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Abstract

This thesis comprises a body of work that investigates the performance of industrial
hybrid manufacturing systems. We considered a shared resources manufacturing
system, where products/customers compete for best service in each server in
unprecedented fourth industrial revolution (Industries 4.0). To counterbalance
the measure, we developed a mathematical logarithmic, exponential smoothing
algorithm that balances the trade-off cost between product quality and completion
time.

The result obtained is extended to model N-stage manufacturing and (re)manufacturing
systems. We further investigated the optimal production rate and inventory level
by deploying Hamiltonian equations and Markov Decision Process. Due to the
stochastic nature of a manufacturing process, we adopted linear programming and
converted it to a discrete-time Markov process to regulate the inventory level that
minimises the system cost. For a decision-making process, we used a randomised
Markov policy to select the best possible inventory level with respect to each
manufacturing state.

Similarly,to remain in control we introduced a hybrid sliding mode controller
to stabilise the manufacturing system. Furthermore, for an effective, flexible
manufacturing system, we proposed sufficient conditions which are satisfied by
our controller. The designed controller strategy helps to produce various products
promptly to keep up with the demands and shorten the delay in the hybrid
manufacturing system.

One of the aspects of our study in alignment with today Industrie 4.0, is the devel-
opment of manufacturing firms equipped, with controllers that aid manufactures
and engineers on how to run a thriving manufacturing industry. Therefore work
developed in this framework is one step closer to the development of self-regulated,
self optimised manufacturing systems.
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Chapter 1

Introduction

1.1 Overview of Manufacturing Systems

The manufacturing industry has developed rapidly over the past two centuries,
due to the development of new technologies on the Fourth Industrial Revolution
(Industries 4.0). The revolution is transforming the manufacturing industry at
an unprecedented pace and many new methods and technologies emerge such
as artificial intelligent in hybrid systems, Internet of Things (IoT), robotics and
automation.

The industries 4.0 came with an imminent need to upgrade our resources and
knowledge on how to operate manufacturing systems. As a result, the mismatch
of human labour and the skills required for an open job manufacturing has led
to the automation of the production industry. However, with the unprecedented
technology growth [26], there is a need to close the gap in analytic outcome and
production management of manufacturing systems.

It is evident that modern technology promotes job creation, from a recent report
of world economic forum [14], [15] stated that algorithm and machine applications
would break out from 29% in 2018 to 42% in 2022. The new technological flow
and automation application and robots have played an essential role in bridging
the gap labour in manufacturing. While the effort for continuous improvement
led to the search for new tools and skills, according to [14], approximately 2.4
million manufacturing jobs might be un-filled between 2018 and 2028, while 60%
of these positions were vacant in 2018.

According to [15] the pace of new job position is expected to accelerate at an
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estimate of 65% with a new workforce working completely in new jobs that has
never existed. To keep up with the pace in such evolving employment environment,
we need to work tirelessly to develop new tools and methods that are efficient and
robust in today fourth industrial revolution. We have observed that, advanced
manufacturing,robotics, artificial intelligence and 3D printing application came
with a new wave of productivity and flexibility in work environment. And some
of this applications capabilities have not been fully harnessed.

Manufacturing systems modeling plays a vital role in understanding the impact
of decision making on the value function of the manufacturing model. While the
complexity of manufacturing activities has grown over the years, and currently the
manufacturing system is facing new emerging technologies, designed to address
manufacturing problems. Therefore, there is a need to know and understand
the new implementation and reduce costs to achieve quality and efficiency for
continuous improvement of manufacturing systems.

Product quality is the key to most of the manufacturing firms to remain com-
petitive in today open market. The trade-off between the manufacturing cost
and the quality impacts manufacturing strategic decision making and influences
the manufacturing system design at an early stage and its future development.
Manufacturing system design modeling is the most critical and difficult task to
attain due to the complexity of manufacturing systems dynamics.

Inventory plays an essential role in logistics and supply chain management. The
right quantity at the right time reduces the manufacturing cost dramatically.
The inventory provides support during product shortages and hence reduces lead
time. Nevertheless, a manufacturing catastrophe is imminent with poor inventory
management, and if the demand rate is greater than the production rate, then
the manufacturing system will experience shortages, bottlenecks and missing due
dates [32].

Uncontrolled shared manufacturing resources cause system imbalances and bot-
tlenecks, system delays, long lead times of raw materials/products, missing due
dates and consequently lead to a manufacturing trade-off. However, with the
emerge of industry 4.0 in the area of hybrid systems, we can design controllers
that mitigate this problem. With a new tool developed in this area, we can design
stable manufacturing systems that can produce high-quality products and meet
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customer demands on time.

As a result, unprecedented control over the entire manufacturing system has
become imminent. So the aim of optimal control and a new tool developed is
primarily to gain insight on making production system faster, and aid manu-
facturers to make an informed decision, on operations and implementation of
lean tools, and other optimisation methods. However, the industries 4.0 is more
customer-oriented and is in line with socialization, with controls in handy and
easily accessible remotely. The system is integrated with hybrid controls, cloud
computing, mass data, 3D printing, robotics and automation, see Figure 1.1 for
better insight on current manufacturing configuration and layout. It is found that
for efficient, fast and safe production, a system is incorporated with automatic
sensing, automatic identification and automatic control setting, with inventory
and quality control, that enable self adjusting [12]. The need to achieve this level
of control has stimulated the study of modeling, control and optimisation of the
hybrid system in the manufacturing environment, which is the title of this thesis
and has received little attention in the literature.

Figure 1.1: Modern manufacturing system configuration [13]

The digitization era has resulted in most of hybrid manufacturing systems to
have a high level of automation. The term automation, refers to a single task, or
process that is either discrete, continuous or both to be processed with minimal
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human interference. For instance, see the problem of filling in a two-tank system in
Figure 1.2. The tank system is a typical hybrid system, with continuous dynamics
to measure tank level, and discrete dynamics to regulate flow. [19], used sliding
mode controller to control the flow and while in [18], used PI or PID controllers
to control water level. For the system to be automatic, an artificial intelligent
embedded with sensors and hybrid controllers is required to regulate the flow rate,
fluid level in each tank system. Therefore automation has tremendous benefits on
process improvement and product quality.

Figure 1.2: Two water tank system [19]

The water tank hybrid system consist of two tanks. The liquid in Tank 1 comes
from outside source through valve V1. Water can flow from Tank 1 to Tank 2
using either valve V2 or V3. However, the two tank can be filled at the same level if
valve V3 is opened, otherwise Tank 2 water can be regulated through valve V2 once
water reached height hv. The outflow of water is controlled by valve V4.Therefore,
both valve can take the states on/off and as results we could have four possible
discrete modes of hybrid system.
Optimisation of hybrid manufacturing systems is a link to smart manufacturing
systems controlled by artificial intelligence. And this has resulted in a flexible
system with self optimized process, that can adopt any manufacturing mode and
condition at a given time. Due to optimisation capabilities, smart manufacturing
systems are more reliable with predictable production capacity to meet customer
demands on time. And they are able to increase production up-time and efficiency,
with minimal human interaction, and thus reduce human error and minimize the
cost of quality and production. Therefore, optimal hybrid manufacturing systems
are proactive and agile, with the help of embedded sensors and controllers that
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can predict anomalies and product quality earlier. Flexibility and adaptability
to scheduling and other manufacturing operations make hybrid manufacturing
systems to be unprecedented in today industrial revolution 4.0 [11].

The flexibility and adaptability of smart hybrid manufacturing systems theory
are still at an infant stage [27], as the self-organized systems and self optimized
process may lead to unexpected results as we do not have matured mathematical
models and algorithms for this process. And to keep up with the pace, we need to
deduce self optimized dynamical mathematical equations and appropriate control
methods [12]. Other methods available according to our knowledge for this frame-
work include model checking and hybrid verification [20], [21]. Therefore our work
is one of few works that is a tapping stone for developing controllers that control
hybrid systems with minimal human interference in a manufacturing setting.

As an example, the hybrid manufacturing system, especially in the process in-
dustry, is made up of hierarchical structure, that consists of several functional
layers that are tied to production decision making. Two of these layers are vital
to our work, which is cash flow and material flow. In the layer of cash flow, the
current manufacturing modeling does not support a supply chain distribution
that matches market demand and for material flow layer the industry is not
well equipped with decision-making mechanism that responds quickly to market
changes or tuned to self balancing [25].

The hybrid manufacturing system is a key to the economic boom of 211st century
industrial revolution 4.0. The flexibility control that is embedded in a hybrid
dynamical system allows the interaction of continuous and discrete dynamics and
this has resulted in a hybrid manufacturing systems that are competitive in nature.
This result is more evident in the reduction of lead time, completion time and in
the enhancement of product quality. The use of machine learning algorithms, has
enabled the application of intelligent control, sliding mode control and impulsive
switch control to stabilize manufacturing systems.

The earlier work on hybrid manufacturing system dynamic modeling and control
is found in [5], [6], [94]. While in [94] a hybrid framework that involves a com-
bination of time-driven and event-driven manufacturing systems dynamics were
investigated. With the application of Bezier approximation technique, to smooth
non-differentiable hybrid manufacturing systems, to find a balance between job
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tardiness and product quality.

Similarly, an integrated manufacturing system with traceable quality and cost-
effective methods represents an opportunity to provide clear control over the
implementation of the production line. Moreover, factory efficiency can be easily
achieved through integrated planning and proper inventory management, which
takes a long process to be implemented. Consequently, the cost of manufacturing
can be reduced by considering the following manufacturing areas in Figure 1.3.

Figure 1.3: Manufacturing optimization areas

This thesis focuses more on issues related to process improvement and manufac-
turing system modeling, lower cost of quality and lower inventory cost. These
measures aid in identification of stable manufacturing systems, and are able to
establish a mechanism to prioritize manufacturing activities geared to customer
satisfaction. Similarly with known factory design, production engineers can im-
prove the efficiency of the plant with different manufacturing environments and
product renewal periods. Therefore satisfying customers demands on time plays a
crucial rule in making production decision.
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1.2 Modeling of Hybrid Systems

Modeling is the concept of representing or imitating the function of a system.
Therefore, the modeling of hybrid systems is the method of capturing and show-
ing how continuous and discrete behavior are composed. Here mathematical
models are used to describe the manufacturing hybrid system. The problem
under manufacturing optimisation are resource contention, stability, and hybrid
dynamical models are used to show the dynamics of continuous evolution and
discrete events [24].

For a good representation of a manufacturing framework, a modeling language
that is descriptive, composable and abstractable is vital for use, to demonstrate a
hybrid behavior effectively. In addition, the model should capture both continuous
and discrete state evolution over time [23]. Stochastic time state automaton consti-
tutes of the above description and poses the properties of a hybrid automaton with
rich mathematical language, and simple mathematical formalism and notation.

Petri nets and queuing models are popular manufacturing models and have been
discussed heavily in the literature, and for further details for Petri nets and hybrid
automata, see [22]. Petri nets use graphical features to show how the system
interacts while queuing models use system performance measures. These models
have the capability of capturing discrete and continuous behaviours that describe
state transition mechanism in the state trajectory path. And it is observed that,
during transition parts has to wait in the buffer while the machine is busy see
Figure 1.4.
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Figure 1.4: N-stage manufacturing process

Pk,1 is the processing of job k, in machine 1. For series configuration all jobs are
processed in each machine in a sequentially manner.The N-stage model consist
of several subsystems of single servers. The job arrival time rk is scheduled and
once the job arrive in the server, it is process according to first in first out service.
But when the server is busy the job as to wait in the buffer until the server or
machines becomes available. Each job is processed according to the optimal policy
depicted by the algorithm developed in Chapter 3. Therefore each machine in
N-stage process each job to minimize the total completion time x with respect to
maximum processing time of each job to attain the best possible quality.

1.2.1 Control of Manufacturing Systems

Although flexibility is an essential problem in manufacturing uncertain environ-
ments. The striking balance between product quality and production cost is
imperative to stay on the brink of competition in today’s industry. The goal can
be achieved through a manufacturing strategy designed to reduce production costs
and ultimately reduces customer prices. However, this kind of work should be
adopted more to ensure the effectiveness of production system. Moreover, it is not
supposed to be limited to trade-off cost but examination of each method optimal
to determine the most cost-effective approach that reaches the ultimate goal of
manufacturing firms [17].
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The work on integrated control of the product inventory is discussed in the litera-
ture review and will be further discussed in Chapter 2 and Chapter 4. While in
the recent literature, different improvement methods were discussed with different
control mechanisms. For instance, a refined, improved Hamilton Jacobi Bellman
function was used in [4] to achieve the best ideal value function of controlled
production inventory system. Similarly, re-manufacturing systems have been
studied in [2] with an optimal control policy proposal for a multiple point hedging
policy. Hedging policy support idea of keeping zero inventory.

The hybrid state trajectory path is coupled with N-stages of several jobs, which
compete for the best service in common share resources. Therefore, the problem
under consideration in this study is a multistage problem where each stage is asso-
ciated with one-step cost and coupling all the jobs together to give the following
cost in equation (1.1)-(1.4). We followed [81], [82], [83], [84] for optimal control
problems in manufacturing settings. And we modeled single stage and N-stage
manufacturing systems as follows.

1.2.2 Single stage manufacturing

min
p1,...,pi

Ja(x, p) =
n∑
i=1

Li(xi, pi), ∀i = 1, . . . , n (1.1)

xi ∈ R+, pi ∈ R+,

subject to
xi = f(xi−1, pi, t) = max(xi−1, ri) + Si(pi) (1.2)
Zi = gi(zi, pi, t) (1.3)
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1.2.3 N-stage manufacturing

min
p1,...,pn

Ja(x, p) =
n∑
i=1

N∑
j

Li,j(x(i,j), p(i,j)),∀i = 1, . . . , n; j = 1, . . . , N (1.4)

xi ∈ R+, pi ∈ R+,

subject to
xi,j = f(xi−1,j, pi,j, t) = max(xi−1,j, ri) + Si,j(pi,j) (1.5)
Zi,j = gi,j (zi,j, pi,j, t)

where x and r is the completion time and arrival time respectively, with S(p) the
service time and Z is the physical state of the product.

1.2.4 Stability and stabilization of hybrid systems

The hybrid manufacturing systems composed of both manufacturing and (re)-
manufacturing with n servers are classified as a switched system. A switched
system is a dynamical system with several subsystems that can be described by
differential or difference equations. Similarly, if the dynamics of the subsystems are
state-dependent or time-independent, we then term the system a hybrid dynamical
system with continuous and discrete dynamics.

A common Lyapunov function is employed to ensure the stability of the switched
system under an arbitrary switching rule [8]. The existence of a common Lyapunov
function is an important problem of control theory for stability analysis. Stable
hybrid manufacturing systems have Lyapunov function properties. Both linear
and non-linear systems can be exerted to this technique for stability verification.
While for the non-linear system a common quadratic Lyapunov function is more
favorable. And the results are sufficient to conclude that the manufacturing
system can be operated if asymptotic stability of the system exists. However, this
condition is not necessary but sufficient for stability criterion for hybrid dynamical
systems. For example, consider a non-linear system given by

ẋ =f(x, u)
subject to

x = max{xi−1, ri}+ u

(1.6)

where r > 0 is a job arrival time, x ∈ Φ: state of the hybrid system, and u ∈ Rn

is the control input. f : Φ ⊂ Rn → Rn is a continuous differentiable function,
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whereby the equilibrium point is defined by x = 0 such that f(0, u) = 0, and with
x = 0 be an interior point in Φ. Hence Φ denote the domain around the equilib-
rium as shown in Figure 1.5. Therefore, we inferred that, the system stability is
defined by the behavior of the system around the equilibrium point. While for
systems with external signal (input), it can be an autonomous/non-autonomous
system.

Figure 1.5: Stability overview

The structural properties of our manufacturing framework influence the system
stability. Since our framework poses hybrid phenomena and the hybrid system has
switching behaviors. If the system is not under control, undesirable results might
be achieved such as ‘Zeno” behavior, ‘Live-lock’ and ‘Deadlock” [1], [23]. For
stability of hybrid systems, we will exploit class of Lyapunov functions investigated
in [24], such as

V (t) =xT (t)Pix(t) (1.7)
∀x ∈ Rn
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An N-stage manufacturing process is shown in Figure 1.4 as Job k arrives in the
system at time ri and from the model, it can be inferred that the objective is to
find controllers that minimises the cost and at the same time meets the desired
target due dates.

1.3 Manufacturing Optimisation Methods

Controlled hybrid dynamical manufacturing systems can be easily optimised or
improved. While uncontrolled dynamics cause the system to be unstable and
result in long lead time, shortages and poor product quality. The primary hybrid
optimisation goal is to develop efficient cost operations and controls, that can
easily change the optimisation goal automatically with less human interference.
For systems that are continuous and differentiable everywhere, gradient decent
methods can be implemented for optimisation. And while for non-differentiable
systems, approximation methods and smoothing aggregation techniques are con-
sidered.

Similarly, manufacturing systems with stochastic behavior, Markov and Maximum
Principle with Bellman equations are more favorable. For a system with N-
servers, impulsive and sliding mode control are more applicable to drive systems
dynamics to the desired targets. Many of these techniques discussed do not admit
an analytical solution and are known as numerical optimisation methods. For
instance, a real-world complex manufacturing system does not admit analytical
solution and are composed of many constraints, and makes numerical solutions to
be handy and applicable in this framework.

1.4 Numerical Methods

1.4.1 Optimal Control

The aim of control optimization of the hybrid dynamical system is to maximize or
minimize the value function. A hybrid manufacturing system consists of several
subsystems or machines, and for instance, a manufactured part has to pass through
one of the subsystems for processing. Most of the production machines are shared
resources, and a part has to wait if the machine is busy, and thus it prolongs
the completion time. Another challenge is meeting customer demand on time by
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producing as fast as possible without deteriorating product quality. To achieve the
balance, or the optimal value function we model this as an optimisation problem.

In control theory, optimal control is defined or perceived as a control strategy, with
a set of differential equations adjoined to find a control law. In most cases, the
optimal solution is obtained if a necessary condition is met, using the principle of
Pontryagin’s maximum or by finding a sufficient condition, by solving the problem
with the Hamilton Jacobi-Bellman equation.

An optimisation problem in manufacturing systems has similar attributions with
optimisation problem in economics systems. And following constrained and un-
constrained optimisation categories, the decision in each framework is subject to

Consumer Constraints:

• Affordability of the products.

• Quality of the products.

• Functionality of the products.

Firms Constraints:

• Decision on maximum inventory level kept due to unlimited production capacity.

• Decision on make or buy, as a results of the cost of production.

For a successful competitive manufacturing firm, a balance between consumer
constraints and firm constraints is imperative. In the manner that the trade-off
cost between the product quality and the product cost should be balanced for
economic gains. We demonstrate this with an example in Equation (1.1) where a
manufacturer has to minimize the production cost, by producing the good quality
product at the shortest time possible.

min
u1,...,un

J (u, x) =
n∑
i=1

{
θ(ui) + ϕ(xi)

}
(1.8)

s. t.
xi = max(ri, xi−1) + si(ui) (1.9)
0 ≤ xi ≤ ri+1, s(ui) ≥ 0, i = 1, 2, . . . , n
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Figure 1.6: A hybrid manufacturing system with three modes [16].

Another typical hybrid system example can be adopted from [16], with three
modes, and whereby the cost function is defined and minimised over a hybrid
dynamical trajectory with a switching function among several subsystems shown in
Figure 1.6. The time spent on each (mode) or subsystem is known as a minimum
dwell time δi which can be stochastic, fixed or equidistant depending on problem
under investigation for optimal control of hybrid system. And we have extended
this example to hybrid manufacturing system in Chapter 4.

1.4.2 Smoothing Methods

Non-smoothness for a non convex optimization problems refer to state, where the
objective function is non differentiable.The application of smoothing methods is
most common in non-convex function on a convex set such as image restoration,
optimal control and spherical approximation. And some typical problems that
were studied for decades are not limited to complementary problems, variation
inequalities,eigenvalues optimization and penalty methods with mathematical
programming with non-smooth objective function.

The presence of ’max’, ’min’ in unconstrained optimisation problem is non-smooth.
This problem is considered to be NP-hard, due to kinks in the objective function
and the calculus of variation methods might fail to find the optimum solution. As a
result smoothing approximation methods are used for optimisation. A smoothing
method replaces a non-smooth, non-differentiable value function with a smooth
differentiable function. We will further discuss the smoothing method in Chapter
3. For example, a non-smooth function in equation (1.10) can be approximated
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as in equation (1.11)

max(m, a− x) ≥


m, x > a

a− x2, t < x ≤ a

x2, x ≤ a

(1.10)

max(m, a) = log(exp(m) + exp(a)) (1.11)

1.4.3 Markov Chain

Inventory control is the main aspect of manufacturing optimisation. And if the
demand is known prior to the production schedule, then a hedging policy will be
the most economical policy in the modern production system and with industrial
revolution 4.0 . However, the market demand is stochastic in nature, and as a
result, a Markov chain is the most useful technique to predict the future outcomes
of inventory level to meet market demand.

A Markov chain consists of set of states, S̄ = s̄1, s̄2, ...s̄n. It is known that Markov
process moves from one state to another with probability Pij. These probabilities
are known as transition probability and do not depend on past history to predict
future outcomes. We depict that, Markov chain, rely on probabilistic automaton.
Whereby, its probability distribution of state transition is represented by transition
matrix. Such that, if the Markov chain has N possible states, then the transition
matrix will be N × N. This topic will be further discussed in Chapter 4.

1.4.4 Sliding Mode Control

Due to the non-linearity of hybrid manufacturing dynamics, a sliding mode control
is deployed to drive the system from a particular manifold into a sliding surface
in the state space. A sliding mode control consists of two parts. The first part is
concerned with driving the dynamics of the states to reach the manifold and the
second part deals with keeping the trajectory on the sliding surface. These two
parts have designed the specifications and attracted by attributing to the model
condition, and this has resulted in a sliding mode control that has remarkable
properties of robustness and accuracy.
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The model mismatch in a manufacturing systems is handled by sliding mode
control, whose primary function is to switch between different subsystems.And
most of the system, that follows sliding mode control design turned to reject
system disturbance . As a result, a sliding mode control is classified as a variable
structure control. Chattering phenomena is more common characteristic in design
phase, due to delay or infinite frequency of switching device. Therefore, when
modeling this kind of system, engineers need to developed control structure that
maneuver, or smooth motion that oscillates about the sliding manifold.
For a multi dimensional dynamics, a sliding surface is given by
Si = {x(t) : si(x(t)) = 0}, x ∈ Rn, i = 1, 2, ...m

1.5 Motivation

The industrial revolution 4.0, with the need of self regulated, self optimised
manufacturing systems, has motivated the undertake of this research, whereby
a new control policy or tools is needed for decision making in industrial hybrid
system. We were also motivated by problems that shared resources, and we were
interested on how to balance the trade-off cost. For instance, manufacturing
managers strive to produce products at the lowest possible cost. Where the cost
criteria involve inventory build-up, product tardiness, control parameters and
flow rates [83]. And from the literature it was observed that more work need to
be done, to develop controllers that are inline with fourth industrial revolution.
Therefore, this study aim to fill the gap as stated in [1], [85] by developing a
general hybrid system model that can be applied in any manufacturing system to
find an optimal policy to reduce the cost whereby a product quality and product
tardiness are used as performance measures to balance manufacturing trade-off
cost.

1.6 Significance of Research

Manufacturing systems and related industries are being transformed at a rapid
pace. This change in the manufacturing setting is due to industries 4.0, where
hybrid manufacturing systems control plays a vital role in optimisation. More-
over, it is significant to meet customer demand on time as a necessity to remain
competitive in an open market. Control manufacturing systems have enormous
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benefits that include improved production stability, financial gains, and product
quality.

General, the significance of our work liaise within a manufacturing firm as we
have established that an adequate control manufacturing system is the backbone
of the efficient production process, with quality and productivity being one of
the main drives of the ingredients of a successful manufacturing system. Satisfac-
tory product quality is essential as customers rely on a particular quality when
purchasing a product. Therefore, proper system modeling and control strategy
developed in our work will aid manufacturers to prevent product defects due to
human error. Lastly, we have observed that our work give insight to managers, on
how to run day-to-day production process, to make more efficient manufacturing
systems, to reduce, manufacturing cost, lead times and manufacturing waste.

This study is more relevant, today as many manufacturing companies tend to
keep less inventory to reduce manufacturing cost. Hence we have developed an
algorithm or policies that can able to switch from one mode to another depending
on the inventory level, and this is one of the step to develop self regulated, self
optimised manufacturing systems.

1.7 Overview of the Thesis

Our work presents effective computational methods for modeling, and control
of hybrid manufacturing systems, and it was observed that, hybrid manufac-
turing systems are linked to industrial revolution 4.0. For a self optimizing,
self regulating manufacturing system, there is a need for handy controllers that
stabilize manufacturing hybrid systems. And with system modeling, we have
established and developed a mathematical algorithms for optimal control and
optimisation of product cost and product quality trade-off. For this trade-off,
we have proposed a single stage and a two stage manufacturing system where
product quality, completion time are considered and stability have been further
investigated for smooth operation of manufacturing system, in subsequent chapters.

Chapter 2 introduces previous work on manufacturing systems and some common
optimisation methods. We have highlighted the trend of development of manu-
facturing systems from hand tool to smart factories. And we further emphasize
that the success of hybrid manufacturing systems depends on production plan-
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ning and control activities. And we have found that, for economic value gain,
(re)manufacturing has economic leverage over pure production.

We further studied optimal control theory, optimisation methods and impulsive
control optimisation of hybrid systems. Furthermore, we investigated deterministic
approach, stochastic optimisation, decomposition of sub problems and relaxation
of constraints to meet the objective function. After an insight on the literature
review, a new algorithm was proposed to design and conceptualize the general
hybrid system with N-servers in a manufacturing setting.

While in Chapter 3 we proposed a new control policies to solve the complex
decision-making problems faced by industrial hybrid systems in a manufacturing
environment where resources are shared. In such a setting, different dynamic
systems communicate with each other and share common functions for seamless
tasks. Entities that access shared resources compete for services. Interactions
of industrial hybrid systems become more complex and require an appropriate
controller for the best performance and the best possible service for each of the
entities that access the system. To solve these challenges, we propose an optimal
control policy to reduce the operating cost of the manufacturing system. Further-
more, we have developed a hybrid model with a new homogeneity algorithm to
balance costs between the quality and the job delay, and to create an ideal service
time for each function in the system.

The results obtained is further analyzed in N-stage manufacturing systems, and
the service level and product quality is best achieved with proposed method.
Therefore with, with the proposed method we have successfully overcame non-
differentiable points, in the min-max plus algebra where critical jobs exist within
the busy structure of the hybrid trajectory.

In Chapter 4 we establish a two-stage hybrid inventory re-manufacturing system
model with Poisson demand rates. In the first stage, we formulate the uncertain
demand rate as a Markov Decision Process (MDP). We further investigated the
structural properties of the optimal policy and thus, the problem was converted
to find optimal controllers for the discrete-time Markov process that regulates
an optimal inventory level and minimize the system cost. In order to achieve
cost-effective production-inventory system, we develop a smooth algorithm in
the second stage and apply Hamilton-Jacobi-Bellman equations to determine the
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production rate of an optimal inventory trajectory of the hybrid system. Finally,
we provide a numerical example to show how to obtain the optimal inventory
trajectory and production rate.

In Chapter 5, we introduced a suitable controller that stabilizes the dynamical
hybrid system in our framework. The goal of our framework is to find controllers
for manufacturing and (re)manufacturing production mode. We developed the-
orems and sufficient conditions to guarantee the stability of a trivial solution.
For a proper selection of a production mode, we employed a hybrid impulsive
slide mode control. A sliding mode controller stabilizes the manufacturing hybrid
system by confining systems dynamics within the selected manifold. While in
the past, the stability of a manufacturing plant was achieved by introducing a
moving assembly line. In a nutshell, the aim was to keep a minimum inventory
at all times in an assembly line. Therefore the conceptual framework developed
in this thesis mitigates the problem of backlog and inventory builds up within
the production line. Moreover, the feasibility and viability of these techniques
are shown with an example from inventory control and the technique proposed is
in-line with hedging policy operation that supports the production of producing
just-in-time.

Chapter 6, concludes work done in this thesis. And we have found that system
feasibility is important parameter for stable manufacturing systems. And a master
production plan can not be authorized if the systems is not stable, that means
demand can not be meet with unstable manufacturing system. Therefore we have
managed to develop a cost effective algorithms, and we have also presented some
future work.

Finally, we have developed controllers that are able to mitigate unstable manu-
facturing system. And we have found that our work is still at infant stage, more
mathematical algorithms in aligned with industries 4.0 needs to be developed for
manufacturing firm to remain competitive. Moreover, with cloud computing there
is a need to develop social manufacturing systems that are capable to communicate
with each other with capabilities of self regulating and self optimizing.
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1.8 Chapter Summary

In 21st century, fourth industrial revolution is growing at unprecedented pace,
with today technology embedded with sensors in hybrid manufacturing systems.
We found that for a successful and competitive manufacturing firm, it needs to
be incorporated with controllers that are handy to control inventory level and
production rate to meet customer demands at unprecedented level. In an open
market, the product quality and the cost are the main drives for manufacturing
firms for turnovers and stability of manufacturing systems plays an important
role on inventory optimisation and control.

The uncontrolled inventory level and the production rate lead to chaotic and
unstable manufacturing systems. Consequently, a trade-off cost between product
quality and production cost is inevitable for an unstable system. To mitigate it,
we have proposed a smoothing algorithm that finds a balance between the product
quality and the production cost. Markov chain and Bellman equations are applied
to derive the decision on how to run a smooth optimal production system with
optimal inventory level. Finally, we proposed, to run a manufacturing firm with a
impulsive sliding mode control.
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Chapter 2

Literature Review

2.1 Manufacturing Systems

Manufacturing revolution was brought by Britain in the earlier 18th century from
essential hand tools to powered machines for mass production. The need for
mechanisation was invented to meet customer demands in a less costly manner.
Manufacturing systems operations have changed drastically, and now with an
open market. Internationalisation, with growing competition around the globe,
has led to the emergence of the fourth industrial revolution.

The industries 4.0 concept allows automation and intelligent machines to commu-
nicate with each other. So this alone has brought massive changes in operations
and manufacturing productivity. As a result, they are a tremendous increase in
revenues across different firms that have already adopted the concept in their
production system [10], [9]. While for full realisation of this ability, mathematical
models are necessary to control manufacturing systems at an unprecedented level,
embedded with sensors that respond to an uncertain manufacturing environ-
ment [46], [47], [48], and system interaction of discrete and continuous dynamics
leads to the study of hybrid manufacturing systems.

The basic concept of hybrid manufacturing systems is to take advantage of the
interaction of discrete and continuous dynamics to reduce production costs and
lead times. Many factors lead to this optimal performance of hybrid systems are
discussed in the literature [73]. Problems arising in manufacturing systems are not
limited to the setup time reduction, variability reduction, in processing time and
job arrival variability. Despite the effort to implement these factors, the success
of hybrid manufacturing systems depends heavily on production planning and
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control activities. An appropriate planning and production control decision must
be applied to concur benefits of hybrid systems.

Production systems involve the allocation of contention resources, human resources
and inventory, to reduces product deadlines. While shared resource manufacturing
systems may lead to waiting conditions, which leads to a dead-end if the task
remains idle indefinitely. Without proper control, once a deadlock occurs, and in
order for the system to continue, an external agency is needed to mitigate it and
thus increases the completion time. Consequently, different control methods are
needed in production planning, and new optimal controls policy are needed to
address these challenges. While a decision has to be made on either to manufacture
or re-manufacture, as shown in Figure 2.1.

Figure 2.1: Manufacturing (re)manufacturing system model

2.2 Re-Manufacturing System

Other examples of hybrid systems found in the production system include a
combination of recycled products, with manufactured parts. For feasibility and
viability of this kind of re-manufacturing system, they should be a sufficient
amount of recycled parts or material available [49]. And with today production
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trend, re-manufacturing is a common practice among different firms, because of
its economic value.

Re-manufacturing is an industrial process whereby a product or component sold
are returned for a reprocessing to a ”new” or ”better than new” condition, and
whereby the satisfying quality is granted. Re-manufacturing experiences low cost
compared to manufacturing as the customer has to pay less as a result of low
automation in re-manufacturing, and small-batch sizes [51], [50].

There is a steady increase in the number of publications of re-manufacturing
systems in the literature, with improved production models indicating the impor-
tance of this topic. While in the context of the hybrid system, reprocessing is
complicated with the underlying assumption of uncertainty in the dynamics of
production [52], [30].

The rapid instant change of inventory level, due to re-manufactured products is
not continuous. Therefore, in this regard production rate is ramp up in both
manufactured and re-manufactured modes to satisfy the demand. As a result,
this articulates many threshold control behaviour; for instance, the production is
ramped up to reduce the lead time, and to satisfy the demand on time. Similarly,
in a chemical process, the rate of the reaction is increased to speed up the process,
and in the pest control systems, pesticides are added to control pets. All this
example have one thing in common, the control measure, and we define it as an
impulse dependent feedback control.

The state dependents feedback control is achieved in both hybrid and semi-
continuous dynamic system. Impulsive state-dependent feedback control is ap-
plicable to address this phenomenon as it has properties similar to the hybrid
dynamical system, where the interaction of continuous and discrete dynamics is
not inevitable. Impulsive control has severals application in other fields such as the
health system for the pharmacological control system of tumours and diabetes [36].
For diabetic, an impulsive injection of insulin is administered to control type 1
and type 2 diabetes. Other combinations of the hybrid system are reported in 3D
printing and CNC machine to form a single platform.

Cost optimisation of the hybrid system is reported in [31] by considering hybrid
production systems that consist of re-manufactured products and develops an
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optimal operational strategy that focuses on manufacturing trades off between
system uncertainty, capacity limitations, product quality and demand substitu-
tion. A Hessian matrix and multivariate optimisation methods were deployed
to search for an optimal solution. And a balance between manufacturing and
re-manufacturing systems was investigated. For example, [32] considered a hybrid
manufacturing system with production switching mode for optimisation of the
system and in [33], [34] multi-objective optimisation was used for decision making
on return products.

An accurate analysis of production planning problems and optimal stock control
for (re)manufacturing without failure is found in the literature. For instance,
in [58], the analysis is performed at a fixed time, and optimum conditions are
derived. In [59], the analysis is performed at a separate time and the importance
of time limits for harmonisation of manufacturing and reprocessing policies is
illustrated.

The open market and tight competition make decision-makers embark timelessly
and endlessly on application and use of optimisation techniques. For outstanding
performance and leverage over other firms, decision-makers integrate the applica-
tion of economic models, simulations models with this optimisation technique with
the objective to reduce manufacturing cost. For instance, proxy-based separate
models are more useful in the analysis of inventory, and for better insight into
operational planning [9] Also, Monte Carlo and random simulation are handy and
are used in [55] to improve supply chain performance.

Manufacturing optimal policies have been presented as a critical policy in the
inventory control literature and as a policy of hedging in the production control
literature. An additional analysis of exemplary policies addressing arithmetic and
previously neglected cases were presented in [60]. While in [75], authors have
proposed a model of random dynamic control in a continuous-time to improve the
global performance of a two-device system that is prone to failure in manufacturing
and re-manufacturing, respectively. The optimisation requirements were developed
in the form of the Hamilton-Jacob-Bellman equations (HJB) and for the design of
coordinated manufacturing and reprocessing policies. Similarly, [4], [74] proposed
a manufacturing / re-manufacturing policy that reduces the cost of inventory
and implements random dynamic programming to find the best manufacturing
/re-manufacturing values.
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Proper design is important for effective control of the manufacturing process. For
example, a proper scheduling and resource allocation can smooth the production
flow. The waiting time and the cycle time reduces enormously if machines are
not starved. While in contrary, the inventory rises, and machine bottlenecks and
blockage are common for uncontrolled, unbalanced manufacturing system. System
balancing constitutes to both on-line and off-line load balance. For recent work in
this area see [35] and reference therein.

The problem of scheduling multi-component economic contracts for the production
line that consists of manufacturing and (re)manufacturing were considered in [57],
where a reliable algorithm is proposed to solve the problem. An example of a
concrete industrial system using the same production line for both production
and reprocessing was described in [56]. Further, a case study was conducted, with
a company that manufactures auto parts, specifically, the water pump production
line was analysed by expanding the economic scheduling and lottery technology
to include the status of the products being returned. An ideal accounting solution
was obtained for installation times and costs using the appropriate mixed linear
programming technique. Using the same facilities for manufacturing and attractive
processing seems to improve system flexibility.

Unprecedented modern manufacturing technologies have caused operational flex-
ibility to be the heart of the design of hybrid systems. While this flexibility is
achievable during the design strategy of horizon production system planning [113].
The design of production systems involves the allocation of contention resources,
human resources and inventory, to reduce product deadlines. While shared resource
manufacturing systems may lead to waiting conditions, which have a dead-end if
the task remains idle indefinitely in the queue. Without proper control, once a
deadlock occurs, and in order for the system to continue, an external agency is
needed to mitigate it and thus increases completion time. Consequently, different
control methods have been deployed in production planning and optimal controls
are needed to address these challenges.
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2.3 Hybrid Manufacturing System Optimization

With the new technological development in engineering and manufacturing, many
research efforts have been devoted to the development of hybrid systems theory
in recent years. The physical system, designed as a hybrid system, transcends the
traditional system which consists of continuous and discrete dynamics. While the
interaction between each of the dynamics is the reason for the study of hybrid
systems optimisation.

optimisation of hybrid systems has remained a challenge over the years due to
the combination of discrete dynamics with the interaction of infinite-dimensional
continuous dynamics. Consequently, indirect methods (dynamic programming)
and direct methods are employed to find the optimal or sub-optimal trajectory
of the system. For globally optimal trajectory, indirect methods are normally
deployed, but they suffer from the ”curse of dimensionality, while direct methods
(such as hybrid maximum principle, neighbourhood search) gives local optimisation
as the solutions are easily trapped in minimum local search.

A hybrid switch is a controller that can depict an abrupt change in system dy-
namics and stabilise the trajectory with a switching controller [131], [124], [137].
While recent studies show the application of switching system in diverse areas, in
high-level flexible manufacturing systems, power electronics, automotive engine
management and for further application in this area, see [124]. It has been shown
in the literature, switching controllers stabilising the unstable continuous system.
Modelling manufacturing systems that exhibit impulsive effects, has remained
challenging, despite a great desired performance that can be attained from this
combination [131], [54].

Previous control methods have limitations to obtain satisfactory results required
in production, scheduling and maintenance planning for manufacturing systems.
While for shared resources, [2] policies were established to reduce the expected
cost of demand and accumulation of inventory across the supply horizon. As a re-
sult, Hamilton Jacobi Bellman methods were used to find the best functional value.

Other work on hybrid control in manufacturing is found in the switched max-
plus-linear system (SMPL) with primary control of determining, a feed rate of
raw material or processing time, given due dates, or completion time. Model
Predictive Control (MPC) is applicable to solve MPL problems with the approach
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of minimising the error of failure of meeting due dates [76], [77].

Over the years hybrid dynamical system became popular, for modelling physical
process controlled by switching control to stabilise the dynamics of the system.
The switching control is more attractive for the hybrid system due to a limitation of
finding a perfect continuous system without disturbance, and uncertainties see [132]
for application. Similarly, stabilization of nonlinear systems was investigated us-
ing a time-dependent switching rule by Mancilla-Aguilar and Garcia in [117], [138].

Despite enormous effort over the years for optimisation of continuous and discrete
dynamics, few optimisation techniques are available for solving hybrid optimisation
problem subjected to constrained or unconstrained conditions. For instance, con-
tinuous/discrete systems in [78] was solved using a Laplacian gradient algorithm
in resource allocation problem, while for the hybrid system, brutally force method
or penalty cost method are typically deployed to optimise the problem.

The theory of stability in Lyapunov, which is well known in the control literature
was introduced over a century, and it is still a standard method among the re-
searchers. Its success is due to its simplicity, generality and usefulness. Lyapunov
theory of stability provides a means of testing the stability of nonlinear systems.
The idea is that if we choose the appropriate Lyapunov function and design it
in a way that its trajectory reduces, the resulting system will be regarded as a
stable system. [135].

The hybrid manufacturing system stability plays an important role in running
a successful production line. If the system converges to an equilibrium point
and follows a Lyapunov function, then we can describe the set of equilibria of
dynamical manufacturing system as pointwise asymptotically stable [37]. For the
last decades, the interest of hybrid optimal control research has been increasing at
a steady state. And asymptotic stability design of stabilizing feedback has remain
important since then [37], [38], [39].

Industrial 4.0, came with a flexibility concept that aids in satisfying and meeting
customer demand on time in an uncertain market environment. As a result,
different scholars/ manufacturers have embarked on production systems that are
stable and economical sounded [79], [80]. Some of factors that lead to stable
manufacturing are in Figure 2.2, with stability production at the center.
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Figure 2.2: Factors that affect manufacturing stability

Other methods that track production systems performance and stability are Lean,
Just-in-Time and Total Quality Management. Lean tools are responsible for
eliminating waste and tool such as 5’s, TPM, Adon are relevant, and for quality
criteria, Kanban system, ABC-XYZ, FMEA are used and are inline with Just-
in-Time, and statistical methods and engineering techniques are used for total
quality management. Since our approach to stability is on mathematical models,
we apply Lyapunov functions to verify stability.

The stability of the Lyapunov switching system ensures that the system remains
stable within a specified range for a specified time horizon. Lyapunov Theorems for
the stability of a dynamical system is centred on an idea that there exists a positive
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definite, norm-like function that reduces each time during system evolution along
its trajectory. And as a result, most work on switch linear or nonlinear systems
stability has adopted this notion and it is well established in the literature that
an existence of a common Lyapunov function, shows the stability of the system
under investigation, especially linear systems [137], [70], [5].

A hybrid dynamical switch system in the manufacturing framework consists of
subsystems embedded with sensors and logic rules that controls switching between
subsystems. Further, it is recalled that the evolution of continuous-time dynamic
and discrete-time dynamic through state-space constraints constitute a hybrid
system [63]. For further study and origins of hybrid systems, see [1], [68], [66], [67].
Moreover, the hybrid tutorials are found in [68].

The future trends of production system lie in modelling, control and optimisation
of the hybrid manufacturing system. The production system is designed with
the objective of the future intelligent manufacturing process, smart factories to
reduce production delay and setup control system [41]. Discrete planning and
continuous process are in the heart of a hybrid control system in future trends
of smart factories, whereby the continuous states is controlled by discrete states
that are linear time-invariant. While for more depth of understanding control of
hybrid system see [43], [44] and their reference therein.

2.3.1 Manufacturing System Modeling and Design

the manufacturing system is an imperative task to understand the process flow.
The work on the formalism of hybrid manufacturing system flow in automata
and Petri nets are further analysed and discussed in [42]. The smart factories
concept is a development towards control of hybrid manufacturing systems. As a
result, smart factories constitute of production process intertwined with software
modules that control schedule, variety of manufacturing process, work schedule
and market demand [40]. Recently, [41] considered a holonic control architecture
that goes under several switching during system change over and the authors
evaluated its optimality and stability of the system, with the predictive-reactive
algorithm for control and used mixed-integer linear programming model to find
the optimal solution of the system. So these optimal solutions are used to design
or improve a hybrid manufacturing system.
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The design of smart hybrid manufacturing systems is rooted in engineering aspects
of it, and that includes mechanical, electrical, mechatronics, instrumentation
and control aspects with correct and meaningfully adjustments engineering tech-
nical requirement aid the manufacturing system to be more flexible and easily
configurable. The flexibility allows the manufacturing workstation to increase
production capacity or integrate new functionality with ease. The functionality
is the most critical aspects of both the production of complex parts and the
production of a variety of parts types on the same machine.

Many control architectures were discussed in the control community literature,
that monitor hybrid manufacturing systems. The choice of selecting the control
depends on either the system is a centralised, decentralised, single or multi-agent
system or a hybrid system. For more information on this control architecture
see [12], [72], [104] for and prevention of occurrence of deadlock. A proportional
integral derivative (PID) controller is a classic control commonly used for en-
gineering application. However, the PID controller is more sensitive to control
design; hence, we can conclude that most control architecture has some tradeoffs.
Apart from the PI and PID controller strategy, a sliding mode controller (SMC)
is a control strategy that produces discontinuous on/off signal to slide along the
desired behaviour.

It was observed that the sliding mode control is more robust than classic controls
and it is gaining more popularity due to its practical solution and easy implemen-
tation, while two-stage on/off PID control outsmarts standard PI control, but it
is not as precise as sliding mode control. SMC uses a discrete sliding decision rule
that enables the system to flow through discrete and continuous mode which has
resulted in a hybrid configuration.

2.3.2 Typical Examples of Control Systems

Example 1: Production Line

Consider hybrid manufacturing systems that consist of n-servers, n-buffers in
both production and re-manufacturing mode. In a hybrid setting, parts transfer,
inventory buildup, machine tool change over are not continuous. Therefore, a
manufacturing system is a typical example of a discontinuous dynamical system
known as a sliding mode in the control community. A slide mode considers a
surface in n-dimensional space denoted by S0 with (n− 1)-dimensional differential
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manifold [1].

For a better insight on a sliding mode, consider a structural example given by a
differential equation as shown below

ẋ = f(x(t)) (2.1)

such that f+ → S+US0 and similarly f− → S−US0 so that f+ = f− is a continuous
function for x ∈ S. It can be depicted that the dynamics of this system changes
abruptly when the state vector crosses the switching surface, and from a calculus
of variation, it is known that this kind of system is not continuously differentiable
at the boundary-crossing. We further discuss this kind of system in subsequent
chapters. While in Chapter 5, we model the manufacturing system with impulsive
sliding mode control and derive the stability of the system switching from one
mode to another, until a certain threshold is attained.

Example 2: Self Regulating Thermostat

Other typically hybrid system examples are modeled as a hybrid automaton which
is an extension to a finite state machine. In the early 1990s, hybrid automaton
remained a popular choice for formal modelling discrete and continuous dynamic
system (hybrid systems). For example, [20] considered a self-regulating thermostat
with two modes on and off to model the temperature variation. The problem was
modeled as hybrid automaton, with each mode following a differential equation
given by

ẋ = K(70− T )
k1 ≤ Ṫ ≤ k2

(2.2)

where k1, k2 ∈ K are constants. Bounds on the derivative control the dynamic
evolution of this typical hybrid system. Similarly, a guard from each mode on or
off determines system switching. This typical example is amplified in the inventory
production system to control inventory level and to determine the production rate
in consecutive chapters. For more insight in hybrid automata, see [45] and their
reference therein.
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2.4 Chapter Summary

We have observed that optimisation techniques of the hybrid system are not yet
fully developed [95], more so with emergence of fourth industrial revolution and
designing an optimal strategy for the system to respond to adverse circumstance
is challenging, as solving the problem leads to minimal game theory which is hard
to be solved. This is escalated by the fact that the optimisation of hybrid systems
has not been studied to a satisfactory level. Recently, [86] suggested the need for
further study on the topic of hybrid optimisation, as little work has been done
and only heuristics methods have been developed, which fails to find an optimal
solution [94].

As a result, we have merge existing literature and embarked on developing a
coherent literature that shows the need to develop new mathematical algorithms
in the area of optimisation of an industrial hybrid system. With the primary
objective of developing effective mathematical algorithms in manufacturing setting
that improves product quality and reduces processing time.

Through this study we have provides a valuable insight into the development
of the optimisation models for classes of hybrid systems in the fourth industrial
revolution. It is reported in [1] that hybrid control design is an open problem
and developing a robust numerical algorithm is not expected for a general hybrid
system. On the contrary, we have found that a simplified model with relaxed
constraints could be developed to fit the range of hybrid systems, and that is what
we intend to achieve through this study.
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Chapter 3

Hybrid Manufacturing Systems 3

This chapter introduces new optimal control policies for solving complex decision-
making problems encountered in industrial hybrid systems in a manufacturing
setting where critical jobs exist in a busy structure. In such setting, different
dynamical systems interlink each other and share common functions for smooth
task execution. Entities arriving at shared resources compete for service. The
interactions of industrial hybrid systems become more and more complex and
need a suitable controller to achieve the best performance and to obtain the best
possible service for each of the entities arriving at the system. To solve these
challenges, we propose an optimal control policy to minimize the operational cost
for the manufacturing system. Furthermore, we develop a hybrid model and a
new smoothing algorithm for the cost balancing between the quality and the job
tardiness by finding optimal service time of each job in the system.

3.1 Introduction

In manufacturing industry, the facilities consist of different dynamical systems
that are integrated to serve producing products or providing service. The man-
ufacturing process aims to achieve the highest productivity at lowest possible
cost, and a hybrid system can model its dynamics (called a hybrid manufacturing
system) [81], [91] , [97]. Most of these systems share resources and may cause
time conflicts to utilise the resources. All entities in the systems need a variety of
resources to their optimal level, and this is unlikely to be achieved for unplanned

3Copyright permission see in Appendix C.
Kobamelo Mashaba, Jianxing Li, Honglei Xu, Xinhua Jiang. Optimal control of hybrid manufac-
turing systems by log-exponential smoothing aggregation. Discrete and Continuous Dynamical
Systems - S, doi: 10.3934/dcdss.2020100
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arrivals of the entities in the system. Since these entities involve both continuous
dynamics and discrete states, optimal control design of this kind of hybrid manu-
facturing system has thereby remained an open problem [86].

Recently, a set of optimization methods have been applied to hybrid manufac-
turing systems to control the job completion time and the quality of products
[6]. The selection of entities following a specific sequence is a scheduling problem.
However, difficulties arise when the problem is nonlinear especially with critical
jobs defined in the optimal trajectory. To overcome the non-smoothness of critical
jobs, we develop a smooth hybrid algorithm that ensures continuous differentiable
everywhere for cost balancing between the quality and the job tardiness by finding
optimal service time of each job in the system.

Optimization and control problems of dynamical systems with hybrid nature have
been discussed in [96], [99], [100], [101]. Challenges of optimizing the hybrid
system in the manufacturing setting arise when critical jobs exist in the hybrid
busy structure. Among them, challenges of the manufacturing system have been
reported in [87], [88], [92], [98]. Scheduling plays an important role in production
planning management of the hybrid manufacturing system. It is quite difficult to
obtain the optimal schedule, due to the computational complexity to solve job shop
scheduling problems which are NP-Hard [103]. Job arrivals to a manufacturing
machine are discrete, as jobs arrive at stipulated times, while the processing of
jobs and the change of jobs’ physical characteristics is continuous. The arrivals of
jobs in this manner cause the system states to jump, which converts the problem
to be non-smooth, non-differentiable and cannot be solved by the gradient-based
method [81], [102]. Therefore, the problem under investigation is not easy to be
solved, and to date, only heuristics methods have been developed to find optimal
solutions [91], [93], [94], [1].

Optimization theory of hybrid systems has been studied extensively over the
past decades see [86] , [81], [93] and the references therein.The most profound
work on this section covers an optimal control of single stage. And these results
are extended to N-stage manufacturing systems. It should be noted that the
former hybrid system framework problem formulation was non-smooth and hence
non-smooth optimization methods were employed such as Lipschitz continuous
functions were applied to find the sub-optimal solution.
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Based on the work in [81], [81], [94] we formulate a hybrid manufacturing system
and find an optimal solution for a single-stage manufacturing setting. Recent
works in [81], [94] show that guaranteeing the quality of products and meeting
customer demand due dates are imperative to the customers’ satisfaction. How-
ever, producing high-quality jobs and meeting customer demand due dates are
always in conflict especially when the product is in high demand. For decision
makers, a rule of thumb should be provided as quickly as possible to avoid deteri-
orating the quality of products. The main contribution of this chapter is twofold.
Firstly, we propose an optimal control policy to find the optimal solution for the
hybrid manufacturing system. Our optimal control strategy is to minimize the
trade-off cost between the jobs’ completion times and product quality. Moreover,
we develop a smooth hybrid optimization algorithm to design the optimal control
and the smooth algorithm ensures that the system to be continuously differen-
tiable everywhere even in the existence of critical jobs within the complex structure.

The remainder of this chapter is organized as follows. Section 3.2 proposes a
hybrid manufacturing model and section 3.3 formulates a non-smooth optimization
problem. Section 3.4 converts the non-smooth optimization problem of a single
server to a smooth optimization problem by log-exponential smoothing aggrega-
tion. In section 3.5 and section 3.6 we develop necessary optimal conditions of
the smooth hybrid optimization algorithm. Sections 3.7 provides its numerical
solution, and section 3.8 summarizes Chapter 3.

3.2 Hybrid Manufacturing System Model

Consider n jobs arriving at a single machine one by one. The products’ physical
characteristics continuously change with time during the processing until the
desired state reaches. The machine process follows the first come first out (FIFO)
rule in a job non-preemptive environment. If the machine is busy, the jobs will
queue in a buffer. Nevertheless, the longer the service level, the better the quality
of the products, but the longer service may result in the product’s tardiness,
especially if all jobs’ resource contention results in conflict between the quality
of the product and the jobs’ tardiness. Both the quality and the job tardiness
are the measures of the customer satisfaction. Therefore, a balance between two
performance measures is an imperative task in this manufacturing framework. For
robustness and accuracy, penalty costs are associated with the poor quality and
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the job tardiness in the system. To minimize the cost, an optimal control policy
is implemented to decide when to start to process a job and to finish it, for the
desired quality. The machine is in working states when processing a job and it
becomes idle after releasing a job unless jobs are waiting in the queue. In this
model, we assume that the machines are always reliable and available.

A manufacturing system model consists of arrivals of jobs, machines, buffers and
operators. During operation, the sum of machine failures times, the operator
delay times and the job waiting time in the buffer and actual processing time
contribute to work in process times to process a job to the desired quality. During
the operation, the processing job cannot distinguish between work in the process
times. Therefore there is no need to incorporate work in the process times, as this
can be included in the total completion time of a job. We formulate the following
hybrid manufacturing system to model the dynamic evolution of discrete events
and continuous dynamics of producing the products.

żi = fi(zi, ui, t), zi ∈ Rp, ui ∈ Rq, i = 1, 2, ..., n (3.1)

where zi is the physical state vector of the product and ui is the input control
vector associated with balancing quality and job tardiness. For simplicity, all
variables in this paper are one dimensional variables. Other general cases can
be extended accordingly. The initial and desired physical states of the system is
given by

zi (τi) = ςoi , zi(xi) = ςdi (3.2)

where ςoi is the initial physical state of job i and ςdi is the desired physical state
of job i. For simplicity, in this paper, we consider a one dimensional simplified
hybrid manufacturing system in form of żi = ui, i = 1, 2, . . . , n, where ui is a
constant for job i.

For the ith job in the manufacturing system, the completion time of each job xi is
given by xi = τi + si, where τi is the processing start time for job i and sk is the
service time to complete job i to a physical states ςdi . Then, the control required
to achieve the desired quality is

∫ xi

τi
żi(t)dt =

∫ xi

τi
ui (t) dt→ zi(xi)−zi (τi) = ui(t)si → ui (t) = ςd − ςo

si
(3.3)
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Now, we define a cost on the physical state as

θ (ui) = 1
2

∫ xi

τi
γu2

i dt (3.4)

where γ is the system parameter of the manufacturing process. Letting αi =
γ(ςdi − ςoi )2/2, then we have θ (ui) = αi/si(ui). The hybrid state trajectory of (3.1)
is coupled with n jobs, which compete for the best service in shared resources.
The problem under consideration is a multi-step cost problem and the jobs’ arrival
times are given as r1, r2, . . . , rk. The cost of completing a job at time xi is defined
by ϕ(xi).

min
u1,...,un

J (u, x) =
n∑
i=1

{
θ(ui) + ϕ(xi)

}

subject to.
xi = τi + si(ui) = max(xi−1, ri) + si(ui)

where u = [u1, . . . , un]T and x = [x1, . . . , xn]T .

3.3 Non-smooth Optimization Approach

This section introduces non-smooth optimization methods for hybrid manufactur-
ing systems. We first start with Lipschitz continuous functions that are defined
by the differential between the interval of the form (ε−, ε+) [81], and associated
with critical jobs in a hybrid busy structure. The subdifferentials exist because of
decomposition of jobs into subproblems. In [94], the sub differential is defined as;

εj,k = dθj
duj

+ dsj
duj

k∑
i=j

dϕi
dxi

(3.5)

The corresponding algorithm finds an optimal solution by searching in a backwards
recursive manner with the addition of earlier processed job at a time, and while
every job is added, a sign test is performed to identify the structure of the block
sequence and the busy period. When a critical job is identified, the algorithm
will sweep back and forth to verify if other jobs have been affected by adding a
critical job in the sequence. The sub-differential is then applied to decompose the
optimal solution as follows [93]: ε−×ε+ ≤ 0 means job i is critical, ε−> 0, ε+ > 0
means increasing the control leads to increase the cost and ε−≤ 0, ε+ ≤ 0 means
increasing the control causes decreasing the cost.
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Furthermore, in [86] reported the same observation found in [81] of mode switching
within the hybrid system, which causes the problem to be non-smooth, and thus
the inability to use gradient-based solvers. To handle this problem, [86] divided the
problem into smooth sub-problems and a deterministic branch and cut framework
were employed to find the optimal solution. Forward and backward heuristic
algorithms were developed to find an optimal control policy that minimizes the
cost and [93] investigated the structural properties of a single server system. Ex-
tension of the similar study was done by [81] by investigating optimal control of a
two-stage hybrid system, in which the objective was to find optimal control policy
that minimizes trade-offs cost between job completion deadline and achieving the
desired target quality. The authors used Bezier approximation techniques to find
the optimal control sequence for a two-stage problem, since the problem under
investigation was not continuously differentiable everywhere [81], [94].

We see that the algorithm developed in [81], [82] are too expensive as they sweep
through blocks forth and backwards in search of solution especially if the critical
job exists. This implies that more memory storage is required to store data of
a problem of large size. The computational complexity of the problem is in the
dimension of 2n−1 busy different period. Therefore to redeem the computational
complexity of the problem a new algorithm is developed in the next section, which
is more efficient as compared to algorithm studied in [81], [82]and the references
therein.

3.4 Smoothing Aggregation-Optimal Policy

The problems in [81], [82] are non-smooth and non-differentiable at max(xi, ri+1)
when xi = ri+1 (where the critical job exists in the busy period). A busy period
is defined when at least two jobs are coupled in the system. It says that “when
critical jobs exist in an optimal solution, a standard gradient-based algorithm
for solving the two-point boundary value problem is not working in [81], [94]. In
this paper, the non-smooth problem of max(xi, ri+1) is overcome by introducing
a log-exponential smoothing aggregation which is continuously differentiable at
all points. The results of the smoothing aggregation function have been realized
in [102], where the problem of non-smooth is reformulated as a second-order cone
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programming, which allows the use of interior-point method and is given by:

f (x,D) = D ln
(

m∑
i=1

exp
(
gi (x,D)

D

))
, i = 1, 2, . . . ,m (3.6)

Lemma 3.4.1 [102]
The function f (x; D) has the following properties:

• For any x ∈ Rn and D1, D2 satisfying 0 < D1 < D2, then f (x,D1) <
f (x,D2).

• For any x ∈ Rn and D > 0, f(x) < f(x;D) ≤ f(x) +D(1 + lnm).

• For any D > 0,f(x;D) is continuously differentiable and strictly convex.

This implies that f (x,D1) is continuously differentiable and strictly convex. For
the proof of this property, please refer to [102] and the references therein.

3.4.1 No-waiting Time Scenario
F1|no-wait, sequence-dependent|xmax

We will replace the non-smooth function by a smoothing log-exponential aggrega-
tion function. The non-smooth function is given by (3.5), where the function was
non-differentiable at (xi−1 = ri). The optimization problem will be transformed
to

min
u1,...,un

J (u, x) =
n∑
i=1

{
θ(ui) + ϕ(xi)

}
(3.7)

s. t.

xi = D ln
(
e
xi−1
D + e

ri
D

)
+ si(ui) (3.8)

0 ≤ xi ≤ ri+1, s(ui) ≥ 0, D > 0, i = 1, 2, . . . , n

We impose the no-wait restriction on the job arrivals, which means each job
should be processed as soon as it is ready (ri is the ready times of job i) and
next job cannot start until it is released. In this scenario, once job arrives in the
system it should be processed immediately. In other words, the job operation is
non-preemptive with the first-come, first-serve sequence.
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3.4.2 Waiting Time Scenario
F1|wait, sequence-dependent|xmax

In the waiting time scenario, the smoothing optimization problem will be formu-
lated as

min
u1,...,un

J (u, x) =
n∑
i=1

{
θ(ui) + ϕ(xi)

}
(3.9)

s. t.

xi = D ln
(
e
xi−1
D + e

ri
D

)
+ si(ui) (3.10)

xi ≥ 0, xi ≥ ri+1, s(ui) ≥ 0, D > 0, i = 1, 2, . . . , n

Before each job departure in the server, its physical state changes with respect to
its processing time. In this setting, the physical structure, size, temperature and
surface should finish changes with the dynamic evolution of continuous states.

3.5 Necessary Optimality Condition

The manufactured poor quality job will incur a penalty cost associated with
short service time and the objective function θ(ui) is α/u2 in section 2. While
the penalty cost of missing a deadline ϕ(xi) is a quadratic function given by
(xi − di)2, the processing time s(ui) is forced to be strictly convex and can be
defined as si(ui) = u2

i . The objective of this work is to find a optimal controller
that minimizes the cost function. Since the objective function and constraints
are strictly convex, with unique optimal solution at the global minimum with a
smooth factor D > 0.Then, the optimization problem will be

min
u1,...,un

J (u, x) =
n∑
i=1

{
α

u2
i

+ (xi − di)2
}

(3.11)

s. t.

xi = D ln
(
e
xi−1
D + e

ri
D

)
+ si(ui) (3.12)

0 ≤ xi ≤ ri+1, s(ui) ≥ 0, D > 0, (Non-waiting time senario)
or xi ≥ 0, xi ≥ ri+1, s(ui) ≥ 0, D > 0, (Waiting time senario)

For each scenario, the objective function should be

J =
n∑
i=1

(
α

u2
i

+
(
D ln(e

xi−1
D + e

ri
D ) + ui

2 − di
)2
)

(3.13)
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Then, the gradient should be vanishing,

∇J (u) = −2 α
u3
i

+ 4ui
(
D ln

(
e
xi−1
D + e

ri
D

)
+ u2

i − di
)

= 0

and the second order derivative should be positive definite,

∇2J(u) = 6 α
u4
i

+ 12u2
i + 4D ln

(
e
xi−1
D + e

ri
D

)
− 4di > 0, (3.14)

where di ≥ 0 is allowable job lateness for the waiting scenario while for no-waiting
scenario, di = 0. J (u) is strictly convex for u > 0.

Critical jobs

The critical jobs in the system effects, optimal solution by shifting the controller
to process jobs faster or slower depending on the trajectory path of the optimal
solution for each busy period and exist when x(i) > r(i+ 1).

x∗ is an optimal solution if and only if u > 0; D > 0; x(i) ≤ r(i + 1) for
no wait restriction, while for waiting restriction the x∗ is achieved in the global
solution, and this implies J(x*, u*) ≤ J(x, u) for xi ≤ ri+1 or xi ≥ ri+1, and for
no- wait restriction, and if xi ≥ ri+1, then a minimum cost will be moved, from
its global point, to satisfy no wait restriction with J(x,u) ≥ J(x∗, u∗).

3.6 Algorithms for No-waiting and Waiting

The computational algorithms for no-waiting and waiting scenarios can be de-
scribed below.
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Input:
n jobs arrives in the system with the arrival times r1, r2, . . . , rn where
r1 > r2, . . . , rn−1 > rn and only one job can be served in the system at a
time.
Initialization:
For the algorithm to be differentiable, choose a smoothing factor between
0.004 ≤ D ≤ 0.9 (experiential values). Let i = 1, and x0 = 0.
Step 1: Determine the hybrid trajectory for the given xi , and find ui by
use of ∂J = 0.
Step 2: Check a single busy period, by identifying critical jobs in the
system. Then, compute xi = D ln

(
e
xi−1
D + e

ri
D

)
+ u2

i , If xi > ri+1, then
job i is critical, then set x∗i = ri+1 for the no-waiting scenario and find u∗i .
Otherwise, x∗i and u∗i will be obtained by ∂J = 0.
Step 3: increase i = i+ 1, go to step 1.
Step 4: if i = n+ 1, then stop.

3.6.1 Optimal Service Rate

To model N-stage manufacturing system, we should have first an insight on
production cost of operating a single stage manufacturing system. This is done
by finding minimum and maximum service rate, of both waiting and non waiting
scenario using algorithm in developed in section 3.6. The minimum and maximum
service rate act as minimum bound and maximum bound of operation, and the
mean of the two bounds is selected and used as an optimal service rate. To
test optimal performance of the system , jobs are coupled in series and parallel
configuration, and the cost of each configuration is evaluated.

3.6.2 N - stage Manufacturing (N > 1)

The configuration designed for the manufacturing system plays an important role
in system reliability, flexibility and product quality. By using the appropriate
design, the system cost can be improved in such a way that the product quality
is balanced with respect to customer demands. Using the results in optimal
single-stage service rate , we further investigate the performance of manufacturing
system systems coupled with n jobs and m machines.
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First of all we recall that zi is the physical state vector of the product and ui is
the input control vector associated with balancing quality and job tardiness. xi,j
is completing time with J(·) as total running cost.

min
p1,...,pi

Ja(x, p) =
N∑
i=1

M∑
j

Li,j(x(i,j), p(i,j)), ∀ i = 1, . . . , N and j = 1, . . . ,M

x ∈ Rn, p ∈ Rn

subject to :
xi,j = f(xi−1,j, pi,j, t) = max(x1−i,j, ri) + Si,j(pi,j)
Zi,j = ġi,j (zi,j, pi,j, t)

3.6.3 Series Configuration

min
u1,...,un

J (u, x) =
i=n∑
i=1

{
θ(ui) + ϕ(xi,3)

}
(3.15)

subject to :

xi,1 = D ln
(
e
xi−1,1
D + e

ri
D

)
+ si(ui)

xi,2 = D ln
(
e
xi−1,2
D + e

xi,1
D

)
+ si(ui) (3.16)

xi,3 = D ln
(
e
xi−1,3
D + e

xi,2
D

)
+ si(ui)

xi,j ≥ 0, xi,j ≥ ri+1, si(ui) ≥ 0, D > 0, i = 1, 2, . . . , n, j = 1, 2, 3.

3.6.4 Parallel Configuration

min
u1,...,un

J (u, x) =
i=n∑
i=1

{
θ(ui) + ϕ(xi,3)

}
(3.17)

subject to :

xi,1 = D ln
(
e
xi−1,1
D + e

ri,1
D

)
+ si(ui)

xi,2 = D ln
(
e
xi−1,2
D + e

ri,2
D

)
+ +si(ui) (3.18)

xi,3 = D ln
(
e
xi,1
D + e

xi,2
D

)
+ si(ui)

xi,j ≥ 0, xi,j ≥ ri+1, si(ui) ≥ 0, D > 0, i = 1, 2, . . . , n, j = 1, 2, 3.
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3.7 Numerical Simulation

To have more insight on how the algorithm finds the optimal solution, we demon-
strate the effectiveness of the algorithm with a numerical example. Two separated
problems were considered with 6 jobs with release times [0.4, 0.5, 0.7, 0.9, 1.3, 1.5]
and [1.1, 1.5, 1.7, 2.1, 2.3], respectively. Note that our problem definition is similar
to [81], [82] and the algorithm developed is strictly convex and continuously
differentiable everywhere for α = 0.22, u > 0 and D = 0.05.

The results of our algorithm is tabulated in Table 3.1 and Table 3.1 for both
no-waiting time and waiting time scenarios with different arrival time. For job
arrival times between 0.4 ≤ ri ≤ 1.5, the algorithm has identified that jobs
1, 2, 3 and 5 are critical. Jobs 1, 2, 3 and 4 are coupled and job 5 and job 6
are coupled, with two busy block structures for both no-waiting and waiting
scenarios. While for job arrival times between 1.1 ≤ ri ≤ 2.3, three busy periods
are identified for both scenarios. The first busy period is given by job 1, while
the second and the third are given by coupling jobs 2, 3, 4 and jobs 5, 6 respectively.

The algorithm developed computed the control time of each job by minimizing
the cost of poor quality and minimizing the total completion time, with allowable
job lateness. For instance for job arrival between 1.1 ≤ ri ≤ 2.3 the job lateness is
given by the following interval [0, 0, 0.0857, 0.0416, 0]. The job lateness is calculated
from global optimum completion time of each job in its single busy period. And
for i = 1, the algorithm computed ∂J , following steps given in section 3.5 to
find u∗ for job i = 1 to i = 6. Since x0 = 0, the algorithm find u1 = 0.4963 and
x1 = 1.3463 from

∂J (u) = −2 α
u3
i

+4ui
(
D ln

(
e
xi−1
D + e

r1
D

)
+ u2

1 − di
)
.

Since x1 ≤ r2, job 1 is not critical, then algorithm continues to find the service
time for jobs 2, 3 and 4 and by increasing i and jobs are coupled together and fi-
nally the algorithm computes the service time for jobs 5 and 6 as shown in Table 2.

For the no-waiting and waiting scenarios, the optimal hybrid trajectories are
calculated using the similar algorithms, with more relaxed constraints for the
waiting scenario.
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F1 | no-wait, seq-dependent |xmax F1 |wait, seq-dependent |xmax

Job
Ar-
rival
time

Control
input

Completion
time

Processing
cost

Control
input

Completion
time

Processing
cost

0.4 0.3162 0.5000 2.4500 0.4404 0.5940 1.4872
0.5 0.4472 0.7000 1.5900 0.4404 0.7950 1.7664
0.7 0.4472 0.9000 1.9100 0.4404 0.9959 2.1262
0.9 0.5300 1.1809 2.1777 0.5132 1.2593 2.4211
1.3 0.4472 1.5000 3.3500 0.447214 1.5000 3.3500
1.5 0.4423 1.6956 3.9998 0.4423 1.6956 3.9998
Total cost: 15.4775 Total cost: 15.1507

Table 3.1: Job arrival 0.4 ≤ ri ≤ 1.5

F1 | no-wait, seq-dependent |xmax F1 |wait, seq-dependent |xmax

Job
Ar-
rival
time

Control
input

Completion
time

Processing
cost

Control
input

Completion
time

Processing
cost

1.1 0.4963 1.3463 2.7057 0.4963 1.3463 2.7057
1.4 0.4472 1.6000 3.6600 0.4472 1.6000 3.6600
1.6 0.3162 1.7000 5.0900 0.4310 1.7857 4.3733
1.7 0.4204 1.8767 4.7668 0.4121 1.9530 5.1098
2.2 0.3162 2.3000 7.4900 0.3652 2.3393 7.2480
2.3 0.3690 2.4361 7.5503 0.3633 2.4713 7.9814
Total cost: 31.2628 Total cost: 31.0782

Table 3.2: Job arrival 1.1 ≤ ri ≤ 2.3
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The log-exponential smoothing algorithm for a hybrid manufacturing system
considered provides a solution that is optimal for balancing the system costs.
From Table 3.1, for job time arrival between 0.4 ≤ ri ≤ 1.3 job 1, job 2, job 3 and
job 5 are critical. For non-waiting and waiting scenarios, the algorithm provides
a minimum cost that differs by 2.5 percent. The results further, shows that the
overall quality of products manufactured under waiting restriction is better as this
is indicated by longer service or control time and this has resulted in a minimum
cost compared to no waiting restriction algorithm. Table 3.2 for job arrival time
between 1.1 ≤ ri ≤ 2.5 indicates the same results and verify the effectiveness of
the algorithm introduced, with longer service time, better the cost associated with
the job quality. Job 2, Job 3 and Job 5 are critical and non-differentiability is
overcome by the exponential smooth logarithmic algorithm.

Figure 3.1: Manufacturing performance with no wait scenario
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Figure 3.2: Manufacturing performance with wait scenario
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Figure 3.3: Manufacturing system with arrival time between 0.4 and 1.5
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3.7.1 Manufacturing Product Standardization

Due to standardization of manufactured product, we have to select one opti-
mal service rate, and apply it in both series and parallel configuration. We use
[0.4,0.5,0.7,0.9,1.3,1.5] arrival times of single stage, for series configuration and as-
sumed the following arrival times in machine 1 and machine 2 [0.4,0.5,0.7,0.9,1.3,1.5]
and [0.4,0.6,0.7,1.0,1.3,1.4 1.5] respectively , connected for parallel configuration.
Both machine 1 and 2 are in parallel configuration and feeds machine 3.
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Figure 3.4: N-stage manufacturing system with series configuration for arrival
times between 0.4 and 1.5

The total cost of series configuration is proportional to the number of productions
machines in manufacturing facility. The total cost is exponential, since parts
are produced in sequential order and machines has to wait for prior process to
be completed. This setup is not ideal, for products with high demand and high
penalty cost as it is depicted in Figure 3.4.
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According to the results in Figure 3.3 it was observed that the minimum quality
control attracts high manufacturing cost, followed by maximum quality controller
which gives best performance for less than 4 thousands products. while optimal
quality controller, attributes to minimum overall cost when processing more than
4 thousands products. We also observed that, optimal quality control outweigh
other two, and adopted the optimal policy in N-stage for series and parallel con-
figuration. We found that, the manufacturing cost is proportional to the number
of machines, and the last machine determines the total completion time in both
series and parallel configuration. Since completion time is a decision variable,
we conclude that the manufacturing cost increases with the number of machines
and with more than 4 batches (four thousands products), the manufacturing cost
becomes non-linear.

We extended optimal quality controller results to parallel configuration and allow
machine 1 and 2 to be parallel and in such setting both machines feed machine 3,
with different products arrival time in machine 1 and machine 2, and We found
that that this manufacturing set-up gives minimum cost as compared to series
configuration with three machines.
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Figure 3.5: N-stage manufacturing system with parallel configuration for arrival
time between 0.4 and 1.5
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Figure 3.6: Optimal completion time of N-stage series configuration with arrival
time between 0.4 and 1.5
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Figure 3.7: Optimal completion time of N-stage parallel configuration with
arrival time between 0.4 and 1.5

In Figure 3.6 it is observed that Job 2 and 3 were critical in machine 1, while
in machine 2 only Job 2 and 3 were found to be critical. The critical jobs did
not affect the total completion time, with adoption of optimal quality control
policy. While for N-stage parallel configuration Figure 3.7 we found that Job 2,3
and 4 were critical in machine 1, and only Job 2 and 3 were critical in machine 2
and no critical jobs were found in machine 3 which determines the total cost of
manufacturing.
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3.8 Chapter summary

This Chapter has provided an insight on the study of a hybrid system for a single
server, in the context of using the logarithmic smoothing exponential algorithm
to find the service times of jobs that balance the cost of desired quality with
acceptable job tardiness. The study has provided a method that is used to
overcome non-differentiable points, in the min-max plus algebra where critical
jobs exist within the busy structure of the hybrid trajectory. The algorithm
developed and the theory behind optimal control for balancing the quality and
the job tardiness will be further applied to other systems such as manufacturing
inventory control in subsequent chapters.
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Chapter 4

Optimal Control of Hybrid
Inventory System

In this chapter, we introduced a two-stage hybrid inventory (re)manufacturing sys-
tem model with a Poisson arrival demand rate. We then formulate a (re)manufacturing
system with uncertain demand rate as a Markov decision process (MDP). Fur-
thermore, we investigated the structural properties of the system and found the
optimal policy of running the hybrid inventory (re)manufacturing system. To
obtain the satisfactory results, we converted the problem to discrete-time Markov
process and regulate the inventory level that minimises the system cost. While in
the second stage, we developed a smooth algorithm with the help of Hamilton
Jacobi equations, for effective control of inventory level. Lastly, we determined the
production rate of the system for optimal inventory level and provided a numerical
example to show how our algorithm works.

4.1 Introduction

Managing the inventory and obtaining the optimal production rate for a manu-
facturing system that switches between several modes remains a challenge and
have drawn research attention recently [110]. However, early researches on hybrid
systems have demonstrated difficulties in obtaining solution analytically. Systems
dynamics characteristics are captured using structural properties of the problem
of interest and heuristic algorithm were developed [94]. Furthermore, event-driven
dynamics in manufacturing that causes the system to switch in the time-driven
dynamics are described by differential equations. Therefore considering hybrid
manufacturing systems that evolve according to event time-driven dynamics and
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switch between several modes, (manufacturing, re-manufacturing, repairing) we
are interested in finding controllers that regulate optimal inventory level with
product demand rate and follows the Poisson distribution. While most of the
controllers in dynamically systems are controlled internal or external and are
classified as autonomous and control switch, respectively.

Figure 4.1: Manufacturing (re)manufacturing system model

(Re)manufacturing has been defined as the process of rebuilding, refurbishment or
reconditioning [113] while in this framework, we refer to the (re)manufacturing of
a worked parts into a single stage for a further processing for omitted or additional
features in the manufactured components, caused by tool failure, or manufac-
turing uncertainties. These components are returned before being disposed to
the customer. Therefore, (re)manufactured parts increases system cost and total
completion time of processed components. In this framework (re)manufacturing
process is undesirable events, that need to be avoided where ever possible. Due to
uncertainties in hybrid-manufacturing systems, numerical methods are deployed
to find the solution.

For control of production output, during uncertainties caused by a low and high
volume of product demands, inventory fluctuations and production defects. Inven-
tory regulators are employed to control the flow of material and implemented to
prevent shortages and for storage during overproduction. It is well known that in
manufacturing set-up low inventory level, reduces the storage cost, but lead to
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high risk of shortages during machines failures, and as a result, heavy penalties are
imposed for failure of not meeting customer demand on time. Most of the work
done in this area does not incorporate how production rate should be controlled
during a certain inventory threshold but instead focus more on production rate
being fixed at the beginning of production.

The paper [114] reported that the production rate and inventory level of most of
the manufacturing systems are set before the start of an operation. Consequently,
the optimal strategy of the inventory system is typically computed by employing
dynamic programming. For instance, a single manufacturing inventory model was
proposed by [106] with stochastic demand rate, where production rate was set as
a decision variable, to minimize the cost of manufacturing supply chain.

Manufacturing systems inventory models with machine prone to failure were
considered by [105], where the decision-maker determines the production rate and
the maintenance action to be taken in each period to maximize the overall sys-
tem effectiveness with an application of partially observed Markov decision process.

It suffices in the literature that, solving hybrid systems that are non-linear and
not continuously differentiable imposed problems in finding optimal solutions.
Different scholars have used the approximation method, for instance, [108] have
employed stochastic methods that utilize the gradient estimators, with receding
horizon to find optimal service time. Also, an improved numerical method based
on infinitesimal perturbation were employed to approximate the solution. [109]
also used numerical method for a predefined hybrid mode sequence, based on a
differential transformation of a two-point boundary value problem. It sufficed that
two-point-boundary-value-problem solution has discontinuous switching times,
that causes instability of controller input. So the intent of differential application
was to overcome discrete, discontinuous states, and to reduce computational time
of numerical methods.

Mixed integer linear programming was used by [111] to examine the effects of trade-
off among different quality of returns, with optimal production rate and inventory
level in (re)manufacturing system. It was concluded that higher flexibility in the
hybrid system is more viable due to lower re-adjustment cost in manufacturing, as
the system hold minimum inventory. In general, the hybrid system outperforms
pure manufacturing operations, and thus it has potential to generate more profit,
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especially if it designed with flexibility features of re-adjustment of production
levels while effective manufacturing models eliminate defective parts as soon as
there are produced.

Further reading on inventory model see [107], [112] and reference therein, whereby
two states machine with constant demand rate and cost function that is associated
with long term manufacturing storage and backlog cost in its optimal policy is
defined by (a hedge policy ) critical inventory model. The policy is maintained
as a hedge against machine failures, as it allows the build-up of manufactured
components. To capture the structural properties and for a complete analysis of
the manufacturing system quality of components produced are incorporated in
the production model.

We formulated an inventory model with product demand rate that follows Poisson
distribution process as a hybrid-switch system. The inventory problem is modeled
as a Markov decision process associativity with optimal strategy required to switch
between inventory level to minimize the manufacturing cost. We take advantages
of the inventory dynamics equations to develop optimal production rate with
respect to the inventory level switch and product demand rate using Hamiltonian
Jacobi Equations (HJB).

We first introduce the inventory model with return products due to wrong product
specification and poor quality in section 4.2, while in section 4.3, we discussed
MDP, with its steady states characteristics. A randomized markov method will
be used to allow inventory problem to be continuous, and we then employee linear
programming method in section 4.4 to find the best decision that corresponds
to an optimal inventory level. In section 4.5, we use the HJB equation to find
the optimal production rate, according to optimal policy obtained in section 4.4.
A numerical example is given in section 4.6 followed by a chapter summary in
section 4.7.

4.2 Inventory Manufacturing System Model

For single-stage manufacturing system, we consider an inventory model that
experiences a product demand that follows a Poisson distribution, with a mean
demand rate of ζ. During production or inventory accumulation, It is assumed
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that the machine can switch between four modes, manufacturing at maximum
production rate, manufacturing at minimum production rate, preventive mainte-
nance scheduling and switching to re-manufacturing. Every time a production
enters into a new mode, an extra cost is incurred. Therefore it is undesirable for
a system to jump from one state to another, and to avoid this a heavy penalty
cost is associated with each jump of the system. Similarly, machine failure is
undesirable for this systems, therefore to capture the dynamics of the system, we
assume that the machine reliability is 100 per cent, while is availability is what
is needed to be determined in optimal policy, that determined when the system
need to switch to preventative maintenance after some operational mode. And to
avoid shortages during preventative machine maintenance, an inventory is kept
at an optimal level, and the optimal production rate is obtained at each level
to meet customer demand rate during production. However, during operation,
parts are return at the rate of uα where 0 ≤ α ≤ 1, is the return rate and u is the
number of products produced to satisfy demand.

4.2.1 Problem Formulation

Consider a single-stage manufacturing hybrid control system defined on the time
horizon [0 T], on which the dynamics depend on the mode of the states, within
the state space.

ẋ(t) =



f 1(x(t), u(t)), if x ∈ Ω1

f 2(x(t), u(t)), if x ∈ Ω2

. . . . . . . . .

fn(x(t), u(t)), if x ∈ Ωn

(4.1)

where x(t) is the state vector at a time t while u(t) is a control vector at time t
and Ω1 ,Ω2, . . . ,Ωn are state mode of the system with disjoint interiors. While
f 1, f 2, . . . , fn are continuously differentiated functions. The function switches
from mode 1, 2,. . . , m. In each mode we have m internal mode described by
the inventory model. And only repair mode does not have internal switching mode.

The problem is to find an optimal policy that minimizes the total cost of manu-
facturing systems with respect to optimal inventory service level with switching
mode and to determine the production rate in each mode. We use a two-stage
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approach to solve this problem, in the first stage we find an optimal decision for
mode switching, while for the second stage we find optimal production rate, that
satisfies the product demand, in each mode. Inventory level build up depends on
the profitability. Therefore following inventory system that experience Poisson
demand and exponential distribution constitute of Markov decision process, and
using fundamental properties of Markov states that the transition and discounted
sum of rewards associated with inventory level does not depend on past states
and action, This property helps to decompose overall optimisation problem in
two separate stages, thus enables us to solve inventory problem in stage 1 and
optimal production rate in stage 2. Using each optimal level as an inventory
hedging policy and given continuous demand probability density function f(ζ),
the expected inventory optimal cost is given by [116]

C(s) = E[c(d, s)] = c(s) +
∫ ∞
s

pQ(x, s)dx+
∫ s

0
hq(x, s)dx (4.2)

The above equation for optimal service level is simplified to

s? = 1
ζ
ln
h+ p

h+ c
(4.3)

given that the cumulative density function

F (ζ) =
∫ d

0
f(x)dx = 1− e−s/d (4.4)

Inventory level dynamic
x1 − x2 = Imax = S? (4.5)

x2 ≥ 0, returns products can not be negative, while x1 ≤ 0 is caused by shortages
and backlog of products. x2 = αx1 where α is return rate of product x1.

Return products wait in the buffer for further processing, and the production
follow optimal inventory policy discussed in section 4.2. We have observed that
return products should be processed as soon as they emerge in the manufacturing
system to mitigate holding cost. And the problem becomes similar to one discussed
in Chapter 3, ”finding the balance between service times and quality to minimize
the cost of manufacturing”.
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4.3 Markov Decision Process

In the first stage we deals with the optimisation of inventory level, with respect
to jump process due to stochastic demand that follows the Poisson process. The
maximum storage of inventory is defined by equation 4.5. The dynamics and un-
certainties of our problem are captured by stochastic models with Markov decision
process employed to find an optimal policy that minimizes the system cost. Every
jump or mode switching is associated with an optimal decision taken to influence
the state of the system for optimal performance criterion. And each action incur a
cost or reward, therefore the ultimate goal of this work is to maximize the sum of
reward over a time horizon that is finite or infinite denoted by decision epoch T, we
recall that x(t) is a state at time t and Bellman equation is used to find discounted
sum of rewards, to find the best choice of action at state x(t). The action affects
the transition probability and both immediate and subsequent rewards cost. It is
known that the Bellman equation fails to satisfy optimal equations in the presence
of the max operator. Therefore randomized Markov policy is introduced, to make
MDP function to be continuously differentiable. Switching mode depend on the
current state/ inventory level x(t), production rate u(t) and demand rate d(ζ)
given by ζ1, ζ2, ζ3, . . . , ζn.

For inventory greater than allowable optimal inventory s? without demand, then
the production is set to zero u(t) = 0, an set x(t) = s?, and if x(t) ≤ s?. Then
the next inventory level is defined by

x(t+ 1) =

max(s? − dt+1, 0), if x(t)=0

max(x(t) + u(t)− dt+1, 0), if 1 ≤ x(t) ≤ s?
(4.6)

The product demand and arrivals follow a Poisson distribution with parameter ζ,
then the transition probability, the matrix of demand rate is given by

P (dt+1) = ζne−ζ/n! (4.7)

And assuming the homogeneous state transition probability Pij that satisfies the
following conditions.
1. 0 ≤ Pij ≤ 1
2. ∑j Pij = 1 i = 1, 2, . . . , N ; j = 1, 2, . . . , N
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Given x(0) = i and using total probability theory and memory less property of
Markov and for large N-state, then

N∑
i=1

Px(0) = 1

P [x(n) = j] =
∞∑
i=1

P [x(0) = i]Pij
(4.8)

This implies that for large N-state process, it can be clearly seen that as n → inf,

lim
n→∞

P [x(n) = j] = πj (4.9)

Under the above conditions, the transition probability is given by P n
ij in state i

through j in n steps. As we increase the number of steps, the system achieves
steady states and the long-expected total cost of the inventory model is described
by the steady-state vector π = [π1, π2, ...]

πj =
∑

πkPkj

1 =
∑
j

πj

π = πP

(4.10)

The inventory level evolves according to dynamics, and optimal policy, with the
cost structure given by

Cost = C[x(t), u(t)] (4.11)

The cost of being in states x(t) with production rate u(t) is shown in (4.11) and
the expected average cost under policy π is calculated as follows;

Vπ(x(0)) = lim
T→∞

Eπ

[∫ T

0
C(x(t), u(t))

]
(4.12)

with x(t) and u(t) optimized in the first stage, and second stage respectfully. And
to get more insight on switching behaviour and the structure of inventory problem
under policy π, a uniformization method is employed to convert continuous
transitions probabilities to discrete as follows; for γ ≥ max(Λ(i))

Pij =


Λ(i)
γ

if i 6= j

1−Λ(i)
γ

if i = j
(4.13)
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where Λ(i) = ζ1, ζ2, ζ3.....

It is recalled that, a control action is taken when a new state is reached, at time
Tk, with associated cost, however for a long run under policy π for steady states,
the cost remains unchanged

Eπ

[∫ ∞
0

e−βtC(x(t), u(t))dt
]

=
∞∑
k=0

Eπ

[∫
e−βtC(x(t), u(t))dt

]
(4.14)

With discount factor α = γ
β+γ .

Vπ(i) = Eπ

[ ∞∑
k=0

αkC(x(t), u(t))
]

given x(o) = x0 (4.15)

The problem is to determine a policy π to minimize Vπ, and with a discount factor
of 1, a optimisation in the first stage depends on x(t)

lim
x→∞

E
1
n

n∑
t=1

Cx(t) =
m∑
j=0

πjCj (4.16)

4.4 Randomized Markov Policy

Markov deals with the selection of different policy for the evaluation of our manu-
facturing system. Since several policies are available, and a decision is needed to
select the best policy. To avoid dynamic enumeration, we randomized Markov in-
ventory system with a specific policy (R), where Di(R) corresponds to the decision
to be made in state i with decision possible values, Di(R) = 1, 2, 3, . . . , k and state
i. And each specific policy is characterized by D0(R), D1(R), D2(R), . . . , Dm(R).

Dik =

1 if decision k is made in state i

0 otherwise
(4.17)

for i = 0, 1, 2, ....m and k = 1, 2, ...K decision matrix can take the following form;
0 ≤ Dik ≤ 1 Since π is the steady states of the inventory system of Markov chain
to be in mode i, we define

zik = πiDikπ =
K∑
k=1

Dik = zik∑
zik

(4.18)

Since Dik is continuous in randomized policy, a linear programming method is
used to find an optimal solution.
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4.4.1 Linear Programming

For linear programming to be feasible in Markov modelling, transition probabilities
need to recurrent, that means a steady states condition need be achieved. Therefore
zik is a steady-state with an unconditional probability that the system is in state
i with decision k and equations (4.19) to (4.22) find zik.

min
M∑
i=0

K∑
k=1

Cikzik (4.19)

subject to

M∑
i=0

K∑
k=1

zik = 1 (4.20)

M∑
i=0

zik −
M∑
i=0

K∑
k=1

zikPij(k) = 0 (4.21)

Zik ≥ 0 (4.22)

4.5 Hamiltonian Jacobi Equation

Production switch mode is active when the inventory level reaches a certain
threshold and evolve according to policy depicted in stage 1. Manufacturing
system dynamics evolve according to production mode, manufacturing mode, and
preventive maintenance mode.

Production Mode Dynamics:

ẋ1(t) =u(t)(1− α)− d(ζ(t))
ẋ2(t) =αd(ζ(t))

(4.23)

Remanufacturing Mode Dynamics:

ẋ1(t) =− d(ζ(t))
ẋ2(t) =u(t)− αx1(t)

(4.24)
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Preventive Maintenance Mode Dynamics:

ẋ1(t) =− d(ζ(t))
ẋ2(t) =0

(4.25)

Following the trajectory path of optimal inventory in each state, for the infinite
horizon, we have the following cost function and determined the production to
achieve minimum manufacturing cost. The production rate is determined from
the following equations cost function in the second stage.

min
k∑
t=1

(
L̂(x(t), u(t)) + g(v(s(t)), u(t))

)
subject to :
ẋ(t) =fT (x(t), u(t), d(t, ζ))

where L̂(x(t), u(t) is the production cost and g(v(s(t))), u(t)) = max(v(s(t)) −
d(t, ζ), u(t) + I(t)−d(t, ζ)) is the shortage/holding cost. Using difference equation
modeling for discrete inventory level. the sate equation below, where b is the ramp
factor to achieve optimal inventory level v(s?(t)) from stage 1 and R(u(t)) = 1/u(t)
is the number of products produced during period t to satisfy production rate
u(t). Similarly Q(ζ(t)) = 1/ζ(t) is the number of product required to satisfied
demand rate ζ. The second objective of the second stage is to minimize, the
manufacturing cost due to production cost, holding and shortage cost. It is noted
that g(·) follows the optimal trajectory from first stage optimisation for switching
of inventory level. It turns out that if we apply the gradient decent method for our
objective function, we can find a feasible solution which is optimal with respect
to inventory level from stage 1.

min
k∑
t=1

x2(t) + bu2(t) + max(v(s(t))− d(ζ(t)), u(t) + I − d(ζ(t))) (4.26)

Our second stage function is not differentiated because of the maximum operator
and we use the smoothing algorithm to overcome this with a smoothing factor D.
Substituting log exponential function from Chapter 3 into equation eq:smooth ,
and smoothing operator, the manufacturing systems total cost is described by
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min
k∑
t=1
x2(t) + bu(t)2+

Dln(e
c+(v(s(t))−d(ζ(t)))

D + e
c−(x(t)+u−d(ζ(t)))

D )
(4.27)

using HJB defined by the following equations to find, optimal production rate.

∂V

∂t
+Hopt = 0

Hopt = L(x(t), u(t)) + g(v(s(t)), u(t)) + ζ(f(x(t), u(t)))
ζ = fT (x(t), u(t), d(ζ(t)))

(4.28)

To obtain equation 4.29 to equation 4.30 and from equation 4.28 if ζ define the
optimal inventory level following an optimal policy obtained in stage 1, then
optimal production rate can be calculated from Hamiltonian as follows;
Production mode

Hopt =1
2(x2(t) + bu2(t)) +Dln(e

v(s)−d(ζ)
D + e

u(t)+I(t)−d(ζ)
D )

+λ1(u(t)(1− α)− d(ζ(t))) + λ2αd(ζ(t))
(4.29)

Remnufaturing mode

Hopt =1
2(x2(t) + bu2(t)) +Dln(e

v(s)−d(ζ)
D + e

u(t)+I(t)−d(ζ)
D )

−λ1d(ζ) + λ2(u(t)− αx1(t))
(4.30)

4.5.1 Optimal Conditions

Stage 1 and stage 2 are joined by HJB functions by assuming that our manu-
facturing system follows optimal jumps of inventory rate from stage 1 solved by
Markov decision process, and if running for a long time from stage 1 and we let


∂V
∂t

= 0,
e
u(t)+I(t)−d(ζ)

D

e
v(s)−d(ζ)

D +e
u(t)+I(t)−d(ζ)

D

= v(s?)
(4.31)

And using results from stage 1, we obtain optimal production rate in stage 2 if
conditions in equation 4.30 are satisfied . It should be noted that both problem in
stage 1 and stage 2 are continuously differentiable after using randomized method
and smoothing algorithm. A smoothing factor is defined between D1 < D < D2.
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Since demand rate and production rate can not be negative, and inventory rate
can take any form due to backlog/shortages in production system. From stage 1
jumps are avoided, but are not inevitable, and hence Production rate is set as a
decision variable in stage 2, and is calculated from HJB equation as follows for
b=1 with boundary condition xT (0) = [0 0] and xT (1) = [d(ζ) 0] for production
mode and xT (0) = [0 0] and xT (1) = [0 d(ζ)] for (Re)manufacturing.

Production mode

Ḣopt(u) = u(t) + e
u(t)+I−d(ζ

D

e
v(s)−d(ζ)

D + e
u(t)+I−d(ζ)

D

+ λ1(1− α) = 0

u(t) = −(v?(s) + λ1(1− α))

− ∂Hopt

∂x1(t) = λ̇1 = (x2(t)− x1(t))

− ∂Hopt

∂x2(t) = λ̇2 = (x1(t)− x2(t))

(4.32)

Substituting u(t) into our state equation we find that,

x1(t) = (1− α)2v?(s)t2
2

x2(t) = αd(ζ)t
(4.33)

Optimal production rate is given as follows

u =

−v
?(s)(1− α)(α− 1)d(ζ)

−v?(s) + [(x1 − x2)− v?(s)(α− 1)d(ζ)](1− α)
(4.34)

Remnufaturing Mode

Ḣopt(u) = u+ v(s) + λ2 = 0
u = −(v(s) + λ2)

−∂Hopt

∂x2
= λ̇2 = (x1 − x2)

(4.35)

Similarly solving HJB function, we find the optimal production rate from state
equation as follows;

x1(t) = −dt
x2(t) = −3v?(s) + 0.5v?(s)t2 − d(ζ)− d(α− 1)

(4.36)
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Optimal production rate during (re)manufacturing

u = v?(s)(1 + t) + d(α + 1) (4.37)

Maintenance mode

Ḣopt(u) = u+ v(s) = 0
u = −v?(s) = 0

(4.38)

4.6 Numerical Results

We consider inventory problem with switching between optimal inventory to satisfy
uncertain demand that follows a Poisson distribution with demand rate ζ, and
given that for every setup the product can be manufactured in batches, and
each batch consists of 1000 products. And we MDP to control and determine
the optimal inventory level associated with each state and adopt the following
inventory management decision policy shown in Table 4.1.

Table 4.1: Decision matrix.

Decision k Action Results

1 Max production Jump to state 3 or 4
2 Minimum production Balance inventory level
3 Maintenance Jump to state 0 or 1
4 Remaunfacturing Jump to state 0 or 1

From Table 4.1 we inferred that inventory manufacturing system should operate
as follows

• Keep zero inventory from the beginning of the operation and operate ac-
cording to hedging policy according to the optimal level in each state.

• Operate below or at least at the optimal inventory level as depicted in stage 1.

• Ramp the production rate after achieving optimal production rate to jump
according to inventory policy.
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Table 4.2: Inventory Probabilities.

States i 0 1 2 3 4

0 9/960 9/271 129/971 203/573 453/959
1 506/959 453/959 0 0 0
2 95/548 203/573 453/573 453/959 0
3 16/395 129/971 203/573 453/959 0
4 7/960 9/271 129/971 203/573 453/959

For manufacturing and (re)manufacturing mode, The inventory jumps within
four modes depending on the optimal trajectory path due to decision k in-state
i. And the cost of making decision k in-state i is given in table 4.3. The total
cost consists of production cost (45.5), holding cost (35.5) and shortage cost (235).
With above cost, and using equation 2 to 5, we calculate the optimal size as follows

v?(s(t)) = ζ(t) ln h+ p

h+ c
(4.39)

We use equation( 4.8) and (4.9) to find probabilities of our inventory system, with
mean ζ(t) = 0.75 tabulated in Table 4.2. Equation 13 shows manufacturing cost
that depends on both inventory level and production rate, that evolves to satisfy
the demand rate. Using a discount factor of 1 for the Markov decision process, the
optimal policy is obtained using Equation( 4.21)-(4.24), where a decision is made
on how to switch between optimal inventory level to lower manufacturing cost.

The optimal batch size determined maximum allowable space, required to set the
manufacturing systems, and thus our inventory system can switch between the
following values s = (0, 1, 2, 3, 4). that cross-ponds to optimal inventory level in
batches of thousands.

From stage 1 optimisation, we found the optimal policy on how to switch between
modes to minimises the inventory cost is obtained by using equation (4.19). A
decision that corresponds to best value function from MDP is made, and we use
linear programming and simplex method in second stage to formulate our decision
problem and find optimal decisions that minimize the expected cost.
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Table 4.3: Decision Matrix Cost

States i 1 2 3 4

0 470 0 0 0
1 551 0 551 470
2 162 162 0 0
3 0 81 81 0
4 0 42 42 42

min(470z01 + 551z11 + 551z13 + 470z14 + 162z21 + 162z22 + 81z32 + 81z33 + 42z42

+ 42z43 + 42z44)

subject to



z01 + z11 + z13 + z14 + z21 + z22 + z32 + z33 + z42 + z43 + z44 = 1

z01 − 9/27z14 − 129/971z23 − 203/573z33 − 453/959z43 = 0

z11 + zz14 − 203/573z21 = 0

z21 + z22 + z24 − 203/503z22 − z44 = 0

z32 + z33 − 203z01 − 453/959z32 = 0

z43 + z44 − 9/271z11 − z21 = 0
(4.40)

After obtaining equation (4.40), we get zik, and using Equation(4.20), to find the
decision that corresponds to the optimal policy. According to our framework, we
need to produce at maximum production when inventory level is in state 0, and
switch to state 3, where the production is maintained. While if the decision 2 is
made then, a system should run at minimum production rate that satisfies the
demand rate. Also, at state 2 decision 1 is also optimal if it is employed, which
allow the system to be operated at maximum production rate to reach states 4,
which is equivalent to maximum optimal inventory level within the system. And
we have observed that the system switch to the (re)manufacturing mode at state
1 and state 4.

After determining switching mode, now the problem is to find controllers that
minimize the total expected cost in each state. To do this, we use the system
dynamics discussed in equation (4.25) to equation (4.39) obtained using HJB
equations. We let u be the production defined by the following function.
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u =

umin = −v?(s) + [(x1 − x2)− v?(s)(α− 1)d(ζ)](1− α)

umax = −v?(s)(1− α)(α− 1)d(ζ)
(4.41)

At states 0, we operate according to umax as in MDP until state 3 is reached,
where inventory level is balanced. Due to demand uncertainties, our inventory
level can switch to any states, and if it jumps to sates 2, umax is employed until
states 4 is reached. Therefore decision for production mode is taken at state 0,
2 and 3, where we can either run at maximum production rate when inventory
level reaches 0 or 2 and run at minimum production rate when inventory level is
at mode 3. Figure 4.2 show how production rate, demand rate change over time.
From the graph, it is depicted that, if demand rate exceeds, optimal inventory level
and production rate, then the production starts to decline. This is an indication
that the system should switch to different mode.

Figure 4.2: Manufacturing system dynamics with minimum inventory at mode 0
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Figure 4.3: Remanufacturing system dynamics at maximum production rate at
mode 1

Figure 4.4: Manufacturing system dynamics with minimum inventory at mode 2
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Figure 4.5: Manufacturing system dynamics with minimum production rate at
mode 3

Figure 4.6: Re-Manufacturing System dynamics at maximum production rate
at mode 4
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Figure 4.7: Remanufacturing system dynamics rate

following MDP policy develop in stage 1, the results in figure 2 depict that, if the
system was not controlled, the system would experience shortages and surplus,
in manufacturing mode and also from state 1 respectfully. However, with the
results from HJB and MDP, as the system reaches states 3, the inventory level
is maintained until the end of the production period. Furthermore if the system
reaches states 2, it evolves according to production policy till it reaches states
4, where the production is halted, this is also experienced in state 1, where the
manufacturing inventory system switch to (re)manufacturing mode and stays
there until the inventory level falls to zero and the process restart again. Without
manufacturing at state 4, the system can go for preventive maintenance; this is an
indication that before beginning or at the end of a production period the system
should be inspected and maintained to satisfactory high level.
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4.7 Chapter Summary

We have combined the results of MDP and HJB to find controllers that minimize
the cost of inventory hybrid (re)manufacturing system with states jumps. Our
problem was coveted to discrete and continuous sates respectfully, and a smooth-
ing method was employed to aid us to apply the differential equation to find
the optimal solution of HJB. We have normalized our MDP to approximate the
solutions of inventory system, and we have employed linear programming to find
mode switching of steady states and run HJB function to find optimal production
rate that satisfies product demand that follows poison distribution. The numeral
results show how production changed, with uncertain demand. Also, it shows the
effectiveness of our method in the application of manufacturing inventory system
which is kept within internal states until the end of the manufacturing period.
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Chapter 5

Hybrid Systems and Sliding
Control 5

This Chapter proposes a hybrid sliding mode controller to stabilize a complex
manufacturing system with impulsive phenomena. Newly developed sufficient
conditions ensure the proposed control to effectively work on the multi-mode man-
ufacturing system. A manufacturing/re-manufacturing system is presented as an
example to show the effectiveness of the proposed controller. Numerical solutions
are developed to set up the controller to govern the two mode manufacturing
system. The designed manufacturing control strategy will help produce various
products in a timely manner to keep up with the demands and shorten the delay
in current competitive and global market.

5.1 Introduction

Systems modeling of a manufacturing system plays an important role in understand-
ing stability impact of decision making on the value function of the manufacturing
model. Its aim is to understand the behaviors of the production process and to
effectively control the flows of output, goods and information [123], [128]. In order
to run smoothly, the manufacturing system’s stability must be ensured. Otherwise,
the manufacturing plant will not be operated normally if system stability is not
guaranteed. When the system does not have these stability properties, then it will

5Copyright permission see in Appendix A.
Kobamelo Mashaba, Honglei Xu, Jianxiong Ye. Stabilization Of Complex Manufacturing
Systems With State Impulsiveness By Hybrid Sliding Mode Control, Dynamics of Continuous,
Discrete and Impulsive Systems, Series B: Applications and Algorithms 26 (2019) 291-302,
Copyright c 2019 Watam Press
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experience unexpected manufacturing dynamics [128]. Furthermore, if a chaotic or
irregular behaviour is not controlled, it results in fluctuation of the processing [126].

Demand fluctuations raised by globalization and intense competition in the market
require to design various control policies to make a manufacturing system stable.
Thus, the stabilized manufacturing system can produce products in a timely
manner, keep pace with demand requests, and shorten the lead time. Independent
effective control can increase production flexibility in a timely manner and there
are challenges in design complex control mechanism for modern manufacturing
systems.

In many situations, the manufacturing system experiences instant and rapid
changes of its states at some working times, it can be modeled by an impulsive
differential equation or a differential equation with discontinuous right-hand side
for its stability analysis. From the control perspective, an impulsive hybrid control
can be applied to a nonlinear system with distributed delays, nonlinear perturba-
tions and impulsive effects [132]. Furthermore, a bisection method was used in the
application of high frequency switching control of a hybrid system and a minimum-
rule algorithm was proposed to stabilize the hybrid dynamical system [132]. Other
types of hybrid switching controls can stabilize the trajectory caused by abrupt
changes of system dynamics [124], [132], [137]. Recent studies show hybrid con-
trols can be applied in many areas, such as high level flexible manufacturing
systems, power electronics, automotive engine management. For example, a time-
dependent switching rule can stabilize nonlinear systems [117], [138]. Moreover,
the hybrid controllers can stabilize many unstable nonlinear systems, for which
traditional controllers have limited effects. For manufacturing systems that exhibit
impulsive effects, the design of hybrid controls remain a challenge [144], [145], [146].

Stabilization of nonlinear dynamics, and systems with time delays have been
studied extensively in the literature. Time-dependent rules, feedback controllers
and impulsive controllers are applied to stabilize the controlled systems [121]. For
instance, both both switching rules and impulsive controls are applied to unstable
nonlinear systems with distributed delays and impulsive effects [132]. Nonlinear
system stability is traceable with the application of a piecewise quadratic Lya-
punov function [129]. A converse theorem can be established for a hybrid system
with a smooth compact set to construct Lyapunov functions, without any insight
or knowledge of system trajectories [122].
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In this chapter, we aim to design a new hybrid sliding mode control that drives the
state’s trajectory to its stable state. Furthermore we want the states’ trajectory to
be confined in the manifold and leaves the selected surface only during impulsive
time window. And we will design controllers that restrict the state to leave this
manifold, for global stability.

The remainder of this chapter is organized as follows. Section 5.2 provides the
control problem of a manufacturing system, and necessary definitions and lemmas.
A hybrid sliding mode control is designed for the manufacturing system and
the corresponding stability criteria. In Section 5.4, a numerical example of the
manufacturing/re-manufacturing system is provided to show the effectiveness of
proposed method. Finally, the chapter summary is given in Section 5.

5.2 Problem Formulation

We consider a complex manufacturing system modelled by
ẋ(t) = Aix(t) +Bi(u(t) + f(t, x)), t 6= τk

∆x(t) = Fisi(x(t)), t = τk

x(0) = x0, si(x(t)) = BT
i Pix(t)

(5.1)

where x ∈ Rn is the state vector, u ∈ Rm is a control vector, and f : R+×Rn → Rn

is a continuous function to represent the system non-linearity or disturbance.
si ∈ Si ⊂ Rm is the sliding mode function of the i-th subsystem on a sliding
surface Si = {x(t) : si(x(t)) = 0}. Moreover, Ai and Bi are known matrices
with appropriate dimensions for each operating mode i, while Pi and Fi are to
be determined to ensure the set of sliding surfaces S1, ..., Sm satisfies system
performance requirements of system (5.1). When an operating mode i is detected,
system (5.1) switches to the appropriate surface Si and then the system state
evolves according to the overall characteristics of selected manifold. The impulsive
time sequence {τk} satisfies τ0 = 0 < τ1 < τ2 < ... < τi < τi+1 < ... < τN for
i = 1, 2, ..., N . At impulsive time points, we have ∆x(τk) = x(τ+

k ) − x(τ−k ) =
FiB

T
i Pix(τk), where x(τ−k ) = x(τk). Hence, the solution of system (5.1) is a

piecewise continuous function.
We assume that there does not exist the Zeno behaviour (i.e., tt+1 − tk ≥ δk,
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where δk is a given positive real number), (Ai, Bi) is controllable and the nonlinear
function in (5.1) is bounded [127], i.e.,

||f(t, x(t))|| ≤ ρ0, (5.2)

where ρ0 > 0 is a maximum bound for the nonlinear function.
Our objective of this paper is to develop an hybrid sliding mode control law to
stabilize the complex manufacturing system (5.1). If the sliding surfaces exist,
there should be symmetric positive definite matrices Pi > 0 and appropriate
matrices Fi > 0 that ensure system (5.1) gets to a sliding surface si ∈ Si given by

Si = {x(t) : si(x(t)) = BT
i Pix(t) = 0}. (5.3)

5.2.1 Preliminaries

To proceed, we need the following definitions and assumptions:

Definition 5.2.1 The state vector x ∈ Rn is called a solution of the complex
manufacturing system (5.1) if there exists a x(τ0 + ε) ∈ Rn, ε > 0 such that the
following are satisfied:

1) x(τ+
0 ) = x0;

2) x(t) is continuously differentiable for the complex manufacturing system
(5.1), where t ∈ (τ0, τ0 + ε) where t 6= τk and

3) when t = τk, x(τ+
k ) = x(τk)+FiBT

i Pix(τk). Furthermore, [Aix(t)+Bi(ui(t)+
f(t, x(t)))] ∈ PC[R+, Rn], so there exists a unique solution of the complex
manufacturing system (5.1) for t > τ0, where PC is a set of piecewise right
continuous functions with x(τ+

0 ) = x0 and I + FiB
T
i Pi 6= 0 for every τk.

Definition 5.2.2 An equilibrium state of the complex manufacturing system (5.1)
is said to be stable if for any ε > 0, there exists a δ > 0 such that ||x(t0)|| < δ

implies ||x(t)|| < ε for all t ≥ t0.

Definition 5.2.3 [140] An impulsive time window is said to be the time interval
τk+1 − τk between successive occurrences of impulses.

Lemma 5.2.4 [143] Given real matrices Y and Z of appropriate dimensions for
any ε > 0, we have

Y Z + ZTY ≤ ε−1Y TY + εZTZ (5.4)
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5.3 Main Results

5.3.1 Control Design

In this section, we develop an hybrid sliding mode controller to ensure that the
overall system stability is achieved. Once a sliding surface is reached, the state
will slide along the manifold till system (5.1) accomplishes stability.
Designing a sliding mode controller should decide the selection of an appropriate
sliding surface and the design of a controller that satisfies the switching condi-
tion [139]. We set manifold Si to be a sliding surface with a control in the form
of [127].

ui(t) = ueq(i)(t) + ur(i)(t) (5.5)

where ueq(i) = −(BT
i PiBi)−1BT

i PiAix(t) and

ur(i)(t) =

−(Pi + ρ0I)BT
i Pix(t), ||si(t)|| 6= 0

−PiBT
i Pix(t), ||si(t)|| = 0

(5.6)

Remark 5.3.1 When we do not consider the nonlinear term in system (5.1), the
switching feedback control on the sliding surface will satisfy

ṡi(t) = BT
i Piẋ(t) = BT

i PiAix(t) +BT
i PiBiui(t) = 0 (5.7)

Then we design the switching feedback control

ueq(i)(t) = −(BT
i PiBi)−1BT

i PiAix(t) (5.8)

Remark 5.3.2 We recall (5.3) to find the equivalent control that keeps the states
on the manifold Si. And for a closed loop feedback controller where by (Ai+Biueq(i))
is stable, so for proper design of these feedback controller, we establish the following
results in the next section. We assume that under an impulsive control, the system
switches between surfaces and remains in the neighborhood of sliding surface. Then
the system slips towards the target in the presence of disturbance.
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5.3.2 Stabilization Criteria

We first present sufficient conditions of asymptotically stability of the complex
manufacturing system (5.1) and then study its corresponding stabilization criteria.

Theorem 5.3.3 Suppose that there exists a continuous positive semi-definite
function V (t, x(t)), and the following are satisfied:

∂V (t, x(t))
∂t

+ ∂V (t, x(t))
∂x

[Aix(t) +Bi(ui(t) + f(t, x(t)))] ≤ 0 (5.9)

V [x(t) + ∆x(t)] ≤ V (t, x(t)) (5.10)

Then the complex manufacturing system (5.1) is asymptotically stable.

Proof: In the k-th impulsive time window, V (t, x(t)) can be written as

V (t, x(t)) = V (τk, x(τk)) + V (τk, x(τk) + ∆x(τk))− V (τk, x(τk))

+
∫ t

τk

∂V (t, x(t))
∂t

+ ∂V (t, x(t))
∂x

[Aix(t) +Bi(ui(t) + f(t, x(t)))] ds
(5.11)

At the impulsive times τk, k = 1, 2, . . . , we obtain

V (τk, x(τk)) =V (τk−1, x(τk−1)) + [V (τk−1, x(τk−1) + ∆x(τk−1))− V (τk−1, x(τk−1))]

+
∫ τk

τk−1

∂V (t, x(t))
∂t

+ ∂V (t, x(t))
∂x

[Aix(t) +Bi(ui(t) + f(t, x(t)))] ds
(5.12)

Hence it follows from (5.9) and (5.10) that

V (τk, x(τk)) ≤ V (τk−1, x(τk−1)) and V (t, x(t)) ≤ V (τk, x(τk))

Thus we have V (τ0, x(τ1)) ≤ V (τ1, x(τ1)), . . . ,≤ V (t, x(t)). Since V (t, x(t)) is
monotonically decreasing and has the lower bound zero, it will converge to zero,
i.e., the complex manufacturing system (5.1) is asymptotically stable. This com-
pletes the proof.

If a Lyapunov function V (t, x(t)) satisfying (5.9) and (5.10) for the complex
manufacturing system (5.1), then system (5.1) is asymptotically stable, and this
implies that V (t, x(t)) must continuously diminish along each orbit as t increases,
i.e., V (t, x(t)) keeps an orbit that starts near the origin, without crossing its level
sets.
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Suppose that there exist symmetric positive definite matrices Pi and Qi with appro-
priate dimensions and a scalar ε > 0 satisfying ηi = λmax(P−1

i+1(I +FiB
T
i Pi)TPi(I +

FiB
T
i Pi)) ≤ 1 and the following linear matrix inequalities:

Pi(Ai −BiKi) + (Ai −BiKi)TPi + φi I

I −Q−1
i

 ≤ 0 (5.13)

where Ki = (BT
i PiBi)−1BT

i PiAi and φi = ε−1ETEPi + εHTH. Then the hybrid
sliding mode control can stablize the complex manufacturing system (5.1).

Proof: We choose a Lyapunov function candidate

Vi(t, x(t)) = x(t)TPix(t) +
∫ t

0
xT (r)Qx(r)dr (5.14)

and we design the sliding surface as S = {x(t) ∈ Rn : si(x) = BT
i Pix(t) = 0}.

Next, we take the differential of Lyapunov candidate Vi(t, x(t)) along the trajectory
of the complex manufacturing system (5.1) to get

V̇i(t, x(t)) = ẋT (t)Pix(t) + xT (t)Pẋ+ x(t)TQi(t)x(t)
= xT (t)(Ai −BiKi)TPi + xT (t)Pi(Ai −BiKi)Tx(t)

+ xT (t)(ur(i)(t) + f(t, x))TBT
i Pi

+ (Pi(ur(i)(t) + f(t, x))BT
i x(t) + x(t)TQi(t)x(t)

(5.15)

Substituting (5.13) to (5.15) yields

V̇i(t, x(t)) ≤ 2xT (t)PiBi(ur(i)(t) + f(t, x)) (5.16)

From (5.6) and (5.15) we have

2xT (t)PiBiur(i)(t) + 2xT (t)PiBif(t, x)
= 2sTi ur(i)(t) + 2sTi f(t, x)
= − 2sTi Pisi − 2ρ0||si||+ 2sTi f(t, x)
≤ − 2sTi Pisi < 0

(5.17)

which ensures that (5.9) holds. Moreover, at impulsive time points τk, V (τk, x(τk))
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satisfies

V (τ+
k , x(τ+

k )) = (x(τk) + ∆x(τk))TPi(x(τk) + ∆x(τk))
= x(τk)T (I + FiB

T
i Pi)TPi(I + FiB

T
i Pi)x(τk) (5.18)

Then we have

V (τ+
k , x(τ+

k )) ≤ ηiV (τk, x(τk)) ≤ V (τk, x(τk))

We see that (5.9) and (5.10) are guaranteed. Thus, by Theorem 5.3.3, we conclude
that the complex manufacturing system (5.1) is asymptotically stable under the
given hybrid sliding mode controller (5.5). The complex manufacturing system
(5.1) changes the system dynamics instantaneously at impulsive time points. So,
impulsive time windows are decision variables that are selected during operation
to achieve optimal system dynamics. Here, we adopt the results in [137] and use
Lyapunov function and selected cone as follows;

Ω(i) = {x(t) ∈ Rn : xT (t)(Pi(Ai −BiKi) + (Ai −BiKi)TPi)x(t)

≤ − 1
N
xT (t)(Qi + ε−1NET

i EiPi + εNHT
i Hi)x(t)}

(5.19)

The right hand side − 1
N
xT (t)Qix(t) leads to an asymptotically stable system,

where N denotes the number of system modes. Therefore in the presence of
impulses and if we apply Theorem 5.3.3 and impulsive time window

τi+1 − τi ≥ δk (5.20)

So the minimal impulsive switch time can be obtained by

Tj := arg min
{
δk,−

1
N
xT (t)(Qi + ε−1NET

i EiPi + εNHT
i Hi)x(t)

}
(5.21)

5.4 Numerical Results

We validate the effectiveness of the proposed method with a numerical exam-
ple in a manufacturing setting, which is composed of production mode and
(re)manufacturing mode. A demand rate can be governed by a function f(t, x1, x2),
where x1 is associated with products of good quality while x2 represents goods
that need (re)processing. Rework increases the production cost and the produce
excess of x1, and incur more cost on inventory holding cost. Therefore the ob-
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jective of this problem is to minimize the manufacturing cost, by eliminating
excess inventory and producing at an optimal production rate to meet customers’
demands.

It is also known that the plant mode is controlled by an impulsive time win-
dow δk to switch between the production mode and the re-manufacturing mode.
Furthermore we know that returns goods in the system cause shortages, and
from economic approach, inventory models are used for balancing, and to cut the
manufacturing cost, we model a manufacturing plant that produces according to
a hedging policy and a Just-in-Time rule.

We consider a two mode manufacturing plant that consists of

Production mode:

ẋ1(t) = x1(t) + u1(t) + f1(x(t))
ẋ2(t) = −rx1(t)

∆x(t) = F1B
T
1 P1x(t), x(t) = [x1(t) x2(t)]T

(5.22)

Re-manufacturing mode:

ẋ1(t) =x1(t)− f1(x(t))
ẋ2(t) =x2(t)− rx2(t) + u1(t)

(5.23)

where x1 is the quantity of finished goods, x2 is the quantity of returned goods, r
is the rate of return goods with demand rate f1(t, x) = ā sin2(x(t)) and u1(t) is
the production rate. The system parameters can be rewritten and set as

A1 =
 1 0
−r 0

 , A2 =
1 0

0 (1− r)

 , B1 =
1 0

0 1

 ,
B2 =

1 0
0 1

 , Q1 =
1 1

1 1

 , Q2 =
2 1

1 5

 ,
H =

1 2
7 1

 , E1 =
2 5

5 5

 , E2 =
 2 25

25 25

 ,
F1 =

 0.2700 0
−0.1542 0

 , F2 =
 0.3084 0
−0.1542 0

 , 0 < ε ≤ 0.05,

0 < ā < ρ0 = 4.5, 5% < r < 85%.
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Solving the linear matrix inequalities (5.13), we obtain

P1 =
2.3323 −04269

0.4269 0.9043

 , P2 =
2.7151 0.2420

0.2420 3.3674

 ,

K1 =
2.3323 0.4269

0.4269 0.9043

 , K2 =
2.7151 0.2420

0.2420 3.3674


And from LMI (5.13) it can be found that ||φ1|| > 0 and ||φ2|| > 0 and thus
meet criteria of our theorems. Furthermore the simulation results verify our main
results. This also supported by a hedging policy to be implemented in inventory
manufacturing system.

Example 2: We extended and validate the effectiveness of hybrid impulsive slide
mode controller with a well known chaotic system presented in [53]. The system
investigated experienced chaos that need to be suppressed by impulsive slide mode
control method proposed.

We consider Lorenzo Chaotic system

ẋ1(t) = (2a+ 10)(x2(t)− x1(t))
ẋ2(t) = (28− 35a)x1(t)− x1(t)x3(t) + (29a− 1)x2(t)

ẋ3(t) = (x1(t)x2(t) + (a+ 8)x3(t)
3

(5.24)

where a={-2,2} Since Bi is a gain matrix that need o be designed, we choose this
gain matrix to be equivalent to Biu(t) and similarly if we consider f(t, x(t)) as
disturbance, and choose Bi = I we can introduce impulsive slide mode controller
according to the main theorem, and transform equation 5.24 into;

ẋ(t) = Aix(t) +Bi(ui(t) + f(t, x)) ∀ t 6= τk

∆x(t) = FiB
T
i Pix(t) = x+(τk)− x−(τk) t = tk

(5.25)

where

A =


−(2 ∗ a+ 10) (25 ∗ a+ 10) 0
28− 35 ∗ a 29 ∗ a− 1 0

0 0 −(a+ 8)/3

 , B =


1 0 0
0 1 0
0 0 1

 , Q =


5 0 1
0 1 0
1 0 2

 ,
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P =


25.9036 −22.6945 0.0037
−22.6945 60.4087 0.0435

0.0037 0.0435 0.2873

 , F =


0 0.0258 1.0000
0 0.0258 0
0 0.0258 1.0000

 ,

f(t, x(t)) =
[
0 −x1(t)x3(t) x1(t)x2(t)

]T
,

If there exist P = P T that solve quadratic Lyapunov function and satisfied
theorem (2) such ||BTf(t, x(t))|| is bounded above, with δk = τk+1 − τk. Then
the anticipated results of theorem 5.3.3 hold. Then this implies that the trivial
solution of (5.24) is asymptotically stable with proper design of matrix F.

The standard design of matrix F should be investigated further. As it has been
seen in example 5.2 that wrong design of matrix F can led to unstable dynamic
system stability. Furthermore and from our results, we can inferred that the
proper design of the impulsive slide mode controller, can stabilize and suppress the
chaos of Lorenzo system (5.24) such that the system is globally asymptotically
stable see Fig. 5.13. while without control, the system shows chaotic behavior see
Fig. 5.15.

Figure 5.1 shows dynamical trajectories of the manufacturing system (5.22) without
controllers. It is clear to see that the manufacturing system (5.22) is unstable
if not controlled. And Fig 5.2 depicts unstable controller without sliding mode
control. And from Figure 5.3 a hybrid impulsive sliding mode control stabilize
our manufacturing systems. The adopted controller was also effective when a
manufacturing system experiences high demand, as shown in Figure 5.4. We
further shows the selected manifold in Figure 5.7 to Figure 5.9.
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Figure 5.1: Unstable inventory levels without hybrid controllers

Figure 5.2: Unstable system with impulsive control only
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Figure 5.3: Stable manufacturing system trajectory with Hybrid impulsive
sliding mode control

Figure 5.4: Manufacturing system controllers with hybrid impulsive sliding mode
control
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Figure 5.5: Stable manufacturing system inventory level with high demand

Figure 5.6: Stable manufacturing controllers with high demand
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Figure 5.7: Selected manufacturing surfaces with sliding mode control

Figure 5.8: Selected manifold with sliding mode control
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Figure 5.9: Selected manufacturing system surfaces

Figure 5.10: Impulsive slide mode inventory level with high demand rate
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Figure 5.11: Impulsive sliding mode controllers with high demand rate

Figure 5.12: Selected manufacturing system surfaces controllers
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Figure 5.13: Lorenzo system with stable states-with impulsive sliding mode
controller

Figure 5.14: Lorenzo system with stable states with hybrid impulsive controller
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Figure 5.15: Lorenzo system unstable - no impulsive sliding mode controller
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5.5 Chapter Summary

The problem of finding suitable controller that stabilizes dynamical hybrid sys-
tems has been considered in this Chapter. The goal of proposed method was to
select controllers for manufacturing and (re)manufacturing mode that stabilize
the production line. Main theorems results and sufficient conditions to grantee
stability of trivial solution are given. And a hybrid impulsive slide mode control
is adopted to stabilize the manufacturing hybrid system by confining systems
dynamics within selected manifold. While in the past, especially with Toyota
production line, the stability of manufacturing plant was achieved by introducing
a moving assembly line. That is to say the plan was to keep a minimum products
at all times in an assembly line. Therefore the conceptual framework developed
in this chapter mitigate the problem of backlog or inventory build up within the
production line. Therefore the feasibility and viability of these technique is shown
with an example from inventory control and we found that the technique proposed
is in-line with hedging policy operation that supports production of producing
Just- In-Time. Furthermore, as an application to other system, we have developed
a new hybrid impulsive slide mode control strategy, that suppresses chaos in a well
known Lorenzo system. And one future direction is to investigate controllers that
stabilize the manufacturing system with delay using impulsive sliding mode control.

94



Chapter 6

Conclusions and Future Research
Directions

6.1 Main Contributions of the Thesis

In this thesis, we managed to show the imminent need of adopting hybrid manufac-
turing system framework, in today’s industrial revolution 4.0 whereby technological
development has an enormous impact on the creation of wealth and socio-political
stability among many countries. The industries 4.0 combines technological devel-
opment and human capabilities in an unprecedented way through the integration
of controllers that enable the application of self- learning algorithm, self-regulating
machines, big data and Internet of Things.

We found that the most vital parameter on production decision making in manu-
facturing setting is flexibility, which is seen as a promising factor for industrial
performance capabilities for a system to reach an optimum objective value. We set
a hybrid manufacturing model and develop algorithms that balance manufacturing
firm constraints and customer constraints by developing a hybrid model and a
new smoothing algorithm for the cost balancing between the quality and the job
tardiness by finding optimal service time of each job in the system.

From chapter 3, we inferred that the presence of maximum operator in the objec-
tive function, makes the problem to be non-smooth, and thus makes the decent
gradient method to fail especially if critical jobs exist in the busy structure. Also
we concluded that the optimum service time of each job is directly proportional to
job quality such that the longer service time incur more cost, and shorter service
time led to poor job quality. We further found that the waiting scenario, gives
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minimum cost function with optimum service time and optimum job quality. And
a balance between trade-off cost was achieved through development and selection
of the best controller from proposed algorithm.

It is observed that the quantity of products manufactured plays important role
on the manufacturing optimisation. Therefore, in order to achieve cost-effective
production-inventory system, we have developed a smooth algorithm and apply
Hamilton-Jacobi-Bellman equations to determine the production rate of an op-
timal inventory trajectory of the hybrid system. And then we find controllers
that minimize the cost of inventory hybrid (re)manufacturing system with states
jumps in chapter 4.

We further observed that, for a successful and competitive manufacturing firm,
it needs to be incorporated with controllers that are handy, to control inventory
level and production rate to meet customer demands at unprecedented level. And
a two stage approach was required and we incorporated the application of Markov
Decision Process, Bellman equation and with the steady state probabilities, we
used mixed integer linear programming to select best decision of how to operate
a manufacturing firm, and found that a minimal inventory should be kept at all
time to reduce production cost.

We further introduced, a sliding mode control that switches between manufac-
turing and (re)manufacturing systems. And we develop a conceptual framework
to mitigate the problem of backlog or inventory build up within the production
line. Therefore the feasibility and viability of these techniques are effective for
inventory control and we find that the technique proposed is in-line with hedging
policy operation that supports production of producing Just-in-Time.

The stability of manufacturing systems using Lyapunov feedback function was
further discussed in chapter 5, and we found that, the design of sliding mode
controller proposed was more effective, as we were able to find a balance between
manufacturing and (re)manufacturing mode. And we have observed that manu-
facturing systems that inherent, this behavior of stability are more robust and
flexible especially in chaotic environment.
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6.2 Future Research Directions

We have successfully managed to tap on controllers of hybrid manufacturing
systems stability and developed mathematical algorithms which are still at an
infant stage. Therefore, more work needs to be done for the development of
advanced mathematical models and algorithms that will allow the integration
of cloud computing, artificial intelligence and optimal allocation of machines
and determination of service time of processing each job. Our future work will
expand to modelling real-time manufacturing systems, with the aid of RFID,
machine learning and other concepts from industries 4.0. We intend to develop
self-regulating or self optimizing manufacturing systems with capabilities of being
data-driven decision making.

We will further investigate

• The stability of manufacturing systems using Lyapunov feedback functions
after the design of our controller.

• Controllers that stabilize the manufacturing system with delay using impul-
sive sliding mode control.

• Our future work will incorporate n stage and stochastic arrivals of jobs in a
re-manufacturing hybrid system.

We also intend to extend our methods to other applications such as power system,
autonomous and hybrid vehicles. And since we have observed that electric vehicles
have been entering market recently and are considered to be the future mode of
transport after successful of development of lithium-ion batteries that would able to
power electric cars more efficiently and effectively as compared to gasoline vehicles.
Currently other researches are working on lithium-ion battery development, and
we foresee that a sliding mode control developed in our work can be used to
regulate the charging systems of lithium batteries.
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