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Abstract

Objective

Pharmaceuticals play an important role in clinical care. However, in community-based

research, medication data are commonly collected as unstructured free-text, which is pro-

hibitively expensive to code for large-scale studies. The ASPirin in Reducing Events in the

Elderly (ASPREE) study developed a two-pronged framework to collect structured medica-

tion data for 19,114 individuals. ASPREE provides an opportunity to determine whether

medication data can be cost-effectively collected and coded, en masse from the community

using this framework.

Methods

The ASPREE framework of type-to-search box with automated coding and linked free text

entry was compared to traditional method of free-text only collection and post hoc coding.

Reported medications were classified according to their method of collection and analysed

by Anatomical Therapeutic Chemical (ATC) group. Relative cost of collecting medications

was determined by calculating the time required for database set up and medication coding.

Results

Overall, 122,910 participant structured medication reports were entered using the type-to-

search box and 5,983 were entered as free-text. Free-text data contributed 211 unique med-

ications not present in the type-to-search box. Spelling errors and unnecessary provision of

additional information were among the top reasons why medications were reported as free-

text. The cost per medication using the ASPREE method was approximately USD $0.03

compared with USD $0.20 per medication for the traditional method.
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Conclusion

Implementation of this two-pronged framework is a cost-effective alternative to free-text

only data collection in community-based research. Higher initial set-up costs of this com-

bined method are justified by long term cost effectiveness and the scientific potential for

analysis and discovery gained through collection of detailed, structured medication data.

Background

Pharmaceuticals play an important role in clinical care and, consequently, there is a need to

optimise collection of concomitant medication in clinical research. In the past, data collection

on paper has dominated clinical research [1], however the digital age presents significant

opportunity for efficiency and improvements to data quality. Optimal workflows for collecting

coded concomitant medication data in an accurate, cost-effective manner are needed for large,

community-based studies [2] because concomitant medication exposure is important, but the

collection, coding and analysis of these data can be challenging. Traditionally, clinical trial

medication data are collected as unstructured text (on paper or electronically) by data collec-

tors without specialised knowledge of medications. This text is later coded manually by a phar-

macist or clinician to produce a structured, coded data set for analysis [2,3]. Smaller studies

can afford to manually review and code electronic medication data [4] but this process can be

prohibitively expensive for large-scale clinical trials.

Medication data collected for the purpose of clinical care within the hospital, outpatient or

community health centre environment is generally entered directly into the Electronic Health

Record (EHR) using complex, pre-specified data entry fields or Computerized Physician

Order Entry (CPOE) systems. Researchers within these environments can leverage EHRs and

CPOE systems to gather medication data [5]. Additionally, EHR coding tools (e.g. RxNorm)

can be integrated within a research user interface allowing users to select medications from a

pre-configured dropdown box [6]. However, chronic medication use extends outside the hos-

pital setting and many important clinical insights are gained via community-based research.

In contrast to hospital based research where there is usually a high level of familiarity with

medications and medication data, community-based research is often conducted outside the

hospital data infrastructure using data collectors who are not clinically trained. This makes col-

lection of vital medication data particularly challenging in community based research. It is

unknown whether frameworks shown to be effective for hospital-based research, such as a

pre-configured medication list, are appropriate for community-based data collectors without

specialised medication knowledge. There is also no empirically-derived estimate of the poten-

tial cost savings associated with the implementation of an framework for structured medica-

tion data collection in a community-based research setting.

ASPirin in Reducing Events in the Elderly (ASPREE) was a randomised, placebo controlled

clinical trial of aspirin in 19,114 community-dwelling older people in Australia and the US

[7,8]. Given that prescription medication use is prevalent in the elderly and has the potential to

impact clinical outcomes [9–12], ASPREE collected annual prescription medication data for

the duration of the study because of the relevance of medication to understanding of health

issues affecting an elderly population. Data collection in ASPREE was supported by the

ASPREE Web Accessible Relational Database (AWARD) suite, which facilitated collection of

medication data in structured format or as free-text collection. ASPREE provides the opportu-

nity to assess the utility of a pre-configured structured medication data collection tool in a
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research setting where data collectors are not pharmacy or medically trained. In this paper we

analyse the utility of this framework by comparing entry of medication in a structured format

with free-text entries, assessing factors contributing to the entry of free-text data entry, and

suggesting how medication data collection can be optimised in the setting of a large-scale com-

munity-based clinical trial.

Methods

ASPREE clinical trial

In this analysis data were examined from randomised ASPREE participants. Briefly, ASPREE

was a randomised placebo-controlled trial of low-dose (100mg) aspirin in 19,114 healthy peo-

ple aged 70 years or older (65 or older for US minorities) without previous cardiovascular dis-

ease, conducted in Australia (n = 16,703) and the USA (n = 2,411) [13]. The study commenced

March 2010 and concluded in June 2017, with a median 4.7 years of follow-up including

annual data collection. At baseline, ASPREE participants were required to be in good health,

free of major diseases and expected to survive 5 years of follow-up (confirmed by the partici-

pant’s general practitioner/primary care provider). ASPREE was approved by multiple Institu-

tional Review Boards in Australia and the US prior to data collection, and all the participants

provided written informed consent for data collection. Detailed methods and results of

ASPREE are described in detail elsewhere [7,13].

Collecting structured medication data

The ASPREE Web Accessible Relational Database (AWARD) suite facilitated electronic collec-

tion and storage of medication data via a two-pronged framework (See Fig 1). There was a

concern that staff would become confused if they were presented with an overwhelming num-

ber of medication options on the electronic medication data collection form in AWARD.

Therefore, a list of 2025 common medications, which included generic and/or trade names,

was compiled at the commencement of the study. This list was based on free-text medication

data collected in the pilot phase of ASPREE and coded medication data from other commu-

nity-based studies conducted by Monash University. This list of common medications was

made available to users as a type-to-search text box on the electronic version of the medication

case report form in AWARD. Staff entered structured medication data via the type-to-search

box or, if the medication name was not found, selected ‘Other’ and entered the reported medi-

cation as free-text. To support entry of medications using the type-to-search box a mapping

table in the AWARD database provided a link between common medications misspellings and

the generic name. If a common misspelling was entered, the type-to-search box offered the

linked generic name, which allowed the data entry staff to select either the generic name or

enter the misspelling as free-text (see Fig 1). The list of common medications was not updated

during the course of the study.

Collection of medication from participants

ASPREE participants were asked to bring their medications, or an updated medication list, to

their baseline data collection visit and every annual visit thereafter. Research staff reviewed

each medication and confirmed whether the medication was prescribed by the participant’s

doctor. The names of all prescription medications (preferably generic) and the participant self-

reported medication commencement and cessation year were transcribed onto a case report

form (CRF). Dose information was not within the scope of data collection for ASPREE. How-

ever, participants incidentally and voluntarily reported dose for certain medications. In this
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Fig 1. ASPREE concomitant medication data collection framework.

https://doi.org/10.1371/journal.pone.0226868.g001
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situation some staff chose to enter medication data as free text so that the dose was recorded in

the database. In addition to all prescription medications, other medications of relevance to the

aspirin intervention and main outcomes in ASPREE were recorded if participants reported

taking them at least once per week on a regular basis, regardless of whether they were pre-

scribed by a doctor or obtained without prescription. These included nonsteroidal anti-inflam-

matory drugs, paracetamol/acetaminophen, vitamin D and open label aspirin. When available,

staff utilised clinic medical records to prompt participants about medications that they may

have forgotten, with the aim of producing a comprehensive list. The majority of data collection

staff did not have specialised medication knowledge but received standardized training at

study onset in how to identify medication names from packaging and how to complete data

entry using the type-to-search box.

Medication coding and validation

All medications were linked to their generic name and coded according to the World Health

Organisation Anatomical Therapeutic Chemical (ATC) codes. For free-text medications, a

Neural Network was utilised to produce a ranked list of 20 potential ATC codes for each free-

text entry. This list was delivered to two independent coders via a web application (see S1 Fig).

Coders selected the correct ATC code from the list or entered a new code if the correct result

did not appear in the ranked list. To accommodate reports of combination medications or

simply multiple medications being batched together, the code allowed for each free text report

to be linked to multiple ATC codes. This allowed the coder the flexibility to select as many

ATC codes as were necessary based on the active ingredients listed in medication report text.

Discordance between coders was resolved by a third expert coder. Combination medication

entries were split into component ingredients prior to coding, and each assigned the appropri-

ate ATC code. Approximately half of the coders were clinically trained (i.e. medical practition-

ers or pharmacists). The coder included links to Google, the Australian National Prescriber

Service website, and the World Health Organisation Anatomical and Therapeutic Chemical

(ATC) coding website to support non-clinically trained coders to access the information

required to correctly identify a drug and select the appropriate ATC code (see S1 Fig).

Costing

Relative cost of medication collection was determined based on the time required for database

programming and medication coding. Database programming was estimated based on the

average time required to set up, restrict and deploy an SQL table and linked web application

data entry page, multiplied by the number of tables requiring configuration. To determine

time required to code each medication, three coders completed a series of coding ‘time trials’.

During the time trial coders were randomly delivered different medications by the coder,

which they then coded. The time taken to complete coding was dependent upon the complex-

ity of the report (e.g. combination medication or obscure medication vs clear non-prescription

medication or common medication) and the experience of the coder. Each time trial spanned

15 minutes and each coder completed 4 trials. The median time to code a medication was then

calculated and used for determination of cost.

Results

As shown in Fig 2, 128,893 unique participant medication reports were entered into AWARD-
Data. Of these, 122,910 (95%) were captured within a structured variable using the type-to-

search box, and 5983 (5%) were entered as free-text. Of the free-text reports, 4,581 were con-

firmed to be prescription medications or NSAIDs, and 1,402 were confirmed to be non-
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prescription medications (e.g. vitamins and complementary medications). For approximately

one out of six medication reports, the codes assigned by the first two coders were discordant

and a third coder review was required. Overall, free-text data contributed 602 unique medica-

tions (i.e. unique ATC codes), including 211 medications not present in the type-to-search

box.

The top ten medications reported via structured and free-text data are shown in Table 1.

Paracetamol/acetaminophen was the medication most commonly reported via the type-to-

search box (n = 6899), followed by Vitamin D (n = 3582). Cardiovascular drugs such as statins

(Atorvastatin, n = 3192; Rosuvastatin, n = 2514; Simvastatin, n = 2000), nicardipine

(n = 2307), perindopril (n = 2,303) and open label aspirin (n = 2,542) accounted for six of the

ten most commonly reported medications. With regard to medications entered as free-text,

the most commonly reported medication was apixaban (n = 600). This medication, along with

Tapentadol (n = 88), Aclidinium bromide (n = 72), Umclidinium bromide (n = 71), empagli-

fozin (n = 50) and dapagliflozin (n = 49) were approved for use in Australia after the type-to-

search box was activated and hence not available in the list. Vitamin D (n = 93) and paraceta-

mol/acetominophen (n = 65) were the only medications to appear in both the top ten struc-

tured data and free text lists.

Fig 2. Results of medication collection framework for ASPREE trial.

https://doi.org/10.1371/journal.pone.0226868.g002
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As ASPREE data was collected in Australia and the USA, an opportunity arises to explore

between-country differences in medication data entry patterns. As shown in Table 2, Austra-

lian participants contributed 83.9% of total medication reports, which is broadly consistent

with the proportion of Australian participants overall (87% of total cohort). Of these, 95.7%

were entered via the type-to-search box compared with 93.2% of reports in the US. Medica-

tions from ATC categories for blood, cancer and ‘various’ had the lowest proportion of medi-

cations entered as structured data regardless of country of origin (85.2%, 84.2%, and 73.3%

respectively). Reasons for entry of medication as free-text are shown in S1 Table. Relevant

medication not being available in the type-to-search box was the most common reason for

entry of free-text data (44.6% of all free-text) followed by spelling errors (18.9%), provision of

additional information such as dose, route or timing of medication (13.7%), and entry of trade

name (10.7%). Of the free-text reports of open label aspirin, 73% were due to the provision of

additional information regarding dose (n = 22 of 30).

Relative cost of medication collection and coding

The results of the coding time trials are shown in S2 Table. Overall, 588 medication reports

were coded as part of the time trials, which was 9.8% of all the free-text reports. The median

time to code a single medication was 18.7 seconds (IQR = 22). Given that each free-text report

required coding by two coders (see Fig 1) and one out of six were discordant and required

review by a third coder, a total time of 40.5 seconds was used for calculation of the overall cost

of coding (18.7�2 + 18.7/6). Detailed calculation of cost per method of collection is shown in

Table 3. Collection of medication data using the AWARD system required 113.8 hours of

funded support for setup (i.e. database and web application development, generation and cod-

ing of options in type-to-search box) and 28.5 hours of funded support for post hoc coding of

free-text medication reports. Overall, the cost per medication using this framework was esti-

mated to be USD $0.03. Implementation of free-text data collection only, without support of

the type-to-search functionality, would have reduced the set up requirement to 36.4 hours of

funded support for minimal database/web programming. Assuming that 45% of free-text

reports were exact duplicates of another report, we estimated that 70,891 medications would

require post hoc coding if a free-text only data collection method was implemented. It is esti-

mated that post hoc coding of medication reports would require 797.5 hours of support in this

Table 1. Top ten most commonly reported non-combination medications entered via type-to-search and free-text.

Entered via type-to-search box Entered as free-text

ATC Generic Name N (reports) ATC Generic Name N (reports) Available in type-to-search box?

1 N02BE01 Paracetamol 6899 B01AF02 Apixaban 600 No

2 A11CC Vitamin D 3582 A11CC05 Vitamin Da 93 Yes

3 A02BC05 Esomeprazole 3500 N02AX06 Tapentadol 88 No

4 C10AA05 Atorvastatin 3192 R03BB05 Aclidinium bromide 72 No

5 B01AC06 Aspirin 2542 R03BB07 Umeclidinium bromide 71 No

6 C10AA07 Rosuvastatin 2514 N02BE01 Paracetamol 65 Yes

7 C08CA01 Nicardipine 2307 A10BK03 Empaglifozin 50 No

8 C09AA04 Perindopril 2303 C01DA02 Glyceryl Trinitrate 50 Yes

9 M01AC06 Meloxicam 2034 A10BK01 Dapagliflozin 49 No

10 C10AA01 Simvastatin 2000 B03BA03 Vitamin B12b (injection) 42 Yes

a As cholecalciferol
b As hydroxocobalamin

https://doi.org/10.1371/journal.pone.0226868.t001
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Table 2. Method of medication report by country and ATC group.

AUS US

Medication Class Medications entered as

structured data

N (% total in class per

country)

Medications entered as

free-text

N(%)

Medications entered as

structured data

N(%)

Medications entered as

free-text

N(%)

A - Alimentary Tract And Metabolism 14,660 (97.9%) 319 (2.1%) 2,220 (94.9%) 119 (5.1%)

B - Blood And Blood Forming Organs 4,203 (84.5%) 770 (15.5%) 758 (89.0%) 94 (11.0%)

C - Cardiovascular System 28,234 (97.4%) 767 (2.6%) 4,985 (96.1%) 203 (3.9%)

D - Dermatologicals 2,249 (93.6%) 155 (6.4%) 170 (80.2%) 42 (19.8%)

G - Genito Urinary System And Sex Hormones 3,139 (97.5%) 82 (2.5%) 766 (94.6%) 44 (5.4%)

H - Systemic Hormonal Preparations, Excl. Sex

Hormones And Insulins

3,007 (98.8%) 36 (1.2%) 594 (97.5%) 15 (2.5%)

J - Antiinfectives For Systemic Use 2,043 (93.9%) 133 (6.1%) 317 (89.8%) 35 (9.9%)

L - Antineoplastic And Immunomodulating

Agents

1,164 (85.5%) 198 (14.5%) 128 (74.4%) 44 (25.6%)

M - Musculo-Skeletal System 8,780 (98.6%) 123 (1.4%) 1,206 (95.3%) 59 (4.7%)

N - Nervous System 18,418 (97.1%) 541 (2.9%) 1,702 (95.3%) 81 (4.5%)

P - Antiparasitic Products, Insecticides And

Repellents

336 (94.1%) 21 (5.9%) 33 (86.8%) 5 (13.2%)

R - Respiratory System 4,957 (92.4%) 409 (7.6%) 967 (94.0%) 62 (6.0%)

S - Sensory Organs 1,932 (93.1%) 143 (6.9%) 439 (89.0%) 54 (11.0%)

V - Various 73 (73.7%) 26 (26.3%) 1 (50.0%) 1 (50.0%)

N/A – Non-prescription medication 5449 (83.9%) 1044 (16.1%) 1292 (78.3%) 358 (13.5%)

N/A - Combinations 7823 (95.5%) 365 (4.5%) 1033 (92.7%) 81 (7.3%)

TOTAL 106,330 (95.7%) 4767(4.3%) 16,580 (93.2%) 1216 (6.8%)

https://doi.org/10.1371/journal.pone.0226868.t002

Table 3. Relative costing of AWARD framework versus traditional free-text only method.

Unique text to

code

Time

(hours)a
Estimated cost

(USD)b
Number of medication reports

collected

Cost per medication report

entry (USD)

AWARD system

Database/web programming - 73.5 $2279

Set-up—curation of list of common

medications

- 15.0 $465

Set-up—coding of list of common

medications

2025 25.3 $785

Coding of free-text entries 2529 28.5 $882

TOTAL 4554 142.3 $4410 128,893 $0.03

Traditional free-text only approach

Database/web programming - 36.4 $1127

Coding of free-text entries 70891 797.5 $24,723

TOTAL 70891 833.9 $25,850 128,893 $0.20

aAssumptions: 45 seconds per medication allocated for curation of list of common medications;

40.5 seconds allocated for coding of list of common medications (two coders—18.7 seconds each, plus 3.1 seconds per medication for discordance resolution given that

1 out of 6 medications were discordant and required coding by a third coder); 40.5 seconds allocated for coding of free-text entries (two coders plus a third coder for 1

out 6 medications); In the free-text only approach 45% of reports would be duplicate free text, hence only 55% of reported medications would require coding.
bCost per hour calculated based on hourly rate of 31 USD for Research Officer and rounded to the next whole number.

https://doi.org/10.1371/journal.pone.0226868.t003
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scenario. Thus, the overall time required to collect and code medications using free-text alone

is estimated to be 833.9 hours, with an estimated cost of USD $0.20 per medication.

Discussion

We find that implementation of a two-pronged framework involving type-to-search function-

ality and free text entry dramatically reduced the time required to code medication data in a

large-scale clinical trial. Common problems faced by medical coding experts, such as illegibil-

ity, spelling errors, use of abbreviations, local brands, and multiple medications recorded

together [14,15], were avoided for 95.4% of all medication reports in ASPREE through the pro-

vision of the type-to-search strategy. The linkage of this box to the list of common misspellings

allowed staff to self-correct transcription errors or misspelling and choose the correct medica-

tion from the type-to-search box at the time of data entry, contributing to the 6 fold reduction

in cost of coding ASPREE’s structured medication data. However, if only the type-to-search

box had been utilised key medications such as apixaban, would have been omitted from data

collection. Providing the option for free-text entry produced a safety net and ensured all medi-

cations were collected. Two of the medications most commonly reported as structured data

were also reported as free-text, indicating that staff felt comfortable utilising the free-text entry

option if they were uncertain of the correct option to select from the type-to-search box.

The most common reason for free-text entry was that the appropriate option was not avail-

able in the type-to-search box. Given that 6 of the top 10 most commonly reported free-text

medications were not available in the type-to-search box, post hoc coding could have been

avoided for 20.3% of free-text reports if these six medications had been added to the reference

lists and made available in the type-to-search box. Future studies wishing to implement this

framework should be aware of this limitation and ensure that the options in the type-to-search

box are kept up to date.

Training provides an opportunity for further optimisation of the medication data collection

framework. While only a small proportion of ASPREE medications were collected as free-text,

spelling errors and the provision of additional information were among the three most com-

mon reasons for entry as free-text. Almost all free-text reports of aspirin included additional

information about dose, indicating that staff wanted to provide more information than was

required based on the study protocol. Additional training about the intended use of the data

and the rationale behind collection of such a limited concomitant medication dataset may

have increased the proportion of medications entered via the type-to-search box and in turn

reduced the time requirements for post hoc coding.

In research, there is always a compromise between limited resources and data quality [16–

18]. While medication data does not reach the size and scale of ‘omics data, it is often unstruc-

tured data and thus requires significant handling prior to analysis. When medication data are

collected for large scale clinical trials or population studies, the combination of the scale and

structure of the data presents significant challenges. The traditional method of free-text medi-

cation data collection and post hoc coding by a clinician is a labour intensive processes that

would have taken almost half a full working year (21, 38 hours weeks) to complete for

ASPREE, which was not feasible. In the past, studies have restricted costs associated with con-

comitant medication collection by choosing not to collect detailed medication data, and

instead collecting binary questions about specific medication classes of interest [19,20]. While

this choice may be cost-effective, it may also limit the potential for analysis and discovery,

given that medications of interest must be pre-specified prior to commencement of data col-

lection. Implementation of a two-pronged framework for structured data collection offers a

cost-effective alternative to the traditional free-text only method for collection of detailed
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concomitant medication data. Utilisation of the type-to-search box dramatically reduced the

cost of medication collection and coding compared with the traditional method. The cost-

effective process for collecting detailed, structured concomitant medication data presented

here could be applied to any large-scale clinical trial or population study where concomitant

medication use is an important covariate for analysis. Finally, the process here described could

be applied to other, non-medication, data that is routinely collected as free text (such as clinical

signs or symptoms). Although such an application of this process would need to be tailored to

the individual setting and software, in general, utilising a type-to-search approach is likely to

be cost effective and user friendly.

Limitations

Others have noted the challenges of coding medication dose, particularly for medications

where doses change frequently (e.g. warfarin) [16]. However, ASPREE’s protocol did not

require collection of medication dose and therefore the process described herein is not opti-

mised for the collection of dosage. Lack of data regarding dosage may limit future research uti-

lising this coded medication data. Additionally, ASPREE did not record how many

medications were initially entered with a misspelling but then corrected as a result of staff

being offered the correct medication via the type-to-search box. Thus, detailed analysis of the

utility of the linked common misspellings database tables is not possible. Furthermore, discus-

sion of methods to improve the time required to manually code free-text medications, (e.g.,

natural language processing or other data science interventions) is beyond the scope of this

paper. Further research into these areas would provide helpful guidance.

Conclusion

Medicine is increasingly driven by pharmaceutical interventions and clinically relevant

research must account for the role of concomitant medications. Traditional methods of medi-

cation collection and coding are prohibitively expensive and do not leverage modern digital

infrastructures that provide an opportunity to collect comprehensive medication data from

community participants in an efficient manner. Implementation of a two-pronged framework

that includes a pre-configured type-to-search list of medications as an adjunct to free text data

entry is a cost-effective alternative to collection of free-text data only. Ensuring options in the

type-to-search list are kept up to date, and training staff will minimise the number of free-text

entries. Higher initial set-up costs are justified by long-term cost effectiveness and additional

potential for analysis and discovery gained through the collection of detailed medication data.
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