern Yilgarn Craton are summarised in this chapter, including a possible

overprint pole of ca. 500 Ma, a refined 1.21 Ga pole for the Marnda Moorn LIP,

and a newly defined 1.39 Ga pole from the Biberkine dyke swarm. The 1.39 Ga

pole requires either a major revision for the Australian Proterozoic APWP, or a

late assembly (post-1390 Ma) of NAC and WAC.

Chapter 6. Palaeomagnetism of the Gawler Range Volcanics revisited: pri-

mary after all? This chapter present the palaeomagnetic results of the Gawler

Range Volcanics. The new collection of samples from this study yielded a ten-

tative positive baked contact test and a positive fold test, thus establishing that

the age of the magnetic remanence of the GRV is primary or shortly after their

extrusions. With the better-defined GRV pole, this chapter also present a refined

ca. 1.6 Ga configuration of Australia and Laurentia.

Chapter 7. First Precambrian palaeomagnetic data from the Mawson Craton

(East Antarctica) and tectonic implications. This chapter present the palaeomag-

7



netic results of the ca. 1.14 Bunger Hill dykes (BHD) of East Antarctica. The

BHD pole is the first Precambrian palaeomagnetic constrains for the Mawson

part of East Antarctica. This pole, when compared with the coeval pole from the

North Australia Craton, supports the previously proposed 40° intraplate rotation

within Australia.

Chapter 8. Summary and Conclusions. This chapter summaries all five poles

presented in previous chapters in geochronological order. Their implications are

discussed in the context of supercontinent cycles.
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Chapter 2

Methodology

2.1 Sampling

We employed standard palaeomagnetic sampling and analysis in this PhD project.

Typically, 8 to 12 standard 1 inch cores were collected from each site using a

gasoline-powered portable drill with a water-cooled diamond drill bit. Each site

represents a distinct cooling unit in most cases. Occasionally, oriented hand

samples were collected. All the samples were oriented using a magnetic compass,

combined with a sun compass whenever possible. Apart from the cooling units

themselves, the baked and unbaked host rock at some sites were sampled for

baked contact tests.

Special efforts were made in the field to improve the success rate of analysis.

As finer-grained parts of a cooling unit are more likely to contain abundant single-

domain/pseudo-single-domain (SD/PSD) magnetite, which are the most faithful

recorders of magnetic signals, we tried to identify and sample the finest-grained

parts available, ideally targeting the chilled margins of each dyke. Sampling at

regionally elevated points like ridges are normally avoided since the outcrops at

such locations are more likely to be affected by lightning strikes. We also used a

compass to check if the magnetisation at the outcrops were abnormally high to

detect possible lighting induced remanent magnetisation. Creek/river outcrops
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and road-cuts are preferred as they tend to be less effected by oxidation through

surface weathering.

2.2 Field tests

Establishing the age of magnetic remanence is a crucial step of interpretation of

palaeomagnetic data. Palaeomagnetic data without some kind of field tests to

support its stability should be employed with caution. The application of such

poles when testing palaeogeographic models are often called into question. In

this project, baked contact tests and fold tests were performed to determine the

timing and origin of the magnetic remanence carried by analysed samples.

2.2.1 Baked contact tests

Baked contact tests are the most definitive field tests of testing whether the mag-

netic remanence carried by the desired igneous rocks are primary or not (Everitt

and Clegg, 1962). During the intrusion of the igneous rocks, the immediately

adjacent host rock was heated (baked), often to a high enough temperature to

become paramagnetic, and then cooled through the blocking temperature, to-

gether with the igneous intrusions, in the Earth’s magnetic field. The igneous

intrusions and the baked host rock, therefore, should record the same magnetic

direction. A baked contact tests is considered positive if the baked host rock and

the intrusions carry the same stable magnetic direction while the unbaked host

carries a different direction that predates the igneous intrusions (Figure 2.1a).

Ideally, a set of transitional directions should also be found between the baked

zone and the completely unbaked zone (Figure 2.1), which is also known as baked

contact profile test (Buchan, 2007).

A positive contact test provides strong support that the magnetic remanence

carried by the igneous intrusions are obtained during it cooling through the

blocking temperature of its main magnetic phase (most commonly, magnetite
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Igneous intrusion Baked zone Hybrid zone Unbaked zone

(a) Positive baked contact test

Igneous intrusion Baked zone Hybrid zone Unbaked zone

(b) Negative baked contact test

Figure 2.1: A sketch showing: (a) a positive baked contact test, and (b) a negative
baked contact test

or haematite). In contrast, when the igneous intrusion, the baked and unbaked

host all record the same magnetic direction, the baked contact test is considered

negative (Figure 2.1b). A negative baked contact test usually indicates that the

magnetic remanence of the igneous intrusion was of secondary origin. However,

the existence of some special cases, for example the igneous intrusion and the host

rock are essentially coeval, makes the negative baked contact tests less diagnostic

than the positive ones. In this project, the baked contact tests were performed

in Chapters 3, 4 and 6.

2.2.2 Fold test

The fold test is mostly used when dealing with sedimentary rocks, but can also be

applied to igneous rocks when the palaeohorizontal of the sampling sites can be

restored. Fold test can determine the timing of the magnetic remanence relative

to the that of the folding. Figure 2.2 illustrate three cases of fold tests. The first

case is when the palaeomagnetic direction from one limb of the fold disagrees

with that of the other limb, but the they show a similar direction after tilt-

correction (Figure 2.2a). This case, referred to as a positive fold test, indicate

that the magnetic remanence was acquired before the folding. The second case

is when the discrepant palaeomagnetic directions from both limbs of a fold reach
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maximum clustering when the fold is partially unfolded (Figure 2.2b), which

indicates that the magnetic remanence was recorded during the folding. In the

third case, unfolding will increase the scattering of the palaeomagnetic directions

recorded in the folded strata (Figure 2.2c). The palaeomagnetic directions are

most clustered in in situ coordinates. This would constitute a negative fold test

and suggest that the magnetic remanence was acquired after folding.

(a) Pre-folding magnetisation

in situ tilt-corrected

(b) Syn-folding magnetisation

in situ Partial unfolding

(c) Post-folding magnetisation

in situ tilt-corrected

Figure 2.2: A sketch of different outcomes of fold tests: (a) pre-folding magneti-
sation; (b) syn-folding magnetisation; (c) post-folding magnetisation.

The fold test needs sophisticated statistics to compare the parameters of the

dataset before and after unfolding. The most commonly used two methods are

developed by McFadden (1990) and Tauxe and Watson (1994). Although the

interpretation of a fold test are not always straightforward, it remains a pow-

erful tool to determine the age of the magnetic remanence relative to the local

deformation. A fold test is performed in Chapter 6.

22



2.3 Rock magnetism

To constrain the magnetic mineralogy of studied rocks, a set of rock magnetic

experiments were carried out for selected samples. All the rock magnetic experi-

ments were conducted in air atmosphere.

Thermomagnetic experiments—Crushed powders of fresh samples were mea-

sured using an AGICO MFK-1 Kappabridge (equipped with a CS4 furnace) to

obtain the temperature versus susceptibility data, which can reveal the Curie tem-

perature of the main magnetic phase and potential alteration during heating. To

determine peak unblocking temperature as a function of coercivity, a selection of

core samples were each given a three-component isothermal remanent magnetisa-

tion (IRM) along three orthogonal axe using magnetic fields of 2.4 T (x axis), 0.4

T (y axis) and 0.12 T (z axis), respectively. The IRM-imparted samples were then

subjected to progressive thermal demagnetisation (Lowrie, 1990). Because that

different magnetic phase has different peak coercivities (Dunlop and Özdemir,

1997), x-axis magnetisation should only be carried by haematite, geothite, and

pyrrhotite, y-axis magnetisation should be carried by magnetite and pyrrhotite,

z-axis magnetisation should reflect pyrrhotite, magnetite and titanomagnetite.

The composite IRM were imparted using a Magnetic Measurement MMPM10

pulse magnetiser. Thermal demagnetisation were carried out in an ASC TD-

48 oven. The remanence measurements were conducted with an AGICO JR-6A

spinner magnetometer.

Hysteresis experiments.—IRM acquisition and backfield demagnetisation curves

were measured with a Variable Field Translation Balance (VFTB, Krása et al.

2007) at room temperature. Hysteresis loops were acquired from =800 mT to

-800 mT. Saturation magnetisation (Ms), saturation remanent magnetisation

(Mrs), and coercivity (Hc) were determined from the hysteresis loops. Coer-

civity of remanence (Hcr) were determined from the demagnetisation of backfield

curves. The hysteresis parameters were calculated using Rock Analyzer (Leon-

hardt, 2006).
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Anisotropy of magnetic susceptibility—Prior to any other experiments, anisotropy

of magnetic susceptibility (AMS) and bulk magnetic susceptibility were measured

for all specimens using an AGICO MFK-1 Kappabridge. AMS are very sensitive

to deformation, which is utilised in this project to detect any potential deforma-

tion after emplacement of the igneous rocks (Tarling and Hrouda, 1993). AMS

data from igneous rocks can also be used to detect the magma flow pattern when

the magnetic lineation is well developed (Ernst and Baragar, 1992; Knight and

Walker, 1988). The analysis of AMS data are finished in Anisoft (Chadima and

Jelinek, 2009).

2.4 Demagnetisation and measurement

Four different demagnetisation procedures were employed for this PhD project.

However, it should be noted that not all four demagnetisation procedures were

applied for each sample collection (more detailed description of sample treatment

are in each chapter). The majority of the samples were subject to progressive

thermal demagnetisation of 16 to 18 steps until the magnetic intensity fell below

the sensitivity of the instrument or until the measured direction became unstable

(usually 570 – 580 °C). The rest of the samples were subject to one of the following

three demagnetisation procedures: (i) AF demagnetisation up until 110 mT;

(ii) AF demagnetisation of 7 – 20 mT (occasionally up to 60 mT) followed by

thermal demagnetisation; (iii) thermal demagnetisation after low-temperature

demagnetisation (LTD, i.e., liquid nitrogen treatment).

Thermal demagnetisations were carried out in an ASC TD-48 oven and a

Magnetic Measurements Ltd thermal demagnetiser. AF demagnetisations were

carried out using a Molspin AF demagnetiser and AF demagnetiser integrated

with the 2G RAPID system. The magnetic remanence of samples after each

demagnetisation step were measured with an 2G RAPID system or an AGICO

JR-6A spinner magnetometer. All the demagnetisation and measurement were

carried out in a magnetically shielded room. All the rock magnetic and palaeo-
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magnetic analysis were conducted in the palaeomagnetism laboratories at Curtin

University and University of Western Australia.

After the different component of NRM were separated by demagnetisation.

Magnetisation vectors used to represent the magnetic components were calcu-

lated using principal component analysis (Kirschvink, 1980). All vectors were

calculated using at least three consecutive points with a maximum angular devi-

ation (MAD) < 10°. In instances where stable-endpoints could not be reached,

remagnetisation great circles were fitted. Site-mean directions and mean VGPs

were calculated using Fisher statistics (Fisher, 1953) or the iterative approach

combining great circles and magnetic vectors (McFadden and McElhinny, 1988).

Vector fitting and mean direction calculation were carried out using Remasoft

(Chadima and Hrouda, 2006), Puffinplot (Lurcock and Wilson, 2012) and the

PmagPy package (Tauxe et al., 2016). GPlates software (Boyden et al., 2011)

was used for palaeogeographic reconstruction (www.gplates.org).
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Chapter 3

Archaean geodynamics:

Ephemeral supercontinents or

stable supercratons?

3.1 Abstract

Many Archaean cratons exhibit Proterozoic rifted margins implying they were

pieces of some ancestral landmass(es). The idea that such an ancient continental

assembly represents an Archaean supercontinent has been proposed, but remains

to be justified. Starkly contrasting geological records between different clans of

cratons has inspired an alternative hypothesis where cratons were clustered in

multiple, separate “supercratons”. New palaeomagnetic data from the Yilgarn

Craton of Australia are compatible with either two successive but ephemeral su-

percontinents, or two stable supercratons across the Archaean-Proterozoic tran-

sition. Neither interpretation supports the existence of a single, long-lived su-

percontinent, implying that Archaean geodynamics were fundamentally different

from modern times that feature supercontinent cycles.
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3.2 Introduction

The Archaean-Proterozoic transition (ca. 2.5 Ga) is one of the most dynamic pe-

riods in Earth history, including repeated low-latitude glaciations and the Great

Oxygenation Event (Gumsley et al., 2017). Secular cooling of the mantle appears

to have occurred faster at this time than during any other in Earth history (Keller

and Schoene, 2012). Palaeogeography during the Archaean-Proterozoic transition

carries most direct significance to the question of whether Archaean geodynam-

ics were similar to that of the three younger supercontinent cycles (Evans, 2013;

Evans et al., 2016; Li et al., 2019), or markedly different for some reason. The first

order question to answer is whether Palaeoproterozoic-Mesoproterozoic supercon-

tinent Nuna (Evans and Mitchell 2011; Pisarevsky et al. 2014a; Zhang et al. 2012,

also known as Columbia, see Meert and Santosh 2017; Rogers and Santosh 2009;

Zhao et al. 2002) was Earth’s first Pangaea-sized supercontinent, as some have

speculated (Hoffman, 1989), or whether it had an Archaean predecessor. It has

long been recognised that many Archaean cratons are bounded by Palaeoprotero-

zoic rift margins, which indicates that some of the presently separated cratons

once belonged to larger Archaean continental blocks prior to breakup (Aspler and

Chiarenzelli, 1998; Bleeker, 2003; Williams et al., 1991). A single, large supercon-

tinent, putatively named “Kenorland”, represents one end-member model for this

ancestral landmass (Lubnina and Slabunov, 2011; Salminen et al., 2018; Williams

et al., 1991). As an alternative hypothesis, based mainly on diachronous cratoni-

sation timings, Bleeker (2003) proposed that several independent “supercratons”

dominated the late Archaean tectonic regime rather than a single supercontinent.

Two reconstruction methods are commonly employed for late Archaean palaeo-

geography: magmatic barcode matching and palaeomagnetism. Dyke swarms

are particularly useful geological piecing points as they provide geometric con-

straints that can be dated precisely, with the possibility of multiple intrusion

events overtime confirming a hypothetical configuration. The Superior craton is

the largest Archaean cratonic fragment with one of the best sampled and dated
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magmatic barcodes and provides a natural place to start with palaeogeographic

juxtapositions. The magmatic barcode matching method has provided the first

hypothesised yet testable supercraton Superia centered about the Superior craton

(Bleeker and Ernst, 2006; Ernst and Bleeker, 2010). Just as it has been used to

reconstruct younger supercontinents, palaeomagnetism can test, independently

of magmatic barcode matching, whether two cratons were (i) latitudinally sep-

arated and (ii) moved together (Evans, 2013). So far, both methods have been

used to prove the existence of the Superia configuration (Gumsley et al., 2017;

Salminen et al., 2018), but whether all cratons globally were included (i.e., an

Archaean supercontinent) remains to be tested.

3.3 Regional geology

The Yilgarn Craton is the largest Archaean craton in Australia, composed of

several Archaean granite-greenstone terranes including the Narrayer Terrane, the

Southwest Terrane, the Youanmi Terrane, and the Eastern Goldfields Supert-

errane (Figure 3.1). While the Southwest and Narrayer terranes are mainly

composed of gneiss and granite, the Youanmi Terrane and the Eastern Gold-

fields Superterrane are each comprised of multiple granite-greenstone belts. The

ca. 3730−3300 Ma gneiss components of the Narrayer Terrane are the oldest

known rocks in Yilgarn (Cassidy et al., 2006; Nutman et al., 1991; Wyche, 2007).

The Narrayer and the Youanmi terranes collided ca. 2750 Ma (Cassidy et al.,

2006). The South West Terrane is thought to have assembled with the Youanmi

Terrane between ca. 2652-2625 Ma (Cassidy et al., 2006), which caused volumi-

nous granite emplacement and high-grade metamorphism (Qiu et al., 1999; Wilde

et al., 2002). The juxtaposition of the Eastern Goldfields Superterrane with the

Youanmi Terrane happened between ca. 2678-2658 Ma (Czarnota et al., 2010;

Standing, 2008). The Yilgarn Craton is bounded to the north by the Palaeo-

proterozoic Capricorn Orogen (Johnson et al., 2011, 2013), to the west by the

late Mesoproterozoic to Neoproterozoic Pinjarra Orogen (Fitzsimons, 2003; My-
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ers et al., 1996), and to the south and southeast by the late Palaeoproterozoic

to Mesoproterozoic Albany-Fraser Orogen (Myers et al., 1996; Spaggiari et al.,

2009, 2015, see Figure 3.1).
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Figure 3.1: Simplified geological map showing major dyke swarms (color-coded
by different dyke orientation) in the Yilgarn Craton. The basemap is based on
Geological Survey of Western Australia 1:2.5 M Interpreted Bedrock Geology
2015 (https://dasc.dmp.wa.gov.au/dasc).

Like other Archaean cratons in the world, Yilgarn is intruded by numer-

ous mafic dyke swarms Figure 3.1. Among them two swarms are most promi-

nent and have already been investigated palaeomagnetically: the ca. 2410 Ma

Widgiemooltha dyke swarm (Evans, 1968; Smirnov et al., 2013) and the ca. 1210

Ma Marnda Moorn dyke swarm (Pisarevsky et al., 2003, 2014b). Due to pro-

longed lateritic weathering, dykes in the Yilgarn Craton can rarely be traced

in the field for more than a few kilometres (Lewis, 1994). The exception is the

largely E-W trending Widgiemooltha dyke swarm transecting the Yilgarn Craton.
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Individual Widgiemooltha dykes can be traced, in outcrop or through magnetic

anomalies, for up to 600 km. Evans (1968) reported preliminary palaeomagnetic

data for the Widgiemooltha dykes, which were later improved upon by Smirnov

et al. (2013) with more systematic sampling and robust baked contact tests as

proof of a primary magnetic remanence. The Marnda Moorn dyke swarm (in-

cluding the Muggamurra, Boyagin, Wheatbelt and Gnowangerup-Fraser dykes,

see Pisarevsky et al. 2003, 2014b; Wang et al. 2014; Wingate and Pidgeon 2005)

intrudes along multiple margins of the Yilgarn Craton except for the northeastern

side, where only a small number of Marnda Moorn dykes are reported. The ori-

entations of Marnda Moorn dykes vary widely and are generally margin-parallel.

Pisarevsky et al. (2003, 2014b) reported high-quality palaeomagnetic data for

the Marnda Moorn dykes. Apart from these two widespread dyke swarms, three

other dyke swarms with more localized occurrences were also dated and palaeo-

magnetically studied (Figure 3.1): the ca. 2401 Ma Erayinia dykes (Pisarevsky

et al., 2015), the ca. 1888 Ma Boonadgin dykes (Liu et al., 2019; Stark et al.,

2019) , and the ca. 1075 Ma Warakurna dykes (Wingate et al., 2002, 2004).
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Figure 3.2: Simplified geological map of the sampling area. The 16WDS prefixes
of site names are omitted in the map for simplicity.

The present study area in the Perth Hills has a particularly dense network

of mafic dykes (Figure 3.2). Apart from the aforementioned swarms, two addi-
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tional generations of dykes were recently reported: the NW-trending ca. 1390

Ma Biberkine dyke swarm (Stark et al., 2018a) and the NE-trending ca. 2615 ±

6 Ma Yandinilling dyke swarm (Stark et al., 2018b), the latter of which we study

herein in detail with palaeomagnetism and rock magnetism.

3.4 Methods

A total of 123 standard 24-mm diameter cores from 15 sites were collected for rock

magnetic and palaeomagnetic analysis (Figure 3.2). Each site represents a distinct

dyke. All cores were oriented using magnetic and sun compass orientations. The

host granite of 16WDS14 was also sampled for a backed contact test. At least

one specimen per core was cut for demagnetisation experiments.

To determine the magnetic mineralogy, a set of rock magnetic experiments

were carried out. Crushed powders of fresh sample materials from each site were

prepared for rock magnetic analysis. Susceptibility versus temperature data were

obtained using an AGICO MFK-1 Kappabridge (equipped with a CS4 furnace).

Hysteresis loops, IRM (isothermal remanent magnetisation) acquisition and back-

field demagnetisation curves were measured with a Variable Field Translation

Balance (VFTB, Krása et al. 2007) at room temperature. Additionally, a rep-

resentative selection of samples was each given a composite IRM along three

orthogonal axes with magnetic fields of 2.4 T, 0.4 T, and 0.12 T. Subsequently,

the IRM-imparted samples were then subjected to stepwise thermal demagneti-

sation (Lowrie, 1990). All the rock magnetic experiments were conducted in an

air atmosphere.

Four different demagnetisation procedures were used for the Yandinilling dykes.

The majority of samples were subjected to progressive thermal demagnetisation

in 16-18 steps until the measured direction became unstable (usually 570−580

°C). The rest of the samples were subjected to one of the following three demag-

netisation procedures: (i) AF demagnetisation up to 110 mT; (ii) thermal demag-

netisation after AF demagnetisation of 7−20 mT; (iii) thermal demagnetisation
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after low-temperature demagnetisation, i.e., liquid nitrogen immersion. Thermal

demagnetisation was carried out in an ASC TD-48 oven. Magnetic remanences

of the samples after each demagnetisation step was measured with a 2G RAPID

system or an AGICO JR-6A spinner magnetometer (only when the intensity was

too strong to be measured with the SQUID magnetometer). All demagnetisation

procedures were carried out in a magnetically shielded room. All rock magnetic

and palaeomagnetic analyses were conducted in the palaeomagnetism laboratory

at Curtin University.

Magnetisation vectors were calculated using principal component analysis

(Kirschvink, 1980). All vectors were calculated using at least three successive

steps with a maximum angular deviation (MAD) < 10°. In instances where

stable-endpoints could not be reached, remagnetisation great circles were fitted.

Site-mean directions and mean virtual geomagnetic poles (VGPs) were calculated

using Fisher statistics (Fisher, 1953) or the iterative approach combining great

circles and magnetic vectors (McFadden and McElhinny, 1988). All calculations

were carried out using the PmagPy package (Tauxe et al., 2016). GPlates soft-

ware was used for palaeogeographic reconstructions (Boyden et al., 2011).

3.5 Rock magnetism

The susceptibility versus temperature (κ-T) curves show a consistent sharp drop

of susceptibility at 560−580 °C (Figure 3.3), indicating that the main magnetic

phase is very low-Ti titanomagnetite or pure magnetite. An increase in sus-

ceptibility just before Curie temperature is prominent in many of the measured

samples (Figure 3.3a-e, h and i), which reflects the presence of single-domain (SD)

or pseudo-single-domain (PSD) (titano)magnetite (Hopkinson peak, Dunlop and

Özdemir 1997). Most of the measured samples reveal broadly reversible heat-

ing and cooling curves (Figure 3.3a-e), suggesting that no significant changes of

magnetic mineral phases have occurred during heating. In some cases, an inflec-

tion in the heating curve between 200 °C and 300 °C is evident (Figure 3.3g and
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h), which is a diagnostic feature of hexagonal pyrrhotite (Dunlop and Özdemir,

1997).

Figure 3.3: Representative thermomagnetic results. (a-j) Susceptibility versus
temperature curves; (k-m) Progressive thermal demagnetisation of three-axis
composite IRMs.

Repeated progressive heating experiments were performed on selected sam-

ples based on the behaviours of the one-cycle κ-T curves, the results of which

can be divided into two groups. The first group exhibits reversible curves at

35−350 °C followed by continuous minor declines between 300 °C and 600 °C

(Figure 3.3i). The contribution of small amount of (titano)maghaemite, which

is a low-temperature oxidation product of (titano)magnetite common in mafic
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bodies (Dunlop and Özdemir, 1997; Kirscher et al., 2019; Liu et al., 2019), in-

verting to haematite during heating, can explain the behaviour of the first group

(Dunlop and Özdemir, 1997). The second group is characterised by a distinct in-

flection in the 35−300 °C heating curve and a decrease between 300 and 400 °C,

suggesting the presence of both pyrrhotite and (titano)maghaemite, respectively

(Figure 3.3j).

(c) IRM acquisition curves

Group 1
Group 2

(a) 16WDS15-4 (b) 16WDS16-7

Figure 3.4: (a) and (a) Representative hysteresis loops. Paramagnetic contribu-
tions are corrected; (c) IRM acquisition curves of all measured samples.

Demagnetisation results of the three-axis IRM experiments are consistent

with the κ-T analysis (Figure 3.3k and m). Both low-coercivity (0−0.12 T)

and medium-coercivity fractions (0.12−0.4 T) with Curie temperatures of ∼580

°C are ubiquitous in all investigated samples, confirming that the main magnetic

phase is Ti-poor titanomagnetite or pure magnetite. The significant contribu-
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tion of the medium-coercivity fraction also confirms the presence of SD/PSD

(titano)magnetite.

Magnetic coercivities of the Yandinilling dykes determined from hysteresis

loops fall between 20 mT and 30 mT, typical of titanomagnetite or magnetite

(Figure 3.4a and b). The open waist of the hysteresis loops indicates significant

contributions of SD/PSD (titano)magnetite. Such hysteresis loops are commonly

referred to as having “pot-bellied” shapes, and could be explained by a mixture

of SD and superparamagnetic (SP) magnetite (Tauxe et al., 1996). IRM acqui-

sition curves can be divided into two groups (Figure 3.4c). Group 1 samples

become saturated at or below fields of ∼300 mT, suggesting magnetisation car-

ried mainly by (titano)magnetite. In contrast, group 2 samples did not reach

saturation until ∼500 mT, confirming the presence of pyrrhotite already revealed

by thermomagnetic experiments.

In summary, rock magnetic studies demonstrate that the main magnetic phase

of the Yandinilling dykes is magnetite and/or Ti-poor titanomagnetite. Promi-

nent SD/PSD signals in most of the analysed samples indicate that the dykes

are capable of carrying stable magnetic remanence. A minor secondary magnetic

phase is possibly maghaemite and/or pyrrhotite.

3.6 Anisotropy of magnetic susceptibility (AMS)

Apart from two exceptions, the degree of AMS of all the measured samples from

the Yandinilling dykes is low (<1.10; Figure 3.5), which is typical of mafic dykes

(Khan, 1962; Tarling and Hrouda, 1993) and indicates the absence of any sig-

nificant deformation after intrusion. The AMS of most dykes exhibit a foliated

normal fabric (clustered Kmin axes are orthogonal to the dyke planes while Kmax

axes are dispersed in dyke planes; see Figure 3.5a). Two dykes (16WDS35 and

16WDS38) reveal lineated normal fabric (Kmax axes are clustered in the dyke

plane, Figure 3.5b). When the magnetic lineation is well-developed, the direction

of Kmax is considered to represent the magma flow direction (Cañón-Tapia, 2004;
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Knight and Walker, 1988). The shallow inclination of the magnetic lineation of

16WDS35 and 16WDS38 implies horizontal to sub-horizontal flow, indicative of

dykes being far from the magmatic centre where flow is vertical. The normal

fabrics are considered to have formed during the emplacement of the magma and

thus represent the primary fabric of the dykes.
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Figure 3.5: Results of anisotropy of magnetic susceptibility (AMS). The up-
per part of the figure show AMS tensor directions of all individual samples
plotted in equal-area projection divided into three different fabrics. The lower
part show shape parameter (T) versus degree of anisotropy (P) correspond-
ing to different fabrics. Dykes with (a) foliated normal fabric: 16WDS13,
16WDS15, 16WDS29, 16WDS31, 16WDS32, 16WDS33, 16WDS34, 16WDS36
and 16WDS37; (b) lineated normal fabric: 16WDS35 and 16WDS38; (c) inter-
mediate fabric: 16WDS14, 16WDS16 and 16WDS17.

The inverse fabrics (Kmax axes perpendicular to dyke planes) were observed

in three of the studied dykes (Figure 3.5c), which could be explained by the

single-domain effect (Ferré, 2002; Potter and Stephenson, 1988). However, other

explanations such as post-intrusion alteration (Cañón-Tapia, 2004) are also pos-

sible. Identifying the cause of the inverse fabric is beyond the scope of this study,

particularly as directional data do not correlate with differences in AMS data.
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3.7 Palaeomagnetism

Nearly all samples of 15 separate dykes revealed well-behaved demagnetisation

trajectories (Figure 3.6). The least stable component, which was removed by low-

temperature demagnetisation (heating to 100−200 °C or AF to 5−7 mT), appears

sporadically within sites. After removal of this weak component, another mid-

temperature component was identified in several sites between 100−300 °C and

540 °C, but is only prominent enough in site 16WDS15 to give a mean direction

of declination = 225.2°, inclination = -53.1° with α95 = 12.0°. After the removal

of these relatively “soft” components, a stable origin-directed characteristic re-

manent magnetisation (ChRM) was identified with a lower bound of 530−565°C

and an upper bound of 570−580°C in a majority of the samples (Figure 3.6).

The ChRM direction is bipolar, directed either moderately WNW-and-up or

ESE-and-down (Figure 3.7a). Excluding two sites with spurious data and one

outlier likely acquired during a magnetic reversal or excursion, the remaining 12

dykes have well-clustered and dual-polarity ChRMs (Figure 3.7 and Table 3.1)

that pass the reversal test of McFadden and McElhinny (1990) with a ‘C’ clas-

sification. It should be noted that although 16WDS33 is excluded from the cal-

culation of the mean direction, the inclusion of 16WDS33 would not change the

result of the reversal test. The ChRM mean direction is D, I = 294.0°, -58.1° with

α95 = 5.0° and a corresponding palaeomagnetic pole of 36.7°N, -0.5°E and A95

= 7.4°. At site 16WDS14, the host granite was sampled for baked contact tests.

Although we were able to obtain the ChRM direction from the baked host rock,

the unbaked granites are unstable, rendering the baked contact test inconclusive

The outcrops in this area did not allow the measurement of the dips for most

dykes. However, for the dykes that we can measure dips, vertical/sub-vertical

dyke planes were consistently observed (e.g., 16WDS25). Therefore, there was

no tilt-corrections performed..

The high level and narrow range of unblocking temperatures (Figure 3.6),

together with rock magnetic analyses (Figures 3.3 and 3.4), indicate the ChRM
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Figure 3.6: Representative demagnetisation plots in equal-area stereonets.
Open/filled symbols indicate upper/lower hemisphere directions. NRM − natural
remanent magnetisation. LTD − low-temperature demagnetisation.
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0.75 Ga MDS

1.07 Ga BS

1.89 Ga BD

1.21 Ga GFD

2.41 Ga WD
2.40 Ga ED

(a) (b) (c)N N N

ChRM

MTC

Mean of ChRM16WDS33

Figure 3.7: Equal-area stereonets showing: (a) the site-mean directions of ChRM
(note 16WDS33 is excluded from the mean calculation.); (b) the mean direction
of ChRM of this study; (c) ChRM, MTC and published younger palaeomagnetic
directions in the region (calculated for the reference of the study area). WD =
2.41 Ga Widgiemooltha dyke Swarm (Evans, 1968; Smirnov et al., 2013), ED =
2.40 Ga Erayinia dykes (Pisarevsky et al., 2015), BD = 1.89 Ga Boonadgin dyke
swarm (Liu et al., 2019), GFD=1.21 Ga Gnowangerup- Fraser Dykes (Pisarevsky
et al., 2003, 2014b), BS=1.07 Ga Bangemall Sills (Wingate et al., 2002, 2004),
MD=755 Ma Mundine Well Dykes (Wingate et al., 2000). Open/filled symbols
indicate upper/ lower hemisphere directions.

Table 3.1: Palaeomagnetic results of the 2.62 Ga Yandinilling dykes

Site (dyke) Trend Polaritya N/n Slat. Slong. Dec Inc k α95 Plat. Plong. A95

(°) (°S) (°E) (°) (°) (°) (°N) (°E) (°)
16WDS13b 30 N 8/6 32.109628 117.151454 295.9 -51 24 15.5 36.4 9.2 17.3
16WDS14 48 N 9/8 31.585662 116.869484 277.9 -56.7 33 10 24.2 356.7 12.3
16WDS15 49 N 10/6 31.536423 116.8795 287.8 -59.6 50 9.6 32.5 356.1 12.5
16WDS16 45 N 8/7 31.878833 117.061828 300.4 -67.9 35 10.5 42.9 345 16.1
16WDS17 40 R 8/8 31.878614 117.064529 93.1 61.8 200 3.9 -23.2 169.7 5.3
16WDS29 49 N 9/9 31.572945 116.883608 292.7 -58.3 57 6.9 35.8 359 8.7
16WDS30 49 N 8/6 31.568375 116.877489 277.8 -48.5 34 11.7 21 4.4 12.5
16WDS31 48 N 8/6 31.553892 116.900216 290.9 -50.3 65 8.5 32 7.6 9.3
16WDS32c 40 9/6 31.578943 116.997794 121.4 29.3 7 27.7
16WDS33c 45 7/6 31.6507 117.036046 268.2 -33.9 36 15
16WDS34 31 N 7/5 31.76228 117.242068 314.6 -50.7 58 10.8 51.6 15.4 12
16WDS35 45 N 8/8 31.80079 117.350368 304.6 -63.9 36 9.4 45.6 352.7 13.4
16WDS36c 34 8/8 31.851759 117.299621 236.5 -5.4 3 35.8
16WDS37 31 R 8/8 31.888025 117.344796 123.5 58.7 321 3.1 -44.2 181.3 4
16WDS38 30 R 8/8 31.888102 117.344887 133.3 61.9 102 5.6 -51.8 176.6 7.6

N/n = number of demagnetised/used samples; Trend = the trends of the dyke; Slat., Slon. = latitude, longitude
of sample locality; Dec, Inc = site mean declination, inclination; k = precision parameter of Fisher (1953); α95

= radius of cone of 95% confidence; Plat., Plon. = latitude, longitude of the palaeopole.
a Arbitrarily assigned, the magnetic polarity of the NW-and-up direction is referred to as normal (N) and its
antipodal direction as reverse (R).
b Dated at 2615 ± 6 Ma by ID-TIMS U-Pb method on baddeleyite (Stark et al., 2018b).
c Sites excluded from the calculation of mean direction.
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is carried by single-domain/pseudo-single-domain magnetite, which is resistant to

remagnetisation. Some samples of the Yandinilling dykes carry a mid-temperature

component with a direction close to that of the younger Widigemooltha dykes,

which could have imparted a partial thermal overprint on rocks in the present

study area. Although this direction is not particularly well-documented in this

collection of samples, the preservation of the partial thermal overprint imparted

by the Widigemooltha event implies that the more stable ChRM is very likely

to be primary. Both younger dyke swarms, the ca. 2.41 Ga Widgiemooltha

dykes (Smirnov et al., 2013) and the ca. 1.89 Ga Boonadgin dykes (Liu et al.,

2019), have been shown to preserve primary magnetisations in our study area,

arguing against pervasive remagnetisation of this area. Additional support for

the absence of remagnetisation is the dissimilarity between the ChRM direction

and those of published younger palaeomagnetic poles from the region, including

the Gnowangerup-Fraser dykes and the Bangemall sills (Pisarevsky et al., 2014b;

Wingate et al., 2002, Figure 3.7c). Although not considered definitive evidence,

the positive reversal test also favours a primary origin for the ChRM. In sum-

mary, although our baked contact tests yield inconclusive results, we interpret the

ChRM of the Yandinilling dykes to be of primary origin based on the arguments

above and proceed to utilise its palaeogeographic constraints.

3.8 Discussion

3.8.1 Zimgarn connection

Based on the age match of the ca. 2408 Ma Sebanga Poort dyke and the ca.

2410 Ma Widgiemooltha dykes, Söderlund et al. (2010) first suggested a possible

“Zimgarn” connection between the Zimbabwe and Yilgarn cratons. Subsequent

palaeomagnetic analysis confirmed that putting Zimbabwe in the vicinity of Yil-

garn ca. 2.4 Ga was permitted, but the exact configuration of Zimgarn was

debatable (Pisarevsky et al., 2015; Smirnov et al., 2013). Palaeomagnetic poles
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available from Yilgarn and Zimbabwe, including our new pole, fall on a broad

swath in both putative Zimgarn configurations (Figure 3.8), thus strengthening

the Zimgarn connection and extending its existence back to ca. 2.62 Ga. However,

lacking other pairs of exactly coeval poles (i.e., a 2.62 Ga pole from Zimbabwe),

the question of whether to put Zimbabwe along the eastern or western margin of

Yilgarn cannot be resolved at present (Figure 3.8).

2690 Ma Reliance

2575 Ma Great Dyke

2410 Ma Sebanga

2401 Ma Erayinia

2615 Ma Yandinilling

 2410 Ma Widgiemooltha

2401 Ma Erayinia

2690 Ma Reliance

2575 Ma Great Dyke
2615 Ma Yandinilling

2410 Ma Sebanga

 2410 Ma Widgiemooltha

(a) Zimgarn option 1 (b)  Zimgarn option 2

Infered plume centre of ~2.6 Ga dyke swarms
Infered plume centre of ~2.4 Ga dyke swarms
~2.6 Ga mafic dykes
~2.4 Ga mafic dykes

Present day north

Zimbabwe
Yilgarn

Equator

-30°

Equator

-30°

Yilgarn

Zimbabwe

Figure 3.8: The upper part of the figure shows two different configurations of
Zimgarn plotted in the Robinson projection along with relevant palaeomagnetic
poles. Zimbabwe is rotated into the Yilgarn coordinates. The green swath is a
schematic illustration of the general trend of the apparent polar wander path. The
lower part is the enlarged demonstration of the two configurations with inferred
plume centre. (a) Zimbabwe rotated to the west side of Yilgarn using an Euler
pole at 3.9°N, 70.2°W, rotation = 296.3° (Pisarevsky et al., 2015); (B) Zimbabwe
rotated to the east side Yilgarn using an Euler pole at 47°S, 77°E, rotation =
157°.(Smirnov et al., 2013)

3.8.2 Supercontinent or supercratons?

In the following discussion, we try to incorporate and connect regional palaeogeo-

graphic models, such as Superia (Bleeker, 2003), into a global reconstruction in
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order to test if cratons can be co-located and form a single large landmass (i.e., a

supercontinent) without violating available palaeomagnetic data. Among the ∼35

Archean continental blocks, the Superior Craton of North America has arguably

the most complete magmatic record through Neoarchaean-Palaeoproterozoic time,

including the ca. 2510 Ma Mistassini dykes, the 2490—2445 Ma Matachewan dyke

swarm, the 2220—2210 Ma Nipissing sills, and the 2125—2100 Ma Marathon

dyke swarm (Bleeker and Ernst, 2006, and references therein). Superior also has

the Huronian Supergroup, a well-developed and well-preserved Palaeoproterozoic

rift succession containing three discreet glacial deposits (Aspler and Chiarenzelli,

1998). With its abundant magmatic record and characteristic rift succession,

Superior has been conveniently used as a core block of several palaeogeographic

reconstructions. Based mainly on barcode matching as well as the correlation

between the Huronian Supergroup of Superior, the Sariolan-Jatulia Sequence of

Kola/Karelia, the Snowy Pass Supergroup of Wyoming, and the Hurwitz Group of

Hearne, a supercraton known as Superia was proposed to include these cratons po-

sitioned along the present-day southern margin of Superior (Bleeker, 2003; Bleeker

and Ernst, 2006; Ernst and Bleeker, 2010, see Figure 3.9). Recent geochronology

further refined the magmatic barcode and stratigraphy of the Kaapvaal Craton

of southern Africa (Gumsley, 2017; Gumsley et al., 2017), which led to the pro-

posal of adding Vaalbara, a supercraton consists of Kaapvaal and Pilbara(de Kock

et al., 2009; Gumsley et al., 2017, and references therein), to Superia . We follow

Gumsley et al. (2017) to add Kaapvaal and Pilbara to the original Superia model,

though the configuration is slightly modified (Figure 3.9) using published Euler

poles listed in Table 3.3.

We then reconstruct another supercraton by incorporating other published

regional models. The Slave and Dharwar cratons were arranged in the “Sclavia”

connection (Bleeker, 2003, Figure 3.9), which was further strengthened with new

geochronology (French and Heaman, 2010). Bleeker (2003) suggests that Zim-

babwe, Dharwar, and Slave share fundamental similarities and thus should be
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grouped together. The ca. 2.62 Ga poles of Sclavia and Zimgarn put them at

similar palaeolatitudes (Figure 3.9), tentatively allowing their proximity. We also

follow previous suggestions by placing Yilgarn and São Francisco close to each

other (Salminen et al., 2018), albeit in a modified configuration according to our

new pole. This supercraton including Zimgarn, Sclavia, and São Francisco is re-

ferred to as Zimgarn hereafter. Additionally, Pehrsson et al. (2013) pointed out

that a group of cratons shares two phases of tectono-metamorhpsim and magma-

tism during 2.5 –2.3 Ga, based on which they proposed that these cratons were

parts of a supercraton called Nunavutia. It includes North China, Congo, São

Francisco, São Luis, Gawler-Mawson, Sask, Rae, India (including Dharwar and

Madagascar) and a dozen smaller continental blocks. However, as Pehrsson et al.

(2013) did not reconstruct the configuration of Nunavutia and the members of

the this supercraton does not have enough reliable palaeomagnetic data (only São

Francisco has a 2.62 Ga pole, see Table 3.2) for Achaean-Proterozoic transition,

we did not include Nunavutia in our reconstruction.

With the critical addition of our new pole, there are two time periods for

which both Superia and Zimgarn have reliable poles to test if they can form one

coherent supercontinent: ca. 2.62 Ga and ca. 2.41 Ga. Previous work has demon-

strated that at these two times Superia and parts of Zimgarn were not far from

each other and essentially contiguous (Pisarevsky et al., 2015; Salminen et al.,

2018). However, these putative tight reconstructions mainly employed single-

pole comparisons of one age, which offer poor resolution on the relative position

between cratons. Due to the axial symmetry of the geomagnetic field, reconstruc-

tions with only one pole, while constraining palaeolatitude, cannot constrain the

relative longitude, nor azimuthal orientation of cratons relative to other blocks. If

a supercontinent indeed existed during the Archaean-Proterozoic transition, two

critical criteria should be met: (i) identical apparent polar wander paths and (ii)

contiguous palaeogeography when similar apparent polar wander paths are super-

imposed. One or the other, but not both, of the supercontinent criteria appear
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Figure 3.9: Palaeogeographic solutions for Archaean-Proterozoic transition. (a)
Supercontinent solution ca. 2.62 Ga and 2.41 Ga, respectively. (b) Supercratons
solution ca. 2.62 Ga and 2.41 Ga, respectively. It should be noted that the config-
uration of Zimgarn and Superior are the same in both solutions. Palaeomagnetic
poles used in this reconstruction are listed in Table 3.2. Euler rotation param-
eters that can be used to reproduce this reconstruction are listed in Table 3.3.
Arrows mark the present-day north direction for each craton. The cratons with-
out palaeomagnetic constraints are filled with lighter colour. Reconstructions are
in the absolute reference frame and orthographic projections.
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to be satisfied by the data. If one places all cratons in a contiguous configuration

at either 2.6 or 2.4 Ga, then poles of the other age are vastly discrepant (Fig-

ure 3.9a). Thus, the supercontinent solution is only possible if there were two

short-lived configurations that were reorganised between these two times, i.e.,

180° reorientation of Zimgarn relative to Superia (Figure 3.9a). The ephemeral

supercontinents solution is only weakly supported by poles of individual ages, but

it is difficult to discount without more data.

If one attempts a reconstruction with poles of more than one age, then the

potential for testing the relative longitude and azimuthal orientations of the Su-

peria and Zimgarn connections arises. Overlapping the palaeomagnetic poles for

these two time periods that form broadly similar paths results in a geographic

separation of Superia and Zimgarn of about ∼4000 kilometres (Figure 3.9b),

which is suggestive of separate supercratons at this time. A single superconti-

nent solution would only be possible if essentially all remaining Archaean cratons

not considered here due to a lack of constraints happen to fill exactly the gap

between Superia and Zimgarn. Although conceivable, such a possibility seems

ad hoc. Alternatively, the absence of plate tectonics (relative lateral movement

among plates) can also explain that the same relative orientation between Su-

peria and Zimgarn maintained from 2.62 Ga to 2.41 Ga. This interpretation

is not favoured here because that a recent compilation of global geological evi-

dence (Cawood et al., 2018) and the newly reported palaeomagnetic data from

the Pilbara Craton (Brenner et al., 2020) all indicated that modern-like plate

motion occurred between mid- to late Archaean. It should be noted that the

clustering of poles of the two time periods are achieved by choosing the best-fit

polarities of the poles, and due to polarity ambiguity, the poles do not necessar-

ily fall into these two clusters. Thus, what we can say with confidence is that

a single, long-lived supercontinent is inconsistent with the data and that either

ephemeral supercontinents or separate but stable supercratons existed during the

Archaean-Proterozoic transition.
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Table 3.3: Euler rotation parameters for Figure 3.9.

Craton/block/terrane* Euler Pole Angle Reference/Source
(°N) (°E) (°)

Superia
Superior to Kola/Karelia -75.2 50.1 273.8 Calculated from Salminen et al. (2018)
Wyoming to Superior 48 265 125 Kilian et al. (2016)
Hearne to Superior 60.6 227.2 89.2 Estimated from Ernst and Bleeker (2010)
Kaapvaal to Superior -54.6 226.2 -223.4 Estimated from Gumsley et al. (2017)
Pilbara to Kaapvaal -59 251.5 93.2 de Kock et al. (2009)
Zimgarn
Zimbabwe to Yilgarn 43.8 244 147.9 Pisarevsky et al. (2015)
Slave to Yilgarn -35.8 231.7 129.1 This study
Dharwar to Slave -49.4 53.8 256.4 Estimated from French and Heaman (2010)
São Francisco to Yilgarn 50.6 207.5 206.2 This study
Supercontinent ca. 2.62 Ga
Kola/Karelia (Superia) -76.2 217.8 102 This study
Yilgarn (Zimgarn) 16.8 232.9 -143.3 This sutdy
Supercontinent ca. 2.41 Ga
Kola/Karelia (Superia) -73 187.6 97.7 This study
Yilgarn (Zimgarn) 23.2 200.8 -154 This sutdy
Supercratons ca. 2.62 Ga
Kola/Karelia (Superia) -71.6 258.3 105 This study
Yilgarn (Zimgarn) 16.8 172.9 -143.3 This sutdy
Supercratons ca. 2.41 Ga
Kola/Karelia (Superia) -47.5 283.4 128.2 This study
Yilgarn (Zimgarn) 15.3 226.4 -112.6 This sutdy
* Rotation relative to absolute framework unless otherwise stated.
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Our work implies that Nuna represents Earth’s first large and long-lived

supercontinent and that the Archaean-Proterozoic transition was likely charac-

terised by smaller and/or more rapid mantle convective cells that did not allow

for the assembly of one single supercontinent. Testing between the ephemeral su-

percontinents or stable supercratons hypotheses presented here is critical for the

assessment of whether plate tectonics was operational at this time. Whereas the

ephemeral supercontinents solution requires dramatic plate reorganisation (Fig-

ure 3.9a), the separate supercratons solution need not invoke any relative motion

between Zimgarn and Superia within palaeomagnetic uncertainty (Figure 3.9b),

where the nearly identical apparent polar wander paths of the separated super-

cratons could represent true polar wander. That is, if valid, the supercratons

solution could imply that plate tectonics was not functional during this time.

Finally, it should be noted that the disparity between glacial deposits preserved

on all cratons of Superia (Gumsley et al., 2017) and on none of those of Zim-

garn could provide independent support for the separate supercratons hypothesis

(Figure 3.9b). Future reconstruction and modelling constraints are required to

differentiate between the possibilities for Archaean geodynamics presented here

that stand in stark contrast to younger supercontinent cycles.
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Chapter 4

Palaeomagnetism of the 1.89 Ga

Boonadgin dykes of the Yilgarn

Craton: Possible connection with

India1

4.1 Abstract

A palaeomagnetic study was carried out on the newly identified 1888 ± 9 Ma

Boonadgin dyke swarm of the Yilgarn Craton in Western Australia. The Bon-

nadgin dykes yield a mean direction of magnetisation of D = 143°, I = 13°, k =

37 and α95 = 8°, based on samples from 10 diabase dykes, with a corresponding

palaeopole at 47° S, 235° E, A95 = 6°. A positive baked contact test establishes

the primary nature of the magnetisation. The ca. 1.89 Ga palaeopole suggests

that the Yilgarn Craton was near the equator at this time, and the Boonadgin

dyke swarm can be interpreted to represent an arm of a radiating dyke swarm that

1This chapter is published as Liu, Y., Li, Z.X., Pisarevsky, S.A., Kirscher, U., Mitchell,
R.N. and Stark, J.C., 2019. Palaeomagnetism of the 1.89 Ga Boonadgin dykes of the
Yilgarn Craton: Possible connection with India. Precambrian Research, 329, pp.211-223.
https://doi.org/10.1016/j.precamres.2018.05.021
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shared the same plume centre with coeval mafic dykes in the Dharwar and Bastar

cratons of southern India. We therefore propose that the West Australian Cra-

ton (WAC, consisting of the Yilgarn and Pilbara cratons) and the South Indian

Block (SIB, con- sisting of the Dharwar, Bastar, and Singhbhum cratons) were

connected ca. 1.89 Ga. Globally, available high- quality palaeopoles of similar

age allow the West Australian Craton to be placed northwest of proto-Laurentia

during the assembly of the supercontinent Nuna.

4.2 Introduction

The lack of high-quality Palaeoproterozoic palaeomagnetic poles for most cratons

presently hampers the debate over the assembly and configuration of Palaeoproterozoic-

Mesoproterozoic supercontinent Nuna, of which the West Australian craton (WAC)

is considered to be a crucial part (Belica et al., 2014; Betts et al., 2016; Evans and

Mitchell, 2011; Evans et al., 2016; Klein et al., 2016; Meert et al., 2011; Pehrsson

et al., 2016; Pisarevsky et al., 2014a; Zhang et al., 2012).

Mafic dykes represent ideal targets for palaeomagnetic studies as they are

strongly magnetized and they are also routinely datable with the advent of U-Pb

geochronology on baddeleyite. Ubiquitous ca. 1.89 Ga mafic magmatism is found

on most Precambrian cratons, from which palaeomagnetic studies have yielded

a series of reliable palaeopoles over the past decade (Belica et al., 2014; Buchan

et al., 2016; Kilian et al., 2016; Klein et al., 2016; Letts et al., 2011).Combining

palaeomagnetic constraints and matching the geometry of coeval dyke swarms

has been demonstrated to be an effective way to reconstruct the configurations

of two or more continents (Bleeker and Ernst, 2006; Ernst et al., 2010). This

approach, however, was not applicable to the WAC ca. 1.89 Ga until the recent

identification of the 1888 ± 9 Ma Boonadgin dyke swarm (Stark et al., 2019).

In this study, we report new palaeomagnetic data from the Boonadgin dyke

swarm. By comparing our new results with existing data from other continents,

we explore global palaeogeography ca. 1.89 Ga, particularly in the neighbourhood
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of the WAC.
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Figure 4.1: Simplified geological map showing major dyke swarms in the Yilgarn
Craton. The inset shows the location of the Yilgarn and Pilbara cratons within
Western Australia. The dykes are mapped based on 1:2.5M Geological Map of
Western Australia 2015 published by the Geological Survey of Western Australia.

4.3 Regional geology and previous work

The Yilgarn Craton is the largest Archaean craton in Australia, assembled be-

tween ∼2940 Ma and 2650 Ma through the accretion of a series of terranes with

a general eastward younging trend (Chen et al., 2003; Myers, 1993). The Yilgarn

Craton is bound by the Palaeoproterozoic Capricorn Orogen to the north, the

late Mesoproterozoic to Neoproterozoic Pinjarra Orogen to the west, and the late

Palaeoproterozoic to Mesoproterozoic Albany-Fraser Orogen to the south and

southeast (Johnson et al., 2011; Myers, 1993; Myers et al., 1996),(Figure 4.1).
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The craton is composed mainly of metasediments, metavolcanics, granites, and

granitic gneiss that formed between 3000−2600 Ma (Myers, 1993; Pidgeon and

Wilde, 1990; Wilde et al., 2002). The Yilgarn Craton collided with the Pil-

boyne Craton (combination of the Pilbara Craton and the Glenburgh Terrane of

the Gascoyne Province) during the 2005−1950 Ma Glenburgh Orogeny (John-

son et al., 2011, 2013; Sheppard et al., 2010), thus forming the West Australian

Craton.

Numerous mafic dyke swarms intrude the Yilgarn Craton (Figure 4.1), among

which three distinct swarms have been well-recognized and palaeomagnetically

studied: the ∼2410 Ma Widgiemooltha dyke swarm (Evans, 1968; Smirnov et al.,

2013), the ∼1210 Ma Marnda Moorn dyke swarm (including the Muggamurra,

Boyagin, Wheatbelt and Gnowangerup-Fraser dykes; see Pisarevsky et al. 2003,

2014b; Wang et al. 2014; Wingate and Pidgeon 2005 and references therein), and

the ∼1075 Ma Warakurna dyke swarm (Wingate et al., 2002, 2004).
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circles represent sample sites with U-Pb dating.

Apart from those three well-known swarms, many dykes in the Yilgarn Craton
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remain unclassified. The southwestern part of the Yilgarn Craton, where this

study was carried out, has a particularly dense network of dykes with various

trends, where only the Marnda Moorn and the Widgiemooltha dykes have been

previously identified (Figure 4.2. The Widgiemooltha dykes are generally easy

to distinguish from others by their distinct ENE-WSW trends and aeromagnetic

characteristics. Whereas dyke swarms in this region can rarely be traced for

more than a few kilometres, the Widgiemooltha dyke swarm can be followed, in

outcrop or aeromagnetically, for up to 600 kilometres. The orientation of the

Marnda Moorn dykes in this area varies widely from E-W to N-S, but with a

prevailing NW-SE trend. Due to this observation, all broadly NW-SE-trending

dykes in this area were conventionally classified as Marnda Moorn dykes (Boyd

and Tucker, 1990; Lewis, 1994; Spaggiari et al., 2009; Tucker and Boyd, 1987).

However, a recent TIMS and in situ SHRIMP U-Pb geochronological study (Stark

et al., 2019) has led to the recognition of a new dolerite dyke swarm in this area

with a broadly WNW-ESE trend. The 1888 ± 9 Ma “Boonadgin”dyke swarm

and is the target of the present study (Figure 4.2).

Giddings (1976) studied 54 dykes along the western margin of the Yilgarn

Craton, including 49 dykes from the Perth region and 5 dykes from the Raven-

strope region (Figure 4.1), aiming to establish an age chronology of the dykes

palaeomagnetically. While he identified five distinct groups of palaeomagnetic

directions, the Rb-Sr ages implied that there were at least six, possibly seven

periods of dyke emplacement. The generations of dykes in the Perth region were

named“YA−YF”, where baked contact tests were performed at the YB and YC

groups. Giddings (1976) considered these contact tests to be positive and thus

regarded the magnetic remanence as primary. In contrast, Halls and Wingate

(2001) performed a more extensive baked contact test for the YB dykes and re-

interpreted the results as a secondary, remagnetisation remanence. Those authors

attributed the difference between the two studies to the fact that Giddings (1976)

only obtained samples from the weathered surface of the unbaked zone, thus re-
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sulting the misleading positive contact test. Halls and Wingate (2001) concluded

that the YB dykes were remagnetised, possibly in Mesozoic time. Giddings (1976)

also suggested that the YA group of dykes and the Ravenstrope dykes, which have

been dated at that time by Rb-Sr method at 2500 ± 100 Ma, could be similar

in age based on their similar magnetic directions. However, the Ravensthorpe

dykes have been re-dated by U-Pb geochronology and are now attributed to the

ca. 1210 Ma Marnda Moorn LIP (e.g., Wingate and Pidgeon, 2005). Pisarevsky

et al. (2003, 2014b) reported a primary remanence for these dykes, supported by

a positive baked contact test. Evans (1968) and Smirnov et al. (2013) reported

robust palaeomagnetic data with positive baked contact tests for the 2.41 Ga

Widgiemooltha dykes that included samples from the present study area. Pis-

arevsky et al. (2015) published palaeomagnetic data for the ca. 2.40 Ga Erayinia

dykes. The Erayinia pole plots close, but not identical, to the Widgiemooltha

pole, which is consistent with their slight age difference.

4.4 Methods

A total of 96 cores from 10 sites were collected for palaeomagnetic analysis (Fig-

ure 4.2). Each site represents a distinct dyke. 15WDS02 and 16WDS20 might

appear to be in line and linkable; however, they should represent two different

dykes as they revealed different magnetic signals (see the results section for de-

tails). A minimum of 6 samples (usually 8-12; Table 4.1) of standard 24 mm

diameter were obtained from each site using a gasoline-powered portable drill

with a water-cooled diamond drill bit. In addition, whenever the chilled contact

was visible, the surrounding baked and unbaked country rocks were both sampled

for the purpose of performing baked contact tests (sites WDS09, 15WDS02, and

16WDS24). Each core was oriented using a magnetic compass, combined with a

sun compass whenever possible. As finer-grained parts of a dyke are more suitable

for palaeomagnetic analysis, special efforts have been made to try to identify and

sample the finest-grained parts available, ideally targeting the chilled margins of
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each dyke. We also tried to avoid sampling at topographically elevated points

like ridges since the magnetic remanences at such outcrops are more likely to be

affected by lightning strikes.

Prior to any other experiments, anisotropy of magnetic susceptibility (AMS)

and bulk magnetic susceptibility (MS) were measured for all specimens using an

AGICO MFK1 Kappabridge. All susceptibility measurements have been anal-

ysed and plotted with the Anisoft software (Chadima and Hrouda, 2006). In

order to determine the magnetic mineralogy of the dykes, representative speci-

mens were magnetised along three orthogonal axes using magnetic fields of 3 T,

0.4 T and 0.12 T, respectively (Lowrie, 1990), using a 2G MMPM9 pulse mag-

netiser. The isothermal remanent magnetisations (IRMs) were then subjected to

thermal demagnetisation in 14 to 20 steps from 50 °C to 610 °C. K-T curves (mag-

netic susceptibility versus temperature) were obtained using an AGICO MFK1

Kappabridge with a CS4 furnace in Ar-atmosphere.

After measuring the natural remanent magnetisation (NRM) of all samples,

at least one specimen per sample has been subjected to stepwise AF demagneti-

sation up to 100 mT and/or thermal demagnetisation up to ∼590 °C. In order

to limit the effect of lightning-induced secondary remanence residing in single

domain magnetite, the samples were occasionally first AF demagnetised up to

20mT and subsequently thermally demagnetised up to ∼600°C. After each step,

the magnetisation was measured using an AGICO JR 6A spinner magnetome-

ter. An average of ∼12 demagnetisation steps were used to isolate remanence

components. AF and thermal demagnetisations were carried out using a Molspin

AF demagnetiser and Magnetic Measurements Ltd thermal demagnetisers, re-

spectively. All demagnetisation and subsequent experiments, except for the K-T

analyses, were carried out in either a low-field coiled room at the University of

Western Australia, or in a magnetically shield room at Curtin University, both

part of the Western Australian Palaeomagnetic and Rock Magnetic Facility lo-

cated in Perth. The K-T analyses were conducted in laboratory of environmental
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magnetism of Guangzhou Institude of Geochemistry.

Mean directions of individual components of the magnetic remanence of each

specimen were calculated using principal component analysis (Kirschvink, 1980).

Site-mean directions were calculated using Fisher statistics (Fisher, 1953). Cal-

culations were performed using the Remasoft software (Chadima and Hrouda,

2006). The GPlates program (www.gplates.org) was used for palaeogeographic

reconstructions.

4.5 Results

4.5.1 Rock magetism

The K-T curves show Curie temperatures between 580 and 600 °C, suggesting

that low-titanium titanomagnetite or pure magnetite are the main magnetic car-

riers. An increase of magnetic susceptibility just before the Curie temperature

(the Hopkinson peak, Dunlop and Özdemir 1997) are observable (Figure 4.3),

indicating the presence of SD and PSD (titano) magnetite. The heating and

cooling curves of sample 15WDS2F1 are different, indicating that mineral phase

changes occurred during the heating process.

The demagnetisation of a composite three axis IRM (Lowrie, 1990) (Lowrie,

1990) for the Boonadgin dykes shows a general dominance of the soft coercivity

fraction in all samples, which is removed between 550 and 590 °C, indicating MD

(titano)magnetite being the dominant carrier of the magnetic remanence. While

the 0.12 T fraction is most prominent, the 0.4 T fraction is always present and

shows a similar demagnetisation behaviour (Figure 4.3) confirming that SD/PSD

(titano)magnetite are present in the samples. Occasionally, a sharp drop of mag-

netic intensity is visible at ∼300°C (Figure 4.3), which could be attributed to the

inversion of maghemite to hematite or the presence of pyrrhotite (Dunlop and

Özdemir, 1997). It should be noted that pyrrhotite is converted to magnetite dur-

ing heating, which is often accompanied by an increase in the magnetic intensity
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that is not seen in this study (Figure 4.3).

The results of rock magnetic experiments demonstrate that SD/PSD (titano)

magnetite are consistently present in the samples. We therefore consider the

Boonadgin dykes are capable of preserving stable magnetic remanence.
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Figure 4.3: Results of thermal susceptibility experiments and thermal demagneti-
sation of orthogonal 3-axis IRMs (Lowrie, 1990) for representative dyke samples.
Examples of Lowrie tests on the right-hand side are shown without the dominant
0.12 T component.

4.5.2 Anisotropy of Magnetic Susceptibility (AMS)

The degree of AMS (P = Kmax/Kmin ) for all studied samples is generally low

(< 1.10; Figure 4.4a) with only a few exceptions. The anisotropy ellipsoids

are predominantly strongly prolate except for a few marginally to moderately
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oblate cases (Figure 4.4b). The low degree of anisotropy is typical of mafic dykes

(Chadima et al., 2009).

Among the 10 sites we used to calculate the palaeomagnetic pole, 15WDS02

and 16WDS20 do not show observable magnetic fabrics and are excluded from

further AMS analysis. The remaining sites show either normal (Kmax axes are in

the plane of dykes; Figure 4.4c) or inverse (Kmax axes are normal to the plane of

dykes; Figure 4.4d) AMS fabrics.
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Figure 4.4: Box-and-whisker plot showing (a) degree of AMS for all the sites; (b)
shape of AMS for all the sites; equal-area stereonets showing principal directions
of the AMS fabric for (c) all sites with normal fabric and (d) all sites with inverse
fabric.

In the cases of normal AMS fabrics, the magnetic lineation (i.e., the clustered

direction of Kmax) is generally considered to represent the magma flow direction

(Knight and Walker, 1988). In the five dykes with normal fabrics (Figure 4.4c),

the inclinations of the Kmax axes are low, indicating horizontal to subhorizontal

flow patterns.

The inverse AMS fabric, which appeared in three of the studied dykes (Fig-
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ure 4.4d), has been frequently observed, but is not well-understood (Cañón-Tapia,

2004; Chadima et al., 2009). Several explanations have been proposed: (i) the

single domain effect (Potter and Stephenson, 1988), which probably does not ap-

ply to this study because the rock magnetic experiments suggest multi-domain

magnetite as the main magnetic phase (Figure 4.3); (ii) post-emplacement alter-

ation (Cañón-Tapia, 2004); (iii) elongate particles could roll when their long axes

are normal to the flow directions (Jeffery, 1922). Without further analysis, the

reason causing inverse fabrics in this study remains inconclusive.

There are cases where the magnetic fabrics of some samples do not agree

with the overall fabric of the dyke. We suspect that this is because the sam-

ples were from loose boulders. The samples with incompatible magnetic fabrics

also have inconsistent palaeomagnetic directions compared to the directions of

other samples from the same dyke. We therefore excluded both the AMS and

palaeomagnetic results from such suspected loose boulders.

4.5.3 Palaeomagnetism

Stepwise demagnetisation revealed high-temperature components decaying to-

ward the origin for nearly all samples (Figure 4.5). We noticed that within-site

scatter of several sites is quite large, which is ascribed to two possible reasons.

First, the outcrop condition in the sampling region is relatively poor. Due to

prolonged lateritic weathering, few dykes in this area present continuous out-

crops. Among the ten dykes we studied, three dykes (16WDS24, 16WDS25,

16WDS26) were sampled from fresh road-cuts and others are from field expo-

sures. Dykes exhibiting significant within-site scatter were sampled from small

linear field outcrops and some of those could be slightly dislocated (suspected

boulders). Second, a possibility of remagnetisation by lightning strikes cannot be

excluded in the topographically flat Yilgarn Craton, as some of these rocks reveal

rather high Koenigsberger ratios (> 20). However, we identified well-clustered

high-temperature components from fresh outcrops such as road-cuts without any
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indications of blocks being not in situ, which do not show systematic deviations

compared to the remaining sites and give confidence to our overall conclusions

(Figures 4.5 and 4.6).

The CL component has been isolated in three dykes (16WDS24 − 16WDS26),

generally <370°C. It has a northern steep upward direction (D = 349.8°, I =

−66.9°, α95 = 17.5°), which is close to the present-day Earth magnetic field

direction in this region (D = 358.7°, I = −65.7°, Thébault et al. 2015, see

Figure 4.6a). We interpret this component as viscous remanent magnetisation

acquired recently. The demagnetisation behaviour, together with rock magnetic

results, suggest that the CL component is probably carried by maghemite or MD

magnetite.

The CH component, isolated from ten dykes, has unblocking temperatures

(530−590 °C) typical of low-titanium titanomagnetite or pure magnetite. We

interpret the CH component to be the ChRM of the Boonadgin dyke swarm.

The CH component is dual-polarity, directed either SE shallow downward (4

sites) or NW shallow upward (6 sites; Figure 4.6b). For simplicity, we hereafter

arbitrarily refer to the SE shallow downward direction as “normal”and to its

antipodal direction as“reverse”(Figure 4.6). The reversal test of McFadden and

McElhinny (1990) is positive with classification‘C’(γ = 11.0°, γc = 18.8°). The

dual-polarity remanence indicates that the duration of dyke swarm emplacement

was sufficiently long for the geomagnetic field to reverse its polarity and therefore

also for magnetic secular variation to be averaged out. Based on the results

of the rock magnetic experiments, we performed AF demagnetisation up to 60

mT prior to thermal treatment for selected samples. The directions isolated

with combined AF and thermal demagnetisation are identical to those isolated

by exclusive thermal treatment (Figure 4.5), which led us to conclude that we

successfully isolated the ChRMs carried by SD/PSD (titano) magnetite.

At three sites (WDS09, 15WDS02 and 16WDS24), the host rocks were sam-

pled for baked contact tests. Tests at two of the sites gave inconclusive results
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Table 4.1: Palaeomagnetic results from the Boonadgin dyke swarm and the host
rocks

Site (dyke) Trending Width N/n Slat. Slong. Decl. Incl. k �95 Plat. Plong. Dp Dm
(°) (m) (°S) (°E) (°) (°) (°) (°N) (°E) (°) (°)

“Normal” polarity
15WDS02 304 ∼7 9/5 33.013933 116.9364 153.5 6.2 52.2 10.7 -51.2 251.7 5.4 10.7
15WDS14 321 ∼40 7/3 32.578117 116.923983 120.6 0 46.8 18.2 -25.4 224.6 9.1 18.2
16WDS06* 300 ∼35 12/5 31.999554 116.661655 148.8 4.3 33.5 13.4 -48.1 245.8 6.7 13.4
16WDS07 325 ∼45 13/6 32.020191 116.639917 142.7 15.5 27.6 13 -47.8 233.3 6.9 13.4
Mean of “normal” polarity 4 141.5 6.7 26.1 18.3 -43.7 237.5 9.2 18.4

“Reverse” polarity
WDS02 304 ∼50 6/4 32.844973 116.613044 332.6 -21.5 23.9 19.2 -56.8 241.1 10.7 20.2
WDS09* 307 ∼2 7/3 32.655888 116.950544 331.6 -27.2 25.4 25 -58.4 235.5 14.8 27.2
16WDS20 303 ∼20 12/6 33.048898 116.96728 314.4 -20.8 38.2 10 -42.7 224.3 5.5 10.5
16WDS24 312 10.1 13/13 31.649379 116.638855 317.8 -6.8 22.1 8.6 -41.4 233.3 4.3 8.6
16WDS25 315 13.1 9/7 31.648924 116.638975 323.6 -9.4 57 8.6 -48.6 235.8 4.5 8.8
16WDS26 315 0.55 8/7 31.650388 116.63868 320.4 -18.8 47.7 8.2 -47.3 228.8 4.4 8.5
Mean of “reverse” polarity 6 323.3 -17.5 60.3 8.7 -48.8 232.9 4.7 9
10 dykes combined 10 142.5 13.2 37.3 8 -46.8 234.9 4.2 8.2

Baked-contact test of 16WDS24 (dyke width 10.1m)
Baked zone (<10.1m)a 8/5 31.649379 116.638855 323 -20.6 18.1 16.2 -49.9 229.8 8.9 17
Unbaked zone (>10.1m)b 17/6 31.649379 116.638855 4.2 -43.9 33.5 11.7 -83 329.6 9.1 14.6

N/n = number of demagnetised/used samples; Trend = the trends of the dyke; Slat., Slon. = latitude, longitude of sample locality; Dec,
Inc = site mean declination, inclination; k = precision parameter of Fisher (1953); α95 = radius of cone of 95% confidence; Plat., Plon. =
latitude, longitude of the palaeopole; Dp, Dm = semi-axes of the cone of confidence about the pole at the 95% probability level.
a Gneiss samples collected within 10.1 meters from the western margin of 16WDS24. Mean calculation includes the low temperature
component of sample 16WDS24-9 (for details see text and Figure 4.7).
b Gneiss samples collected further than 10.1 meters from the western margin of 16WDS24. Mean calculation includes the high temperature
component of sample 16WDS24-9 (for details see text and Figure 4.7).
* Sites with U-Pb dating.

due to unstable magnetisations and/or randomly oriented remanence directions

in the host rock. At host rock site 16WDS24, we obtained eight samples within

one dyke width (10 meters) away from the contact, which is the typical width of

baked zones (Buchan et al., 2007), and seventeen samples from the hybrid and

unbaked zones. Five of the eight samples from the baked zone revealed high tem-

perature remanence components with a mean direction of D = 323.0°, I = −20.6°

(α95 = 16.2°, k = 17.88), which is similar to the mean direction yielded by the

dyke (Figure 4.7b). Six of the 17 samples from outside the baked zone yielded

high temperature remanence components with a mean direction of D = 4.2°,

I = −43.9° (α95 = 11.7°, k = 33.51), which is clearly different from that of the

baked zone (Figure 4.7c). We note that this direction is close to that of the GAD

field (Figure 4.7c), but the possibility that it is a primary ancient direction of

the host rock cannot be ruled out. Another possible explanation for this obser-

vation could be that the intrusion and subsequent heating of the dyke led to a

mineralogical change in the baked zone of the host rock, which made it more
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resistant to a viscous reset of the magnetic signal. In addition, the directions for

viscous overprint should be close to that of the present-day Earth magnetic field

rather than that of the GAD field. Sample 16WDS24-9, located 10.5 meters from

the contact, shows hybrid characteristics suggestive of partial remagnetisation,

with its low temperature component (< 450°C) yielding the dyke direction and

the high temperature component (500− 580 °C) yielding the unbaked direction.

Based on these observations, we are inclined to interpret the baked contact test

as positive. However, we acknowledge that the unbaked direction is yet to be

proved older than the dyke direction, which remains an important caveat to our

baked contact test.

Based on the positive baked contact test, we interpret the CH component to

be of primary origin. The following points also support our interpretation: (i)

a positive reversal test; (ii) the dissimilarity between the direction of CH and

published younger palaeomagnetic directions from the region (Figure 4.6c); (iii)

the fact that the nearby ca. 2.4 Ga Widgiemooltha dyke swarm preserved pri-

mary magnetisations (Smirnov et al., 2013) indicating an absence of pervasive

overprinting events in the region; (iv) an unblocking temperature generally be-

tween 530 °C and 590 °C that makes the ChRM unlikely to represent a thermal

overprint. After inverting the“reverse”polarity directions, the overall mean CH

direction is D = 142.5°, I = 13.2° (A95 = 8°, k = 37.37). The corresponding pole

is located at 46.8°S, 234.9°E (dp, dm = 4.2°, 8.2° and A95 = 5.9°).

4.5.4 Discussion

Palaeoproterozoic positions of the Yilgarn Craton in palaeogeographic reconstruc-

tions have been controversial due to a lack of well-constrained palaeomagnetic

poles of 1900−1800 Ma antiquity. Previous reconstructions (e.g., Belica et al.,

2014; Klein et al., 2016; Meert et al., 2011) incorporated either the tentative ca.

1.82 Ga Plum Tree Volcanics palaeopole from the North Australia Craton (NAC;

Idnurm and Giddings 1988), or the 1900−1800 Ma Frere Formation palaeopole
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GAD

Figure 4.6: Stereonets (equal-area projection) of: (a) site mean directions of CL
component with stars showing the direction of the present-day Earth magnetic
field (PEF) and the expected direction from geocentric axial dipole (GAD); (b)
site mean directions of bipolar CH component (Table 4.1); (c) site mean direction
of CH component with NW upward directions inverted. Filled stars represent
published younger palaeomagnetic directions in the region (Table 4.1). GFD =
1210 Ma Gnowangerup-Fraser Dykes (Pisarevsky et al., 2014b), BS = 1070 Ma
Bangemall Sills (Wingate et al., 2002, 2004), MD = 755 Ma Mundine Well Dykes
(Wingate et al., 2000). Conventions follow those in Figure 4.5.

(Williams et al., 2004), which has large uncertainty in the age of the magneti-

sation. The precisely-dated and palaeomagnetically well-defined pole from this

study bridges the 1900−1800 Ma gap in the Precambrian Australian palaeomag-

netic database and can be used to improve the palaeogeographic evolution for

this time. Here we establish a global reconstruction ca. 1.89 Ga and, based on

this, discuss the possible connection of the WAC with the South Indian Block

(SIB).

Palaeoproterozoic palaeogeography is controversial largely due to the lack of

high-quality palaeomagnetic poles. In particular, only one ∼ 1900 − 1870 Ma

well-dated and reliable palaeopole from the Molson dykes of the Superior Craton

(Halls and Heaman, 2000; Zhai et al., 1994) had been reported until recently.

However, in the last eight years several palaeomagnetic studies of coeval rocks

on various continents have been published (Table 4.2). The palaeogeographic

reconstructions proposed in these publications, however, are significantly different
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Figure 4.7: Results of a backed contact test. The stereonets (equal-area projec-
tion) are of: (a) sample mean directions of site 16WDS24 (Table 4.1); (b) sample
mean directions of the host gneiss samples collected within 10.1 meters (typical
baked zone) from the western margin of 16WDS24 (Table 4.1); (c) sample mean
directions of the host gneiss samples collected farther than 10.1 meters from the
western margin of 16WDS24 (Table 4.1). The Zijderveld diagrams show pro-
gressive thermal demagnetisation results of representative samples from the dyke
(16WDS24-C), the baked zone (16WDS24-7), the hybrid zone (16WDS24-9), and
the unbaked country rock (16WDS24-17), respectively. Numbers labelled on the
Zijderveld plots indicate the thermal demagnetisation steps in °C .
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from each other. Nonetheless, as palaeolatitudes and azimuthal orientations of

ancient continents in reconstructions of these workers are broadly similar, slight

differences could be attributable to magnetic polarity ambiguity and longitudinal

uncertainty. Here we propose the most up-to-date ca. 1.89 Ga palaeogeography

for all cratons for which high-quality palaeopoles are available (Table 4.2), while

also incorporating the timing of Palaeoproterozoic orogens (Table 4.3).

Table 4.2: Palaeomagnetic poles used in the palaeogeographic reconstructions at
ca 1.89 Ga (Figure 4.8).

Pole Cont./Craton Plat. (°N) Plong. (°E) A95 (°) Age (Ma) Reference
Molson Dykes B + C2 Superior 28.9 218 3.8 1884−1873 Evans and Halls (2010);

Halls and Heaman (2000);
Zhai et al. (1994)

Sourdough Dykes Wyoming 49.2 291 8.1 1904−1894 Kilian et al. (2016)
Ghost Dykes Slave 2 254 6 1887−1884 Buchan et al. (2016)
Keuruu Dykes Fennoscandia 45.7 230.9 5.5 1879−1859 Klein et al. (2016)
lower Akitan Group Siberia -30.8 98.7 3.5 1882−1874 Didenko et al. (2009)
Mashonaland Sills Kalahari 8 338 5 1888−1874 Bates and Jones (1996);

Evans et al. (2002);
McElhinny and Opdyke
(1964); Söderlund et al.
(2010)

Dharwar+Bastar Dykes India 37 334 5.6 1888−1882 Belica et al. (2014)
Meert et al. (2011)

Boonadagin Dykes W. Australia -46.8 234.9 5.9 1892−1884 This study

Ca. 1.89 Ga, Laurentia and Baltica were not yet assembled (Evans and

Mitchell, 2011). Therefore, poles from their building blocks should be treated

separately. The location of the Superior Craton at moderate palaeolatitudes is

constrained by an recalculated pole of the 1877+7/−4 Ma Molson dykes (Evans

and Halls, 2010), which is based on 34 sites from previous studies and proved pri-

mary by positive baked-contact tests (Halls and Heaman, 2000; Zhai et al., 1994).

Kilian et al. (2016) reported a pole for the 1899 ± 5 Ma Sourdough dykes from

the Wyoming Craton with positive baked-contact tests supporting the primary

origin of the magnetisation. This pole places the Wyoming Craton at approxi-

mately the same latitudes as the Superior Craton. Here we adopt Kilian et al.

(2016) favoured position by placing the Wyoming and Superior cratons ∼60°

apart in arc length, which does not require complex rotations of the Wyoming

Craton in order to join the Superior Craton later, during the ca. 1770 Ma Big
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Sky Orogeny (Hanson et al., 2004; Harlan et al., 2008). Buchan et al. (2016) re-

ported a high-quality pole supported by multiple positive baked-contact tests for

the 1885 Ma Ghost dykes of the Slave Craton. The Ghost palaeopole indicates

that the Slave Craton occupied moderately low palaeolatitudes ca. 1.89 Ga.The

Slave Craton collided with the Rae Craton along the Thelon Orogen ca 1.96 Ga

(Hoffman, 1988), and then the Hearne Craton collided with the Rae Craton ca

1.9 Ga, forming the northwestern part of Laurentia (Berman et al., 2007), based

on which we consider the Ghost dykes palaeopole to represent the Slave, Rae,

and Hearne cratons ca. 1.89 Ga.

The collision of the Archaean Kola and Karelian cratons during the 1940−1860

Ma Lapland-Kola Orogeny, followed by Svecofennian accretionary growth (e.g.,

Bogdanova et al., 2015; Lahtinen et al., 2008), formed Fennoscandia, which in turn

collided with the Sarmatia/Volgo-Uralia Craton to assemble Baltica between 1800

Ma and 1700 Ma. A newly available key pole supported by baked contact tests

from the ca. 1.87 Keuruu dykes (Klein et al., 2016) places Fennoscandia at low

latitudes. The longitudinal position of Fennoscandia is chosen in a way so it can

subsequently join Laurentia to form the so-called NENA (North Europe-North

America) connection (Gower et al., 1990), which is suggested to have lasted from

1.8 Ga to 1.2 Ga (Evans and Pisarevsky, 2008; Pisarevsky and Bylund, 2010;

Salminen et al., 2014).

Table 4.3: Palaeoproterozoic orogenies plotted in Figure 4.8.

Name Duration Type Reference
Snowbird 1920−1890 Ma Collisional Berman et al. (2007); Martel et al.

(2008)
Wopmay 1950−1840 Ma Accretionary A. Bowring and A. Podosek (1989);

Bowring and Grotzinger (1992)
Torngat 1940−1870 Ma Collisional Connelly (2001); Funck et al. (2000)
Trans-Hudson 1910−1810 Ma Accretionary stage Hoffman (1988)
Svecofennian 2000−1750 Ma Accretionary Bogdanova et al. (2015)
Kheis-Okwa-Magondi 2000−1850 Ma Accretionary Jacobs et al. (2008)
Angara 1900−1850 Ma Accretionary Gladkochub et al. (2006); Poller et al.

(2005)
Akitkan 1900−1870 Ma Collisional Donskaya et al. (2009)

For Siberia, we use the pole from the lower Akitan Group, which is dated at
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Figure 4.8: Palaeogeographic reconstruction for ca. 1.89 Ga based on palaeopoles
listed in Table 4.2. The poles are colour-coded according to the colours of the
cratons. The positions of Rae, Hearne, and Nain are not palaeomagnetically
constrained; their proximity to the Slave craton is nonetheless established by
either active or eventual suturing (Hoffman, 1988)
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1878 ± 4 Ma and supported by positive intra-formational conglomerate test and

by fold tests (Didenko et al., 2009) This pole suggests Siberia was equatorial. In

our reconstruction, we show only the northwestern part of the Siberian Craton

(the Angara-Anabar block), because although the Aldan block probably collided

with the Angara-Anabar block along the Akitkan suture by ca. 1870 Ma (Pis-

arevsky et al. e.g., 2008 and references therein) palaeomagnetic studies suggest

some differential rotation within the Aldan block up to ca. 1720 Ma (Pavlov

et al., 2008). Evans and Mitchell (2011) proposed that Siberia could be tightly

connected to Laurentia and Baltica, forming the core of Nuna (but also see Pis-

arevsky et al. 2008 for alternative reconstructions). Ernst et al. (2016) proposed

a similar tight connection from ∼1.9 Ga to ∼0.7 Ga between southern Siberia

and north Laurentia based on matching coeval magmatic events. Here we adopt

this idea by placing the southern tip of Siberia close to the northern part of the

Slave Craton, which is permitted by palaeomagnetic data.

A recalculated pole from the Mashonaland sills (Evans et al. 2002 and refer-

ences therein) dated at 1888 ± 1 Ma (Söderlund et al., 2010) place Zimbabwe

at moderate latitudes. Two roughly coeval poles are available for the Kaapvaal

Craton. The Black Hills dyke pole (Lubnina et al., 2010) was used to constrain

the location of Kaapvaal ca. 1.88 Ga (e.g., Belica et al., 2014). However, more

detailed geochronologic investigations revealed a refined age of 1844.4 ± 2.6 Ma

(Olsson et al., 2016) for the site where Lubnina et al. (2010) determined the

magnetisation age, rendering the corresponding pole too young for our 1.89 Ga

reconstruction. The 1875 ± 4 Ma post-Waterberg dolerite palaeopole is not sup-

ported by field tests (Hanson et al., 2004; Söderlund et al., 2010). Consequently,

although comparing the post-Waterberg and Mashonaland poles Hanson et al.

(2011) suggested a >2000 km shift between Kaapvaal and Zimbabwe cratons

at ca. 1890-1870 Ma, we prefer a conservative approach and adopt the model

where Zimbabwe and Kaapvaal already collided between 2.0 and 1.9 Ga along

the Limpopo Belt (Söderlund et al., 2010) to form proto-Kalahari. In our recon-
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struction, we use only the Mashonaland pole to constrain a position of proto-

Kalahari at ca. 1.89 Ga. Jacobs et al. (2008) suggested that the western margin

of proto-Kalahari experienced long-lasting accretionary events from 2000 Ma to

1850 Ma, while a passive margin environment characterizes its eastern border.

We therefore keep some space between proto-Kalahari and other cratons.

Although the assembly of Australia in Precambrian time is still debated, most

authors consider its incorporation by or shortly after ∼1.8 Ga (Betts et al., 2016;

Cawood and Korsch, 2008; Li and Evans, 2011; Myers et al., 1996). Therefore,

our new pole represents the WAC alone, and not Australia at large. A SWEAT-

like reconstruction of Australia and Laurentia has been suggested to be possible

at ca. 1600 Ma within the Nuna supercontinent (Betts et al., 2008; Goodge

et al., 2008; Hamilton and Buchan, 2010; Payne et al., 2009; Pisarevsky et al.,

2014b). Our reconstruction thus places the WAC at a considerable distance from

the northwestern Laurentian building blocks (Figure 4.8) so that they can later

form a SWEAT-like connection, after the subsequent assembly of the North and

South Australian cratons with the WAC.

Table 4.4: Euler rotation parameters for Figure 4.8.

Craton/block/terrane* Euler Pole Angle
(°N) (°E) (°)

Superior -13.34 -72.92 -235.05
Nain -37.60 -2.14 -235.87
Rae -29.48 -37.79 -242.56
Hearn -29.48 -37.79 -242.56
Slave 28.35 132.16 -104.91
Wyoming -11.83 -7.18 142.70
Fennoscandia -64.78 49.87 -175.78
Siberia -49.41 53.82 256.44
Kalahari -13.78 -92.07 -105.47
S. India 43.31 -88.68 68.98
W. Australia -40.29 161.40 -63.59
* Rotation relative to absolute framework.

Mohanty (2010, 2012) suggested a possible connection between SIB and the
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WAC in Late Palaeoproterozoic mainly because of a similarity of tectonic histories

of the Central India Tectonic Zone and the Capricorn Orogen of the WAC. Stark

et al. (2019) discussed the possibility of the Boonadgin dyke swarm being part of

the Bastar-Cuddapah LIP of SIB. Our new palaeopole supports this idea. The

new Boonadgin dyke pole from this study places the WAC in proximity of the

palaeo-equator. Meanwhile, the palaeopole from the ca. 1.88 Ga Dharwar and

Bastar dykes of SIB, which is supported by a positive baked-contact test, places

India at a similarly low palaeolatitude (Belica et al., 2014). If the two continents

were connected at that time, the western margin of the WAC can be reconstructed

in the vicinity of the eastern margin of SIB (Figure 4.9). We therefore propose

that the northern WAC (Pilbara) and north-eastern India (Singhbhum) were

connected or close to each other at ca. 1.9 Ga. The presence of layered intrusions

and dykes of varying orientations in SIB may suggest proximity to the mantle

plume centre. On the other hand, the horizontal-to-subhorizontal magma flows

indicated by AMS data imply that the WAC was relatively further away from the

plume centre (Ernst and Baragar, 1992). The speculated distances of South Inida

and the WAC relative to the plume centre is consistent with our reconstruction

(Figure 4.9). We note that this reconstruction does not support the relation

between the Central Indian and the Capricorn orogens as suggested by Mohanty

(2010, 2012), and it allows additional continental block(s) to be between the

Yilgarn Craton and SIB. In summary, our reconstruction in Figure 4.8 does not

support the“early”(Palaeoproterozoic) assembly of Nuna, but rather supports

largely independently drifting cratons separated by oceans at ca. 1.89 Ga.

The CL component has been isolated in three dykes (16WDS24 − 16WDS26),

generally <370°C. It has a northern steep upward direction (D = 349.8°, I =

−66.9°, α95 = 17.5°), which is close to the present-day Earth magnetic field

direction in this region (D = 358.7°, I = −65.7°, Thébault et al. 2015, see

Figure 4.6a). We interpret this component as viscous remanent magnetisation

acquired recently. The demagnetisation behaviour, together with rock magnetic
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Figure 4.9: A possible configuration of the WAC and SIB at ca. 1.89 Ga recon-
structed in present day WAC coordinates. The red dykes in SIB have been dated
at 1894-1879 Ma (Belica et al., 2014; French et al., 2008; Halls et al., 2007). Red
star denotes possible location of a mantle plume centre.

results, suggest that the CL component is probably carried by maghemite or

pyrrhotite.

The CH component, isolated from ten dykes, has unblocking temperatures

(530−590 °C) typical of low-titanium titanomagnetite or pure magnetite. We

interpret the CH component to be the ChRM of the Boonadgin dyke swarm.

The CH component is dual-polarity, directed either SE shallow downward (4

sites) or NW shallow upward (6 sites; Figure 4.6b). For simplicity, we hereafter

arbitrarily refer to the SE shallow downward direction as “normal”and to its

antipodal direction as“reverse”(Figure 4.6). The reversal test of McFadden and

McElhinny (1990) is positive with classification‘C’(γ = 11.0°, γc = 18.8°). The

dual-polarity remanence indicates that the duration of dyke swarm emplacement

was sufficiently long for the geomagnetic field to reverse its polarity and therefore

also for magnetic secular variation to be averaged out. Based on the results

of the rock magnetic experiments, we performed AF demagnetisation up to 60

mT prior to thermal treatment for selected samples. The directions isolated

with combined AF and thermal demagnetisation are identical to those isolated
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by exclusive thermal treatment (Figure 4.5), which led us to conclude that we

successfully isolated the ChRMs carried by SD/PSD (titano) magnetite.

4.6 Conclusion

We obtained a palaeomagnetic key pole from the 1888 ± 9 Ma Boonadgin dyke

swarm in the Yilgarn Craton, Western Australia, located at 47°S, 235°E, A95 =

6°. An interpretation of a primary origin for the high-temperature component

is supported by a baked-contact test. Based on matching geometries of contem-

poraneous mafic dykes and comparing palaeopoles, we propose that the WAC

(Pilbara) and SIB (Singhbhum) were close to each other ca. 1.89 Ga. Using

available high-quality poles, we provide a ca. 1.89 Ga palaeogeographic recon-

struction in which the WAC was positioned at a significant distance from the

northwestern building blocks of Laurentia in a way which allows the subsequent

amalgamation to form the proto-SWEAT connection.
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Chapter 5

A palaeomagnetic reconnaissance

of the southwestern Yilgarn

Craton with a special focus on

the 1.39 Ga Biberkine dyke

swarm

5.1 Abstract

A palaeomagnetic study was conducted on the ca. 1.39 Ga and possibly 1.21

Ga mafic dykes in the southwestern Yilgarn Craton. Among the 17 dykes with

meaningful results, nine belong to the 1.39 Biberkine dyke swarm and revealed a

NNE moderately-downward-pointing direction. This direction is similar to that

of the YF group dykes in this area that have been previously reported without

precise age constraints. We combined the two datasets to calculate a mean pole

at 26.3°N, 126.5°E with A95 = 9.3°. The 1.39 Ga pole requires either a major

revision of the Australian Proterozoic APWP, or a late assembly (post-1390 Ma)

of NAC and WAC. Three dykes revealed a NW steep upward direction, which is
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opposite to the dominating polarity of the previously published 1.21 Ga Marnda

Moorn dataset. Combining the two datasets resulted in a mean 1.21 Ga pole at

56.6°N, 327.4°E with A95 = 5.7°. This pole passes the reversal test, which was

not possible using the previous dataset alone. Five dykes revealed SW shallow

directions, similar to the formerly identified but undated YE direction. The

combined mean YE pole is at -29.5°N, 2.9°E with A95 = 10.3°. This pole overlaps

with the Cambrian poles (Hawker Group pole) of Australia, suggesting a possible

ca. 550-500 Ma overprint origin caused by the Pinjarra Orogeny (Pan-African).

Considering all studies conducted in this area together, we conclude that there

were no pervasive remagnetisation events in the southwestern Yilgarn Craton.

Overprints related to the Pinjarra Orogeny are confined within and near the

western margin of the craton.

5.2 Introduction

The first palaeomagnetic reconnaissance study covering the southwestern Yilgarn

Craton was conducted by Giddings (1976). A total of 54 dykes were sampled,

including 49 dykes from the Perth region and five dykes from the Ravenstrope

area (Figure 5.1). While the palaeomagnetic directions fell into five distinct

groups, the Rb-Sr geochronology suggests that there were at least six or, possibly

seven dyke generations. Combining palaeomagnetism, Rb-Sr geochronology and

cross-cutting relationships, Giddings divided the dykes in the Perth region into

six groups (named YA − YF). The primary remanence of two of these groups

(YB and YC) was supported by positive baked contact tests. In a subsequent

study, however, Halls and Wingate (2001) re-sampled the YB and YC groups and

acquired a negative baked contact test for the YB group. Consequently, Halls

and Wingate (2001) argued that the magnetic remanence carried by YB group

dykes is a result of some younger overprint, possibly of Mesozoic age. Giddings

(1976) suggested that the YA and the Ravenstrope dykes could be coeval due to a

similarity in their palaeomagnetic directions. The Ravenstrope dykes were dated
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at that time by the Rb-Sr method at 2500 ± 100 Ma, thus giving an estimated

age for the YA pole. However, the Ravensthorpe dykes have been re-dated by the

U-Pb method and are now considered a part of the ca. 1210 Ma Marnda Moorn

large igneous province (LIP, e.g., Wingate and Pidgeon, 2005). With this precise

age, Pisarevsky et al. (2014) reported reliable palaeomagnetic results supported

by a positive baked contact test for the Ravensthorpe dykes.
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Figure 5.1: Geological map showing major dyke swarms of the Yilgarn Craton.
The basemap is from Geological Survey of Western Australia 1:2.5 M Interpreted
Bedrock Geology 2015.

We sampled 70 dykes in an area close to that sampled by Giddings (1976) but

further inland in an effort to avoid possible tectonic overprints related to the oro-

genic processes along the western margin of the Yilgarn Craton (Figure 5.1). Two

new palaeomagnetic directions and their corresponding poles were identified and

are discussed in Chapters 3 and 4. The results for the 44 dykes will be presented

in this chapter and, together with a newly published U-Pb geochronology (Stark
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et al., 2018a,b, 2019), these results will be compared with the data of Giddings

(1976) and interpreted in terms of apparent polar wander path (APWP) and the

assembly of Australia.

5.3 Regional geology

The Yilgarn Craton is the largest Archaean craton of Australia and is mainly com-

posed of granite, granitic gneiss and greenstone belts younging eastward (Cassidy

et al., 2006; Qiu et al., 1999; Wilde et al., 2002; Wyche, 2007). The northern

margin of the Yilgarn Craton is delineated by the Proterozoic Capricorn Oro-

gen (Figure 5.1), which was formed during the collision between Yilgarn and

Pilbara + Glenburgh (Johnson et al., 2011, 2013). The southern and southeast-

ern margins feature the late Palaeoproterozoic to Mesoproterozoic Albany-Fraser

Orogen formed by the collision of the Yilgarn and Mawson cratons (Myers et al.,

1996; Spaggiari et al., 2009, 2015, 2018). The late Mesoproterozoic to Neopro-

terozoic Pinjarra Orogen delineates the western margin of Yilgarn and truncates

the Albany-Fraser Orogen. The Pinjarra Orogen was initially thought to have

formed during the formation of Rodinia and later reworked in a intracontinental

orogeny during the formation of Gondwana between 550 Ma and 500 Ma. More

recent studies (Fitzsimons, 2000, 2003; Powell and Pisarevsky, 2002), however,

interpreted the Pinjarra Orogeny (ca. 550−500 Ma) as the result of an oblique

collision between Australia and India. The Pinjarra Orogeny was last major

tectonic event that affected the study area of this investigation.

The southwestern Yilgarn craton, including the current study area, is densely

intruded by mafic dykes (Figures 5.1 and 5.2). The trend of dykes in this area

varies widely but is dominantly NW (Figure 5.2). Since the pioneering work of

Giddings (1976), the development of U-Pb geochronology made the mafic dykes

readily datable. Five generations of dykes have been precisely dated in this

area: the NE-trending 2.62 Ga Yandinilling dykes (Stark et al., 2018b), the E-

W-trending 2.41 Ga Widgiemooltha dykes (Nemchin and Pidgeon, 1998), the
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WNW-trending 1.89 Ga Boonadgin dykes (Stark et al., 2019), a NNW-trending

1.39 Ga dyke generation (Stark et al., 2018a), and the variously-oriented 1.21 Ga

Wheatbelt dykes (members of the Marnda Moorn LIP; Pidgeon and Nemchin

2001).

Northam

Sampling area 
of Giddings(1976)

West Biotite Domain Transition 
Zone

East Biotite Domain

Figure 5.2: Schematic geological map of the sampling sites. The sampling sites of
the 1888 Ma Boonadgin dykes and the 2615 Ma Yandinilling dykes are also shown
for comparison (see Chapters 3 and 4). Only sites at which the site mean direction
were calculated (this chapter) are labelled. Information on the failed sites is in
Table A.1. The spatial partition of the west biotite domain, the transition zone
and the east biotite domain follows that of Libby and de Laeter (1998). The
biotite domains were divided based on the Rb-Sr biotite mapping.

5.4 Methods

Standard rock magnetic and palaeomagnetic methods were employed in this

study. To determine the magnetic mineralogy of the collected samples, crushed

115



powders of fresh samples from each site were prepared for rock magnetic analysis.

Magnetic susceptibility versus temperature curves were obtained with an AGICO

MFK-1 Kappabridge (equipped with a CS4 furnace) in air.

At least one specimen from each sample was subjected to stepwise demag-

netisation. Progressive thermal demagnetisation in 16-18 steps was performed

for the majority of the specimens until the measured direction became unstable

(usually 570−580 °C). AF demagnetisation was performed on selected specimens

to cross-check the results of thermal demagnetisation. Some specimens were im-

mersed in liquid nitrogen for 30 minutes (low temperature demagnetisation, or

LTD) before thermal treatment as LTD is effective in removing viscous remanent

magnetisation carried by multi-domain magnetite (Schmidt, 1993). Thermal de-

magnetisation was performed with an ASC TD-48 oven. Magnetic remanence

was measured with a 2G RAPID system or an AGICO JR-6A spinner magne-

tometer (when the intensity was too strong to be measured with the SQUID

magnetometer). All rock magnetic and palaeomagnetic analyses were conducted

in the palaeomagnetism laboratory at Curtin University.

Magnetisation vectors were analysed with principal component analysis (Kirschvink,

1980). All vectors were fitted using at least four consecutive steps with a maxi-

mum angular deviation of < 10°. In cases when stable endpoints were not reached,

remagnetisation great circles were used. Site-mean directions were calculated us-

ing the statistics developed by Fisher (1953) or the iterative approach combining

great circles and magnetic vectors (McFadden and McElhinny, 1988). All vector

fitting and mean directions were calculated using the PmagPy package (Tauxe

et al., 2016).

5.5 Rock magnetism

The thermomagnetic curves show consistent sharp drops the 560−600 °C temper-

ature range (Figure 5.3), indicating that the main magnetic phase is magnetite

and/or titanomagnetite with a very low titanium content. The reasonable re-
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versibility observed in most of the thermomagnetic curves suggests that no major

magnetic phase change occurred during heating. The exception is the 16WDS02-

D, which showed a significant susceptibility increase in the cooling curve indicat-

ing the formation of magnetite. Sudden increases in susceptibility just before the

Curie temperature was reached are observable in some samples (Figure 5.3a, c−f),

which are commonly referred to as “Hopkinson Peaks” and are suggestive of the

presence of palaeomagnetically stable single-domain (SD) and/or pseudo-single-

domain (PSD) (titano)magnetite (Dunlop, 2014; Dunlop and Özdemir, 1997).

In almost all samples, repeated progressive heating experiments (Hrouda et al.,

2003) revealed similar trends of being reversible below 300 °C followed by contin-

uous declines between 300 and 600 °C. The continuous decrease above 300 °C is a

common phenomenon in mafic dykes in this area and was interpreted as the result

of inversion of (titano)maghaemite into haematite during heating (Chapter 3).

Overall, the results of the thermomagnetic experiments indicate the presence of

palaeomagnetically stable SD and PSD (titano)magnetite in most of the dykes

collected in this study.

5.6 Palaeomagnetism

The majority of the mafic dykes collected in this study revealed well-behaved

demagnetisation results with origin-directed stable endpoints. Some specimens

showed anomalously high intensities of NRM and a single randomly oriented com-

ponent, which are characteristics of lightning induced remanent magnetisation

(LIRM). Thus, these samples were excluded from further analysis. The charac-

teristic remanent magnetisation (ChRM) was determined in the range of 500−580

°C, or 30−60 mT (Figure 5.4). Apart from the dykes discussed in Chapters 3

and 4, seventeen dykes revealed meaningful site-mean directions, which could be

divided into three groups. Two groups had directions similar to those previously

reported (Giddings, 1976). The combination of old and new data improves the

statistics of corresponding poles. The third group yielded a previously unknown
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a b c

d e f

g h

Figure 5.3: Representative susceptibility versus temperature curves of (a−f) one-
step heating and cooling experiments and (g and h) repeated progressive heating
experiments.
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direction. All three groups are discussed in the following sections.

a b

c d

Figure 5.4: Zijderveld vector diagrams, stereoplots (equal-area projection) and
intensity decay plots showing the demagnetisation results of representative sam-
ples of: (a) and (b) 1.39 Ga dykes (see Section 5.6.1); (c) 1.21 Ga dykes (see
Section 5.6.2); and (d) the YE group (see Section 5.6.3). In the stereoplots, the
open/filled symbols indicate upper/lower hemisphere directions. This convention
is used throughout the chapter.

5.6.1 1.39 Ga Biberkine dyke swarm

Nine dykes (ten sites, see Table 5.1) showed a NNE moderately downward-

pointing direction. Two of them, WDS10R and WDS14 (Table 5.1 and Fig-

ure 5.5), were recently dated at 1390 ± 3 Ma by ID- TIMS U-Pb geochronology

of baddeleyite, based on which a dyke swarm named the Biberkine swarm was
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identified (Stark et al., 2018a). The consistent NW and NNW orientations (Ta-

ble 5.1 and Figure 5.5) of the nine studied dykes, and their well-clustered ChRM

directions, are strongly suggestive that they all belong to the Biberkine swarm.

VωVcritical

a b

n = 9

N

Figure 5.5: Stereoplots (equal-area projection) showing: (a) mean directions of
ten sites of the 1.39 Ga (Table 5.1) dykes, with a rose diagram indicating their
trends; (b) mean directions of the sites of the 1.39 Ga Biberkine and YF dykes
of Giddings (1976). A relative cumulative distribution function (CDF) plot in
(b) shows that the “normal” and “reverse” polarities of the combined directions
of the 1.39 Ga and YF dykes pass the common mean test of Watson (1983).
Open/filled symbols indicate upper/lower hemisphere directions.

Due to the generally limited exposure of these dykes in the study area, no field

tests were possible. Nevertheless, we interpret the magnetic remanence carried

by the 1.39 Ga dykes as being primary because of: (i) the high unblocking tem-

peratures of the ChRMs (usually between 540 °C and 580 °C; see Figure 5.4b);

(ii) the presence of single-domain (titano)magnetite, as revealed by rock mag-

netic studies (Figure 5.3); (iii) the fact that the NNE modest downward direction

is exclusively found in these dykes with NNW trends; (iv) the dissimilarity of

the 1.39 Ga pole with any younger palaeopole from the region (Figure 5.6); and

(v) the older 2.41 Ga Widgiemooltha and 1.89 Ga Boonadgin dykes in the same

study area both carrying primary magnetic remanence (Liu et al., 2019; Smirnov

et al., 2013). The mean direction of the ten sites (nine dykes) are D, I = 23.9°,

49.6°, α95 = 10.1°, which corresponds to a palaeopole at 22.8°N, 138.6°E and A95

= 12.5° (Table 5.3).

The ChRMs direction and trends of the 1.39 Ga Biberkine dykes are simi-
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Table 5.1: Palaeomagnetic results of the 1.39 Ga Biberkine dykes

Site Trend Slat. Slon. N/n Dec Inc α95 k Plat. Plon. Dp Dm Source
(°) (°N) (°E) (°) (°) (°) (°N) (°E) (°) (°)

WDS10a 336 -32.576912 116.914762 6/3 3.4 43.6 8.2 225.4 31.9 120.5 6.4 10.2 this study
WDS10Rb 336 -32.580691 116.918004 24/15 26.7 42.0 9.8 16.0 27.7 144.5 7.4 12.0 this study
WDS12 330 -32.539436 116.850421 5/3 35.0 45.3 20.9 35.7 21.9 150.4 16.8 26.5 this study
WDS14c 323 -32.587204 116.777597 19/8 44.9 50.1 11.4 26.0 13.6 155.3 10.2 15.3 this study
15WDS17 315 -32.564783 116.898983 8/4 67.2 39.7 12.1 78.0 5.5 175.7 8.7 14.5 this study
15WDS19 320 -32.399234 116.843417 8/7 17.8 46.8 13.7 26.0 27.2 134.5 11.4 17.7 this study
16WDS01 322 -32.412299 116.813633 8/6 5.1 67.3 15.3 22.0 7.4 120.1 21.2 25.4 this study
16WDS02 330 -32.412299 116.813464 7/6 25.7 54.0 9.1 55.0 18.8 139.0 8.9 12.8 this study
16WDS08 323 -32.028424 116.766831 6/5 356.2 46.2 11.9 54.0 30.3 112.9 9.8 15.2 this study
16WDS09 323 -32.028056 116.766874 8/5 10.7 41.9 8.3 133.0 32.9 128.4 6.2 10.2 this study
Mean of 10 sites (9 dykes) 23.9 49.6 10.1 23.9 22.8 138.6 A95=12.5
Dyke08d -31.605588 116.2239 7 347.3 49.6 26.1 6.3 26.8 104 23.1 34.7 1e
Dyke12 -31.605588 116.2239 6 10.3 48.6 23.7 8.9 28.1 126.4 20.5 31.2 1
Dyke13 -31.605588 116.2239 7 333.3 49 13.1 22.2 23.5 91.1 11.4 17.3 1
Dyke14 -31.605588 116.2239 14 5.6 45.5 6.9 34.2 31.2 122.1 5.6 8.8 1
Dyke17 -31.605588 116.2239 9 357.4 43 15.7 11.8 33.3 113.4 12.1 19.5 1
Dyke19 -31.605588 116.2239 7 170.1 -40.9 4.9 150 -34.2 285.2 3.6 5.9 1
Dyke20 -31.605588 116.2239 3 167 -44.7 25.2 25 -30.8 282.7 20 31.8 1
Dyke24f -31.605588 116.2239 6 113.6 -53.1 16 18.5 0.4 246.5 15.4 22.2 1
Dyke25 -31.605588 116.2239 3 353.4 45.9 37.7 11.8 30.8 109.4 30.7 48.1 1
Dyke27 -31.422057 116.003338 5 188.7 -56.8 10.2 57.1 -20.7 303.4 10.7 14.8 1
Dyke30f -31.914713 116.06227 6 122.1 -51.4 10.9 38.5 -5.8 249.9 10.1 14.8 1
Mean of 18 sites (17 dykes) combined 9.5 49.6 7.0 24.2 26.3 126.5 A95=9.3

N/n = number of demagnetised/used samples; Trend = the trends of the dyke; Slat., Slon. = latitude, longitude of sample
locality; Dec, Inc = site mean declination, inclination; k = precision parameter of Fisher (1953); α95 = radius of cone of
95% confidence; Plat., Plon. = latitude, longitude of the palaeopole; Dp, Dm = semi-axes of the cone of confidence about
the pole at the 95% probability level.
a Dated at 1390 ± 3 Ma (ID-TIMS U-Pb, Stark et al. 2018a).
b WDS10 and WDS10R are the same dyke.
c Dated at 1433 ± 74 Ma (SHRIMP U-Pb, Stark et al. 2018a).
d The site number refers to the dyke number in Table 1 of Giddings (1976).
e Source 1: Giddings (1976)
f Sites that were excluded from the calculation of mean directions.
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lar to those of the YF dykes (Giddings, 1976, see Figure 5.5). The similarities

in ChRM direction and trends imply that the 1.39 Ga dykes of this study and

the YF dykes could belong to the same generation. We therefore merged the

two datasets to calculate a combined mean direction. A reversal test (McFad-

den and McElhinny, 1990) of the original YF dataset yielded an indeterminate

result. However, after excluding two sites (Dyke24 and Dyke30, Table 5.1) that

show obviously anomalous directions, the remaining sites passed the reversal test

(McFadden and McElhinny, 1990) at class “C”. We consider these two sites as

outliers and excluded them from mean calculations. The combined datasets of

the dated 1.39 Ga Biberkine and YF dykes also passed the reversal test with the

“C” class. The grand mean pole for the combination of the two datasets is at

26.3°N, 126.5°E with A95 = 9.3° (Table 5.3 and Figure 5.6).

It should be noted that the dataset of the YF group (with all the sites using

the reverse polarity; see Figure A.2a) and that of the 1.39 Ga Biberkine dykes

do not pass the common mean test (Watson, 1983). In spite of this caveat,

we consider that datasets of the YF group and the 1.39 Ga Biberkine dykes to

be parts of the same dyke swarm based on their overall similar palaeomagnetic

directions and trends.

5.6.2 1.21 Ga Marnda Moorn dykes

The precisely-dated Marnda Moorn pole, supported by a baked-contact test, was

first reported by Pisarevsky et al. (2003) as a VGP. The quality of the data was

later improved by a more extensive sample collection in the Ravensthorpe area

(see Figure 5.1, Pisarevsky et al., 2014). The Marnda Moorn pole only failed cri-

terion 6 of Van der Voo (1990) due to the existence of a single dyke with opposite

polarity within the dataset (Pisarevsky et al., 2014, Table 5.2 and Figure 5.7).

Three dykes in this study exhibited NW steep upward directions (Table 5.2

and Figure 5.7), antipodal to the dominating Marnda Moorn directions. Based

on the similar palaeomagnetic directions, these three dykes were grouped into the
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Figure 5.6: The VGPs of 1.39 Ga dykes and YF dykes, along with their grand
mean pole plotted in an orthographic projection. Some younger poles expected
from the area are also plotted for comparison. References: 1.21 Ga Marnda
Moorn dykes (MM) − Pisarevsky et al. (2014); 1.07 Ga Bangemall Basin sills
(BBS) − Wingate et al. (2002, 2004); 0.76 Ga Mundine Well dykes (MDS) −
Wingate and Giddings (2000); YF − Giddings (1976).
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Marnda Moorn dyke swarm. With the addition of the new data, the magnetic

remanence of the Marnda Moorn dykes passes the reversal test of McFadden

and McElhinny (1990) with a “C” class (Figure 5.7). Consequently, the new,

combined, Marnda Moorn pole satisfies all seven quality factors of Van der Voo’s

criteria, placing it among the highest-quality palaeopoles. The positive reversal

test also allows us to calculate a grand mean pole at 56.6°N, 327.4°E with A95 =

5.7°.

Vω Vcritical

ba

Vω Vcritical
RD15

n = 3
N

Figure 5.7: Stereoplots (equal-area projection) showing 1.21 Ga data (Table 5.2,
the polarity of RD15 is inverted). The rose diagram indicates the trends of the
dykes considered in study. On the lower right corner of the stereoplots are CDF
plots showing the results of the common mean test of Watson (1983). In both
tests, values of Vω are smaller than Vcritical, indicating that: (a) the 1.21 Ga data
of this study and those of Pisarevsky et al. (2014) share a common mean and,
thus, can be collectively analysed; (b) the “normal” and “reverse” polarities of
the combined 1.21 Ga dataset share a common mean.

5.6.3 YE Group direction: A possible early Palaeozoic

overprint?

Five dykes of this study revealed ChRMs with very shallow SW directions (Fig-

ure 5.8), which overlap with the direction of the YE group of Giddings (1976).

We calculated a mean pole combining our data and those of Giddings, and here-

after refer to this group thereafter as YE. The combined YE pole for eight dykes
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Table 5.2: Palaeomagnetic results of the 1.21 Ga Marnda Moorn dykes

Site Trend Slat. Slon. N/n Deca Inc α95 k Plat. Plon. Dp Dm Source
(°) (°N) (°E) (°) (°) (°) (°N) (°E) (°) (°)

WDS07 20 -32.978151 117.009235 8/6 318.6 -68.6 9.0 56.3 54.7 342.0 12.9 15.2 this study
15WDS15 18 -32.587183 116.913533 6/4 316.4 -72.6 23.6 16.1 51.3 332.8 37.2 41.9 this study
16WDS04 280 -32.293334 116.784858 10/7 343.1 -58.9 9.4 44 74.5 353.7 10.4 14.0 this study
Mean of 3 dykes 328.7 -67.2 14.2 75.9 60.4 340.2 A95=20.5
RD01 -33.46245 120.0757 24/21 136.2 71.7 5.3 37.2 51.7 334.8 8.5 9.5 2b
RD02 -33.438633 120.03365 11/11 141.4 76.2 4.4 110.2 50.7 322.6 7.7 8.2 2
RD03 -33.4391 120.03225 8/7 131.1 63.4 7.2 71.4 50.6 354.0 9.5 11.7 2
RD05 -33.606067 119.883983 16/13 192.7 76.6 8.5 24.7 57.2 286.8 14.6 15.7 2
RD06 -33.60725 119.886083 18/11 137.9 72.5 10.4 20.1 52.1 332.5 16.9 18.8 2
RD07 -33.60725 119.886083 6/5 133.3 78.5 15.4 25.7 45.8 320.0 28.2 29.5 2
RD08 -33.608083 119.887283 11/9 169.8 83.8 15.2 12.4 44.6 299.9 28.9 29.7 2
RD09 -33.608483 119.888167 15/8 143.5 69.9 12.9 12.2 56.6 336.6 19.8 22.6 2
RD11 -33.584967 119.872667 9/8 133.0 76.8 8.6 42.2 47 323.9 15.3 16.2 2
RD12 -33.61255 119.8964 4/4 153.1 74.8 7.3 158.5 56.3 319.8 12.4 13.5 2
RD13c -33.61515 119.898917 16/16 57.7 63.4 3.0 155.5 3.6 333.7 3.9 4.8 2
RD15 -33.826767 119.261217 16/7 9.2 -71.3 15.9 15.3 65.8 284.3 24.7 28.0 2
RD17 -33.824617 119.2595 17/13 144.7 70.7 8.5 25 56.7 334.0 13.2 15.0 2
RD18 -33.824617 119.2595 14/14 156.4 70.6 7 32.9 62.2 326.5 10.9 12.3 2
RD19 -33.823983 119.2593 12/12 148.2 63.2 5.6 61.5 62.6 351.5 7.3 9.0 2
Mean of 17 dykes combined 148.8 72.5 3.6 98.5 56.6 327.4 A95=5.7

The convention of table headers follows Table 5.1
a The declinations and inclinations of all the sites starting with RD are recalculated to the local coordinates.
b Source 2: Pisarevsky et al. (2014)
c Site that was excluded from the calculation of mean direction, as suggested by Pisarevsky et al. (2014).

is at -29.5°N, 2.9°E with A95 = 10.3° (Table 5.3).

Table 5.3: Palaeomagnetic results of the YE group

Site Trend Slat.a Slon. N/n Dec Inc α95 k Plat. Plon. Dp Dm Source
(°) (°N) (°E) (°) (°) (°) (°N) (°E) (°) (°)

WDS06 60 -33.057854 116.939582 6/3 222.8 -25.6 27.0 22.0 -28.1 345.4 15.7 29.1 this study
15WDS04 281 -33.082902 116.914267 8/3 244.1 25.1 18.6 45.1 -28.7 24.2 10.8 20 this study
15WDS05 306 -33.111412 116.928317 10/5 235.0 15.4 14.8 27.8 -33.4 13.3 7.8 15.2 this study
15WDS13 335 -32.621217 116.986083 6/4 226.9 -4.6 25.6 13.8 -33.6 358.1 12.9 25.7 this study
16WDS03 300 -32.414023 116.810608 10/3 236.3 -13.5 11.1 124 -23.7 1.2 5.8 11.3 this study
Mean of 5 dykes of this study 233.0 -0.7 21.7 13.4 -30.2 4.4 A95=12.9
Dyke18 -31.605588 116.2239 6 223.6 18.4 7.4 83.3 -44.0 7.2 4.0 7.7 3b
Dyke22 -31.605588 116.2239 6 224.6 -11.5 8.0 71.4 -33.4 353 4.1 8.1 3
Dyke36 -31.914713 116.06227 9 250.4 -30.5 22.5 6.2 -7.1 1.7 13.9 25.0 3
Mean of 8 dykes combined 232.7 -3.4 16.3 12.6 -29.5 2.9 A95=10.3

The convention of the table headers follows that of Table 5.1
a The coordinates of the sites from Source 2 are estimated from the map in Giddings (1976).
b Source 3: Giddings (1976)

As none of these five dykes have been dated, their age relies on the prelimi-

nary Rb-Sr age of ca. 2500 Ma assigned to the YE group (Giddings, 1976). It

is worth noting that Rb-Sr isochron from this ages are no longer considered to

reliable in modern practice. However, several lines of evidence suggest an al-

ternative interpretation. First, a recent extensive geochronological investigation

using high-precision U-Pb dating methods that targeted mafic dykes in this area
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Figure 5.8: Stereoplots (equal-area projection) of site-mean palaeomagnetic direc-
tions of: (a) the YE group of this study (Table 5.3) with a rose diagram indicating
that the trends of these dykes have YE directions; and (b) a combination of the
YE group of this study and those of Giddings (1976).

did not identify any dykes with ages of ∼ 2500 Ma (Stark, 2018). Although

the ca. 2.41 Ga Widgiemooltha or the ca. 2.62 Ga Yandinilling dykes could

be correlated with the preliminary 2500 Ma Rb-Sr age, their palaeomagnetic di-

rections are different, suggesting either that the YE dykes does not belong the

Widgiemooltha/Yandinilling swarms, or that the magnetic remanence of YE was

overprinted. Second, the combined YE pole overlaps with the early Cambrian

poles of Australia, especially the HKG pole from the 545−530 Hawker Group

(Betts et al., 2016a, see Figure 5.9). Markwitz et al. (2017) recently reported

526 ± 12 Ma metamorphism with zircon overgrowths in the basement of the

Northampton Complex (Figure 5.1). This metamorphic age correlates well with

the 522 ± 6 Ma metamorphism identified in the northern Leeuwin Complex

(Collins 2003, Figure 5.1), suggesting that the Pinjara Orogen was affected by

the ca. 530 Ma oblique collision of Greater India with Australia (e.g., Collins

and Pisarevsky, 2005; Merdith et al., 2017) to a greater extent than previously

thought. The closeness of the YE pole to Early Palaeozoic Australian poles (Fig-

ure 5.9) suggests an overprint related to the ca. 530 Ma metamorphism. We

conclude that the YE remanence is likely to be secondary with an age of around

530 Ma and was acquired during the strike-slip motion between India and Aus-
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tralia (Fitzsimons, 2003).

541485444419359299252
CambrianOrdovicianSilurianDevonianCarboniferousPermian

(Ma)

Figure 5.9: YA, YD and YE poles plotted against the Palaeozoic Australian poles.
Please refer to Table 1 of Li and Powell (2001) for the details of the poles.

5.7 Discussion

5.7.1 Summary of the palaeomagnetic data from the south-

western Yilgarn Craton

Among the six original groups of magnetic remanence directions that Giddings

1976 reported in this area (Figure 5.2), we assigned a new age constraint for

the YF group and proposed an alternative interpretation for the YE group (see

discussion above). For the YB and YC groups, we follow Halls and Wingate
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(2001) and consider that they represent a remagnetisation of Mesozoic age that

is possibly related to the rifting between Australia and India (Bian et al., 2019;

Li and Powell, 2001).

Table 5.4: A summary of well-defined palaeomagnetic results in the southwestern
Yilgarn Craton

Name Rock unit Age Dec Inc k α95 N Plat. Plon. A95 Source
(Ga) (°) (°) (°) (°N) (°E) (°)

MMa Marnda Moorn 1.21 148.8 72.5 98.5 3.6 17 -56.6 147.4 5.7 this study, Pisarevsky
et al. (2014)

Biba Biberkine dykes (including YF dykes) 1.39 9.5 49.6 24.2 7.0 18 -26.3 306.5 9.3 this study
Boo Boonadgin dykes 1.89 142.5 13.2 37.3 8.0 10 -46.8 234.9 6.0 Liu et al. (2019)
Wida Widgiemooltha dykes 2.41 247.5 -66.6 117.0 4.8 9 -10.2 159.2 7.5 Smirnov et al. (2013)
Yan Yandinilling dykes 2.62 294.0 -58.1 72.2 5.0 12 -36.7 179.5 7.4
a Grand mean pole calculated with data from more than one studies.

Figure 5.10: Stereoplot (equal-area projection) summarising the palaeomagnetic
results in the southwestern Yilgarn Craton. The Widigiemooltha (Wid) and
Marnda Moorn (MM) directions are recalculated to the local coordinates. A red
star marks the direction of the present-day Earth magnetic field (PEF) in the
study area. Open/filled symbols indicate upper/lower hemisphere directions.

The direction of the YD remanence (pointing WNW, moderately downward),

which was identified in ten dykes in the collection of Giddings (1976), is com-

pletely absent in the 70 dykes collected in this study. We believe that this can

be explained by the difference in sampling areas of the two studies. Based on

the spatial distribution in biotite Rb-Sr ages, Libby and de Laeter (1998) divided

southwestern Australia into three sections: (i)the western biotite domain where

the biotite Rb-Sr ages range from 600 to 400 Ma; (ii)the east biotite domain,

which has a uniform ca. 2500 Ma biotite age; and (iii) a transition zone separat-

ing the two domains, which shows a dispersed age range of between 2000 and 800
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Ma (Figure 5.2). Libby and de Laeter (1998) attributed the young biotite age in

the western biotite domain to a reset event of the Rb-Sr system caused by tectonic

burial and uplift of the Pinjarra Orogeny. This spatial partition based on the

Rb-Sr system was independently verified with the Ar-Ar system (Lu et al., 2015).

Most of our samples are from the eastern side of the transition zone, with five

sites located within the transition zone, whereas most of the samples of Giddings

(1976) are from the western biotite domain and the transition zone (Figure 5.2).

The sampling sites that are within/close to the transition zone appear to be more

likely to yield scattered results than those far away (Figure 5.2). The YD pole

touches both the Carboniferous and Cambrian poles of Australia (Figure 5.9), but

its location on the Gondwanan APWP (Figure A.1) indicates that the YD pole

is more likely to be of Cambrian age. The exclusive presence of YD directions in

the collection of Giddings (1976), and the comparison between the YD pole and

Palaeozoic Australian poles (Figure 5.9) indicate that the YD pole is also likely

to be an overprint pole with an age of ca. 500 Ma. Accordingly, the YE and

YD poles are likely to reflect remagnetisation events during different stages of

the Pinjarra Orogeny in this area. The YA group was not found in our collection

either. Following the same arguments for YD, the YA pole is interpreted to be of

overprint origin, possibly of Carboniferous age due to its closeness to Australian

Carboniferous poles (Figure 5.9).

In summary, there are at least five well-defined magnetic remanence directions

identified in the southwestern Yilgarn Craton (Table 5.4 and Figure 5.10). The

facts that the ca. 2.41 Ga Widgiemooltha dykes carry a primary magnetic rema-

nence, and that the five remanence directions are distinguishable refute the pos-

sibility of any pervasive remagnetisation event in this region. Although localised

overprints caused by the Pinjarra Orogeny are present, they are only found in

and/or near the western margin of the Yilgarn Craton. Future palaeomagnetic

studies should target areas to the east of the transition zone (Figure 5.2) to avoid

young overprint affection.
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5.7.2 Tectonic implications of the ca. 1.39 Ga Biberkine

pole

When did the Western Australia (WAC) and the North Australia cratons (NAC)

collided remains unclear (Anderson, 2015; Betts et al., 2016b; Cawood and Ko-

rsch, 2008; Gardiner et al., 2018; Li, 2000; Li and Evans, 2011; Myers et al.,

1996) mainly due to their collisional zone being largely concealed by the Creta-

ceous Canning Basin, and palaeomagnetic data from the WAC side being sparse.

The Rudall Complex in the northeastern margin of the WAC is the only ex-

posed rocks that recorded the collision between the WAC and the NAC. Rocks

in the Rudall Complex underwent medium- to high-pressure peak metamorphism

(Smithies and Bagas, 1997), which were inferred to be contemporaneous as the ca.

1800−1760 Ma Kalkan granitic gneiss intruding this area (Smithies and Bagas,

1997). This inferred metamorphic age, together with palaeomagnetic data, led

to the proposal that the WAC and NAC collided during a ca. 1.7 Ga orogeny

named the Yapungku (Betts and Giles, 2006; Li, 2000; Smithies and Bagas, 1997)

Orogeny. However, recent U-Pb dating on the monazite and zircons yielded a

ca. 1.4−1.3 Ga age for the peak metamorphism in Rudall Complex (Anderson,

2015), base on which a late assembly model of WAC and NAC were proposed

(Anderson, 2015; Gardiner et al., 2018). The ca. 1.39 Ga Biberkine pole has

potential to shed light on this problem.

There are no strictly coeval poles from Australia suitable for comparison

with the ca. 1.39 Ga Biberkine pole. However, plotting the 1.39 Ga pole

against existing Australian APWP allows us to test the different tectonic mod-

els of the amalgamation of Australia (e.g., Cawood and Korsch, 2008). The

late Palaeo- and Mesoproterozoic Australian APWP is predominantly defined

by the palaeopoles from the North Australian Craton (NAC), most of which are

from the volcano-sedimentary sequence of the McArthur Basin (Idnurm, 2000; Id-

nurm and Giddings, 1988; Idnurm et al., 1995). This NAC APWP is reasonably

well-constrained for the time interval between ca. 1790 Ma (Hart Dolerite pole,

130



NAC

WAC

SAC

OP3 (1.39)

(1.32)

(1.59)

(1.65)

NAC

WAC
SAC

OP3

(1.39)

(1.21)

(1.32)

(1.59)

(1.65)

a

b

(1.65)
(1.64)

(1.64)

(1.61)

(1.65)

(1.64)
(1.64)

(1.61)

Figure 5.11: Orthographic projections shows: (a) a revised Australian APWP
passing through the 1.39 Ga Biberkine pole; (b) a previously established APWP
(largely following Idnurm, 2000; Idnurm and Giddings, 1988; Idnurm et al., 1995;
Schmidt, 2014; Wingate and Evans, 2003) with the Biberkine pole plotted be-
tween the OP3 poles and the 1.32 Derim Derim pole. Both APWPs are in NAC
coordinates and dashed lines are used to depict poorly defined segments. The
right panel of the figure shows the same APWP as the left panel, but with 95%
confidence circles. In (a), the WAC and SAC are rotated to the NAC with a
Euler pole at 20°S, 135°E with rotation=40°; in (b) the SAC remain the same
position as in (a), and the WAC is rotated with an Euler pole at 15.9°N, 26.1°E
with rotation=-86.3°. DD−Derim Derim sills (Kirscher et al., submitted). The
information and acronyms for the other poles are given in Table A.2.
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Kirscher et al. 2019) and ca. 1589 Ma (the upper Balbirini Dolomite pole, Idnurm

2000). The segment after ca. 1589 Ma is more speculative (dashed segment in

Figure 5.11), defined mainly by a group of overprint poles without any age con-

straints from NAC (OP3) and the Blue Range Beds pole (Schmidt and Williams,

2011) from the South Australia Craton with poor age constraints (1.6−1.1 Ga,

see Figure 5.11). The next precisely dated pole for the APWP is the ca. 1.32 Ga

Derim Derim pole from NAC (Kirscher et al., submitted).

The 1.39 Ga Biberkine pole does not fall on this previously established APWP,

for which we propose two interpretations. The first is that the current Australian

APWP needs a major revision to make it pass through the 1.39 Ga pole (Fig-

ure 5.11). In this revised APWP, the age of the OP3 group of poles and the

Blue Range Beds pole would be constrained within a rather narrow age range

between ca. 1.39 and 1.32 Ga. This interpretation is based on the assumption

that the NAC and WAC were assembled before ca. 1.39 Ga (around 1.7 Ga; see,

for example, Li and Evans 2011), which has long been proposed (e.g., Cawood

and Korsch, 2008; Li, 2000). This major revision of the APWP would mean that

Australia rifted away from Nuna before 1.39 Ga (Figure 8.3c). Alternatively, if

the 1.39 Ga pole is plotted between the OP3 poles and the Derim Derim pole,

the WAC would be separated from the NAC+SAC, which means that the WAC

assembled with the NAC+SAC after 1.39 Ga. This alternative interpretation

is supported by the recently reported metamorphic zircon age of ca. 1380-1275

Ma (Anderson, 2015; Gardiner et al., 2018) from the Rudall Province, which

gives a new age to the high-pressure metamorphism (presumably reflecting the

NAC-WAC collision) previously thought to be ca. 1.7 Ga. The late assembly of

proto-Australia, if true, would imply that the WAC was never part of Nuna or

that it only joined Nuna shortly before its breakup (Figure 8.3c).

As noted above, however, the segment of the APWP after ca. 1.59 Ga is poorly

constrained, thus, any interpretations based on this segment should be made very

cautiously. More palaeomagnetic data of Mesoproterozoic age, especially from the
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WAC, are needed to test these two models.

5.7.3 Tectonic implications of the ca. 1.21 Ga Marnda

Moorn pole

The palaeopole of the ca. 1.21 Ga Marnda Moorn dykes has great significance

for global palaeogeographic reconstructions. While similar connections (direc-

t/indirect) between Australia and Laurentia have been proposed for both the

Mesoproterozoic Nuna and Neoproterozoic Rodinia supercontinents (e.g., Evans

et al., 2016; Goodge et al., 2008; Li et al., 2008), the Marnda Moorn pole puts

Australia at high latitude ca. 1.21 Ga and, thus, requires a separation between

Australia and Laurentia (Pisarevsky et al., 2003, 2014) during the transition from

Nuna to Rodinia. Similar Australia-Laurentia fits, both in Nuna and in Rodinia

imply that they broke up and assembled in an introversion fashion. This, together

with other lines of evidence, has led researchers to propose that the superconti-

nent cycle is modulated by alternating extroversion and introversion assemblies

(Li et al., 2019).

5.8 Conclusions

An extensive palaeomagnetic study of the mafic dykes in the southwestern Yilgarn

Craton yielded a new, likely primary, ca. 1.39 palaeopole. The ca. 1.21 Ga

Marnda Moorn pole and the YE pole were also improved with more results, with

a possible overprint origin for the latter proposed. The YD pole is likely related

to an overprint of ca. 500 Ma. Taking all the palaeomagnetic results from this

area together, it is clear that there was no pervasive remagnetisation at least after

ca. 2.41 Ga. Overprints related to the Pan-African tectonic event (the Pinjarra

Orogeny ) are confined to a zone close to the western margin of the Yilgarn

Craton. The 1.39 Ga pole requires either a major revision of the Australian

Proterozoic APWP, or a late assembly (post-1390 Ma) between NAC and WAC.
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Chapter 6

Palaeomagnetism of the Gawler

Range Volcanics revisited:

Primary after all?

6.1 Abstract

The South Australia Craton (SAC) is one of the major Precambrian cratons

that constitute the western 2/3 of the Australian continent. However, pre-

Neoproterozoic palaeomagnetic data are extremely rare, hampering the under-

standing of when this craton joined the other cratons to form the Australian con-

tinent. Previous studies on the unique palaeomagnetically suitable, 1.59−1.58

Ga Gawler Range Volcanics (GRV) reached contradicting conclusions about the

age of the magnetic remanence. A new study aiming to resolve this controversy

was conducted. One hundred and seventy-nine samples from twenty-three sites of

the GRV and its co-magmatic Hiltaba Suite Granites (HSG) were collected and

subjected to rock magnetic and palaeomagnetic studies. A positive baked contact

test and a positive fold test were obtained, based on which we suggest that the

magnetic remanence of GRV was acquired during and/or shortly after the erup-

tion and the GRV-HSG, i.e., 1.59−1.58 Ga. After tilt-correction and exclusion
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of lightning-struck sites, the remaining fourteen sites yielded a palaeomagnetic

pole at -63.2°N, 51.8°E, A95=10.4°. By using the better-established GRV pole,

we refined the Euler parameters for the configuration of Australia and Laurentia

ca. 1.6 Ga.

6.2 Introduction

Proto-Australia, consisting of the North, South and West Australian cratons

(NAC, SAC and WAC, respectively), is a key piece of the Mesoproterozoic super-

continent Nuna (e.g., Kirscher et al., 2019; Meert and Santosh, 2017; Nordsvan

et al., 2018; Pisarevsky et al., 2014; Pourteau et al., 2018; Zhang et al., 2012;

Zhao et al., 2002). As the internal relationship among the three members of

proto-Australia during Mesoproterozoic time is the subject of an ongoing debate

(e.g., Betts et al., 2008, 2016; Cawood and Korsch, 2008; Giles et al., 2004; Li,

2000; Li and Evans, 2011, see also discussion in Chapter 5), the NAC, SAC and

WAC should be independently considered in the palaeomagnetically based Nuna

reconstructions. During the existence of Nuna (ca. 1.6 Ga to 1.4−1.3 Ga, see

Kirscher et al. 2019; Nordsvan et al. 2018; Pisarevsky et al. 2014; Pourteau et al.

2018), the only precisely dated palaeopole for the SAC was from the ca. 1.59

Ga GRV, as first reported by Chamalaun and Dempsey (1978) and interpreted

as being based on a primary magnetic remanence. The age of this remanence,

however, was challenged by a later study (Schmidt and Clark, 1992, 2011) which

instead suggested a Devonian remagnetisation age on the basis of a negative fold

test and the comparison with the Gondwana APWP (Figure B.1). Despite the

seemingly negative results of the fold test, alternative interpretations were pro-

posed to explain the negative fold test while still retaining a primary origin of the

magnetic remanence (Hamilton and Buchan, 2010; Wingate and Evans, 2003).

With more extensive sampling and carefully designed field tests, this study aims

to verify the age of the magnetic remanence in the GRV and discuss its tectonic

implications.
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6.3 Gawler Range Volcanics (GRV)

The GRV are one of the rare felsic-dominant large igneous provinces in Earth

history, which erupted during 1592−1587 Ma (Fanning et al., 1988; Jagodzinski

et al., 2016). Together with its co-magmatic Hiltaba Suite granitoids (HSG),

the GRV cover an area >25,000 km2 (Blissett et al., 1993, see Figure 6.1) and

occupy >100,000 km3 in volume. The GRV overlie the Archaean basement of the

Gawler Craton of South Australia and are conventionally divided into an upper

and a lower unit (e.g., Allen et al., 2003, 2008; Blissett et al., 1993). The lower

GRV are mainly composed of lavas and ignimbrites with compositions ranging

from mafic to felsic, but they are dominated by felsic rocks (Agangi et al., 2011,

2012; Allen et al., 2008). The Chiltanilga Volcanic Complex and the Glyde Hill

Volcanic Complex (Figures 6.1 and 6.3) in the northwestern part of the GRV are

the main outcrops of the lower GRV. On the southern margin, the lower GRV are

poorly exposed, represented by small scattered outcrops of the Waganny Dacite

and the Bittali Rhyolite (Figures 6.1 and 6.2). Basalts and andesites comprise

only approximately 10% of the total volume of the lower GRV. The unnamed

basalts within the Chiltanilga Volcanic Complex (Figures 6.1 and 6.2) and the

Nuckulla basalt within the Glyde Hill Volcanic Complex are the only known mafic

units of the GRV.

The upper GRV (Blissett et al., 1993) are mainly composed of three massive

felsic lava units: the Moonaree Dacite Member, the Pondanna Dacite Member

and the Eucarro Rhyolite, the former two of which are collectively called Yardea

Dacite (Figures 6.1 and 6.2). Each of these three lava units is more than 1000 km3

in volume (Allen et al., 2008). The Eucarro Rhyolite was originally differentiated

into Paney Rhyolite, Yannabie Rhyodacite and Nonning Rhyodacite (Blissett,

1986), and these were later suggested to be classified as a single unit by Allen

et al. (2003, 2008) based on their virtually identical geochemical characteristics

and similar textures. The upper GRV are mainly exposed in the central part and

the southern margin of the GRV (Figure 6.1). Unlike the lower part, the upper
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Figure 6.1: Simplified geological map of the Gawler Range Volcanics and the
Hiltaba Suite Granitoids based on the 1:100K Surface Geology Map of South Aus-
tralia, showing the sampling sites of Chamalaun and Dempsey (1978), Schmidt
and Clark (2011), and this study. The prefix “GRV” for all sites is omitted in the
map for simplicity. Inset: location and extent of the Gawler Range Volcanics.

150



GRV have no known mafic units.

While the original U-Pb geochronology determined indistinguishable ages

from the lowermost (1591 ± 3 Ma, Fanning et al. 1988) and upper (1593 ± 3

Ma, Fanning et al. 1988) parts of the GRV, recent high precision CA-TIMS U-

Pb geochronology on zircons yielded 1589.3 ± 0.5 Ma for the Bittali Rhyolite

(lower GRV), 1587.5 ± 0.6 for the Eucarro Rhyolite and 1587.2 ± 0.5 Ma for the

Moonaree Dacite Member (Jagodzinski et al., 2016). The GRV have exception-

ally preserved primary igneous textures and depositional structures. There are

no evidence indicating that they were significantly deformed or metamorphosed.

The lower GRV are gently to moderately dipping, whereas the upper GRV are

essentially flat-lying (Allen et al., 2003). The GRV are intruded by rhyolitic dykes

(Agangi et al., 2012) and granites of the Hiltaba Suite (Blissett et al., 1993), and

the age of the Hiltaba Suite range from 1597 to 1574 Ma (Fanning et al., 2007).

6.4 Previous palaeomagnetic studies of the GRV

The first palaeomagnetic study of the GRV was conducted by Chamalaun and

Dempsey (1978), who collected 52 samples from a cross-section of the Chiltanilga

Volcanic Complex in the Kokatha area (Figures 6.1 and 6.3a). Based on the dif-

ference in lithologies, they divided their results into five groups, all of which reveal

consistent NE, moderately upward-pointing directions after step-wise demagneti-

sation. The results of thermal magnetisation and XRD analyses shows that the

main magnetic phase of their samples is magnetite. They argued that the ChRM

carried by GRV were primary because there was no evidence of deformation and

metamorphism for the GRV after its extrusion.

In subsequent studies, Schmidt and Clark (1992, 2011) collected a total of

69 samples from three sites of HSG and 11 sites of the GRV (Figure 6.1). The

HSG samples appeared to yield scattered directions around the present-day dipole

field or current Earth magnetic field, and were therefore excluded from further

examination. The remaining GRV samples revealed an in situ ChRM carried by
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50

Figure 6.2: Detailed geological map of GRV occurrence near the Uno station
(modified from Allen et al. 2003) showing the sampling sites from Schmidt and
Clark (2011) and this study. The structural measurement showing on the Bittali
Rhyolite were taken from the 1:250K geological map of Port Augusta, sheet SI/54-
04 (McAvaney et al., 2009). The picture on the lower right corner shows the out-
crop of sampling site GRV4. Acronyms for the sites of Schmidt and Clark (2011):
YD−Yardea Dacite; BY−Black Yardea Dacite; RY−Rhyolite; PH−Porphyritic
Rhyolite. Several sites of Schmidt and Clark (2011) fall out of the actual extent
of the GRV, which could be related to the availability of only degrees and minutes
of the coordinates of Schmidt and Clark (2011).

152



v v v v v v v v v v v

v v v v v v v v v v v

v v v v v v v v v v v

v v v v v v v v v v v

v v v v v v v v v v v

v v v v v v v v v v v

v v v v v v v v v v v v

v v v v v v v v v v v v

v v v v v v v v v v v v

v v v v v v v v v v v v

v v v v v v v v v v v v

v v v v v v v v v v v v

v v v v v v v v v v v v

v v v v v v v

v v v v v v v

v v v v v v v

v v v v v v v

v v v v v v v

v v v v v v v

v v v v v v v

v v v v v v v

v v v v v v v

v v v v v v v

v v v v v v v

v v v v v v v

")
")

") ")

")

")")")

Mah

Mh

Mi2 Mi5Mi1

Mal

Mi1
Mh

Mi4

Mh

Mh

Mah
Mi2

Mh

Mh

Mi2

Mah1

Mi2
Mi2

Mah

Mh

Mi7

Mah

Mh

Mi5

Mi3

Ma5

Mi9

Mah

Ma5

Ma5

Ma5

135°18'E135°17'E135°16'E135°15'E135°14'E135°13'E

31°14'S

31°15'S

1 Km

GRV16

GRV15

GRV20

GRV19

GRV18
GRV17

GRV21GRV22

a

This study Chamalaun & Dempsey (1978)

")

")

")

")

")

")

Myy

Myy

Myy

Mym

Myy

Myb

Myn

Mye

Mym

Myc

Myy

My1

Myn

Mye

Myb

Myc
Mye

Myy

Mye

Mym

Myy
Myc

Mym
Myb

Mym

Mym

Myc

Myb

Myy

Myc

Myc

Myc

My1Myc

Myn
Mye

Myc Mym

Mym

Myy

Myb

Ma5

Ma5
Myn

Mym

Myc

Myc

Myy

Mym

Myy

Ma5

Mym

Myb

Mym

Ma5

Ma5

Mym

Myc

Myc

Mym

Myc

My1

Myy

Ma5

Myc

Ma5

Myy
Myb

Mye

Ma5

My1

Ma5

Myc

Ma5

Ma5

Ma5

Ma5

Mym

Mye

Myc

Myy

Ma5

Ma5

Ma5

Ma5

Ma5
Ma5

Mym

Ma5

Ma5

Ma5

Ma5

Mym
Mym

Myc

Ma5

Myc Ma5

134°56'E134°54'E134°50'E

31°42'S

31°44'S

1 Km
GRV10

GRV12

GRV11

GRV14

GRV13

GRV8

GRV9

b

")

Kokatha

Mal

v v

v v

v v v

v v vMa5 Rhyolite and rhyodacite dykes

Mi3 Basalt

Mah Chandabooka Dacite

Mi4 Andesite

Mah1 Tu�, banded, green-grey, basal unit

Mi5 Rhyodacite-rhyolite

Lake Gairdner RhyoliteMh Hiltaba Suite

Mi7 Rhyodacite

Mi1 Basalt

Mi9 Andesite

Mi2 Rhyodacite

Ma5

Myb Bunburn Dacite

Myc Childera DaciteMye Wheepool Rhyolite

Mym Mangaroongah Dacite

Myn Nuckulla Basalt

Myy Yantea Rhyodacite My1 Rhyolite, �ow banded, rhyolitic tu�

Rhyolite and rhyodacite dykes

Figure 6.3: Geological map of GRV for: (a) sampling area near Kokatha station
(Chiltanilga Volcanic Complex, see Figure 6.1); (b) sampling area near Lake
Everard (Glyde Hill Volcanic Complex, see Figure 6.1).
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magnetite with a direction similar to that found by Chamalaun and Dempsey

(1978). Schmidt and Clark (2011) referred to a report (Turner, 1975) claiming

that the six sites to the ENE of Uno station (Figures 6.1 and 6.2) were collected

from steeply tilted outcrops (85° to the north), whereas the remaining sites were

collected from subhorizontal strata. After unfolding the directional results from

the sites near Uno, the scatter of the whole dataset significantly increased, yielding

a negative fold test. This and the resemblance of the in situ GRV pole with

Devonian Australian poles led Schmidt and Clark (2011) to conclude that the

magnetic remanence carried by the GRV are related to an overprint of Devonian

Age, possibly caused by the Alice Spring Orogeny.

In this study, we collected 179 block/core samples from 23 sites (Figure 6.1

and Table 6.1), covering all of the main units of the GRV. One site from the

Bittali Rhyolite (GRV4) near Uno (Figure 6.2) was sampled to compare with

the results of (Schmidt and Clark, 2011). Special effort was made to sample the

units that were not covered by the two previous studies. Specifically, the Nuckulla

Basalt of the Glyde Hill Volcanic Complex and two rhyolitic dykes of the HSG

were sampled for palaeomagnetic studies for the first time (Figure 6.3).

6.5 Methods

Routine palaeomagnetic and rock magnetic lab procedures were followed in this

study. Before demagnetisation, crushed powders of each site were prepared for

thermomagnetic studies to determine the magnetic mineralogy. The magnetic

susceptibility of at least one sample from each site was measured against tem-

perature with an AGICO MFK-1 Kappabridge (equipped with a CS4 furnace) in

air. Based on the results of the one-cycle heating and cooling experiments, rep-

resentative samples were subjected to repeated progressive heating experiments

(Hrouda et al., 2003).

Three different demagnetisation techniques were employed in this study. The

majority of the samples (80%) was first immersed in liquid nitrogen (LN2) for 30
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minutes for low-temperature demagnetisation (Schmidt, 1993). The LN2-treated

samples were then subjected to progressive, usually 16−22 steps, thermal demag-

netisation until the remanence direction became erratic or the intensity fell below

the instrument background level. The remaining samples were subjected to either

15 mT of alternating field (AF) demagnetisation followed by thermal treatment

or AF demagnetisation up to 110 mT. The thermal demagnetisation was con-

ducted in an ASC TD-48 thermal demagnetiser. Remanent magnetisation was

mainly measured with a 2G RAPID system. When the intensity of the sample

was too strong to be measured with the SQUID magnetometer, an AGICO JR-6A

spinner magnetometer was used. All rock magnetic and palaeomagnetic analyses

were conducted in the palaeomagnetism laboratory at Curtin University in Perth.

All magnetic mean vectors were calculated with at least four consecutive steps

with principal component analysis (Kirschvink, 1980). Remagnetisation great cir-

cles were fit in unusual cases (10%) when stable endpoints were not reached. Site-

mean directions were calculated using the statistics developed by Fisher (1953) or

the iterative approach combining great circles and magnetic vectors (McFadden

and McElhinny, 1988). Site mean directions were only calculated for sites with

at least three samples showing consistent within-site directions. All vector fitting

and mean directions were calculated using the PmagPy package (Tauxe et al.,

2016).

6.6 Rock magnetism

Most of the thermomagnetic results can be divided into two groups based on their

different behaviours. Type I, observed in samples collected from felsic units (Fig-

ure 6.4), has comparatively low susceptibility, generally < 10 × 10−7 m3 · kg−1.

The κ-T curves of type I are characterised by a prominent drop in susceptibil-

ity at around 100°C during heating, indicating the presence of goethite (Dunlop

and Özdemir, 1997). The drop is reversible until heating above 300°C (Fig-

ure 6.5a), which reflects the conversion of goethite to very fine-grained haematite
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(Dekkers, 1990; Henry, 2001). After ∼ 120°C, the susceptibility gently declines

until another significant drop between 500 and 600°C, indicating the presence of

(titano)magnetite.
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Figure 6.4: Representative susceptibility versus temperature curves (κ-T) of one-
cycle heating and cooling experiments.

Type II magnetic mineralogy is found mainly in samples from the mafic units,

the magnetic susceptibility of which are significantly higher, usually by an order

of magnitude, than those of type I (Figure 6.4). The type II κ-T curves all show a

sudden drop between 550 and 600°C, indicating that the main magnetic phase is

(titano)magnetite. Occasionally, the sudden drop in susceptibility is preceded by

an increase (e.g., GRV12, seeFigure 6.4). This phenomenon is known as “the Hop-
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Figure 6.5: Susceptibility versus temperature curves of repeated progressive heat-
ing experiments showing representative samples of: (a) Type I magnetic minerol-
ogy; (b) Type II magnetic mineralogy.

kinson Peak” and is an indication of the presence of single-domain and/or pseudo-

single-domain magnetic grains (Dunlop and Özdemir, 1997; Henry, 2001). Type

II κ-T curves sometimes show a distinct hump between 200 and 300°C, which is

a diagnostic signal of hexagonal pyrrhotite (Dunlop and Özdemir, 1997). Other

samples with type II mineralogy show constant decreases after 300°C (Figures 6.4

and 6.5b), which reflect the contribution of maghaemite, a low-temperature oxi-

dation product of magnetite commonly found in Precambrian mafic rocks (e.g.,

Liu et al., 2018).

The Moonaree Dacite (GRV5 and GRV6) and Wheepool Rhyolite (GRV7)

appear to be exceptions to the two types of magnetic mineralogy (Figure 6.4).

The Moonaree Dacite is intermediate to felsic in composition, but it has a strong

magnetic susceptibility that is comparable to that of the mafic units (Figure 6.4)

implying that the Moonaree Dacite has higher magnetite content than that of

other dacite units of the GRV. The Wheepool Rhyolite shows perfectly reversible

curves and reaches zero susceptibility at 600°C, indicating that its magnetic car-

rier is pure (titano)magnetite and no alteration of the magnetic phase occurred

during the heating process.

In summary, our rock magnetic results indicate that: (i) the main magnetic

phase of the GRV is magnetite; (ii) goethite, pyrrhotite and maghaemite are

present as secondary magnetic phases; (iii) only very minor, if at all, amounts of
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haematite are present.

6.7 Palaeomagnetism

Most of the samples revealed well-behaved demagnetisation trajectories (Fig-

ure 6.6). A secondary component was removed at the initial stage of demag-

netisation, usually in the range of 100−250°C or 0−15 mT (Figure 6.6). The

direction of this component, hereafter referred to as low temperature component

(LTC), overlaps that of the present-day Earth magnetic field (PEF) in the sam-

pling area (Figure 6.7a). Based on its unblocking spectrum and direction, we

interpret the LTC as either a chemical remanent magnetisation (CRM) residing

in goethite formed by recent weathering (type I, see Section 6.6), or a viscous

remanent magnetisation (VRM) carried by multi-domain magnetite (type II, see

Section 6.6). It should be noted that the CRM carried by goethite should have

only been removed by thermal demagnetisation as the field range of AF demag-

netisation of this study is below the coercivity of goethite. In some samples,

a component with moderate stability can be isolated in a range of 250−500°C

of thermal demagnetisation, which we call the medium temperature component

(MTC). However, the MTC, probably carried by pyrrhotite or maghaemite, does

not show a consistent direction within sites; therefore, no further attention was

given to this direction.

After the LTC and MTC were removed, a characteristic component was de-

termined by thermal demagnetisation in the range of 500−600°C or by AF de-

magnetisation in the range of 40−110 mT (Figure 6.6). This component (high-

temperature component or HTC hereafter) resides in (titano)magnetite evidenced

by its unblocking temperature (Figure 6.6) and the rock magnetic results (Fig-

ure 6.4). The site mean directions of the HTC of 8 sites are scattered (Table 6.1),

and this dispersion is most likely caused by lightning strikes. In addition, the

majority of samples of these eight sites with scattered site mean directions have

Koenigsberger’s ratios between 20 and 100, while this ratio for the remaining
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Figure 6.6: Zijderveld vector diagrams, stereoplots (equal-area projection) and
intensity decay plots showing demagnetisation results of representative samples.
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a b c

Figure 6.7: Stereoplots (equal-area projection) showing: (a) the in situ mean
direction of the LTC at specimen level; (b) the in situ mean direction of the
HTC at the site level; (c) the tilt-corrected mean direction of the HTC at the
site level. Open/filled symbols indicate upper/lower hemisphere directions. This
convention is used throughout the chapter.

samples of other sites is commonly <5. The abnormally high Koenigsberger’s ra-

tio is indicative of lightning-induced remanent magnetisation (LIRM). Although

special efforts, such as checking compass deflections on the outcrop, were made in

the field to avoid collecting lightning-struck samples, the rather flat topography

makes LIRM inevitable. The site mean direction of the HTC of the remaining

sites are dominantly NE moderately upward, although the opposite polarity is

also found in two sites (GRV20 and 22, see Figures 6.6 and 6.7 and Table 6.1).

The reversal test (McFadden and McElhinny, 1990) for the HTC is “intermedi-

ate”, which is probably caused by an insufficient number of sites for the polarity

with a downward direction.

6.8 Field tests

6.8.1 Fold test

GRV4, collected from the tilted Bittali Rhyolite near Uno Figure 6.2, can be

used to perform a fold test. Our average bedding measurements at this site are

dip direction/dip = 358°/40°. The site mean direction of GRV4 is significantly
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shallower than those of the other sites (Figure 6.7). As only one site (GRV4)

was collected from the tilted GRV, we performed the bootstrap fold test (Tauxe

and Watson, 1994) on the specimen level. The tightest grouping of the data is

reached between 98−119 per cent of unfolding, which encompasses 100 per cent

of unfolding and therefore constitutes a positive fold test (Figure 6.8a). For com-

parison, we performed another fold test using the average bedding measurement

showed on the 1:250K geological map (Figure 6.2, see McAvaney et al. 2009;

SARIG 2019). The maximum clustering is achieved between74−103 per cent of

unfolding (Figure 6.8b), which also constitutes a positive fold test.

6.8.2 Baked contact test

Two rhyolitic dykes (GRV13 and GRV20, see Figure 6.3) presumably belong

to the HSG, and their host rocks were sampled for baked contact tests. The

HTC direction of GRV13 is essentially the same as that of the host rocks within

(GRV12) and beyond (GRV8, GRV9, GRV10, GRV14) the baked zone of the

dyke (Figure 6.9a). There are three possible interpretations: (i) the rhyolitic dyke

intruded shortly after the eruption of the GRV in this area; (ii) the emplacement

of the HSG contemporaneously remagnetised the host rock at the same time as

the dyke intruded (at least 1 km of the overlying rocks were eroded from the

GRV, see Allen et al. 2008); (iii) all the rocks in this area were remagnetised in

a significantly later time. As the available data are unable to exclude any of the

three cases, this baked contact test is interpreted as inconclusive.

GRV20 (∼20 metres in width) outcrops in a creek bed, intruding the Chand-

abooka Dacite in Kokatha area (Figure 6.3a). GRV22 was collected within 5

metres from the western margin of GRV20, whereas the samples of GRV21 were

distributed within 10−30 metres from the eastern margin (Figure 6.3a). GRV20

revealed a SW moderate downward direction (Figure 6.7), which was not iden-

tified in previous studies (Chamalaun and Dempsey, 1978; Schmidt and Clark,

2011). The HTC direction of GRV22 is close to, although statistically different,
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Figure 6.8: A three-panel figure showing the results of bootstrap fold tests (Tauxe
and Watson, 1994) with different bedding corrections. On the left and middle
panels, stereoplots (equal-area projection) show the direction of the HTC (speci-
men level) in in situ coordinates and tilt-corrected coordinates, respectively. The
right panel is the major eigenvalue of the orientation matrix (τ1, red dashed lines)
of the 1000 bootstrapped data sets plotted against the percentage of unfolding.
The green line is the CDF (cumulative density function) of the maxima in τ1 for
all of the bootstraps. Blue dashed lines are the 95% confidence limits for the
maximum of τ1.
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(dyke)

a b

Figure 6.9: Stereoplots (equal-area projection) showing the baked contact results
of: (a) GRV13; (b) GRV20. Refer to Figures 6.2 and 6.3 and text for the field
relationship of the dykes and their host rock.

from that of the GRV20 (Figure 6.9b). The difference in the HTC directions

of GRV20 and GRV22 could be because of a recording of a transitional direc-

tion of the latter or simply because of secular variation of the Earth magnetic

field. The site mean direction of GRV21 is scattered, which is likely to be caused

by lightning-strikes because GRV21 was sampled uphill from the creek bed and

most of the samples from this site have high Koenigsberger’s ratios. Although

the host rock immediately beyond the baked zone (GRV21) did not reveal mean-

ingful results, other units of the GRV further west to GRV20 (GRV15, GRV19

and the sites of Chamalaun and Dempsey 1978) revealed expected directions of

the GRV (NW moderate upward, Figure 6.9b). By incorporating these observa-

tions together, we tentatively interpret the baked contact test for GRV20 to be

positive.

6.9 Discussion

6.9.1 The origin of the magnetic remanence of the GRV

We found that the fold test reported by Schmidt and Clark (2011) has several

inconsistencies. First, according to the information in their Table 1, the lithol-
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ogy of the six sites they collected from the tilted volcanic sequence include the

Yardea Dacite (YD1), the Black Yardea Dacite (BY2), a rhyolite unit (RY1, RY3,

RY3) and a porphyritic rhyolite unit (PH1, see Figure 6.2). However, the closest

outcrop of the Yardea Dacite to the Bittali Rhyolite is ∼20 km to the north of

the latter (Figure 6.2), which is the tilted volcanic sequence described by Turner

(1975). Meanwhile, the coordinates provided by Schmidt and Clark (2011) show

that their sampling sites were distributed along a ∼3 km traverse, which does

not seem to allow sampling of both the Yardea Dacite and the Bittali Rhyolite,

even accounting for the GPS uncertainties. If they did sample the Yardea Dacite,

which has been reported as flat-lying (Allen et al., 2003; Turner, 1975), perform-

ing tilt correction would be incorrect. If we abandon their lithology description

and consider the allowable range of the GPS accuracy, it is possible that they

sampled the Eucarro Rhyolite (YD1 and BY2) and the Bittali Rhyolite (RY1,

RY2, RY3 and PH1). In this case, it would be again incorrect to perform tilt

corrections on all of them, because the Eucarro Rhyolite is essentially horizontal,

as evidenced by the vertical columnar joints (Allen et al., 2003, 2008; Turner,

1975).

Second, Schmidt and Clark (2011) did not report any bedding measurements

for their samples. They used a constant mean dip of 85° for their tilt correction

based on Turner 1975’s report. However, the 85° of dipping reported by Turner

(1975) has not been confirmed by any later geological survey in this area (McA-

vaney et al., 2009; SARIG, 2019). Instead, later surveys in this area found the

strata to be dipping on average of 50−60° northward, which is more consistent

with our measurements from GRV4 (40° northward, see Table 6.1).

Given the fact that our samples from the Bittali Rhyolite (GRV4) carry a

direction with very shallow inclination while all six sites of Schmidt and Clark

(2011) revealed moderate to steep inclinations, we suspect that the six sites were

actually all from the Eucarro Rhyolite. This, if true, means that all of the GRV

samples of Schmidt and Clark (2011) were collected from untilted strata, which
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would yield a false negative fold test once the samples are corrected for tilting.

In summary, the fold test of Schmidt and Clark (2011) seems to be questionable

because of the ambiguous sample localities and unconfirmed bedding attitudes. In

contrast, our fold test with exact bedding measurements from the flow-banding,

which are more consistent with the geological survey in the area, yields a positive

fold test using sites that are undoubtedly from the tilted strata. This gives us

confidence that we can refute the conclusions of Schmidt and Clark (2011) and

instead prove that the magnetic remanence of the GRV has been acquired before

folding.

As the 1587.5 ± 0.6 Ma eruption of the Eucarro Rhyolite should have remag-

netised the underlying 1589.3 ± 0.5 Ma Bittali Rhyolite (for the details of the

geochronology, see Jagodzinski et al., 2016), our positive fold test would suggest

that the tilting of Bittali Rhyolite occurred after the GRV in this area cooled

below the Curie temperature. The tilting of the Bittali Rhyolite was suggested

to be related to movements along the Uno fault separating the southern margin

of the lower GRV from the older crystalline basement (Turner, 1975, see Fig-

ure 6.2). The age of the fault is unknown, but it is suspected to have formed

during the extrusion of the GRV (SARIG, 2019). The Uno fault could also have

moved after it formed. Without knowing the timing of the fault movement that

titled the adjacent Bittali Rhyolite, our positive fold test cannot definitively con-

strain the age of the magnetic remanence of the GRV. Nonetheless, this positive

fold test invalidates the foundation of the claim that the GRV was remagnetised

during the Devonian (Schmidt and Clark, 2011), and, together with the absence

of any sign of post-depositional chemical or deformational features of the GRV, a

primary nature (palaeomagnetic age essentially identical to the rock age) of our

observed magnetic signal seems the most likely conclusion.

The fold test, although by itself inconclusive about the age of the magnetic

remanence, when combined with the tentatively positive baked contact test (Fig-

ure 6.9) of the rhyolitic dyke (GRV20) in Kokatha area (Figure 6.3a), suggests
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that the magnetic remanence carried by different units of the GRV (some of the

earlier cooling units might have been remagnetised by later eruptions) are all

thermal remanent magnetisations blocked in a short time interval between 1.59

Ga and 1.58 Ga. We, therefore, conclude that the GRV palaeopole is a precisely

dated key pole. The GRV pole falling on the Devonian segment of the Gondwana

APWP (Figure B.1), an argument used by Schmidt and Clark 2011 to argue for

overprint origin of the GRV pole, should be treated as a mere coincidence.

6.9.2 Tectonic implications of the GRV pole

Accumulating evidence supports a direct connection between Australia and Lau-

rentia in the Mesoproterozoic supercontinent Nuna (e.g., Betts et al., 2016; Goodge

et al., 2008; Kirscher et al., 2019; Mulder et al., 2015; Nordsvan et al., 2018; Payne

et al., 2009; Pisarevsky et al., 2014; Pourteau et al., 2018; Thorkelson et al.,

2001a,b; Zhang et al., 2012). With our better-established GRV pole, we propose

a new ca. 1.6 Ga configuration for Australia and Laurentia (Figure 6.10), which

largely follows previous models but with refined Euler parameters to better align

the geological and palaeomagnetic evidence. The SAC (and its extension into

East Antarctica, Mawson) is rotated 52° (CCW) to the NAC coordinates with a

Euler pole at -25°N, 136°E following Giles et al. (2004). It should be noted that

while the rotation of the SAC relative to the NAC was independently established

by aligning Palaeoproterozoic−Mesoproterozoic tectonic elements of the Broken

Hill (SAC) and Mount Isa (NAC) terranes, this model also brings the coeval yet

discrepant poles from the GRV and the Upper Balbirini Dolomite (BDU here-

after, Idnurm 2000) of the NAC to a closer match (Figure 6.10). The NAC is

then rotated into the Laurentia reference frame with an Euler pole of -38.0°N,

94.9°E, rotation = 107.5° (CCW), which is slightly modified from (Kirscher et al.,

2019) to better match the Georgetown terrane (NAC) with the Wernecke Super-

group (Laurentia, see Figure 6.10), the former were recently suggested to have

originated from the latter (Nordsvan et al., 2018). The closeness of the NAC and
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NW Laurentia also accounts for their final collision at 1.6 Ga (Pourteau et al.,

2018). Due to a lack ca. 1.59 Ga poles and the possibility of not being part of

Australia at this time (discussion in Chapter 5), the WAC is not included in this

reconstruction.

ca. 1.6 Ga

Western Channel Diabase
1592.4 ± 2.5 Ma

Mt. Isa

Georgetown

NAC

SAC

East Antarctica
(Mawson)

Wernecke
Supergroup

Curnamona

Mammoth dyke swarm
1590 ± 3 Ma

GRV-HSG
1.59-1.57 Ga

GRV

WCD

BDBU

ca. 1.58 Ga Benagerie
Volcanics

Euler parameters:
Mawson to SAC coordinates:
1.3°N, 37.7°E, rotation = 30.3°

SAC+East Antarctica to NAC coordinates:
-25.0°N, 136.0°E, rotation = 52.0°

NAC to Laurentia coordinates:
38.0°N, 94.9°E, rotation = 107.5°

Figure 6.10: A palaeogeographic reconstruction of the NAC, SAC, East Antarc-
tica and Laurentia in orthographic projection. The Euler parameters are: Maw-
son (Antarctic Part) rotated to SAC in its Gondwana configuration using a Euler
pole (Collins and Pisarevsky 2005) at 1.3°N, 37.7°E, rotation = 30.3°. For dis-
cussion of other Euler parameters, refer to the text. Acronyms for palaeopoles:
BDBU−Balbirini Dolomite Upper (Idnurm, 2000); WCD−Western Channel Di-
abase (Hamilton and Buchan, 2010).

A recent geochronological study recognised a ca. 1.59 Ga dyke swarm in

the Tobacco Root Mountains of western Laurentia (Rogers et al., 2018), which

was combined with the ca. 1.59 Ga Western Channel Diabase in Yukong area to

represent a large igneous province (LIP) named Mammoth-Western Channel LIP.
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Rogers et al. (2018) further suggested that the Mammoth-Western Channel LIP

could share the same plume centre that generated the GRV, HSG and Benagerie

Volcanics of the SAC. Our reconstruction supports this hypothesised massive ca.

1.59 LIP shared by Australia and Laurentia (Figure 6.10). Another advantage of

this reconstruction is that it also accounts for the ca. 1.4 Ga connection between

East Antarctica and Laurentia, which was proposed by Goodge et al. (2008)

based on the 1.4 Ga glacial clast of A-type granite found in East Antarctica that

matches well with the coeval granites in Laurentia.

6.10 Conclusion

A palaeomagnetic investigation of the GRV in South Australia yielded a pos-

itive fold test and a tentatively positive baked contact test, thus establishing

the primary origin of the magnetic remanence carried by GRV. A high quality

palaeomagnetic pole based on 14 sites were obtained, which is at -63.2°N, 51.8°E,

A95=10.4°. Using this high-quality GRV pole, we refined the reconstruction of

Australian continent and its relative position to Laurentia in the supercontinent

Nuna at 1.6 Ga.
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Chapter 7

First Precambrian

palaeomagnetic data from the

Mawson Craton (East

Antarctica) and tectonic

implications1

7.1 Abstract

A pilot palaeomagnetic study was conducted on the recently dated with in situ

SHRIMP U-Pb method at 1134 ± 9 Ma (U-Pb, zircon and baddeleyite) Bunger

Hills dykes of the Mawson Craton (East Antarctica). Of the six dykes sampled,

three revealed meaningful results providing the first well-dated Mesoproterozoic

palaeopole at 40.5°S, 150.1°E (A95 = 20°) for the Mawson Craton. Discordance

between this new pole and two roughly coeval poles from Dronning Maud Land

1This chapter is published as Liu, Y., Li, Z.X., Pisarevsky, S.A., Kirscher, U., Mitchell, R.N.,
Stark, J.C., Clark, C. and Hand, M., 2018. First Precambrian palaeomagnetic data from the
Mawson Craton (East Antarctica) and tectonic implications. Scientific reports, 8(1), p.16403.
https://doi.org/10.1038/s41598-018-34748-2
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and Coats Land (East Antarctica) demonstrates that these two terranes were

not rigidly connected to the Mawson Craton ca. 1134 Ma. Comparison between

the new pole and that of the broadly coeval Lakeview dolerite from the North

Australian Craton supports the putative ∼40° late Neoproterozoic relative rota-

tion between the North Australian Craton and the combined South and West

Australian cratons. A mean ca. 1134 Ma pole for the Proto-Australia Craton

is calculated by combining our new pole and that of the Lakeview dolerite after

restoring the ∼40° intracontinental rotation. A comparison of this mean pole with

the roughly coeval Abitibi dykes pole from Laurentia confirms that the SWEAT

reconstruction of Australia and Laurentia was not viable for ca. 1134 Ma.

7.2 Introduction

East Antarctica has been a key piece in Precambrian palaeogeographic recon-

structions (e.g., Li et al., 2008; Merdith et al., 2017; Pisarevsky et al., 2014a;

Zhang et al., 2012). Nevertheless, available constraints for Precambrian palaeo-

geography for East Antarctica are quite sparse for several reasons: (i) logistical

inaccessibility, (ii) limited outcrops due to the thick ice cover, and (iii) difficulties

in conducting fieldwork in the severe weather. There are only two Precambrian

palaeomagnetic poles available from East Antarctica: the ca. 1130 Ma pole from

the Borgmassivet intrusions in Dronning Maud Land (Jones et al., 2003) and the

ca. 1100 Ma“CL”pole (Gose et al., 1997) from Coats Land (BM and CL here-

after). However, it is likely that neither Dronning Maud Land nor Coats Land

terranes joined the Mawson Craton until the final assembly of Gondwana ca. 520

Ma (Collins and Pisarevsky, 2005; Fitzsimons, 2000; Jacobs et al., 2008; Li et al.,

2008; Loewy et al., 2011; Merdith et al., 2017). Therefore, the BM and CL poles

cannot be used to constrain the location of the Mawson Craton in pre-530 Ma

palaeogeographic reconstructions. As a result of both the lack of palaeomagnetic

data from the Mawson Craton (East Antarctica) and the long-lived connection

between Mawson and Gawler (South Australia) cratons (comprising the so-called
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Mawsonland; see Figure 7.1), the placement of East Antarctica in Precambrian

palaeogeographic reconstructions has relied indirectly on the dataset of Australia

in an assumed Gondwanan configuration (e.g., Evans, 2009; Payne et al., 2009;

Pisarevsky et al., 2014a).

The Bunger Hills area (Figure 7.1) of the Wilkes Land district of East Antarc-

tica is commonly considered to be a fragment of the Archaean Yilgarn Craton

(Spaggiari et al., 2009, 2015; Tucker et al., 2017). Bunger Hills became a part

of the Mawsonland during the ca. 1.3 Ga Albany-Fraser Orogeny (Boger, 2011;

Clark et al., 2000; Fitzsimons, 2003; Tucker et al., 2017). Following the Ectasian

orogenesis, Bunger Hills was intruded by abundant mafic dykes that can be di-

vided into two groups: an older, deformed and metamorphosed dykes, and a

younger, non-deformed and non-metamorphosed dykes. In this study we dealt

with the second group only. These non-deformed dykes were classified into five

compositionally distinctive sub-groups ranging from olivine tholeiites and slightly

alkaline dolerites to picrites-ankaramites (Sheraton et al., 1990). Those five sub-

groups were proposed to have reflected lateral and vertical heterogeneity in their

source regions and indicated the involvement of at least six different source re-

gions of mantle partial melt (Sheraton et al., 1990). One sub-group probably

originated from an enriched lithospheric mantle source with an OIB-like com-

ponent, whereas other dyke groups likely had at least two source components

ranging from slightly depleted to moderately enriched in composition. Geochem-

ical analysis of the largest ∼50-m-wide dyke at Bunger Hills (sample BHD1)

supports this conclusion (Stark et al., 2018).

Whole-rock Rb-Sr and Sm-Nd mineral isochron dating suggests emplacement

of the tholeiites and dolerites at ca. 1140 Ma and the alkali dykes at ca. 502 Ma

(Sheraton et al., 1990, 1992, 1995). The 6 dykes sampled for this study are all

roughly NW-trending dolerites or gabbros. Among them, BHD1, the largest NW-

trending dyke at Bunger Hills, has recently been dated with in situ SHRIMP at

1134 ± 9 Ma (zircon) and 1131 ± 16 Ma (baddeleyite), suggesting that similarly
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oriented dykes with ca. 1140 Ma Rb-Sr and Sm-Nd dates may be coeval (Stark

et al., 2018). In this paper, we present the results of a palaeomagnetic study of

these ca. 1134 Ma Bunger Hills mafic dykes, representing the first Precambrian

palaeomagnetic pole from the Mawson Craton of East Antarctica, and discuss its

tectonic implications.
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Figure 7.2: Simplified geological Map of Bunger Hills showing the sample loca-
tions (modified after Stark et al. 2018).

7.3 Methods

A total of 36 block samples from 6 sites (6 dykes, including the recently dated

BHD1 dyke) were collected for palaeomagnetic analysis (Figure 7.2). All samples

were oriented with both a magnetic compass and a sun compass, except those from

dyke BHD3 where only magnetic compass was used due to weather conditions.

At least two cylindrical specimens were drilled from each block. At least one
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specimen per block was subjected to progressive thermal demagnetisation in 15

to 20 steps from 100 °C to 600 °C using a Magnetic Measurements Ltd thermal

demagnetiser. After each heating step, the magnetisation was measured using

an AGICO JR-6A spinner magnetometer. An initial set of samples was also

subjected to alternating field (AF) demagnetisation and measurement using the

2G RAPID system with maximum AF fields of 110 mT. Both magnetometers are

hosted inside the magnetically shielded room.

Magnetisation vectors were defined using principal component analysis (Kirschvink,

1980). All vectors were calculated using at least four successive steps with max-

imum angular deviations <10°. In cases where demagnetisation failed to reveal

stable endpoints, remagnetisation great circles were used (Halls, 1976). Site-mean

directions were calculated in these cases using the method described by (McFad-

den and McElhinny, 1988). Mean dyke directions were calculated using Fisher

statistics (Fisher, 1953). All calculations were carried out using PuffinPlot (Lur-

cock and Wilson, 2012) and the PmagPy package (Tauxe et al., 2016). GPlates

software (Boyden et al., 2011) was used for palaeogeographic reconstruction.

To identify the magnetic carrier(s) for the various isolated components, sam-

ples with representative demagnetisation behaviour were each given a three-

component isothermal remanent magnetisation (IRM) along three orthogonal

axes using magnetic fields of 2.4 T, 0.4 T and 0.12 T, respectively (Lowrie,

1990), using a Magnetic Measurement MMPM10 pulse magnetiser. The IRMs

were then subjected to progressive thermal demagnetisation. Susceptibility versus

temperature experiments were conducted using an AGICO MFK-1 Kappabridge

(equipped with a CS4 furnace). Hysteresis loops and isothermal remanent magne-

tization curves were obtained with a Variable Field Translation Balance (VFTB,

Krása et al. 2007. All the measurements were carried out in the palaeomagnetism

laboratory at Curtin University.
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7.4 Results

7.4.1 Rock magnetism

The results of the Lowrie (Lowrie, 1990) test show that the low-coercivity fraction

(0−0.12T) with Curie temperatures of ∼580 °˚C is dominant in all tested spec-

imens and is probably carried by multi-domain low-titanium titanomagnetite or

magnetite (Figure 7.3). The medium-coercivity fraction (0.4 T) with Curie tem-

peratures of ∼580 °C is also significant in most tested specimens, suggesting the

additional presence of palaeomagnetically highly stable single-domain (SD) or

pseudo-single-domain (PSD) (titano)magnetite (Figure 7.3a). In one case (spec-

imen BHD6-4B), only multi-domain magnetite is present (Figure 7.3b).

Figure 7.3: Results of thermomagnetic experiments on representative dyke sam-
ples. (a) and (b) thermal demagnetisation of orthogonal three-axis IRMs; (c) and
(d) temperature versus susceptibility curves.

Susceptibility versus temperature curves (Figure 7.3c,d and Figure C.1) show

consistent sharp declines in susceptibility between 560 °C and 590 °C, indicat-

ing that the main magnetic mineral phase is Ti-poor titanomagnetite/magnetite.

Hopkinson peaks (Dunlop, 2014; Dunlop and Özdemir, 1997) are observable in
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some samples (Figure 7.3c,d and Figure C.2b,c) suggesting the presence of sin-

gle domain (titano)magnetite. In all measured samples, a decrease in intensity

during heating starting from 320 °C disappears during cooling, which implies the

occurrence of a phase change during heating. The most plausible explanation is

that maghemite and titanomaghemite, which are the low-temperature oxidation

product of magnetite/titanomagnetite and commonly found in mafic dykes, were

inverted to hematite and (titano)magnetite during heating (Dunlop and Özdemir,

1997). We note that some iron sulphides such as pyrrhotite would also break-

down at this temperature interval. However, the presence of pyrrhotite is often

characterized by a distinct hump in heating curves, which is not evident in our ex-

periments. Repeated progressive heating experiments (Hrouda et al., 2003) were

performed on two representative samples (Figure 7.3d and Figure C.2f). The

results show that two main phase changes occurred at 300−400 °C and 500−600

°C, respectively. The former probably reflects the inversion of maghemite to

hematite causing the susceptibility to decline in heating curves, and the latter ti-

tanomaghemite inverting to magnetite (Dunlop and Özdemir, 1997), responsible

for the increase of susceptibility in cooling curves.

IRM acquisition curves (Figure C.3) show behaviour consistent with the pres-

ence of (titano)magnetite with a rapid increase until saturation at fields of ∼100−200

mT. Hysteresis loops show a typical low coercivity behaviour (Figure C.4). In a

Day plot (Day et al., 1977), the results fall on a MD-SD mixing curve (Dunlop,

2002). Moreover, a representative plot of the derivative of the difference of as-

cending minus descending branch of the positive side of the hysteresis loop reveals

two low coercivity peaks (Figure C.4).

In summary, our rock magnetic analyses suggest the presence of both MD

and SD (low-Ti) titanomagnetite, the latter implying that the BHD dykes are

capable of carrying stable magnetic remanence. Additionally, minor amounts of

maghemite/titanomaghemite may be present.
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7.4.2 Palaeomagnetism

Two types of thermal demagnetisation behaviour were observed in this study.

While ∼40% of specimens showed origin-directed stable endpoints, the remain-

ing ∼60% revealed only great circle demagnetisation behaviour. For all six dykes,

at least one specimen per site yielded stable endpoints. Dyke BHD3 has some-

what random remanence directions, likely caused by the lack of sun compass

orientations, which is essential in polar areas so close to the magnetic pole. Cir-

cles of confidence for BHD4 and BHD6 site-mean directions are too large (α95 >

40 °) to place any significance on their directions. We therefore exclude dykes

BHD3, BHD4, and BHD6 from further analysis and discussion.

Thermal demagnetisation of the remaining dykes revealed two single-polarity

remanence components based on their unblocking temperatures: a low-temperature

component (LTC) and a high-temperature component (HTC, Figure 7.4). The

LTC is observed in most samples and generally removed by heating to ∼250 °C.

It is directed steeply upward to the north (D = 350°, I = −77°, α95 = 12°, k

= 105), which is nearly parallel to the present-day geomagnetic field direction

(GAD direction) in the region (Figure 7.5d). We interpret the LTC as a viscous

remanent magnetisation (VRM) acquired recently. AF demagnetisation was not

effective for our sample collection due to a wide scattering of directions after ap-

plying alternative fields > 50 mT. However, a residual remanence intensity of >

10% of the NRM remained even after application of the maximum field (up to

110 mT). This might be explained by a significant population of SD and PSD

magnetic carriers, as indicated by the rock magnetic experiments (see previous

section).

In cases when magnetisation vectors were defined, the HTC was isolated

generally between 370°C and 530°C to 570°C, whereas great circles were calcu-

lated using steps between 100°C and 550°C. The unblocking temperature range

(530–570°C) suggests low titanium titanomagnetite as the carrier of the HTC.

The mean directions defined by intersecting great circles are in good agreement
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with those by endpoint analyses (Figure 7.4 and Figure 7.5), which gives confi-

dence in the method (McFadden and McElhinny, 1988) of mean calculation used

for our study. The HTC is thus interpreted to be the characteristic remanent

magnetisation (ChRM) which yields a mean direction of D = 71°, I = 69° (α95

= 13°, k = 88) (Table 7.1 and Figure 7.5), with a corresponding pole of Plat =

−40.5°N, Plong = 150.1°E with A95 = 20.3°. Based on our rock magnetic studies

and indirect evidence from the AF demagnetisation (see above), we suggest that

the HTC is carried by SD or PSD low-titanium titanomagnetite or magnetite,

which is palaeomagnetically highly stable (e.g., Krása et al., 2007).

Our new palaeomagnetic pole satisfies four out of seven quality criteria of

the Q-value of Van der Voo (Van der Voo, 1990): it is well dated, obtained

after an adequate demagnetisation procedure, the studied dykes are post-date

the latest stages of the Albany-Fraser Orogeny, so the pole is representative for

the Mawson Craton, and finally the pole does not coincide with any younger

Antarctic palaeopoles or, after the corresponding Euler rotations, any younger

Australian and Gondwanan poles (see syntheses of McElhinny et al. 2003,Schmidt

2014,Torsvik et al. 2012 and Figure C.5).

In summary, although no baked contact tests are available in this study,

several lines of evidence are in favour of a primary origin of the characteristic

remanence in the BHD dykes: (i) the presence of SD (titano)magnetite indicates

that the BHD dykes are capable of carrying stable magnetic remanence; (ii) the

high unblocking temperature between 530 °C and 570 °C makes the HTC unlikely

to be affected by a thermal event; (iii) if the Bunger Hills rocks ever experienced

remagnetisation, Pan-African orogenesis is the most likely candidate. Nonethe-

less, the BHD pole does not overlap with poles of Pan-African age or any younger

poles (Figure C.5), arguing against remagnetisation and for the preservation of

primary remanence.

Our pole is calculated by averaging three site-mean directions of three distinct

dykes, which may not be enough to average geomagnetic secular variation. More
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sampling would improve this, but the logistical obstacles are huge for such remote

and difficult area as Antarctica. Thus, we assert that the first Precambrian

pole from the little-studied Mawson Craton provides an invaluable constraint on

Precambrian palaeogeography and tectonics, which we will demonstrate in the

next section.

7.5 Discussion

East Antarctica represents the Precambrian portion of Antarctica, and most

workers agree that it is divisible into several tectonic domains that have geologi-

cal affinities with Africa (Kalahari), India, Australia, and some unknown sources

(Boger, 2011; Collins and Pisarevsky, 2005; Dalziel, 2013; Fitzsimons, 2000, 2003;

Jacobs et al., 2015). Antarctic rocks with Australian affinities are often consid-

ered to have been connected with Australia until the breakup of Pangaea, which

commenced at ∼85 Ma (e.g., Seton et al. 2012). Various terms have been used

to describe the once contiguous Australia-Antarctica continental block. For the

purposes of this paper, we use the term “the Mawson Craton” first used in (McEl-

hinny et al., 2003; Schmidt, 2014). The extent of the Mawson Craton is unclear

due to extensive ice cover. Here we follow the continental outline of (Collins

and Pisarevsky, 2005; Fitzsimons, 2003; Payne et al., 2009) and consider that

the Mawson Craton (comprised by Terre Adélie terrane, Miller Range, and other

tectonic units surrounding them) has been connected with the Gawler Craton of

Australia in the so-called Mawsonland configuration (Figure 7.1) since Archaean.

Note that we do not include Wilkes Land (including Bunger Hills and Windmill

Islands), which were traditionally considered parts of the Mawson Craton, be-

cause we only show the outline of the Mawson Craton before the Albany-Fraser

Orogeny (Figure 7.1).

Although it is generally agreed that Precambrian Australia (west of the Tas-

man line; Figure 7.1) is composed of three Archaean to Palaeoproterozoic cratons

(the West, North, and South Australian cratons – WAC, NAC and SAC cor-
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respondingly), when and how the present-day configuration took form is still a

matter of debate. The amalgamation between the NAC and WAC were originally

thought to have taken place during the ca. 1800 –1765 Ma Yapungku Orogeny

(Betts et al., 2016; Cawood and Korsch, 2008; Li, 2000b). However, the relatively

high-pressure metamorphism presumably reflecting the collision between of the

WAC and NAC was recently suggested to have possibly occurred as late as ca.

1300 Ma (Anderson, 2015; Gardiner et al., 2018), in favour of a late assembly

between WAC and NAC. The relationship between the NAC and SAC is even

more intensely debated. Based mainly on the similarity between the Mount Isa

Terrane of the NAC and the Curnamona Province of the SAC, most recent models

(Betts and Giles, 2006; Betts et al., 2016; Cawood and Korsch, 2008; Giles et al.,

2004) propose that the SAC was connected with the NAC from at least ca. 1800

Ma until they broke apart ca. 1500 Ma. The SAC then reunited with the NAC

during the ca 1330 – 1140 Ma (Clark et al., 2000; Evans, 2009) Albany-Fraser

Orogeny in a different configuration.

In spite of all the disputes, nearly all proposed models (e.g. Betts and Giles,

2006; Betts et al., 2002; Cawood and Korsch, 2008; Giles et al., 2004; Myers et al.,

1996) share some common ground in that the previously combined WAC+NAC

amalgamated with the SAC (together with the Mawson Craton) forming Pre-

cambrian Australia by the end of the Albany-Fraser Orogeny ca. 1140 Ma (Clark

et al., 2000). This amalgamation allows Mawson+Australia to be viewed as a

single continental block in post-1.2 Ga reconstructions (e.g. Clark et al., 2000).

However, such an early formation of the present-day cratonic Australia cannot

explain apparent mismatches between some coeval palaeomagnetic poles of Aus-

tralia, exemplified by the ∼35° discrepancy between the 1070 Ma Bangemall Basin

sills (BBS) pole of the WAC and the 1070 Ma Alcurra dykes and sills (ADS) pole

of the NAC (Figure 7.6; Li and Evans 2011).

To address such mismatches between coeval poles within Australia, one so-

lution is to have major Australian cratons not assembled until after ∼1070 Ma
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Figure 7.6: Four groups of coeval poles (table 2) from the WAC+Mawson and
NAC plotted in a Mercator projection. Mawson (Antarctic Part) is rotated to
SAC in its Gondwana configuration using an Euler pole (Collins and Pisarevsky,
2005) at 1.3°N, 37.7°E, rotation = 30.3°. (a) Australia in its present-day con-
figuration; (b) WAC+SAC+Mawson rotated to NAC about a Euler pole(Li and
Evans 2011) at 20°S, 135°E, rotation = 40°.

(Schmidt et al., 2006). In Figure 7.6a, selected palaeomagnetic poles (Table 7.2)

including the Bunger Hills dykes pole (BHD) were used to test this hypoth-

esis of a late Australian amalgamation. The BHD pole and that of the ca.

1140 Ma Lakeview dolerite of the NAC overlap, implying that the collision of

WAC+SAC+Mawson with NAC finished or at least was close to suturing by

ca. 1133 Ma, which is inconsistent with the post-1070 Ma assembly of Australia

(Schmidt et al., 2006). Additionally, the coherent ca. 800−600 Ma Centralian

Superbasin stratigraphy makes it geologically unfeasible to close putative wide

late Neoproterozoic ocean basins to form Australia (Li and Evans, 2011).

An alternative solution is that the WAC+SAC rotated ∼40° with respect to

the NAC ca. 650−550 Ma (Li and Evans, 2011), which was argued on the basis

that such an intraplate rotation brings three pairs of coeval, previously discrepant

poles into agreement. A new pole from the ca. 770 Ma Johnny’s Creek Mem-

ber (Bitter Springs Formation) lends further support for this intraplate rotation

(Swanson-Hysell et al., 2012). The BHD and LD poles make up another group of

coeval poles from the NAC and WAC+SAC(+Mawson), respectively, with which
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Table 7.1: Palaeomagnetic results for BHD1, BHD2, and BHD5

Site Trend N/n Slat. Slong. Decl. Incl. k α95 Plat. Plong. Dp Dm
(°) (°S) (°E) (°) (°) (°) (°N) (°E) (°) (°)

BHD1 304 6/6 -66.245278 100.703698 80.5 77.3 15 21.2 -53.8 144.1 37.0 39.6
BHD2 321 6/6 -66.250598 100.622593 76.5 65.4 157 6.0 -37.7 156.7 7.9 9.7
BHD5 300 6/6 -66.215189 100.75910 4 62.1 62. 4 90 7.6 -29.7 148.1 9.2 11.9
Mean 3 71.2 68.5 87.9 13.2 -40.5 150.1 A95 = 20.3°

N/n = number of demagnetised/used samples; Slat, Slong = sample locality latitude and longitude; Decl, Incl
= site mean declination, inclination; k = precision parameter of Fisher (1953); α95 = radius of cone of 95%
confidence; Plat, Plong = latitude, longitude of the palaeopole; Dp, Dm = semi-axes of the cone of confidence
about the pole at the 95% probability level

the intraplate rotation may be further tested. With the rotation applied, the area

of overlap of the 95% confidence circles of the BHD and LD poles increases (Fig-

ure 7.6), which provides a positive test for the relative rotation model between

WAC+SAC(+Mawson) and NAC. The vast intracratonic rotation hypothesis not

only reconciles discrepant coeval palaeopoles, but also provides a mechanism for

the enigmatic Paterson and Petermann orogenies that accounts for significant

mineralisation such as the massive Telfer Au deposit (Bagas, 2000; Maidment

et al., 2015).

Table 7.2: Palaeomagnetic poles used in this study

Pole Abbr Plat.(°N) Plong.(°E) A95(°) Age(Ma) Reference
North Australian Craton
Elgee-Pentecost Formations EP 5.4 31.8 3.4 1803−1793 Li (2000b); Ramsay

et al. (2017); Schmidt
and Williams (2008)

Lakeview dolerite LD -9.5 131.1 17.4 1147—1135 Tanaka and Idnurm
(1994)

Alcurra dykes and sills ADS 2.8 80.4 8.8 1087—1066 Schmidt et al. (2006)
Johnny’s Creek Member
(Bitter Springs Formation) JC 15.8 83.0 13.5 780—760 Swanson-Hysell et al.

(2012)
Walsh Tillite Cap Dolomite WTD 21.5 102.4 13.7 750—700 Li et al. (2009)
West Australian + Mawson cratons
Hamersley Overprint 2 HP2 8.0 338.0 5.0 ∼1800 Li (2000a)
Bunger Hills dykes* BHD -11.9 145.5 20.3 1134—1131 This study
Bangemall Basin sills BBS 33.8 95.0 8.3 1076—1066 Wingate et al. (2002)
Mundine Well dykes MDS 45.3 135.4 4.1 758—752 Wingate et al. (2000)
* Rotated to West Australia Craton using the Euler pole (Collins and Pisarevsky, 2005) at 1.3°N, 37.7°E,
rotation = 30.3°

Given the coincidence of the coeval BHD and LD poles when restored to the

earlier Proterozoic configuration of Australia (Figure 7.6b), we calculate a mean
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ca. 1134 Ma pole for Australia+Mawson. This mean pole calculation thus over-

comes the shortcoming of the BHD pole potentially undersampling geomagnetic

secular variation. Calculation is conducted by combining the individual virtual

geomagnetic poles of both the LD and BHD studies using Fisher statistics after

rotating the BHD data into the North Australia reference frame according to the

Euler parameters provided by Li and Evans (2011). The resultant ca. 1134 Ma

mean pole for Australia+Mawson (in North Australian coordinates) is 9°S, 134°E

and A25 = 14°.

The combined, and therefore time-averaged, ca. 1134 Ma pole for Aus-

tralia+Mawson can be used for robust palaeogeographic reconstruction and we

do so here to test the SWEAT (Southwest US-East Antarctic) fit, which is

probably the best-known and most-debated relationship in Precambrian super-

continents. The classic SWEAT fit nearly has the full eastern margin of Aus-

tralia+Mawsonland against the full western margin of Laurentia in a rather tight

configuration. Figure 7.7 demonstrates that the SWEAT fit requires some space

between Laurentia and Australia+Mawson even when adopted the so-called “clos-

est approach” (Meert, 2002; Pesonen et al., 2012). A tight fit cannot be achieved

while honouring the poles given the orientation constraints. Our comparison

(Figure 7.7), as with previous studies (Pisarevsky et al., 2003, 2014b; Wingate

et al., 2002), suggest that the SWEAT fit was not viable between ca. 1210 Ma and

ca. 1070 Ma. If SWEAT-like fits did indeed exist in both Nuna (Goodge et al.,

2008; Kirscher et al., 2019; Nordsvan et al., 2018; Pisarevsky et al., 2014a; Zhang

et al., 2012) and Rodinia (Dalziel, 1991, 1997; Hoffman, 1991; Moores, 1991), then

Australia+Mawson must have rifted away from Laurentia during Nuna breakup

(Mitchell et al., 2012; Pisarevsky et al., 2014a; Zhang et al., 2012), but likely

remained close for later assembly in Rodinia in a broadly similar configuration

(Wen et al., 2018).

Lastly, the new BHD pole presented here also carries implications for the

amalgamation of Antarctica. Grenville-age orogenic belts (ca. 1.1 Ga) surround-
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Figure 7.7: Possible positions of Australia + Mawson (green) relative to Lau-
rentia (red) ca. 1134 Ma. Relative palaeolongitude is unconstrained by such a
single-pole comparison, indicated by arrow ranges and three possible positions
of Australia depicted relative to Laurentia. The preferred Australian option
(dark shading) makes a SWEAT-like fit easily achievable both before (supercon-
tinent Nuna) and after (supercontinent Rodinia) this time of separation between
Laurentia and Australia + Mawson. Other options depicted (light shading) get
Australia-Mawson closer to Laurentia, but in configurations significantly different
than SWEAT. Absolute palaeolongitude of Laurentia is arbitrary and unlabelled.
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ing East Antarctica were thought to comprise one continuous belt, implying that

the East Antarctica had already formed (e.g., Hoffman, 1991), until a geochronol-

ogy study (Fitzsimons, 2000) differentiated three distinct provinces on the basis

of U-Pb zircon data. The disagreement of the BHD pole and the only other

two existing and roughly coeval poles(Figure 7.8) from East Antarctica (Gose

et al., 1997; Jones et al., 2003) suggests that the Dronning Maud Land and

Coats Land regions were not rigidly connected to the Mawson Craton ca. 1134

Ma, confirming the hypothesis of Fitzsimons (2000) Coats Land was originally

considered to be the extension of the Grenville orogen into East Antarctica in

Rodinia and thus in support of the SWEAT connection (Dalziel, 1991). A pale-

omagnetic study (Gose et al., 1997) suggested that Coats Land might actually

have belonged to the Kalahari Craton and far from the East Antarctica at ca.

1.1 Ga despite the 30° difference between the CL pole and the roughly coeval

poles of Kalahari. Subsequent studies (Jacobs et al., 2003; Loewy et al., 2011),

however, showed that Coats Land was neither part of Kalahari nor East Antarc-

tica ca. 1.1 Ga. Instead, Coats Land as part of Laurentia collided with Dronning

Maud Land (specifically the Grunehogna Craton), which was widely accepted as

piece of the Kalahari (e.g., Bauer et al., 2003; Jacobs et al., 2008) before joining

East Antarctica, along the ca. 1090−1060 Ma Maud Belt during the formation

of Rodinia. Kalahari, with Coats Land attached to it, then collided with East

Antarctica along the East African-Antarctic Orogen ca. 650−500 Ma within an

assembling Gondwana. The succeeding Mesozoic breakup of Gondwana stripped

Coats Land and Dronning Maud Land away from Kalahari and abandoned them

in East Antarctica.

7.6 Conclusion

A pilot palaeomagnetic study in the Bunger Hills has attained the first Precam-

brian palaeopole for the Mawson Craton. Palaeomagnetism of the Bunger Hills

dykes supports the vast late Neoproterozoic relative rotation between the NAC
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and the WAC+Mawson. Mean pole calculation (BHD-LD) allows comparison

between Australia-Mawson and the coeval Abitibi dykes pole of Laurentia and

demonstrates, as with previous studies, that the SWEAT fit is not viable between

ca. 1210 Ma and ca. 1070 Ma. Comparison between the BHD, BM, and CL poles

confirms that the Grenville-age ca. 1.1 Ga orogenic belts surrounding the East

Antarctic coastline do not constitute a continuous orogenic belt.
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Chapter 8

Summary and Conclusions

The rather high success rate of this PhD project supports the notion that ig-

neous rocks, especially mafic dykes, are one of the most desirable targets for

Precambrian palaeomagnetic investigations. The four newly defined and the one

reinforced palaeomagnetic poles significantly improve the Australian and East

Antarctic palaeomagnetic database (Figure 8.1). In this chapter, all five poles

and their separate implications will be summarised and discussed in the context

of the tectonic evolution of Australia and the supercontinent cycles.
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Figure 8.1: Time-space distribution of Proterozoic palaeomagnetic data for Pro-
terozoic Australian cratons and East Antarctic continental blocks. Modified from
(Pisarevsky et al., 2014a).
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8.1 The Archaean-Proterozoic transition: for-

mative days the supercontinent cycles?

The Archaean-Proterozoic transition attracts many researchers’ attention as Earth

experienced several fundamental changes during this time interval: (i) the Great

Oxidation Event (Gumsley et al., 2017; Lyons et al., 2014); (ii) probably the first

global glaciation (Hoffman, 2013); and (iii) the potential onset of the modern

plate tectonics (Cawood et al., 2018; Korenaga, 2013; Sobolev and Brown, 2019).

Understanding all these changes should rely on a well defined palaeogeographic

context.

For most of the ∼35 Archaean cratons (Bleeker, 2003), reliable palaeomag-

netic constraints are still scarce (Evans and Pisarevsky, 2008). The critical ad-

dition of the ca. 2.62 Ga Yandinilling pole of the Yilgarn Craton enables the

comparison of two groups of coeval poles, ca. 2.62 Ga and ca. 2.41 Ga. The

palaeogeographic reconstructions proposed in Figure 8.2 demonstrates that ei-

ther two short-lived supercontinents or two stable supercratons existed during

the Archaean-Proterozoic transition (see discussion in Chapter 3). In either case,

the geodynamics of Archaean and Palaeoproterozoic Earth seem different from

the ∼600 Myr-long supercontinent cycles that dominate the past two billion years

(Evans et al., 2016; Li et al., 2019). Neither scenario is compatible with a large

and long-lived Archaean supercontinent, commonly referred to as Kenorland (e.g.,

Lubnina and Slabunov, 2017; Williams et al., 1991).

Palaeogeography during the Archaean-Proterozoic transition also bears signif-

icance in the Huronian glaciation. Glacial deposits are found on all cratons of the

Superia connection, but nowhere in that of Zimgarn. Palaeoproterozoic glacial

deposits are paradoxically found at low latitudes and have been interpreted as

evidence of either snowball Earth (Hoffman, 2013) or high obliquity (Williams,

2008; Young, 2018). According to the snowball scenario, glacial deposits should

be found at all latitudes where continents are found; whereas according to high
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Figure 8.2: Palaeogeographic solutions for the Archaean-Proterozoic transition.
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in Table 3.3. Arrows mark the present-day north direction for each craton. The
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obliquity, glacial deposits should only be found at low latitudes (Evans, 2000).

Face-value interpretation of Figure 8.2b would appear to imply that the high

obliquity scenario, and associated implications for planetary and solar system

evolution (Williams et al., 1998), should perhaps be considered for Palaeopro-

terozoic time. The disparity in glacial deposits between Superia and Zimgarn

could alternatively be interpreted as independent confirmation of the separate

supercratons hypothesis (Figure 8.2b), where the preservation of glacial deposits

is not a function of palaeolatitude but palaeogeography and palaeotopography.

Cratons of Zimgarn may have not been emerged enough, for example, to provide

adequate subaerial weathering to create enough sediment to preserve sedimen-

tary records. Newly-identified ca. 2.4 Ga glacial deposits in North China (Chen

et al., 2019) will offer additional insights when distinguishing between different

palaeogeographic and climatic hypotheses.

8.2 From late Palaeoproterozoic to the Meso-

proterozoic: the Nuna supercontinent cycle

As discussed above, a Pangaea-like supercontinent envisaged to have preceded

Nuna (also known as Columbia), is unlikely to have existed, which makes the

assembly and breakup of Nuna the first supercontinent cycle. A substantial

amount of research conducted during the past ten years, including this PhD

project, greatly advanced the understanding of Nuna. Taking advantage of re-

gional configurations proposed by other researchers (e.g., Evans and Mitchell,

2011; Kirscher et al., 2019; Li and Evans, 2011; Payne et al., 2009; Salminen

et al., 2014, 2016; Wang et al., 2019; Zhang et al., 2012) and using available

palaeomagnetic poles, including the poles derived from this project, three palaeo-

geographic reconstructions were proposed (Figure 8.3) for ca. 1.89 Ga, ca. 1.59

Ga, and ca. 1.39, respectively.

The 1.89 Ga reconstruction demonstrates that Nuna was not yet fully amal-
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gamated (Figure 8.3a) by this time. At this stage, the building blocks of Nuna,

such as Laurentia, were still assembling themselves. Recent palaeomagnetic (Pis-

arevsky et al., 2014a) and geological evidence (Nordsvan et al., 2018; Pourteau

et al., 2018) showed that the timing of final assembly of Nuna was ca. 1.6 Ga,

which is ∼200 Myr later than the early models of Nuna assembly (e.g., Zhao

et al., 2004). The new 1.89 Ga Boonadgin pole puts the West Australia Craton

(WAC) in a equatorial position, similar to that of the South India Block (SIB).

The similar palaeolatitudes of these blocks, and the coeval magmatism that forms

a radiating pattern when the SIB was juxtaposed to the western margin of the

WAC, suggest a WAC-SIB connection ca. 1.89 Ga (Figure 8.3a, see discussion in

Chapter 4).

By ca. 1.59 Ga, Nuna had already formed (Figure 8.3b, Nordsvan et al. 2018;

Pisarevsky et al. 2014a; Pourteau et al. 2018). The original core of Nuna pro-

posed by Evans and Mitchell (2011) contains only Laurentia, Siberia and Baltica.

Since then, both palaeomagnetic (Kirscher et al., 2019; Pisarevsky et al., 2014a)

and geological (Mulder et al., 2015; Nordsvan et al., 2018; Pourteau et al., 2018)

evidence have validated a connection between proto-Australia and Laurentia.

Proto-Australia, therefore, should be included in the core of Nuna. The better-

defined palaeopole from the Gawler Range Volcanics was used to refine the Euler

parameters for the configuration of proto-Australia and Laurentia (Figure 8.3b,

see discussion in Chapter 6).

The breakup time of Nuna remains poorly constrained. Available 1.39−1.38

Ga poles suggest that at least Baltica, Laurentia (including Greenland), and

Siberia are still together during this time interval (Figure 8.3c). In the config-

uration shown in Figure 8.3c, the ca. 1.39 Ga Biberkine pole of the WAC falls

90° away from the coeval poles of Baltica, Laurentia and Siberia. The primary

origin of the Biberkine pole is yet to be validated by field tests. But if a primary

origin is assumed, the discrepancy between the Biberkine pole and other coeval

poles implies either (i) proto-Australia rifted away from Nuna before 1.39 Ga, or
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(ii) the WAC joined the other members of Australia after 1.39 Ga and hence was

never part of Nuna (see discussion in Chapter 5).

8.3 The Neoproterozoic: 40° intraplate rotation

within Australia reinforced
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Figure 8.4: Four groups of coeval poles (table 2) from the WAC+Mawson and
NAC plotted in a Mercator projection. Mawson (Antarctic Part) is rotated to
SAC in its Gondwana configuration using an Euler pole (Collins and Pisarevsky,
2005) at 1.3°N, 37.7°E, rotation = 30.3°. (a) Australia in its present-day con-
figuration; (b) WAC+SAC+Mawson rotated to NAC about a Euler pole(Li and
Evans 2011) at 20°S, 135°E, rotation = 40°.

Although the exact timing of Nuna breakup is unclear, it must have happened

before ca. 1.21 Ga. Australia occupied the polar regions ca. 1.21 Ga, while

Laurentia sat within ∼40° of the equator (Pisarevsky et al., 2003, 2014b). During

the transition between Nuna and its successor, Rodinia, the WAC, the NAC, and

the SAC (with the attached Mawson Craton) were amalgamated by the end of

the Albany-Fraser Orogeny ca. 1140 Ma (Betts et al., 2008; Cawood and Korsch,

2008; Clark et al., 2000; Li and Evans, 2011; Myers et al., 1996; Spaggiari et al.,

2015; Yang et al., 2018). However, if the three main Australian cratons were

assembled in their present-day configuration, the coeval poles from the NAC and
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WAC disagree with each other (Figure 8.4a). To resolve this obvious discrepancy,

Li and Evans 2011 proposed a ∼40° rotation between WAC+SAC+Mawson and

NAC in late Neoproterozoic time. The comparison between the new pole of

the Bunger Hills and that of the ca. 1.14 Lakeview dolerites of North Australia

constitutes a positive test of the intraplate rotation within Australia (Figure 8.4b,

see discussion in Chapter 7).

8.4 Future work

One common caveat for Precambrian palaeomagnetic data is the lack of field tests.

In the main study area of this project, the southwest Yilgarn Craton, the out-

cropping situation does not always allow for baked contact tests (Chapter 2), e.g.,

ideally conducted on intersecting dykes. Although the host rocks were sampled

wherever suitable for a baked contact test, the most common results of this most

important test are inconclusive. This is mainly because the granites and gneisses

hosting the mafic intrusions are not ideal recorders of the magnetic signals and

thus often do not retain stable remanences. The lack of baked contact tests often

makes the interpretation of the palaeomagnetic data debatable. Therefore, fu-

ture work in this area should focus on obtaining baked contact tests, ideally from

cross-cutting mafic dykes. Additionally, future palaeomagnetic studies in the

southwestern Yilgarn Craton should be conducted in the eastern biotite domain

(Figure 5.2) to avoid possible remagnetisation caused by the ca. 570−530 Ma

Kuunga Orogeny. For the Gawler Range Volcanics (GRV), more samples from

the tilted Bittali Rhyolite with accompanying bedding measurements are needed

to confirm the positive fold test. Also, future studies should preferentially target

the rhyolitic dykes intruding the GRV in an attempt to obtain data from both po-

larities of the GRV remanence, as well as attempting to obtain precise ID-TIMS

age constraints for the intruding felsic dykes. As for the Bunger Hills dykes pole,

more samples are needed to improve the current dataset, which currently only

contains eighteen samples from three dykes, in order to adequately average geo-
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magnetic secular variation. Furthermore, any new Precambrian palaeomagnetic

data from East Antarctica is important.
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Figure A.1: YA, YD and YE poles plotted against the Gondwanan APWP
(Torsvik et al., 2012) in the South African coordinates. YA, YD and YE poles
are rotated to the South African coordinates with an Euler pole at 19.5 °N, 117.8
°E and rotation = -56.2° (Torsvik et al., 2012)
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Figure A.2: Stereoplots (equal-area projection) showing: (a) site-mean directions
of ten sites of the 1.39 Ga dykes and the YF group (Table 5.1); (b) a relative
cumulative distribution function (CDF) plot indicating that the data of this study
and the YF group does not pass the common mean test of Watson (1983).
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Table A.1: Details of the failed sites

Site Trends (°) Slon. (°) Slat. (°) Na

WDS03 86 116.8602843 -32.99538935 3
WDS04 311 116.6547968 -33.10639734 5
WDS05 278 116.926043 -33.16241667 10
WDS11 69 116.9027028 -32.56789167 4
WDS13 297 116.8128832 -32.55732723 3
15WDS06 275 116.8953833 -33.157804 7
15WDS07 300 116.8915667 -33.153349 6
15WDS08 300 116.8905833 -33.15301667 3
15WDS09 300 116.8903667 -33.15253333 8
15WDS10 288 116.925423 -33.16126667 8
15WDS12 300 116.9866333 -33.086423 6
15WDS16 340 116.8122333 -32.66788333 16
16WDS05 20 116.741037 -32.331492 8
16WDS10 63 116.517931 -31.883678 8
16WDS11 300 116.732232 -32.040269 8
16WDS12 45 116.732076 -32.037126 12
16WDS18 302 117.0889471 -32.55836972 8
16WDS19 310 116.9677059 -32.57971976 7
16WDS21 302 116.6130181 -32.83403489 8
16WDS22 309 116.6662305 -32.86399488 6
16WDS23 308 116.5715656 -32.73952106 8
16WDS27 315 116.639287 -31.647354 7
16WDS28 315 116.639287 -31.647354 8
a Number of samples collected
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Table A.2: Palaeomagnetic poles used for the APWPs in Figure 5.11

Pole Craton Rock unit Age (Ga) Plat. (°) Plon. (°) A95 (°) Source
AMEO2 NAC Amelia Dol -32.2 74.8 4.4 1a
BDBO NAC Balbirini Dol -27.8 68.8 5.4 1
EMMO NAC Emmerugga Dol -21.9 81.8 4.4 1
LYNO NAC Lynott Fm -21.5 78.3 5.9 2b
GPRO NAC Gunpowder Ck -27.4 97.1 6.5 2
PCVO NAC Percy Ck. Fm -17.5 105.3 4.2 2
AMEO1 NAC Amelia Dol -78.7 184 6.9 1
LWNO1 NAC Lawn Hill Fm -37.1 97.3 7.7 2
MALO NAC Mallapunyah Fm -80.7 193.4 9.8 1
FSHO2 NAC Fish R. Fm -18.9 101.5 9.3 2
KFB NAC Kombolgie Fm -27.1 93.7 6.8 2
CEN NAC Century ore -26.5 107 9.2 Kawasaki et al. (2010)
BDBU NAC Balbirini Dolomite upper 1.59 -52 176.1 7.5 2
BDBL NAC Balbirini Dolomite lower 1.61 -66.1 177.5 5.7 2
AFB NAC Amos Formation 1.61 -66.5 178.4 4.5 2
EMM NAC Emmerugga Dol 1.64 -79.1 202.6 6.1 1
MYR NAC Myrtle Fm 1.64 -75.9 197.4 7.7 1
TAT NAC Tatoola Sandstone 1.65 -52.7 182.2 10.7 1
TOO NAC Tooganinie Fm 1.65 -61 186.7 6.1 1
BRB SAC Blue Range & Pandurra 1.44 -38.4 62.4 3.5 Schmidt and Williams (2011)
GRV SAC Gawler Range Volcanics 1.59 -60.4 50.0 6.2 Chamalaun and Dempsey (1978)
MM WAC Marnda Moorn LIP 1.21 -56.6 147.4 5.7 this study
Bib WAC Biberkine dykes 1.39 26.3 126.5 9.3 this study
a Source 1: Idnurm et al. (1995)
b Source 2: Idnurm (2000)

234



Bibliography

F. H. Chamalaun and C. E. Dempsey. Palaeomagnetism of the gawler range

volcanics and implications for the genesis of the middleback hematite orebodies.

Journal of the Geological Society of Australia, 25(5-6):255–265, 1978. ISSN

00167614. doi: 10.1080/00167617808729034.

M. Idnurm. Towards a high resolution late palaeoproterozoic - earliest meso-

proterozoic apparent polar wander path for northern australia. Australian

Journal of Earth Sciences, 47(3):405–429, jun 2000. ISSN 14400952. doi:

10.1046/j.1440-0952.2000.00788.x.

M. Idnurm, J. Giddings, and K. Plumb. Apparent polar wander and rever-

sal stratigraphy of the Palaeo-Mesoproterozoic southeastern McArthur Basin,

Australia. Precambrian Research, 72(1-2):1–41, mar 1995. ISSN 03019268. doi:

10.1016/0301-9268(94)00051-R.

K. Kawasaki, D. Symons, and T. Dawborn. Paleomagnetism of the world-class

Century Zn–Pb–Ag deposits, Australia. Journal of Geochemical Exploration,

106(1-3):137–145, jul 2010. ISSN 03756742. doi: 10.1016/j.gexplo.2009.12.001.

P. W. Schmidt and G. E. Williams. Paleomagnetism of the pandurra formation

and blue range beds, gawler craton, South Australia, and the australian meso-

proterozoic apparent polar wander path. Australian Journal of Earth Sciences,

58(4):347–360, 2011. ISSN 08120099. doi: 10.1080/08120099.2011.570377.

T. H. Torsvik, R. Van der Voo, U. Preeden, C. Mac Niocaill, B. Steinberger,

235



P. V. Doubrovine, D. J. van Hinsbergen, M. Domeier, C. Gaina, E. Tohver,

J. G. Meert, P. J. McCausland, and L. R. M. Cocks. Phanerozoic Polar Wander,

Palaeogeography and Dynamics. Earth-Science Reviews, 114(3-4):325–368, sep

2012. ISSN 00128252. doi: 10.1016/j.earscirev.2012.06.007.

G. S. Watson. Large sample theory of the Langevin distribution. Journal of

Statistical Planning and Inference, 8(3):245–256, dec 1983. ISSN 03783758.

doi: 10.1016/0378-3758(83)90043-5.

236



Appendix B

Supplementary information for:

Palaeomagnetism of the Gawler

Range Volcanics revisited:

Primary after all?

237



GRV pole of this study

0 100 200 300 400 500
pole age (Ma)

Figure B.1: The GRV pole of this study plotted against the Gondwanan APWP
(Torsvik et al., 2012) in the South African coordinates. The GRV pole is rotated
to the South African coordinates with an Euler pole at 19.5 °N, 117.8 °E and
rotation = -56.2° (Torsvik et al., 2012)
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Figure C.1: Field photos for the Bunger Hills mafic dykes. (a), (b) and (C)
BHD1, (d) BHD3, (e) BHD4.
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Figure C.2: Susceptibility versus temperature data for representative Bunger Hills
dyke samples.
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Figure C.3: Normalized IRM acquisition curves for Bunger Hills dyke samples.
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Figure C.4: Day plot (Day et al., 1977) and hysteresis loops of representative
Bunger Hills dyke samples. Also shown are theoretical SD-MD mixing curves
(Dunlop, 2002). Upper left inset shows the derivative of the difference of ascend-
ing minus descending branch of the positive side of the hysteresis loop (Tauxe
et al., 1996).
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Figure C.5: BHD pole compared with younger poles. (a) BHD pole and younger
Precambrian Australian poles in North Australia coordinates. BHD pole is first rotated
to Western Australia coordinates using a Euler pole at 1.3°N, 37.7°E, rotation = 30.3°
(Collins and Pisarevsky, 2005), then, together with the WAC+SAC poles (Schmidt,
2014), rotated to North Australia coordinates using a Euler pole at 20°S, 135°E, rotation
= 40° (Li and Evans, 2011); (b) BHD pole and Phanerozoic poles from Australia
and Antarctica in South Africa coordinates. BHD pole is rotated to South Africa
coordinates using a Euler pole at 10.4°N, 148.7°E, rotation = −58.4°. Australia and
Antarctica poles are from the compilation of Torsvik et al. (2012); (c) BHD pole and
Gondwana APWP (Torsvik et al., 2012) in South Africa coordinates.
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Appendix D

Supplementary information for:

Summary and Conclusions

Table D.1: Palaeomagnetic poles used in the palaeogeographic reconstructions in
Figure 8.3.

Pole Cont./Craton Plat. (°N) Plong. (°E) A95 (°) Age (Ma) Reference
Ca. 1.59 Ga
Western Channel Diabase (WDS) Laurentia 9 245 6.6 1.59 Hamilton and Buchan

(2010); Irving et al. (1972)
Lower Balbirini Dolomite N. Australia -66.1 177.5 5.7 1.61 Idnurm (2000)
Upper Balbirini Dolomite N. Australia -52 176.1 7.5 1.59 Idnurm (2000)
Gawler Range Volcanics (GRV) S. Australia + Mawson -63.2 51.9 10.4 1.59 Chapter 6
Satakunta dyke swarm -C Baltica 29.3 188.1 6.6 1.57−1.59 Salminen et al. (2014)

Ca. 1.39 Ga
McNamara Formation Laurentia -13.5 208.3 6.7 1.40 Elston et al. (2002)
Pilcher,Garnet R.,Libby Fms Laurentia -19.2 215.3 7.7 1.38 Elston et al. (2002)
Victoria Fjord dolerite dykes Greenland 10.3 231.7 4.3 1.38 Abrahamsen and Van Der

Voo (1987)
Midsommersoe Dolerite Greenland 6.9 242 5.1 1.38 Marcussen and

Abrahamsen (1983)
Zig-Zag Dal Basalts Greenland 12 242.8 3.8 1.38 Marcussen and

Abrahamsen (1983)
Mashak Baltica 1.8 193 14.8 1.37-1.39 Lubnina (2009)
Chieress dykes Siberia -4.0 78.0 7.0 1.38 Ernst et al. (2000)
Biberkine W. Australia 26.3 126.5 9.3 1.39 Chapter 5
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Table D.2: Euler rotation parameters for Figure 8.3

Craton/block/terrane* Euler Pole Angle Reference/Source
(°N) (°E) (°)

Superia
Mawson to S. Australia 1.3 37.7 30.3 Collins and Pisarevsky (2005)
S. Australia to N. Australia -25.0 136.0 52.0 Giles et al. (2004)
S. Inida to W. Australia 27.9 -166.0 52.2 Liu et al. (2019) & Chapter 4
W. Australia to N. Australia -20.0 135.0 40 Li and Evans (2011)
N. China to N. Australia -16.5 99.5 79.5 Wang et al. (2019)
São Francisco to Congo 46.8 -30.6 55.9 Salminen et al. (2016)
N. Australia to Laurentia 37.8 90.2 102.7 Chapter 6
Congo to Laurentia -23.4 -142.7 -198.9 Salminen et al. (2016)
Baltica to Laurentia -47.5 1.5 49.0 Evans and Pisarevsky (2008)
Greenland to Laurentia 67.5 -118.5 -13.8 Roest and Srivastava (1989)
Siberia to Laurentia 78.0 99.0 147.0 Evans and Mitchell (2011)
Laurentia ca. 1.59 Ga 3.5 150.8 -99.4 Constrained by the WDS pole
Laurentia ca. 1.39 Ga 15.2 -49.3 80.0 Constrained by the McNamara pole
* Rotation relative to absolute framework unless otherwise stated.

250



Bibliography

N. Abrahamsen and R. Van Der Voo. Palaeomagnetism of middle Proterozoic (c.

1.25 Ga) dykes from central North Greenland. Geophysical Journal Interna-

tional, 91(3):597–611, dec 1987. ISSN 0956-540X. doi: 10.1111/j.1365-246X.

1987.tb01660.x.

A. S. Collins and S. A. Pisarevsky. Amalgamating eastern Gondwana: The evo-

lution of the Circum-Indian Orogens. Earth-Science Reviews, 71(3-4):229–270,

aug 2005. ISSN 00128252. doi: 10.1016/j.earscirev.2005.02.004.

D. Elston, R. Enkin, J. Baker, and D. Kisilevsky. Tightening the Belt:

Paleomagnetic-stratigraphic constraints on deposition, correlation, and de-

formation of the Middle Proterozoic (ca. 1.4 Ga) Belt-Purcell Supergroup,

United States and Canada. Geological Society of America Bulletin, 114(5):

619–638, may 2002. ISSN 00167606. doi: 10.1130/0016-7606(2002)114<0619:

TTBPSC>2.0.CO;2.

R. E. Ernst, K. L. Buchan, M. A. Hamilton, A. V. Okrugin, and M. D. Tomshin.

Integrated Paleomagnetism and U‐Pb Geochronology of Mafic Dikes of the

Eastern Anabar Shield Region, Siberia: Implications for Mesoproterozoic Pa-

leolatitude of Siberia and Comparison with Laurentia. The Journal of Geology,

108(4):381–401, jul 2000. ISSN 0022-1376. doi: 10.1086/314413.

D. A. D. Evans and R. N. Mitchell. Assembly and breakup of the core of

Paleoproterozoic-Mesoproterozoic supercontinent Nuna. Geology, 39(5):443–

446, 2011. ISSN 00917613. doi: 10.1130/G31654.1.

251



D. A. D. Evans and S. A. Pisarevsky. Plate tectonics on early Earth ? Weighing

the paleomagnetic evidence Plate tectonics on early Earth ? Weighing the

paleomagnetic evidence. The Geological Society of AmericaSociety, 440(July

2015):249–263, 2008. doi: 10.1130/2008.2440(12).

D. Giles, P. G. Betts, and G. S. Lister. 1.8-1.5-Ga links between the North and

South Australian Cratons and the Early-Middle Proterozoic configuration of

Australia. Tectonophysics, 380(1-2):27–41, 2004. ISSN 00401951. doi: 10.1016/

j.tecto.2003.11.010.

M. A. Hamilton and K. L. Buchan. U-Pb geochronology of the Western Channel

Diabase, northwestern Laurentia: Implications for a large 1.59Ga magmatic

province, Laurentia’s APWP and paleocontinental reconstructions of Lauren-

tia, Baltica and Gawler craton of southern Australia. Precambrian Research,

183(3):463–473, dec 2010. ISSN 03019268. doi: 10.1016/j.precamres.2010.06.

009.

M. Idnurm. Towards a high resolution late palaeoproterozoic - earliest meso-

proterozoic apparent polar wander path for northern australia. Australian

Journal of Earth Sciences, 47(3):405–429, jun 2000. ISSN 14400952. doi:

10.1046/j.1440-0952.2000.00788.x.

E. Irving, J. A. Donaldson, and J. K. Park. Paleomagnetism of the Western Chan-

nel Diabase and Associated Rocks, Northwest Territories. Canadian Journal of

Earth Sciences, 9(8):960–971, aug 1972. ISSN 0008-4077. doi: 10.1139/e72-080.

Z. X. Li and D. A. D. Evans. Late Neoproterozoic 40° intraplate rotation within

Australia allows for a tighter-fitting and longer-lasting Rodinia. Geology, 39

(1):39–42, jan 2011. ISSN 00917613. doi: 10.1130/G31461.1.

Y. Liu, Z.-X. Li, S. Pisarevsky, U. Kirscher, R. N. Mitchell, and J. C. Stark.

Palaeomagnetism of the 1.89 Ga Boonadgin dykes of the Yilgarn Craton: Pos-

252



sible connection with India. Precambrian Research, 329(May):211–223, aug

2019. ISSN 03019268. doi: 10.1016/j.precamres.2018.05.021.

N. V. Lubnina. The East-European Craton during Mesoproterozoic: new key

paleomagnetic poles. Doklady Earth Sciences, 428(2):252–257, 2009.

C. Marcussen and N. Abrahamsen. Palaeomagnetism of the Proterozoic Zig-Zag

Dal Basalt and the Midsommers� Dolerites, eastern North Greenland. Geo-

physical Journal International, 73(2):367–387, may 1983. ISSN 0956-540X.

doi: 10.1111/j.1365-246X.1983.tb03321.x.

W. R. Roest and S. P. Srivastava. Sea-floor spreading in the Labrador Sea: A

new reconstruction. Geology, 17(11):1000–1003, 1989. ISSN 00917613. doi:

10.1130/0091-7613(1989)017<1000:SFSITL>2.3.CO;2.

J. Salminen, S. Mertanen, D. A. D. Evans, and Z. Wang. Paleomagnetic and

geochemical studies of the Mesoproterozoic Satakunta dyke swarms, Finland,

with implications for a Northern Europe - North America (NENA) connection

within Nuna supercontinent. Precambrian Research, 244(1):170–191, may 2014.

ISSN 03019268. doi: 10.1016/j.precamres.2013.08.006.

J. M. Salminen, D. A. D. Evans, R. I. Trindade, E. P. Oliveira, E. J. Piispa,

and A. V. Smirnov. Paleogeography of the Congo/São Francisco craton at 1.5

Ga: Expanding the core of Nuna supercontinent. Precambrian Research, 286:

195–212, 2016. ISSN 03019268. doi: 10.1016/j.precamres.2016.09.011.

C. Wang, Z.-X. Li, P. Peng, S. Pisarevsky, Y. Liu, U. Kirscher, and A. Nordsvan.

Long-lived connection between the North China and North Australian cratons

in supercontinent Nuna: paleomagnetic and geological constraints. Science

Bulletin, 64(13):873–876, jul 2019. ISSN 20959273. doi: 10.1016/j.scib.2019.

04.028.

253





Appendix E

Copyright Information

This appendix contains copies of the published papers, the relevant copyright

clearances, and co-author approvals.

255



Title: Palaeomagnetism of the 1.89 Ga
Boonadgin dykes of the Yilgarn
Craton: Possible connection with
India

Author: Yebo Liu,Zheng-Xiang Li,Sergei
Pisarevsky,Uwe Kirscher,Ross N.
Mitchell,J. Camilla Stark

Publication: Precambrian Research
Publisher: Elsevier
Date: August 2019
© 2018 Elsevier B.V. All rights reserved.

  Logged in as:
  Yebo Liu
  Account #:
  3001311895

 

Please note that, as the author of this Elsevier article, you retain the right to include it in a thesis or
dissertation, provided it is not published commercially.  Permission is not required, but please ensure
that you reference the journal as the original source.  For more information on this and on your other
retained rights, please visit: https://www.elsevier.com/about/our-business/policies/copyright#Author-
rights

    

 
Copyright © 2019 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement. Terms and Conditions. 
Comments? We would like to hear from you. E-mail us at customercare@copyright.com 



Chapter 4. Palaeomagnetism of the 1.89 Ga Boonadgin dykes of the 
Yilgarn Craton: Possible connection with India 

Statement of Authorship 
Title of Paper: Palaeomagnetism of the 1.89 Ga Boonadgin dykes of the Yilgarn Craton: Possible 
connection with India 

Publication Status: Published 

Publication Details:  Liu, Y., Li, Z.X., Pisarevsky, S., Kirscher, U., Mitchell, R.N. and Stark, J.C., 2019. 
Palaeomagnetism of the 1.89 Ga Boonadgin dykes of the Yilgarn Craton: Possible connection with India. 
Precambrian Research, 329, pp.211-223. 

Author Contributions 

Name of Principal Author: Yebo Liu (Candidate) 

Contributions to the Paper: Designed and conducted the sample collection. Carried out the 
measurement, data analysis and interpretation. Wrote the manuscript, drafted all the figures. 

Overall Contribution: 65% 

Name of Co-Author: Zheng-Xiang Li 

Contributions to the Paper: Assisted with sample collection, data analysis and interpretation as well 

as drafting of the manuscript. 

Overall Contribution: 10% 

Name of Co-Author: Sergei Pisarevsky 

Contributions to the Paper: Assisted with sample collection, data analysis and interpretation as well 

as drafting of the manuscript. 

Overall Contribution: 10% 



Name of Co-Author: Uwe Kirscher 

Contributions to the Paper: Assisted with sample collection, data interpretation and drafting of the 
manuscript. 

Overall Contribution: 5% 

Name of Co-Author: Ross N. Mitchell 

Contributions to the Paper: Assisted with sample collection, data interpretation and drafting of the 
manuscript. 

Overall Contribution: 5% 

Name of Co-Author: J. Camilla Stark 

Contributions to the Paper: Assisted with sample collection and drafting of the manuscript. 

Overall Contribution: 5% 



Contents lists available at ScienceDirect

Precambrian Research

journal homepage: www.elsevier.com/locate/precamres

Palaeomagnetism of the 1.89 Ga Boonadgin dykes of the Yilgarn Craton:
Possible connection with India

Yebo Liua,b,⁎, Zheng-Xiang Lia,b, Sergei Pisarevskya,b, Uwe Kirschera,b, Ross N. Mitchella,b,
J. Camilla Starka,b

a ARC Centre of Excellence for Core to Crust Fluid Systems (CCFS), Curtin University, GPO Box U1987, Perth, WA 6845, Australia
b Earth Dynamics Research Group, The Institute for Geoscience Research (TIGeR), School of Earth and Planetary Sciences, Curtin University, GPO Box U1987, Perth, WA
6845, Australia

A B S T R A C T

A palaeomagnetic study was carried out on the newly identified 1888 ± 9Ma Boonadgin dyke swarm of the
Yilgarn Craton in Western Australia. The Bonnadgin dykes yield a mean direction of magnetisation of D=143°,
I = 13°, k=37 and α95= 8°, based on samples from 10 diabase dykes, with a corresponding palaeopole at 47° S,
235° E, A95= 6°. A positive baked contact test establishes the primary nature of the magnetisation. The ca.
1.89 Ga palaeopole suggests that the Yilgarn Craton was near the equator at this time, and the Boonadgin dyke
swarm can be interpreted to represent an arm of a radiating dyke swarm that shared the same plume centre with
coeval mafic dykes in the Dharwar and Bastar cratons of southern India. We therefore propose that the West
Australian Craton (WAC, consisting of the Yilgarn and Pilbara cratons) and the South Indian Block (SIB, con-
sisting of the Dharwar, Bastar, and Singhbhum cratons) were connected ca. 1.89 Ga. Globally, available high-
quality palaeopoles of similar age allow the West Australian Craton to be placed northwest of proto-Laurentia
during the assembly of the supercontinent Nuna.

1. Introduction

The lack of high-quality Palaeoproterozoic palaeomagnetic poles for
most cratons presently hampers the debate over the assembly and
configuration of Palaeoproterozoic-Mesoproterozoic supercontinent
Nuna, of which the West Australian craton (WAC) is considered to be a
crucial part (Belica et al., 2014; Betts et al., 2016; Evans et al., 2016;
Evans and Mitchell, 2011; Klein et al., 2016; Meert et al., 2011;
Pehrsson et al., 2016; Pisarevsky et al., 2014a; Zhang et al., 2012).

Mafic dykes represent ideal targets for palaeomagnetic studies as
they are strongly magnetized and they are also routinely datable with
the advent of U-Pb geochronology on baddeleyite. Ubiquitous ca.
1.89 Ga mafic magmatism is found on most Precambrian cratons, from
which palaeomagnetic studies have yielded a series of reliable palaeo-
poles over the past decade (Belica et al., 2014; Buchan et al., 2016;
Kilian et al., 2016; Klein et al., 2016; Letts et al., 2011). Combining
palaeomagnetic constraints and matching the geometry of coeval dyke
swarms has been demonstrated to be an effective way to reconstruct the
configurations of two or more continents (Bleeker and Ernst, 2006;
Ernst et al., 2010). This approach, however, was not applicable to the
WAC ca. 1.89 Ga until the recent identification of the 1888 ± 9Ma

Boonadgin dyke swarm (Stark et al., 2017).
In this study, we report new palaeomagnetic data from the

Boonadgin dyke swarm. By comparing our new results with existing
data from other continents, we explore global palaeogeography ca.
1.89 Ga, particularly in the neighbourhood of the WAC.

2. Regional geology and previous work

The Yilgarn Craton is the largest Archaean craton in Australia, as-
sembled between ∼2940Ma and 2650Ma through the accretion of a
series of terranes with a general eastward younging trend (Chen et al.,
2003; Myers, 1993). The Yilgarn Craton is bound by the Palaeopro-
terozoic Capricorn Orogen to the north, the late Mesoproterozoic to
Neoproterozoic Pinjarra Orogen to the west, and the late Palaeopro-
terozoic to Mesoproterozoic Albany-Fraser Orogen to the south and
southeast (Johnson et al., 2011; Myers, 1993; Myers et al., 1996)
(Fig. 1). The craton is composed mainly of metasediments, meta-
volcanics, granites, and granitic gneiss that formed between 3000 and
2600Ma (Myers, 1993; Pidgeon, 1990; Wilde et al., 1996). The Yilgarn
Craton collided with the Pilboyne Craton (combination of the Pilbara
Craton and the Glenburgh Terrane of the Gascoyne Province) during the
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2005–1950Ma Glenburgh Orogeny (Johnson et al., 2013, 2011;
Sheppard et al., 2010), thus forming the West Australian Craton.

Numerous mafic dyke swarms intrude the Yilgarn Craton (Fig. 1),
among which three distinct swarms have been well-recognized and
palaeomagnetically studied: the ∼2410Ma Widgiemooltha dyke
swarm (Evans, 1968; Smirnov et al., 2013), the ∼1210Ma Marnda
Moorn dyke swarm (including the Muggamurra, Boyagin, Wheatbelt
and Gnowangerup-Fraser dykes; see Pisarevsky et al., 2003, 2014b;
Wang et al., 2014; Wingate and Pidgeon, 2005 and references therein),
and the ∼1075Ma Warakurna dyke swarm (Wingate et al., 2004,
2002).

Apart from those three well-known swarms, many dykes in the
Yilgarn Craton remain unclassified. The southwestern part of the
Yilgarn Craton, where this study was carried out, has a particularly
dense network of dykes with various trends, where only the Marnda
Moorn and the Widgiemooltha dykes have been previously identified
(Fig. 2). The Widgiemooltha dykes are generally easy to distinguish
from others by their distinct ENE-WSW trends and aeromagnetic
characteristics. Whereas dyke swarms in this region can rarely be traced
for more than a few kilometres, the Widgiemooltha dyke swarm can be
followed, in outcrop or aeromagnetically, for up to 600 km. The or-
ientation of the Marnda Moorn dykes in this area varies widely from E-
W to N-S, but with a prevailing NW-SE trend. Due to this observation,
all broadly NW-SE-trending dykes in this area were conventionally
classified as Marnda Moorn dykes (Boyd and Tucker, 1990; Lewis,
1994; Spaggiari et al., 2009; Tucker and Boyd, 1987). However, a re-
cent TIMS and in situ SHRIMP U-Pb geochronological study (Stark
et al., 2017) has led to the recognition of a new dolerite dyke swarm in
this area with a broadly WNW-ESE trend. The 1888 ± 9Ma “Boo-
nadgin” dyke swarm and is the target of the present study (Fig. 2).

Giddings (1976) studied 54 dykes along the western margin of the
Yilgarn Craton, including 49 dykes from the Perth region and 5 dykes

from the Ravenstrope region (Fig. 1), aiming to establish an age
chronology of the dykes palaeomagnetically. While he identified five
distinct groups of palaeomagnetic directions, the Rb-Sr ages implied
that there were at least six, possibly seven periods of dyke emplace-
ment. The generations of dykes in the Perth region were named
“YA–YF”, where baked contact tests were performed at the YB and YC
groups. Giddings (1976) considered these contact tests to be positive
and thus regarded the magnetic remanence as primary. In contrast,
Halls and Wingate (2001) performed a more extensive baked contact
test for the YB dykes and re-interpreted the results as a secondary, re-
magnetisation remanence. Those authors attributed the difference be-
tween the two studies to the fact that Giddings (1976) only obtained
samples from the weathered surface of the unbaked zone, thus resulting
the misleading positive contact test. Halls and Wingate (2001) con-
cluded that the YB dykes were remagnetised, possibly in Mesozoic time.
Giddings (1976) also suggested that the YA group of dykes and the
Ravenstrope dykes, which have been dated at that time by Rb-Sr
method at 2500 ± 100Ma, could be similar in age based on their si-
milar magnetic directions. However, the Ravensthorpe dykes have been
re-dated by U-Pb geochronology and are now attributed to the ca.
1210Ma Marnda Moorn LIP (e.g. Wingate and Pidgeon, 2005).
Pisarevsky et al. (2003; 2014a,b) reported a primary remanence for
these dykes, supported by a positive baked contact test. Evans (1968)
and Smirnov et al. (2013) reported robust palaeomagnetic data with
positive baked contact tests for the 2.41 Ga Widgiemooltha dykes that
included samples from the present study area. Pisarevsky et al. (2015)
published palaeomagnetic data for the ca. 2.40 Ga Erayinia dykes. The
Erayinia pole plots close, but not identical, to the Widgiemooltha pole,
which is consistent with their slight age difference.

Fig. 1. Simplified geological map showing major dyke swarms in the Yilgarn Craton. The inset shows the location of the Yilgarn and Pilbara cratons within Western
Australia. The dykes are mapped based on 1:2.5 M Geological Map of Western Australia 2015 published by the Geological Survey of Western Australia (https://dasc.
dmp.wa.gov.au/dasc/).
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3. Methods

A total of 96 cores from 10 sites were collected for palaeomagnetic
analysis (Fig. 2). Each site represents a distinct dyke. 15WDS02 and
16WDS20 might appear to be in line and linkable; however, they should
represent two different dykes as they revealed different magnetic sig-
nals (see the results section for details). A minimum of 6 samples
(usually 8–12; Table 1) of standard 24mm diameter were obtained
from each site using a gasoline-powered portable drill with a water-
cooled diamond drill bit. In addition, whenever the chilled contact was
visible, the surrounding baked and unbaked country rocks were both
sampled for the purpose of performing baked contact tests (sites

WDS09, 15WDS02, and 16WDS24). Each core was oriented using a
magnetic compass, combined with a sun compass whenever possible. As
finer-grained parts of a dyke are more suitable for palaeomagnetic
analysis, special efforts have been made to try to identify and sample
the finest-grained parts available, ideally targeting the chilled margins
of each dyke. We also tried to avoid sampling at topographically ele-
vated points like ridges since the magnetic remanences at such outcrops
are more likely to be affected by lightning strikes.

Prior to any other experiments, anisotropy of magnetic suscept-
ibility (AMS) and bulk magnetic susceptibility (MS) were measured for
all specimens using an AGICO MFK1 Kappabridge. All susceptibility
measurements have been analysed and plotted with the Anisoft

Fig. 2. Simplified geological map of the sampling area. Enlarged red solid circles represent sample sites with U-Pb dating.

Table 1
Palaeomagnetic results from the Boonadgin dyke swarm and the host rocks.

Site (dyke) Trending (°) Width (m) N/n Slat. (°S) Slong. (°E) Decl. (°) Incl. (°) k α95 (°) Plat. (°N) Plong. (°E) Dp (°) Dm (°)

“Normal” polarity
15WDS02 304 ∼7 9/5 33.013933 116.936400 153.5 6.2 52.2 10.7 −51.2 251.7 5.4 10.7
15WDS14 321 ∼40 7/3 32.578117 116.923983 120.6 0 46.8 18.2 −25.4 224.6 9.1 18.2
16WDS06* 300 ∼35 12/5 31.999554 116.661655 148.8 4.3 33.5 13.4 −48.1 245.8 6.7 13.4
16WDS07 325 ∼45 13/6 32.020191 116.639917 142.7 15.5 27.6 13.0 −47.8 233.3 6.9 13.4
Mean of “normal” polarity 4 141.5 6.7 26.1 18.3 −43.7 237.5 9.2 18.4
“Reverse” polarity
WDS02 304 ∼50 6/4 32.844973 116.613044 332.6 −21.5 23.9 19.2 −56.8 241.1 10.7 20.2
WDS09* 307 ∼2 7/3 32.655888 116.950544 331.6 −27.2 25.4 25.0 −58.4 235.5 14.8 27.2
16WDS20 303 ∼20 12/6 33.048898 116.967280 314.4 −20.8 38.2 10.0 −42.7 224.3 5.5 10.5
16WDS24 312 10.1 13/13 31.649379 116.638855 317.8 −6.8 22.1 8.6 −41.4 233.3 4.3 8.6
16WDS25 315 13.1 9/7 31.648924 116.638975 323.6 −9.4 57.0 8.6 −48.6 235.8 4.5 8.8
16WDS26 315 0.55 8/7 31.650388 116.638680 320.4 −18.8 47.7 8.2 −47.3 228.8 4.4 8.5
Mean of “reverse” polarity 6 323.3 −17.5 60.3 8.7 −48.8 232.9 4.7 9.0
10 dykes combined 10 142.5 13.2 37.3 8.0 −46.8 234.9 4.2 8.2
Baked-contact test of 16WDS24 (dyke width 10.1m)
Baked zone (< 10.1m)a 8/5 31.649379 116.638855 323.0 -20.6 18.1 16.2 -49.9 229.8 8.9 17.0
Unbaked zone (> 10.1 m)b 17/6 31.649379 116.638855 4.2 -43.9 33.5 11.7 -83.0 329.6 9.1 14.6

N/n= number of demagnetised/used samples; Slat, Slong= sample locality latitude and longitude; Decl, Incl= site mean declination, inclination; k= precision
parameter of Fisher (1953); α95= semi-angle of the 95% cone of confidence; Plat, Plong= latitude, longitude of the palaeopole; Dp, Dm= semi-axes of the cone of
confidence about the pole at the 95% probability level.

a Gneiss samples collected within 10.1 m from the western margin of 16WDS24. Mean calculation includes the low temperature component of sample 16WDS24-9
(for details see text and Fig. 7).

b Gneiss samples collected further than 10.1m from the western margin of 16WDS24. Mean calculation includes the high temperature component of sample
16WDS24-9 (for details see text and Fig. 7).
* Sites with U-Pb dating.
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software (Chadima and Jelínek, 2008). In order to determine the
magnetic mineralogy of the dykes, representative specimens were
magnetised along three orthogonal axes using magnetic fields of 3 T,
0.4 T and 0.12 T, respectively (Lowrie, 1990), using a 2G MMPM9 pulse
magnetiser. The isothermal remanent magnetisations (IRMs) were then
subjected to thermal demagnetisation in 14 to 20 steps from 50 °C to
610 °C. K-T curves (magnetic susceptibility versus temperature) were
obtained using an AGICO MFK1 Kappabridge with a CS4 furnace in Ar-
atmosphere.

After measuring the natural remanent magnetisation (NRM) of all
samples, at least one specimen per sample has been subjected to step-
wise AF demagnetisation up to 100mT and/or thermal demagnetisa-
tion up to ∼590 °C. In order to limit the effect of lightning-induced
secondary remanence residing in single domain magnetite, the samples
were occasionally first AF demagnetised up to 20mT and subsequently
thermally demagnetised up to ∼600 °C. After each step, the magneti-
sation was measured using an AGICO JR 6A spinner magnetometer. An
average of ∼12 demagnetisation steps were used to isolate remanence
components. AF and thermal demagnetisations were carried out using a
Molspin AF demagnetiser and Magnetic Measurements Ltd thermal
demagnetisers, respectively. All demagnetisation and subsequent ex-
periments, except for the K-T analyses, were carried out in either a low-
field coiled room at the University of Western Australia, or in a mag-
netically shield room at Curtin University, both part of the Western
Australian Palaeomagnetic and Rock Magnetic Facility located in Perth.
The K-T analyses were conducted in laboratory of environmental
magnetism of Guangzhou Institute of Geochemistry.

Mean directions of individual components of the magnetic re-
manence of each specimen were calculated using principal component
analysis (Kirschvink, 1980). Site-mean directions were calculated using
Fisher statistics (Fisher, 1953). Calculations were performed using the
Remasoft software (Chadima and Hrouda, 2006). The GPlates program
(www.gplates.org) was used for palaeogeographic reconstructions.

4. Results

4.1. Rock magnetism

The K-T curves show Curie temperatures between 580 and 600 °C,
suggesting that low-titanium titanomagnetite or pure magnetite are the
main magnetic carriers. An increase of magnetic susceptibility just be-
fore the Curie temperature (the Hopkinson peak, Dunlop and Ozdemir,
1997)are observable (Fig. 3), indicating the presence of SD and PSD
(titano)magnetite. The heating and cooling curves of sample
15WDS2F1 are different, indicating that mineral phase changes oc-
curred during the heating process.

The demagnetisation of a composite three axis IRM (Lowrie, 1990)
for the Boonadgin dykes shows a general dominance of the soft coer-
civity fraction in all samples, which is removed between 550 and
590 °C, indicating MD (titano)magnetite being the dominant carrier of
the magnetic remanence. While the 0.12 T fraction is most prominent,
the 0.4 T fraction is always present and shows a similar demagnetisa-
tion behaviour (Fig. 3) confirming that SD/PSD (titano)magnetite are
present in the samples. Occasionally, a sharp drop of magnetic intensity
is visible at ∼300 °C (Fig. 3), which could be attributed to the inversion
of maghemite to hematite or the presence of pyrrhotite (Dunlop and
Ozdemir, 1997). It should be noted that pyrrhotite is converted to
magnetite during heating, which is often accompanied by an increase in
the magnetic intensity but not seen in this study (Fig. 3).

The results of rock magnetic experiments demonstrate that SD/PSD
(titano)magnetite are consistently present in the samples. We therefore
consider the Boonadgin dykes are capable of preserving hard magnetic
remanence.

4.2. Anisotropy of magnetic susceptibility (AMS)

The degree of AMS ( =P K K/max min) for all studied samples is gen-
erally low (< 1.10; Fig. 4a) with only a few exceptions. The anisotropy
ellipsoids are predominantly strongly prolate except for a few margin-
ally to moderately oblate cases (Fig. 4b). The low degree of anisotropy
is typical of mafic dykes (Chadima et al., 2009).

Among the 10 sites we used to calculate the palaeomagnetic pole,
15WDS02 and 16WDS20 do not show observable magnetic fabrics and
are excluded from further AMS analysis. The remaining sites show ei-
ther normal (Kmax axes are in the plane of dykes; Fig. 4c) or inverse
(Kmax axes are normal to the plane of dykes; Fig. 4d) AMS fabrics.

In the cases of normal AMS fabrics, the magnetic lineation (i.e., the
clustered direction of Kmax) is generally considered to represent the
magma flow direction (Knight and Walker, 1988). In the five dykes with
normal fabrics (Fig. 4c), the inclinations of the Kmax axes are low, in-
dicating horizontal to subhorizontal flow patterns.

The inverse AMS fabric, which appeared in three of the studied
dykes (Fig. 4d), has been frequently observed, but is not well-under-
stood (Canon-Tapia, 2004; Chadima et al., 2009). Several explanations
have been proposed: (i) the single domain effect (Potter and
Stephenson, 1988), which probably does not apply to this study because
the rock magnetic experiments suggest multi-domain magnetite as the
main magnetic phase (Fig. 3); (ii) post-emplacement alteration (Canon-
Tapia, 2004); (iii) elongate particles could roll when their long axes are
normal to the flow directions (Jeffery, 1922). Without further analysis,
the reason causing inverse fabrics in this study remains inconclusive.

There are cases where the magnetic fabrics of some samples do not
agree with the overall fabric of the dyke. We suspect that this is because
the samples were from loose boulders. The samples with incompatible
magnetic fabrics also have inconsistent palaeomagnetic directions
compared to the directions of other samples from the same dyke. We
therefore excluded both the AMS and palaeomagnetic results from such
suspected loose boulders.

4.3. Palaeomagnetism

Stepwise demagnetisation revealed high-temperature components
decaying toward the origin for nearly all samples (Fig. 5). We noticed
that within-site scatter of several sites is quite large, which is ascribed
to two possible reasons. First, the outcrop condition in the sampling
region is relatively poor. Due to prolonged lateritic weathering, few
dykes in this area present continuous outcrops. Among the ten dykes we
studied, three dykes (16WDS24, 16WDS25, 16WDS26) were sampled
from fresh road-cuts and others are from field exposures. Dykes ex-
hibiting significant within-site scatter were sampled from small linear
field outcrops and some of those could be slightly dislocated (suspected
boulders). Second, a possibility of remagnetisation by lightning strikes
cannot be excluded in the topographically flat Yilgarn Craton, as some
of these rocks reveal rather high Koenigsberger ratios (> 20). However,
we identified well-clustered high-temperature components from fresh
outcrops such as road-cuts without any indications of blocks being not
in situ, which do not show systematic deviations compared to the re-
maining sites and give confidence to our overall conclusions (Fig. 5 and
Fig. 6).

Bearing these two reasons in mind, we excluded results from sam-
ples collected from suspected loose boulders (based on field observa-
tions and AMS data), or from those probably affected by lightning
strikes. The demagnetisation of remaining samples from 10 sites re-
vealed two remanence components: a single polarity, low temperature
component (CL) and a dual-polarity, high temperature component
(CH), based on their unblocking behaviour (Fig. 6a and b).

The CL component has been isolated in three dykes (16WDS24 –
16WDS26), generally< 370 °C. It has a northern steep upward direc-
tion (D=349.8°, I=−66.9°, α95= 17.5°), which is close to the pre-
sent-day Earth magnetic field direction in this region (D=358.7°,
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I =−65.7°, Thébault et al. 2015, see Fig. 6a). We interpret this com-
ponent as viscous remanent magnetisation acquired recently. The de-
magnetisation behaviour, together with rock magnetic results, suggest
that the CL component is probably carried by maghemite or pyrrhotite.

The CH component, isolated from ten dykes, has unblocking tem-
peratures (530–590 °C) typical of low-titanium titanomagnetite or pure
magnetite. We interpret the CH component to be the ChRM of the
Boonadgin dyke swarm. The CH component is dual-polarity, directed
either SE shallow downward (4 sites) or NW shallow upward (6 sites;
Fig. 6b). For simplicity, we hereafter arbitrarily refer to the SE shallow
downward direction as “normal” and to its antipodal direction as “re-
verse” (Fig. 6). The reversal test of McFadden and McElhinny (1990) is

positive with classification ‘C’ (γ=11.0°, γc= 18.8°). The dual-polarity
remanence indicates that the duration of dyke swarm emplacement was
sufficiently long for the geomagnetic field to reverse its polarity and
therefore also for magnetic secular variation to be averaged out. Based
on the results of the rock magnetic experiments, we performed AF de-
magnetisation up to 60mT prior to thermal treatment for selected
samples. The directions isolated with combined AF and thermal de-
magnetisation are identical to those isolated by exclusive thermal
treatment (Fig. 5), which led us to conclude that we successfully iso-
lated the ChRMs carried by SD/PSD (titano)magnetite.

At three sites (WDS09, 15WDS02 and 16WDS24), the host rocks
were sampled for baked contact tests. Tests at two of the sites gave

Fig. 3. Results of thermal susceptibility experiments and thermal demagnetisation of orthogonal 3-axis IRMs (Lowrie, 1990) for representative dyke samples.
Examples of Lowrie tests on the right-hand side are shown without the dominant 0.12 T component.
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inconclusive results due to unstable magnetisations and/or randomly
oriented remanence directions in the host rock. At host rock site
16WDS24, we obtained eight samples within one dyke width (10m)
away from the contact, which is the typical width of baked zones
(Buchan, 2007), and seventeen samples from the hybrid and unbaked
zones. Five of the eight samples from the baked zone revealed high
temperature remanence components with a mean direction of
D=323.0°, I =−20.6° (α95= 16.2°, k= 17.88), which is similar to
the mean direction yielded by the dyke (Fig. 7b). Six of the 17 samples
from outside the baked zone yielded high temperature remanence
components with a mean direction of D=4.2°, I=−43.9°
(α95= 11.7°, k= 33.51), which is clearly different from that of the
baked zone (Fig. 7c). We note that this direction is close to that of the
GAD field (Fig. 7c), but the possibility that it is a primary ancient di-
rection of the host rock cannot be ruled out. Another possible ex-
planation for this observation could be that the intrusion and sub-
sequent heating of the dyke led to a mineralogical change in the baked
zone of the host rock, which made it more resistant to a viscous reset of
the magnetic signal. In addition, the directions for viscous overprint
should be close to that of the present-day Earth magnetic field rather
than that of the GAD field. The unbaked direction being closer to the
GAD direction makes it less likely to be a viscous overprint (Fig. 7).
Sample 16WDS24-9, located 10.5m from the contact, shows hybrid
characteristics suggestive of partial remagnetisation, with its low tem-
perature component (< 450 °C) yielding the dyke direction and the
high temperature component (500–580 °C) yielding the unbaked di-
rection. Based on these observations, we are inclined to interpret the
baked contact test as positive. However, we acknowledge that the un-
baked direction is yet to be proved older than the dyke direction, which

remains an important caveat to our baked contact test.
Based on the positive baked contact test, we interpret the CH

component to be of primary origin. The following points also support
our interpretation: (i) a positive reversal test; (ii) the dissimilarity be-
tween the direction of CH and published younger palaeomagnetic di-
rections from the region (Fig. 6c); (iii) the fact that the nearby ca.
2.4 Ga Widgiemooltha dyke swarm preserved primary magnetisations
(Smirnov et al., 2013) indicating an absence of pervasive overprinting
events in the region; (iv) an unblocking temperature generally between
530 °C and 590 °C that makes the ChRM unlikely to represent a thermal
overprint. After inverting the “reverse” polarity directions, the overall
mean CH direction is D= 142.5°, I= 13.2° (A95= 8°, k= 37.37). The
corresponding pole is located at 46.8°S, 234.9°E (dp, dm=4.2°, 8.2°
and A95=5.9°).

5. Discussion

Palaeoproterozoic positions of the Yilgarn Craton in palaeogeo-
graphic reconstructions have been controversial due to a lack of well-
constrained palaeomagnetic poles of 1900–1800Ma antiquity. Previous
reconstructions (e.g., Belica et al., 2014; Klein et al., 2016; Meert et al.,
2011) incorporated either the tentative ca. 1.82 Ga Plum Tree Volcanics
palaeopole from the North Australia Craton (NAC; Idnurm and
Giddings, 1988), or the 1900–1800Ma Frere Formation palaeopole
(Williams et al., 2004), which has large uncertainty in the age of the
magnetisation. The precisely-dated and palaeomagnetically well-de-
fined pole from this study bridges the 1900–1800Ma gap in the Pre-
cambrian Australian palaeomagnetic database and can be used to im-
prove the palaeogeographic evolution for this time. Here we establish a

Fig. 4. Box-and-whisker plot showing (a) degree of AMS for all the sites; (b) shape of AMS for all the sites; equal-area stereonets showing principal directions of the
AMS fabric for (c) all sites with normal fabric and (d) all sites with inverse fabric.
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global reconstruction ca. 1.89 Ga and, based on this, discuss the pos-
sible connection of the WAC with the South Indian Block (SIB).

Palaeoproterozoic palaeogeography is controversial largely due to
the lack of high-quality palaeomagnetic poles. In particular, only one
∼1900–1870Ma well-dated and reliable palaeopole from the Molson
dykes of the Superior Craton (Halls and Heaman, 2000; Zhai et al.,
1994) had been reported until recently. However, in the last eight years
several palaeomagnetic studies of coeval rocks on various continents
have been published (Table 2). The palaeogeographic reconstructions
proposed in these publications, however, are significantly different
from each other. Nonetheless, as palaeolatitudes and azimuthal or-
ientations of ancient continents in reconstructions of these workers are
broadly similar, slight differences could be attributable to magnetic
polarity ambiguity and longitudinal uncertainty. Here we propose the
most up-to-date ca. 1.89 Ga palaeogeography for all cratons for which

high-quality palaeopoles are available (Table 2), while also in-
corporating the timing of Palaeoproterozoic orogens (Table 3).Table 4.

Ca. 1.89 Ga, Laurentia and Baltica were not yet assembled (Evans
and Mitchell, 2011). Therefore, poles from their building blocks should
be treated separately. The location of the Superior Craton at moderate
palaeolatitudes is constrained by an recalculated pole of the 1877 +7/
−4 Ma Molson dykes (Evans and Halls, 2010), which is based on 34
sites from previous studies and proved primary by positive baked-
contact tests (Halls and Heaman, 2000; Zhai et al., 1994). Kilian et al.
(2016) reported a pole for the 1899 ± 5Ma Sourdough dykes from the
Wyoming Craton with positive baked-contact tests supporting the pri-
mary origin of the magnetisation. This pole places the Wyoming Craton
at approximately the same latitudes as the Superior Craton. Here we
adopt Kilian et al.’s (2016) favoured position by placing the Wyoming
and Superior cratons ∼60° apart in arc length, which does not require

Fig. 5. Representative demagnetisation experiments shown on Zijderveld diagrams (Zijderveld, 1967). Open/closed symbols represent magnetisation vectors pro-
jected on the vertical/horizontal plane. In stereonets (equal-area projection), open/filled symbols indicate upper/lower hemisphere directions. Linear plots with filled
triangles showing the normalized intensity decay curves.
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complex rotations of the Wyoming Craton in order to join the Superior
Craton later, during the ca. 1770Ma Big Sky Orogeny (Hanson, 2004).
Buchan et al., (2016) reported a high-quality pole supported by mul-
tiple positive baked-contact tests for the 1885Ma Ghost dykes of the
Slave Craton. The Ghost palaeopole indicates that the Slave Craton

occupied moderately low palaeolatitudes ca. 1.89 Ga. The Slave Craton
collided with the Rae Craton along the Thelon Orogen ca 1.96 Ga
(Hoffman, 1988), and then the Hearne Craton collided with the Rae
Craton ca 1.9 Ga, forming the northwestern part of Laurentia (Berman
et al., 2007), based on which we consider the Ghost dykes palaeopole to

Fig. 6. Stereonets (equal-area projection) of: (a) site mean directions of CL component with stars showing the direction of the present-day Earth magnetic field (PEF)
and the expected direction from geocentric axial dipole (GAD); (b) site mean directions of bipolar CH component (Table 1); (c) site mean direction of CH component
with NW upward directions inverted. Filled stars represent published younger palaeomagnetic directions in the region (Table 1). GFD=1210Ma Gnowangerup-
Fraser Dykes (Pisarevsky et al., 2014b), BS= 1070Ma Bangemall Sills (Wingate et al., 2004, 2002), MD=755Ma Mundine Well Dykes (Wingate and Giddings,
2000). Conventions follow those in Fig. 5.

Fig. 7. Results of a backed contact test. The stereonets (equal-area projection) are of: (a) sample mean directions of site 16WDS24 (Table 1); (b) sample mean
directions of the host gneiss samples collected within 10.1 m (typical baked zone) from the western margin of 16WDS24 (Table 1); (c) sample mean directions of the
host gneiss samples collected farther than 10.1m from the western margin of 16WDS24 (Table 1). The Zijderveld diagrams show progressive thermal demagneti-
sation results of representative samples from the dyke (16WDS24-C), the baked zone (16WDS24-7), the hybrid zone (16WDS24-9), and the unbaked country rock
(16WDS24-17), respectively. Numbers labelled on the Zijderveld plots indicate the thermal demagnetisation steps in °C.
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represent the Slave, Rae, and Hearne cratons ca. 1.89 Ga.
The collision of the Archaean Kola and Karelian cratons during the

1940–1860Ma Lapland-Kola Orogeny, followed by Svecofennian ac-
cretionary growth (e.g. Bogdanova et al., 2015; Lahtinen et al., 2008),
formed Fennoscandia, which in turn collided with the Sarmatia/Volgo-
Uralia Craton to assemble Baltica between 1800Ma and 1700Ma. A
newly available key pole supported by baked contact tests from the ca.
1.87 Keuruu dykes (Klein et al., 2016) places Fennoscandia at low la-
titudes. The longitudinal position of Fennoscandia is chosen in a way so
it can subsequently join Laurentia to form the so-called NENA (North
Europe-North America) connection (Gower et al., 1990), which is
suggested to have lasted from 1.8 Ga to 1.2 Ga (Evans and Pisarevsky
2008; Pisarevsky and Bylund, 2010; Salminen et al., 2014).

For Siberia, we use the pole from the lower Akitan Group, which is
dated at 1878 ± 4Ma and supported by positive intra-formational
conglomerate test and by fold tests (Didenko et al., 2009). This pole
suggests Siberia was equatorial. In our reconstruction, we show only the
northwestern part of the Siberian Craton (the Angara-Anabar block),
because although the Aldan block probably collided with the Angara-
Anabar block along the Akitkan suture by ca. 1870Ma (e.g., Pisarevsky
et al., 2008 and references therein), palaeomagnetic studies suggest
some differential rotation within the Aldan block up to ca. 1720Ma
(Pavlov et al., 2008). Evans and Mitchell (2011) proposed that Siberia

could be tightly connected to Laurentia and Baltica, forming the core of
Nuna (but also see Pisarevsky et al., 2008 for alternative reconstruc-
tions). Ernst et al. (2016) proposed a similar tight connection from
∼1.9 Ga to ∼0.7 Ga between southern Siberia and north Laurentia
based on matching coeval magmatic events. Here we adopt this idea by
placing the southern tip of Siberia close to the northern part of the Slave
Craton, which is permitted by palaeomagnetic data.

A recalculated pole from the Mashonaland sills (Evans et al., 2002
and references therein) dated at 1888 ± 1Ma (Söderlund et al., 2010)
place Zimbabwe at moderate latitudes. Two roughly coeval poles are
available for the Kaapvaal Craton. The Black Hills dyke pole (Lubnina
et al., 2010) was used to constrain the location of Kaapvaal ca. 1.88 Ga
(e.g. Belica et al., 2014). However, more detailed geochronologic in-
vestigations revealed a refined age of 1844.4 ± 2.6Ma (Olsson et al.,
2016) for the site where Lubnina et al., (2010) determined the mag-
netisation age, rendering the corresponding pole too young for our
1.89 Ga reconstruction. The 1875 ± 4Ma post-Waterberg dolerite pa-
laeopole is not supported by field tests (Hanson, 2004; Söderlund et al.,
2010). Consequently, although comparing the post-Waterberg and
Mashonaland poles Hanson et al., (2011) suggested a>2000 km shift
between Kaapvaal and Zimbabwe cratons at ca. 1890–1870Ma, we
prefer a conservative approach and adopt the model where Zimbabwe
and Kaapvaal already collided between 2.0 and 1.9 Ga along the Lim-
popo Belt (Söderlund et al., 2010) to form proto-Kalahari. In our re-
construction, we use only the Mashonaland pole to constrain a position
of proto-Kalahari at ca. 1.89 Ga. Jacobs et al. (2008) suggested that the
western margin of proto-Kalahari experienced long-lasting accretionary
events from 2000Ma to 1850Ma, while a passive margin environment
characterizes its eastern border. We therefore keep some space between
proto-Kalahari and other cratons.

Although the assembly of Australia in Precambrian time is still de-
bated, most authors consider its incorporation by or shortly after
∼1.8 Ga (Betts et al., 2016; Cawood and Korsch, 2008; Li and Evans,
2011; Li, 2000; Myers et al., 1996). Therefore, our new pole represents
the WAC alone, and not Australia at large. A SWEAT-like reconstruction
of Australia and Laurentia has been suggested to be possible at ca.
1600Ma within the Nuna supercontinent (Betts et al., 2008; Goodge
et al., 2008; Hamilton and Buchan, 2010; Payne et al., 2009; Pisarevsky
et al., 2014a,b). Our reconstruction thus places the WAC at a con-
siderable distance from the northwestern Laurentian building blocks

Table 2
Palaeomagnetic poles used in the palaeographic reconstructions at ca 1.89 Ga (Fig. 8).

Pole Cont./Craton Plat. (°N) Plong. (°E) A95 (°) Age (Ma) Reference

Molson Dykes B+C2 Superior 28.9 218.00 3.8 1884–1873 Evans and Halls (2010); Halls and Heaman (2000); Zhai et al. (1994)
Sourdough Dykes Wyoming 49.2 291.0 8.1 1904–1894 Kilian et al. (2016)
Ghost Dykes Slave 2.0 254.0 6.0 1887–1884 Buchan et al. (2016)
Keuruu Dykes Fennoscandia 45.7 230.9 5.5 1879–1859 Klein et al. (2016)
lower Akitan Group Siberia −30.8 98.7 3.5 1882–1874 Didenko et al. (2009)
Mashonaland Sills Kalahari 8.0 338.0 5.0 1888–1874 Bates and Jones, (1996); Evans et al., (2002); McElhinny and Opdyke, (1964);

Söderlund et al., (2010)
Dharwar+Bastar Dykes India 37 334 5.6 1888–1882 Belica et al. (2014); Meert et al. (2011)
Boonadagin Dykes W. Australia −46.8 234.9 5.9 1892–1884 This study

Table 3
Palaeoproterozoic orogenies plotted in Fig. 8.

Name Duration Type Reference

Snowbird 1920–1890Ma Collisional Berman et al. (2007); Martel et al. (2008)
Wopmay 1950–1840Ma Accretionary Bowring and Podosek (1989); Bowring and Grotzinger (1992)
Torngat 1940–1870Ma Collisional Connelly (2001); Funck et al. (2000)
Trans-Hudson 1910–1810Ma Accretionary stage Hoffman (1988)
Svecofennian 2000–1750Ma Accretionary Bogdanova et al. (2015)
Kheis-Okwa-Magondi 2000–1850Ma Accretionary Jacobs et al. (2008)
Angara 1900–1850Ma Accretionary Gladkochub et al. (2006); Poller et al. (2005)
Akitkan 1900–1870Ma Collisional Donskaya et al. (2009)

Table 4
Euler rotation parameters for Fig. 8.

Craton/block/terrane* Euler Pole Angle
(°)

(°N) (°E)

Superior −13.34 −72.92 −235.05
Nain −37.60 −2.14 −235.87
Rae −29.48 −37.79 −242.56
Hearn −29.48 −37.79 −242.56
Slave 28.35 132.16 −104.91
Wyoming −11.83 −7.18 142.70
Fennoscandia −64.78 49.87 −175.78
Siberia −49.41 53.82 256.44
Kalahari −13.78 −92.07 −105.47
S. India 43.31 −88.68 68.98
W. Australia −40.29 161.40 −63.59

* Rotation relative to absolute framework.
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Fig. 8. Palaeogeographic reconstruction for ca.
1.89 Ga based on palaeopoles listed in Table 2. The
poles are colour-coded according to the colours of
the cratons. The positions of Rae, Hearne, and Nain
are not palaeomagnetically constrained; their
proximity to the Slave craton is nonetheless estab-
lished by either active or eventual suturing
(Hoffman, 1988).

Fig. 9. A possible configuration of the WAC and SIB at ca. 1.89 Ga reconstructed in present day WAC coordinates. The red dykes in SIB have been dated at
1894–1879Ma (Belica et al., 2014; French et al., 2008; Halls et al., 2007). Red star denotes possible location of a mantle plume centre.
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(Fig. 8) so that they can later form a SWEAT-like connection, after the
subsequent assembly of the North and South Australian cratons with the
WAC.

Mohanty (2012, 2010) suggested a possible connection between SIB
and the WAC in Late Palaeoproterozoic mainly because of a similarity
of tectonic histories of the Central India Tectonic Zone and the Capri-
corn Orogen of the WAC. Stark et al. (this issue) discussed the possi-
bility of the Boonadgin dyke swarm being part of the Bastar-Cuddapah
LIP of SIB. Our new palaeopole supports this idea. The new Boonadgin
dyke pole from this study places the WAC in proximity of the palaeo-
equator. Meanwhile, the palaeopole from the ca. 1.88 Ga Dharwar and
Bastar dykes of SIB, which is supported by a positive baked-contact test,
places India at a similarly low palaeolatitude (Belica et al., 2014). If the
two continents were connected at that time, the western margin of the
WAC can be reconstructed in the vicinity of the eastern margin of SIB
(Fig. 9). We therefore propose that the northern WAC (Pilbara) and
north-eastern India (Singhbhum) were connected or close to each other
at ca. 1.9 Ga. The presence of layered intrusions and dykes of varying
orientations in SIB may suggest proximity to the mantle plume centre.
On the other hand, the horizontal-to-subhorizontal magma flows in-
dicated by AMS data imply that the WAC was relatively further away
from the plume centre (Ernst and Baragar, 1992). The speculated dis-
tances of South India and the WAC relative to the plume centre is
consistent with our reconstruction (Fig. 9). We note that this re-
construction does not support the relation between the Central Indian
and the Capricorn orogens as suggested by Mohanty (2012, 2010), and
it allows additional continental block(s) to be between the Yilgarn
Craton and SIB. In summary, our reconstruction in Fig. 8 does not
support the “early” (Palaeoproterozoic) assembly of Nuna, but rather
supports largely independently drifting cratons separated by oceans at
ca. 1.89 Ga.

6. Conclusion

We obtained a palaeomagnetic key pole from the 1888 ± 9Ma
Boonadgin dyke swarm in the Yilgarn Craton, Western Australia, lo-
cated at 47°S, 235°E, A95= 6°. This palaeopole is proven to be primary
by a positive baked-contact test. Based on matching geometries of
contemporaneous mafic dykes and comparing palaepoles, we propose
that the WAC (Pilbara) and SIB (Singhbhum) were close to each other
ca. 1.89 Ga. Using available high-quality poles, we provide a ca. 1.89 Ga
palaeogeographic reconstruction in which the WAC was positioned at a
significant distance from the northwestern building blocks of Laurentia
in a way which allows the subsequent amalgamation to form the proto-
SWEAT connection.
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First Precambrian palaeomagnetic 
data from the Mawson Craton 
(East Antarctica) and tectonic 
implications
Yebo Liu1, Zheng-Xiang Li   1, Sergei A. Pisarevsky1, Uwe Kirscher1, Ross N. Mitchell1, 
J. Camilla Stark1, Chris Clark2 & Martin Hand3

A pilot palaeomagnetic study was conducted on the recently dated with in situ SHRIMP U-Pb method 
at 1134 ± 9 Ma (U-Pb, zircon and baddeleyite) Bunger Hills dykes of the Mawson Craton (East 
Antarctica). Of the six dykes sampled, three revealed meaningful results providing the first well-
dated Mesoproterozoic palaeopole at 40.5°S, 150.1°E (A95 = 20°) for the Mawson Craton. Discordance 
between this new pole and two roughly coeval poles from Dronning Maud Land and Coats Land (East 
Antarctica) demonstrates that these two terranes were not rigidly connected to the Mawson Craton 
ca. 1134 Ma. Comparison between the new pole and that of the broadly coeval Lakeview dolerite from 
the North Australian Craton supports the putative ~40° late Neoproterozoic relative rotation between 
the North Australian Craton and the combined South and West Australian cratons. A mean ca. 1134 Ma 
pole for the Proto-Australia Craton is calculated by combining our new pole and that of the Lakeview 
dolerite after restoring the 40° intracontinental rotation. A comparison of this mean pole with the 
roughly coeval Abitibi dykes pole from Laurentia confirms that the SWEAT reconstruction of Australia 
and Laurentia was not viable for ca. 1134 Ma.

East Antarctica has been a key piece in Precambrian palaeogeographic reconstructions (e.g., refs1–4). Nevertheless, 
available constraints for Precambrian palaeogeography for East Antarctica are quite sparse for several reasons: (i) 
logistical inaccessibility, (ii) limited outcrops due to the thick ice cover, and (iii) difficulties in conducting field-
work in the severe weather. There are only two Precambrian palaeomagnetic poles available from East Antarctica: 
the ca. 1130 Ma pole from the Borgmassivet intrusions in Dronning Maud Land5 and the ca. 1100 Ma “CL” pole 
from Coats Land6 (BM and CL hereafter). However, it is likely that neither Dronning Maud Land nor Coats Land 
terranes joined the Mawson Craton until the final assembly of Gondwana ca. 520 Ma1,3,7–10. Therefore, the BM 
and CL poles cannot be used to constrain the location of the Mawson Craton in pre-530 Ma palaeogeographic 
reconstructions. As a result of both the lack of palaeomagnetic data from the Mawson Craton (East Antarctica) 
and the long-lived connection between Mawson and Gawler (South Australia) cratons (comprising the so-called 
Mawsonland; Fig. 1), the placement of East Antarctica in Precambrian palaeogeographic reconstructions has 
relied indirectly on the dataset of Australia in an assumed Gondwanan configuration (e.g., refs4,11,12).

The Bunger Hills area of the Wilkes Land district of East Antarctica is commonly considered to be a frag-
ment of the Archaean Yilgarn Craton13–15 (Fig. 1). Bunger Hills became a part of the Mawsonland during the 
ca. 1.3 Ga Albany-Fraser Orogeny15–18. Following the Ectasian orogenesis, Bunger Hills was intruded by abun-
dant mafic dykes that can be divided into two groups: an older, deformed and metamorphosed dykes, and a 
younger, non-deformed and non-metamorphosed dykes. In this study we dealt with the second group only. 
These non-deformed dykes were classified into five compositionally distinctive sub-groups ranging from olivine 
tholeiites and slightly alkaline dolerites to picrites–ankaramites19. Those five sub-groups were proposed to have 
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reflected lateral and vertical heterogeneity in their source regions and indicated the involvement of at least six dif-
ferent source regions of mantle partial melt19. One sub-group probably originated from an enriched lithospheric 
mantle source with an OIB-like component, whereas other dyke groups likely had at least two source compo-
nents ranging from slightly depleted to moderately enriched in composition. Geochemical analysis of the largest 
~50-m-wide dyke at Bunger Hills (sample BHD1) supports this conclusion20.

Whole-rock Rb–Sr and Sm–Nd mineral isochron dating suggests emplacement of the tholeiites and doler-
ites at ca. 1140 Ma and the alkali dykes at ca. 502 Ma19,21,22. The 6 dykes sampled for this study are all roughly 
NW-trending dolerites or gabbros. Among them, BHD1, the largest NW-trending dyke at Bunger Hills, has 
recently been dated with in situ SHRIMP at 1134 ± 9 Ma (zircon) and 1131 ± 16 Ma (baddeleyite), suggest-
ing that similarly oriented dykes with ca. 1140 Ma Rb-Sr and Sm-Nd dates may be coeval20. In this paper, we 

Figure 1.  Tectonic map of Australia and Antarctica in a Gondwana configuration (modified after ref.75 with 
data incorporated from refs16,76). Antarctica is rotated to Australia coordinates using a Euler pole7 at 1.3°N, 
37.7°E, rotation = 30.3°. Abbreviations: AFO, Albany-Fraser Orogen; BH, Bunger Hills; CCr, Curnamona 
Craton; M-F-C, Madura-Forrest-Coompana Provinces; MR, Miller Range; NC, Nornalup Complex; TA, Terre 
Adélie craton; WI, Windmill Islands; WL, Wilkes Land.
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present the results of a palaeomagnetic study of these ca. 1134 Ma Bunger Hills mafic dykes, representing the 
first Precambrian palaeomagnetic pole from the Mawson Craton of East Antarctica, and discuss its tectonic 
implications.

Methods
A total of 36 block samples from 6 sites (6 dykes, including the recently dated BHD1 dyke) were collected for 
palaeomagnetic analysis (Fig. 2). All samples were oriented with both a magnetic compass and a sun compass, 
except those from dyke BHD3 where only magnetic compass was used due to weather conditions. At least two 
cylindrical specimens were drilled from each block. At least one specimen per block was subjected to progressive 
thermal demagnetisation in 15 to 20 steps from 100 °C to 600 °C using a Magnetic Measurements Ltd thermal 
demagnetiser. After each heating step, the magnetisation was measured using an AGICO JR-6A spinner magneto-
meter. An initial set of samples was also subjected to alternating field (AF) demagnetisation and measurement 
using the 2 G RAPID system with maximum AF fields of 110 mT. Both magnetometers are hosted inside the 
magnetically shielded room.

Magnetisation vectors were defined using principal component analysis23. All vectors were calculated using 
at least four successive steps with maximum angular deviations <10°. In cases where demagnetisation failed to 
reveal stable endpoints, remagnetisation great circles were used24. Site-mean directions were calculated in these 
cases using the method described in ref.25. Mean dyke directions were calculated using Fisher statistics26. All 
calculations were carried out using PuffinPlot27 and the PmagPy package28. GPlates software29 was used for pal-
aeogeographic reconstruction.

To identify the magnetic carrier(s) for the various isolated components, samples with representative 
demagnetisation behaviour were each given a three-component isothermal remanent magnetisation (IRM) 
along three orthogonal axes using magnetic fields of 2.4 T, 0.4 T and 0.12 T, respectively30, using a Magnetic 
Measurement MMPM10 pulse magnetiser. The IRMs were then subjected to progressive thermal demagneti-
sation. Susceptibility versus temperature experiments were conducted using an AGICO MFK-1 Kappabridge 
(equipped with a CS4 furnace). Hysteresis loops and isothermal remanent magnetization curves were obtained 
with a Variable Field Translation Balance (VFTB31). All the measurements were carried out in the palaeomagne-
tism laboratory at Curtin University.

Results
Rock magnetism.  The results of the Lowrie30 test show that the low-coercivity fraction (0–0.12 T) with Curie 
temperatures of ~580 °C is dominant in all tested specimens and is probably carried by multi-domain low-tita-
nium titanomagnetite or magnetite (Fig. 3). The medium-coercivity fraction (0.4 T) with Curie temperatures of 
~580 °C is also significant in most tested specimens, suggesting the additional presence of palaeomagnetically 
highly stable single-domain (SD) or pseudo-single-domain (PSD) (titano)magnetite (Fig. 3a). In one case (spec-
imen BHD6–4B), only multi-domain magnetite is present (Fig. 3b).

Figure 2.  Simplified geological Map of Bunger Hills showing the sample locations (modified after ref.20).
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Susceptibility versus temperature curves (Fig. 3c,d and Supplementary Fig. 2) show consistent sharp declines 
in susceptibility between 560 °C and 590 °C, indicating that the main magnetic mineral phase is Ti-poor titano-
magnetite/magnetite. Hopkinson peaks32,33 are observable in some samples (Fig. 3c and Supplementary Fig. 2b,c) 
suggesting the presence of single domain (titano)magnetite. In all measured samples, a decrease in inten-
sity during heating starting from 320 °C disappears during cooling, which implies the occurrence of a phase 
change during heating. The most plausible explanation is that maghemite and titanomaghemite, which are the 
low-temperature oxidation product of magnetite/titanomagnetite and commonly found in mafic dykes, were 
inverted to hematite and (titano)magnetite during heating32. We note that some iron sulphides such as pyrrhotite 
would also breakdown at this temperature interval. However, the presence of pyrrhotite is often characterized by 
a distinct hump in heating curves, which is not evident in our experiments. Repeated progressive heating exper-
iments34 were performed on two representative samples (Fig. 3d and Supplementary Fig. 2f). The results show 
that two main phase changes occurred at 300–400 °C and 500–600 °C, respectively. The former probably reflects 
the inversion of maghemite to hematite causing the susceptibility to decline in heating curves, and the latter 
titanomaghemite inverting to magnetite32, responsible for the increase in cooling curves.

IRM acquisition curves (Supplementary Fig. 3) show behaviour consistent with the presence of (titano)mag-
netite with a rapid increase until saturation at fields of ~100–200 mT. Hysteresis loops show a typical low coer-
civity behaviour (Supplementary Fig. 4). In a Day plot35, the results fall on a MD-SD mixing curve36. Moreover, a 
representative plot of the derivative of the difference of ascending minus descending branch of the positive side of 
the hysteresis loop reveals two low coercivity peaks (Supplementary Fig. 4).

In summary, our rock magnetic analyses suggest the presence of both MD and SD (low-Ti) titanomagnetite, 
the latter implying that the BHD dykes are capable of carrying stable magnetic remanence. Additionally, minor 
amounts of maghemite/titanomaghemite may be present.

Palaeomagnetism.  Two types of thermal demagnetisation behaviour were observed in this study. While 
~40% of specimens showed origin-directed stable endpoints, the remaining ~60% revealed only great circle 
demagnetisation behaviour. For all six dykes, at least one specimen per site yielded stable endpoints. Dyke BHD3 
has somewhat random remanence directions, likely caused by the lack of sun compass orientations, which is 
essential in polar areas so close to the magnetic pole. Circles of confidence for BHD4 and BHD6 site-mean direc-
tions are too large (α95 > 40°) to place any significance on their directions. We therefore exclude dykes BHD3, 
BHD4, and BHD6 from further analysis and discussion.

Thermal demagnetisation of the remaining dykes revealed two single-polarity remanence components based 
on their unblocking temperatures: a low-temperature component (LTC) and a high-temperature component 
(HTC, Fig. 4). The LTC is observed in most samples and generally removed by heating to ~250 °C. It is directed 
steeply upward to the north (D = 350°, I = −77°, α95 = 12°, k = 105), which is nearly parallel to the present-day 
geomagnetic field direction (GAD direction) in the region (Fig. 5d). We interpret the LTC as a viscous remanent 
magnetisation (VRM) acquired recently. AF demagnetisation was not effective for our sample collection due to a 
wide scattering of directions after applying alternative fields >50 mT. However, a residual remanence intensity of 
>10% of the NRM remained even after application of the maximum field (up to 110 mT). This might be explained 

Figure 3.  Results of thermomagnetic experiments on representative dyke samples. (a,b) Thermal 
demagnetisation of orthogonal three-axis IRMs; (c,d) temperature versus susceptibility curves.
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by a significant population of SD and PSD magnetic carriers, as indicated by the rock magnetic experiments (see 
previous section).

In cases when magnetisation vectors were defined, the HTC was isolated generally between 370 °C and 530 °C 
to 570 °C, whereas great circles were calculated using steps between 100 °C and 550 °C. The unblocking temper-
ature range (530–570 °C) suggests low titanium titanomagnetite as the carrier of the HTC. The mean directions 
defined by intersecting great circles are in good agreement with those by endpoint analyses (Figs 4 and 5), which 

Figure 4.  Representative demagnetisation plots. For each site, two specimens are demonstrated: (a,c,e) 
represent cases with stable endpoints; (b,d,f) represent cases when the stable end points were not reached and 
the great circle approximations have been made. In equal-area stereonets, open/filled symbols indicate upper/
lower hemisphere directions.
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gives confidence in the method25 of mean calculation used for our study. The HTC is thus interpreted to be 
the characteristic remanent magnetisation (ChRM) which yields a mean direction of D = 71°, I = 69° (α95 = 13°, 
k = 88) (Table 1 and Fig. 5), with a corresponding pole of Plat = −40.5°N, Plong = 150.1°E with A95 = 20.3°. Based 

Figure 5.  Equal-area stereonets showing the site-mean direction of BHD1, BHD2 and BHD5 as well as the total 
mean direction of component HTC and LTC. Open/filled symbols indicate upper/lower hemisphere directions. 
In cases when the stable end points were not reached, all the demagnetisation steps and correspondingly fitted 
great circles are shown, otherwise only the calculated magnetization vectors are shown.

Site
Trend 
(°) N/n Slat. (°N) Slong. (°E) Decl. (°)

Incl. 
(°) k α95 (°)

Plat. 
(°N)

Plong. 
(°E) Dp (°)

Dm 
(°)

BHD1 304 6/6 −66.245278 100.703698 80.5 77.3 15 21.2 −53.8 144.1 37.0 39.6

BHD2 321 6/6 −66.250598 100.622593 76.5 65.4 157 6.0 −37.7 156.7 7.9 9.7

BHD5 300 6/6 −66.215189 100.759104 62.1 62.4 90 7.6 −29.7 148.1 9.2 11.9

Mean 3 71.2 68.5 87.9 13.2 −40.5 150.1 A95 = 20.3°

Table 1.  Palaeomagnetic results for BHD1, BHD2, and BHD5. N/n = number of demagnetised/used samples; 
Slat, Slong = sample locality latitude and longitude; Decl, Incl = site mean declination, inclination; k = 
precision parameter of Fisher (1953); α95 = radius of cone of 95% confidence; Plat, Plong = latitude, longitude 
of the palaeopole; Dp, Dm = semi-axes of the cone of confidence about the pole at the 95% probability level.
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on our rock magnetic studies and indirect evidence from the AF demagnetisation (see above), we suggest that 
the HTC is carried by SD or PSD low-titanium titanomagnetite or magnetite, which is palaeomagnetically highly 
stable (e.g., ref.31).

Our new palaeomagnetic pole satisfies four out of seven quality criteria of the Q-value of Van der Voo37: it is 
well dated, obtained after an adequate demagnetisation procedure, the studied dykes are post-date the latest stages 
of the Albany-Fraser Orogeny, so the pole is representative for the Mawson Craton, and finally the pole does 
not coincide with any younger Antarctic palaeopoles or, after the corresponding Euler rotations, any younger 
Australian and Gondwanan poles (see syntheses of refs38–40 and Supplementary Fig. 5).

In summary, although no baked contact tests are available in this study, several lines of evidence are in favour 
of a primary origin of the characteristic remanence in the BHD dykes: (i) the presence of SD (titano)magnetite 
indicates that the BHD dykes are capable of carrying stable magnetic remanence; (ii) the high unblocking temper-
ature between 530 °C and 570 °C makes the HTC unlikely to be affected by a thermal event; (iii) if the Bunger Hills 
rocks ever experienced remagnetisation, Pan-African orogenesis is the most likely candidate. Nonetheless, the 
BHD pole does not overlap with poles of Pan-African age or any younger poles (Supplementary Fig. 5), arguing 
against remagnetisation and for the preservation of primary remanence.

Our pole is calculated by averaging three site-mean directions of three distinct dykes, which may not be 
enough to average geomagnetic secular variation. More sampling would improve this, but the logistical obstacles 
are huge for such remote and difficult area as Antarctica. Thus, we assert that the first Precambrian pole from the 
little-studied Mawson Craton provides an invaluable constraint on Precambrian palaeogeography and tectonics, 
which we demonstrate in the next section.

Discussion
East Antarctica represents the Precambrian portion of Antarctica, and most workers agree that it is divisible 
into several tectonic domains that have geological affinities with Africa (Kalahari), India, Australia, and some 
unknown sources7,8,16,18,41,42. Antarctic rocks with Australian affinities are often considered to have been con-
nected with Australia until the breakup of Pangaea, which commenced at ~85 Ma (e.g., ref.43). Various terms 
have been used to describe the once contiguous Australia-Antarctica continental block. For the purposes of this 
paper, we use the term “the Mawson Craton” first used in refs38,39. The extent of the Mawson Craton is unclear 
due to extensive ice cover (and unlike West Antarctica that is melting rapidly, the East Antarctic ice sheet remains 
stable or is possibly even gaining mass44). Here we follow the continental outline of refs7,11,18, and consider that the 
Mawson Craton (comprised by Terre Adélie terrane, Miller Range, and other tectonic units surrounding them) 
has been connected with the Gawler Craton of Australia in the so-called Mawsonland configuration (Fig. 1) since 
Archaean. Note that we do not include Wilkes Land (including Bunger Hills and Windmill Islands), which were 
traditionally considered parts of the Mawson Craton, because we only show the outline of the Mawson Craton 
before the Albany-Fraser Orogeny (Fig. 1).

Although it is generally agreed that Precambrian Australia (west of the Tasman line; Fig. 1) is composed of 
three Archaean to Palaeoproterozoic cratons (the West, North, and South Australian cratons – WAC, NAC and 
SAC correspondingly), when and how the present-day configuration took form is still a matter of debate. The 
amalgamation between the NAC and WAC were originally thought to have taken place during the ca. 1800–1765 
Ma Yapungku Orogeny45–47. However, the relatively high-pressure metamorphism presumably reflecting the col-
lision between of the WAC and NAC was recently suggested to have possibly occurred as late as ca. 1300 Ma48,49, 
in favour of a late assembly between WAC and NAC. The relationship between the NAC and SAC is even more 
intensely debated. Based mainly on the similarity between the Mount Isa Terrane of the NAC and the Curnamona 
Province of the SAC, most recent models46,47,50,51 propose that the SAC was connected with the NAC from at least 
ca. 1800 Ma until they broke apart ca. 1500 Ma. The SAC then reunited with the NAC during the ca 1330–1140 
Ma17 Albany-Fraser Orogeny in a different configuration.

In spite of all the disputes, nearly all proposed models (e.g., refs46,50–53) share some common ground in that 
the previously combined WAC + NAC amalgamated with the SAC (together with the Mawson Craton) form-
ing Precambrian Australia by the end of the Albany-Fraser Orogeny ca. 1140 Ma17. This amalgamation allows 
Mawson + Australia to be viewed as a single continental block in post-1.2 Ga reconstructions (e.g., refs12,17,41). 
However, such an early formation of the present-day cratonic Australia cannot explain apparent mismatches 
between some coeval palaeomagnetic poles of Australia, exemplified by the ~35° discrepancy between the 
1070 Ma Bangemall Basin sills (BBS) pole of the WAC and the 1070 Ma Alcurra dykes and sills (ADS) pole of the 
NAC (Fig. 6; ref.54).

To address such mismatches between coeval poles within Australia, one solution is to have major Australian 
cratons not assembled until after ~1070 Ma55. In Fig. 6a, selected palaeomagnetic poles (Table 2) including 
the Bunger Hills dykes pole (BHD) were used to test this hypothesis of a late Australian amalgamation. The 
BHD pole and that of the ca. 1140 Ma Lakeview dolerite of the NAC overlap, implying that the collision of 
WAC + SAC + Mawson with NAC finished or at least was close to suturing by ca. 1133 Ma, which is inconsistent 
with the post-1070 Ma assembly of Australia55. Additionally, the coherent ca. 800–600 Ma Centralian Superbasin 
stratigraphy makes it geologically unfeasible to close putative wide late Neoproterozoic ocean basins to form 
Australia54.

An alternative solution is that the WAC + SAC rotated ~40° with respect to the NAC ca. 650–550 Ma54, which 
was argued on the basis that such an intraplate rotation brings three pairs of coeval, previously discrepant poles 
into agreement. A new pole from the ca. 770 Ma Johnny’s Creek Member (Bitter Springs Formation) lends further 
support for this intraplate rotation56. The BHD and LD poles make up another group of coeval poles from the 
NAC and WAC + SAC + Mawson, respectively, with which the intraplate rotation may be further tested. With 
the rotation applied, the area of overlap of the 95% confidence circles of the BHD and LD poles increases (Fig. 6), 
which provides a positive test for the relative rotation model between WAC + SAC(+Mawson) and NAC. The vast 
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intracratonic rotation hypothesis not only reconciles discrepant coeval palaeopoles, but also provides a mecha-
nism for the enigmatic Paterson and Petermann orogenies that accounts for significant mineralisation such as the 
massive Telfer Au deposit57,58.

Given the coincidence of the coeval BHD and LD poles when restored to the earlier Proterozoic configuration 
of Australia (Fig. 6b), we calculate a mean ca. 1134 Ma pole for Australia + Mawson. This mean pole calcula-
tion thus overcomes the shortcoming of the BHD pole potentially undersampling geomagnetic secular variation. 
Calculation is conducted by combining the individual virtual geomagnetic poles of both the LD and BHD studies 
using Fisher statistics after rotating the BHD data into the North Australia reference frame according to the Euler 
parameters in ref.54. The resultant ca. 1134 Ma mean pole for Australia + Mawson (in North Australian coordi-
nates) is 9°S, 134°E and A95 = 14°.

The combined, and therefore time-averaged, ca. 1134 Ma pole for Australia + Mawson can be used for robust 
palaeogeographic reconstruction and we do so here to test the SWEAT (Southwest US-East Antarctic) fit, which is 
probably the best-known and most-debated relationship in Precambrian supercontinents. Figure 7 demonstrates 
that the SWEAT fit requires some space between Laurentia and Australia + Mawson even when adopted the 
so-called “closest approach”59,60. Our comparison (Fig. 7), as with previous studies61–63, suggest that the SWEAT 
fit was not viable between ca. 1210 Ma and ca. 1070 Ma. If SWEAT-like fits did indeed exist in both Nuna2,4,64–66 
and Rodinia67–70, then Australia + Mawson must have rifted away from Laurentia during Nuna breakup2,4,71, but 
likely remained close for later assembly in Rodinia in a broadly similar configuration72.

Lastly, the new BHD pole presented here also carries implications for the amalgamation of Antarctica. 
Grenville-age orogenic belts (ca. 1.1 Ga) surrounding East Antarctica were thought to comprise one continuous 
belt, implying that the East Antarctica had already formed, (e.g., refs57,59) until a geochronology study8 differen-
tiated three distinct provinces on the basis of U-Pb zircon data. The disagreement of the BHD pole and the only 

Figure 6.  Four groups of coeval poles (Table 2) from the WAC + Mawson and NAC plotted in Mercator 
projection. Mawson (Antarctic Part) rotated to SAC in its Gondwana configuration using a Euler pole7 at 1.3°N, 
37.7°E, rotation = 30.3°. (a) Australia in its present-day configuration; (b) WAC + SAC + Mawson rotated to 
NAC about a Euler pole54 at 20°S, 135°E, rotation = 40°.

Pole Abbr. Plat. (°N) Plong. (°E) A95 (°) Age (Ma) Reference

North Australian Craton

Elgee-Pentecost Formations EP 5.4 31.8 3.4 1803–1793 45,77,78

Lakeview dolerite LD −9.5 131.1 17.4 1147–1135 79

Alcurra dykes and sills ADS 2.8 80.4 8.8 1087–1066 55

Johnny’s Creek Member (Bitter 
Springs Formation) JC 15.8 83.0 13.5 780–760 56

Walsh Tillite Cap Dolomite WTD 21.5 102.4 13.7 750–700 80

West Australian + Mawson cratons

Hamersley Overprint 2 HP2 8.0 338.0 5.0 ~1800 81

Bunger Hills dykes* BHD −11.9 145.5 20.3 1134–1131 This study

Bangemall Basin sills BBS 33.8 95.0 8.3 1076–1066 61

Mundine Well dykes MDS 45.3 135.4 4.1 758–752 82

Table 2.  Palaeomagnetic poles used in this study. *Rotated to West Australia Craton using the Euler pole7 at 
1.3°N, 37.7°E, rotation = 30.3° .
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other two existing and roughly coeval poles(Fig. 8) from East Antarctica5,6 suggests that the Dronning Maud Land 
and Coats Land regions were not rigidly connected to the Mawson Craton ca. 1134 Ma, confirming the hypothesis 
of ref.8. Coats Land was originally considered to be the extension of the Grenville orogen into East Antarctica in 

Figure 7.  Possible positions of Australia + Mawson (green) relative to Laurentia (red) ca. 1134 Ma. Relative 
palaeolongitude is unconstrained by such a single-pole comparison, indicated by arrow ranges and three 
possible positions of Australia depicted relative to Laurentia. The preferred Australian option (dark shading) 
makes a SWEAT-like fit easily achievable both before (supercontinent Nuna) and after (supercontinent Rodinia) 
this time of separation between Laurentia and Australia + Mawson. Other options depicted (light shading) 
get Australia-Mawson closer to Laurentia, but in configurations significantly different than SWEAT. Absolute 
palaeolongitude of Laurentia is arbitrary and unlabelled.

Figure 8.  The BHD pole from this study plotted with the only other two extant palaeomagnetic poles from 
East Antarctica. Palaeomagnetic poles are colour-coded to the continental blocks from which they derive. 
Abbreviations: BHD, Bunger Hills dykes; BM, Borgmassivet intrusions; CL, Coats Land.
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Rodinia and thus in support of the SWEAT connection69. A paleomagnetic study6 suggested that Coats Land 
might actually have belonged to the Kalahari Craton and far from the East Antarctica at ca. 1.1 Ga despite the 
30° difference between the CL pole and the roughly coeval poles of Kalahari. Subsequent studies10,73, however, 
showed that Coats Land was neither part of Kalahari nor East Antarctica ca. 1.1 Ga. Instead, Coats Land as part of 
Laurentia collided with Dronning Maud Land (specifically the Grunehogna Craton), which was widely accepted 
as piece of the Kalahari (see refs9,74 for example) before joining East Antarctica, along the ca. 1090–1060 Ma 
Maud Belt during the formation of Rodinia. Kalahari, with Coats Land attached to it, then collided with East 
Antarctica along the East African-Antarctic Orogen ca. 650–500 Ma within an assembling Gondwana. The suc-
ceeding Mesozoic breakup of Gondwana stripped Coats Land and Dronning Maud Land away from Kalahari and 
abandoned them in East Antarctica.

Conclusion
A pilot palaeomagnetic study in the Bunger Hills has attained the first Precambrian palaeopole for the Mawson 
Craton. Palaeomagnetism of the Bunger Hills dykes supports the vast late Neoproterozoic relative rotation 
between the NAC and the WAC + Mawson. Mean pole calculation (BHD-LD) allows comparison between 
Australia-Mawson and the coeval Abitibi dykes pole of Laurentia and demonstrates, as with previous studies, that 
the SWEAT fit is not viable between ca. 1210 Ma and ca. 1070 Ma. Comparison between the BHD, BM, and CL 
poles confirms that the Grenville-age ca. 1.1 Ga orogenic belts surrounding the East Antarctic coastline do not 
constitute a continuous orogenic belt.
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