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Abstract

Ever increasing energy consumption, rising public awareness for environmental protection and higher

prices of fossil fuels have motivated many to look for renewable energy sources. SOFC is one of

the best alternative energy source but it is a highly nonlinear system. One of the main goals of

this research is designing a nonlinear control. In this thesis, non-isothermal model of solid oxide

fuel cell has been developed under the general condition of unchoked outlet flow. For isothermal

dynamic model of SOFC, a controller based on on full state feedback linearization is designed and

compared with controller based on linearization and gain scheduling. Analysis of controllability and

observability is also given for the nonlinear isothermal model.
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Chapter 1

INTRODUCTION

1.1 Fuel Cell

The first fuel cell was invented by William Grove. Fuel cell is an electrochemical device which can

directly convert chemical energy into electrical energy through an electrochemical process. The main

difference between chemical and electrochemical reactions is that while electrochemical reactions

involve the transfer of charge between an electrode and a chemical species, in a chemical reaction,

charge transfer occurs directly between two chemical species without liberation of free electrons.

The overall reaction of the fuel cell is based on simple water formation reaction between hydrogen

and oxygen.

H2 +
1

2
O2 → H2O (1.1)

In the direct reaction there is no charge transfer but in an electrochemical reaction, the reactants

hydrogen (fuel) and oxygen (air) are taken separately and given enough activation energy so that

hydrogen releases two electrons which are accepted by oxygen. The electron rich electrode which

is on the side of hydrogen is called as Anode and the electron deficient electrode which is on the

oxygen side is called as cathode. There exists a potential difference between anode and cathode.

Figure 1.1: SOFC

The potential difference is used to drive a current from anode to cathode using an external

conductor (wire). Oxygen ions pass through the ceramic electrolyte to the hydrogen side to complete
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the reaction and the circuit. The main difference between a traditional battery is that the fuel cell

is a continuous process - a current can be extracted as long as the reactants are supplied. The

important steps involved in producing electricity in a fuel cell are reactant delivery into the fuel

cell, electrochemical reaction, ionic conduction through the electrolyte, electron conduction through

external circuit and product removal from the fuel cell.

Types of fuel cells

There are five major types of fuel cells. Differentiated by type of electrolyte used [1].

1. Phosphoric Acid Fuel Cell (PAFC)

2. Polymer Electrolyte Membrane Fuel Cell (PEMFC)

3. Alkaline Fuel Cell (AFC)

4. Molten Carbonate Fuel Cell (MCFC)

5. Solid Oxide Fuel Cell (SOFC)

Fuel cell type Electrolyte Temperature Efficiency Charge Carrier
PAFC Phosphoric acid 150− 200oC 40 H+

PEMFC Thin polymer membrane 50− 100oC 30− 60 H+

AFC Caustic potash solution 90− 100oC 60 OH−

MCFC Molten carbonate 600− 700oC 50− 60 CO3
2−

SOFC Ceramic 600− 1000oC 50− 60 O2−

Table 1.1: Types of Fuel Cells. Parameter values are taken from [1]

Advantages of fuel cells

� Fuel cells produce electricity directly from chemical energy, they are often more efficient com-

bustion engines

� As long as fuel is supplied a current can be extracted

� Components of fuel cell are can be all solid state, mechanically there are no moving parts.

This yields the potential for high reliable long lasting system.

� Undesired products such as NOx, SOx, particularly emissions are virtually zero.

� Easy to scale up from 1 watt to 1 mega watt

Disadvantages of fuel cells

� Cost is a major barrier to fuel cell implementation.

� Power density is significant limitation

� Operating temperature is also one of the limitations.

� Fluctuation in output voltage whenever there is small change in operating conditions.
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1.2 Solid Oxide Fuel Cells

Solid oxide fuel cells operate at high temperatures, usually in the range of 600oC to 1000oC and

employ a ceramic electrolyte. The most common electrolyte is Yttria-stabilized zirconia. Oxygen

ions O2− are the charge carriers. The electrochemical reaction is given by

H2 +O2− → H2O + 2e−

1

2
O2 + 2e− → O2−

SOFCs are known for their higher electrical efficiency of about 50-60 percentage compared to other

types of fuel cells and are considered very suitable in stationary power generation applications.

1.3 Control System Of SOFC

Overview of Control System

 Process 
Input 

Output 

Availability  

Physics Based 

Model 

Data Based Model 

Satisfied 

Mathematical Modeling 

Data 

Physics 

Controllability 

Condition 

Observability 

Condition 

Controller 

Design 

Estimate 

Sates 

Satisfied 

The purpose of a controller is to make the plant behave in a desired manner. Power generation

plants need to have very specific and fixed desired output value with unnoticeable fluctuations. As

SOFC is a highly nonlinear plant, a non-linear controller might give better performance. The control

technology is critical in its development and is an important factor for commercializing the SOFC.

A reliable and accurate control oriented model is of great importance to understanding the

dynamic characteristics of the SOFC. Modeling of a plant can be done in two ways, one is data

based modeling and the second one is physics based modeling. Collecting SOFC experimental data
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is difficult and expensive. This is probably the reasong why most of the researchers used physics

based models for control of SOFC.

After developing a dynamic model, a study on of stability, controllabitity and observability

needs to be performed. One of the ways for checking these properties for a nonlinear model is

through linearization at operating points. In approximate linearization, higher order terms in Taylor

expansions are truncated. Dynamics of linear and nonlinear models will be similar close to the

operating point. A controller can be designed for the linear model at that operating point. If

the nonlinear plant is operated away from this operating point, linear controllers do not give good

performance.

Using differential geometry, controllability and observability, can be directly verified for the

nonlinear system. There exist many controllers in the existing literature [2], [3] for SOFC. In these

designs, assumptions are made that state equations are linear. With the help of exact linearization,

the nonlinear state equations system can be transformed into an equivalent linear state space system.

There exist two types of feedback linearization 1) full state feedback linearization and 2) input-

output linearization [4], [5]. For full state feedback linearization, the system should be controllable

and observable. In this thesis controller design is obtained using full-state feedback linearization for

controlling pressure dynamics such that we will get desirable voltage.
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Chapter 2

Literature Review

Solid oxide fuel cells have been a key area of academic research interest over the past decade due

to their high electrical efficiency, fuel flexibility, and high quality waste heat. Modeling of SOFC,

analysis, estimation of states and controller design are major steps of the control system.

2.1 Modeling of SOFC

Control techniques applied to the SOFC based on process models, require simple and accurate dif-

ferential and algebraic equations that should represent the SOFC dynamic response characteristics.

So far, there have been many publications( [6], [7], [8], [9]) on the dynamic models of the SOFC. [7]

include spatial variation of fuel cell parameters, and [8] include mass and heat transfer but it is very

difficult to study control performance of fuel cell with such detailed dynamics.

Some researchers introduced zero-dimensional, lumped dynamic models[ [7], [9], [10], [11]] which

are suitable for designing control systems. Operating state parameters in SOFC are partial pressures

of species and temperature. Many researchers designed mathematical dynamic modeling of SOFC

at constant temperature for explicit study of pressure dynamics [9], [10].

From control design point of view, the output from the fuel cell is current density or voltage.

Operating at high pressure gives high current density, but it may damage the electrolyte and product

removal becomes difficult. There have been many studies on lumped models for fuel cells at high

operating pressure [7], [9]. Most of the researchers who carried out lumped modeling in the past

considered the choking flow assumption in determining outlet flow rate of gas through an orifice at

the exit of electrode channels [7]. The flow is said to be choked if the ratio of downstream pressure to

upstream pressure is less than or equal to 0.529 [12]. Whether flow is choked or not also depends on

other parameters like inlet flow rate, orifice cross sectional area, channel area and current withdrawn.

If outlet flow of species is choked then outlet flow rate is proportional to inside partial pressure

species [7]. For low operating pressure conditions the resulting flow is unchoked at outlet. Mathe-

matical expression for unchoked outlet flow rate is nonlinear function of inside partial pressures and

temperature. It can derived using compressible Bernoulli equation [13].

Including temperature variations in dynamic model of SOFC at high operating pressures is

presented in [7]. One of the research groups has done dynamic model SOFC for choked flow [10] but

they consider only pressure dynamics and stack temperature is constant. One of the challenges is
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to develop the dynamic modeling of SOFC for low operating pressures with temperature variations.

2.2 Analysis

Study of controllability and observability for linear dynamic models or state space models are given

in [14]. For nonlinear models, such analysis by linearization of nonlinear model at some operating

point is presented in [15]. The nonlinear model considered in this thesis is described by

ẋ = f(x) + g(x)u;

y = h(x);

Controllability and observability analysis can be done using differential geometry [16]. Isothermal

SOFC dynamic model for low operating pressure can be written in the form which is mentioned

above. In this thesis differential geometry based techniques are applied to SOFC model for analysis

of controllability and observability.

2.3 Controller design

There are many control strategies in literature for nonlinear systems. Isothermal SOFC is a highly

nonlinear system and there exist a few optimal control techniques applied to nonlinear SOFC [2]. [17]

has applied feedback linearization controller to Proton exchange membrane fuel cell. In this thesis,

feedback linearization is applied to a dynamic model of isothermal SOFC.
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Chapter 3

Modeling Of Solid Oxide fuel cell

3.1 Lumped Modeling of isothermal SOFC

The dynamic model is especially beneficial for control study in the development stage of SOFC.

Lumped model is the simplest way to model the dynamics, where we neglect the spatial variation

and consider only the changes with time.

3.1.1 Assumptions

The following are the assumptions of lumped model

� The gases are assumed to be ideal.

� Unchoked flow assumption is considered while modeling the outlet flow through orifice at exit

of gas channels.

� Temperature is assumed to be uniform in the entire stack.

� Ideal mixing of gases is considered.

3.1.2 Species Balance

The fuel and air are supplied through anode and cathode channels respectively. Species balance is

carried out separately by applying law of conservation of mass.

Species balance in an anode channel

Anode channel contains two species : H2 and H2O. First we write species balance for H2 as

dnH2

dt
= ṅinH2

− ṅoutH2
+ ṅrH2

where

� nH2
is molar flow rate of H2 in the stack, it can be expressed as nH2

= (PH2
Van)/(RTs) using

Ideal gas law, here Van is the volume of anode channel, PH2
is partial pressure of H2 in the

stack, R is Universal Gas Constant and Ts is temperature of the stack.
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� ṅinH2
is inlet molar flow rate of H2, This is used as an input to the control system.

� ṅrH2
is reactive molar flow rate of H2, it can be expressed as ṅrH2

= −2KrI, where Kr = No
4F , I

is stack current, No is number of cells connected in series in stack and F is Faraday’s Constant.

� ṅoutH2
is outlet molar flow rate of H2, it is proportional to the PH2

when outlet molar flow is

choked at the orifice [7]. The derivation for general unchoked outlet molar flow is given in the

next subsections.

Using the above, the species balance of H2 can be written as

dPH2

dt
=
RTs
Van

(ṅinH2
− ṅoutH2

− 2KrI)

Similarly the species balance equation for H2O is

dPH2O

dt
=

RTs
Van

(ṅinH2O − ṅ
out
H2O + 2KrI)

Species balance in a cathode channel

Cathode channel has two species : O2 and N2. First we write species balance for O2 as

dnO2

dt
= ṅinO2

− ṅoutO2
+ ṅrO2

where

1. nO2 is molar flow rate of O2 in the stack, it can be expressed as nO2 = (PO2Vcat)/(RTs) using

Ideal gas law, here Vcat is the volume of cathode channel, PO2 is partial pressure of O2 in the

stack.

2. ṅinO2
is inlet molar flow rate of O2, we should give optimal inlet molar flow rate to maintain

desirable operating conditions to get desirable output for this we need to have good control

system.

3. ṅrO2
is reactive molar flow rate of O2, it can be expressed as ṅrO2

= −KrI.

4. ṅoutO2
is outlet molar flow rate of O2, it is proportional to the PO2

when outlet molar flow is

choked at the orifice [7].

Therefore, the species balance of O2 is

dPO2

dt
=

RTs
Vcat

(ṅinO2
− ṅoutO2

−KrI)

Similarly the species balance equation for N2 is

dPN2

dt
=

RTs
Vcat

(ṅinN2 − ṅoutN2
)

8



3.1.3 Electrode Channel Outlet Flow

To obtain outlet flow rate in an electrode channel, we consider unchoked outlet flow and assume

that the flow of gaseous mixture to be adiabatic through the orifice. The Bernoulli’s equation for

compressible flow [18] is
v1

2

2
+

(
γ

γ − 1

)
P1

ρ1
=
v2

2

2
+

(
γ

γ − 1

)
P2

ρ2
(3.1)

Continuity equation for compressible flow is ρ1v1A1 = ρ2v2A2 where, P1, P2 are upstream,

downstream pressures and ρ1, ρ2 are upstream, downstream densities at orifice, γ is ratio of specific

heats. A1, A2 is cross section area of manifold and orifice. Further simplifying the above equations

we take β = D2/D1, r = P2/P1 and substitute v1 = v2β
2r1/γ in equation (3.1) to obtain

v2
2 =

P1

ρ1

(
2γ

γ − 1

)(
1− r

γ−1
γ

)( 1

1− r
2
γ β4

)
(3.2)

Dividing and multiplying by (P1 − P2), we get

v2 =

√√√√ 2

ρ1

(
γ

γ − 1

)(
1− r

γ−1
γ

1− r

)(
(P1 − P2)

1− r
2
γ β4

)
(3.3)

Finally, the mass flow rate out from orifice is expressed as

ṁout = Cdρ2A2

√√√√ 2

ρ1

(
γ

γ − 1

)(
1− r

γ−1
γ

1− r

)(
(P1 − P2)

1− r
2
γ β4

)

Cd is Discharge Coefficient of orifice and is used to measure the ratio of the actual discharge to the

theoretical discharge [19]. Let C = Cd√
1−β4

and

Y =

√√√√r
2
γ

(
γ

γ − 1

)(
1− r

γ−1
γ

1− r

)
1− β4

1− r
2
γ β4

Using these the mass flow rate out becomes

ṁout = CY A2

√
2ρ1(P1 − P2)

3.1.4 Operating conditions

The International Energy Agency (IEA) conducted a fuel cell stack modeling exercise that involved

seven European countries and Japan [6]. The operating conditions used are

� Operating pressure = 1 Bar.

� Operating temperature = 1173.15 K.

In this thesis we assume that operating pressure is slightly higher than the atmospheric pressure and

fuel cell outlet is open to the atmosphere. Therefore the difference between the operating pressure

9



and the outside pressure is small. We note that r ≈ 1. If we apply limit r −→ 1 in the above

equation for Y , we obtain

lim
r→1

Y = lim
r→1

√√√√r
2
γ

(
γ

γ − 1

)(
1− r

γ−1
γ

1− r

)
1− β4

1− r
2
γ β4

= 1

(by applying L′Hopital′s rule) and hence mass flow rate out can be expressed as

ṁout ≈ CA2

√
2ρ1(P1 − P2) (3.4)

3.1.5 Anode Channel Outlet Flow Rate

Using above mentioned general expression for electrode mass outlet flow rate we need to derive molar

outlet flow rate of each species in the anode channel. Mass flow rate out through the anode channel

is calculated as

ṁout
anode = CAa

√
2ρa(PH2

+ PH2O − Patm) (3.5)

where P1 = (PH2
+ PH2O), P2 = Patm, Aa is anode side orifice cross sectional area and ρa is the

density of gaseous mixture in anode channel which can be expressed as ρa = P1Ma

RT . Ma is the

average molecular weight of gas in the anode channel which can be calculated as

Ma =
PH2

MH2
+ PH2OMH2O

PH2 + PH2O
(3.6)

where PH2
and PH2O are partial pressures of H2 and H2O inside the fuel cell, MH2

and MH2O are

molecular weights of H2 and H2O. Molar flow rate out for the anode side is ṅouta = ṁout
anode/Ma.

Substituting the above equations (3.5), (3.6) and simplifying we obtain

ṅoutanode = CAa(PH2
+ PH2O)

√
2(PH2

+ PH2O − Patm)

RTs(PH2
MH2

+ PH2OMH2O)
(3.7)

Molar flow rate out for each species in an anode channel can then be calculated as

ṅoutH2
=

PH2

PH2 + PH2O
ṅoutanode = CAaPH2

√
2(PH2

+ PH2O − Patm)

RTs(PH2MH2 + PH2OMH2O)

ṅoutH2O =
PH2O

PH2
+ PH2O

ṅoutanode = CAaPH2O

√
2(PH2 + PH2O − Patm)

RTs(PH2
MH2

+ PH2OMH2O)

3.1.6 Cathode Channel Outlet Flow Rate

Mass flow rate out through the cathode channel can be calculated as

ṁout
cathode = CAc

√
2ρc(PO2 + PN2 − Patm) (3.8)

where P1 = (PO2
+PN2

), P2 = Patm, Ac is the cathode side orifice cross sectional area and ρc is the

density of gaseous mixture in the cathode channel which can be expressed as ρc = P1Mc

RT . Mc is the

10



average molecular weight of gas in the cathode channel which is calculated as

Mc =
PO2

MO2
+ PN2

MN2

PO2 + PN2

(3.9)

where PO2 and PN2 are partial pressures of O2 and N2 inside the fuel cell, MH2 and MH2O are

molecular weights of O2 and N2. Molar flow rate out for cathode side is ṅoutc = ṁout
cathode/Mc.

Substituting the above equations and simplifying we get

ṅoutc = CAc(PO2
+ PN2

)

√
2(PO2

+ PN2
− Patm)

RTs(PO2
MO2

+ PN2
MN2

)
(3.10)

Molar flow rate out for each species in cathode channel is

ṅoutO2
=

PO2

PO2
+ PN2

ṅoutanode = ṅoutO2
= CAcPO2

√
2(PO2 + PN2 − Patm)

RTs(PO2
MO2

+ PN2
MN2

)

ṅoutN2
=

PO2

PO2
+ PN2

ṅoutanode = CAcPN2

√
2(PO2 + PN2 − Patm)

RTs(PO2
MO2

+ PN2
MN2

)

.

3.1.7 Electrochemical model

Figure 3.1: Electrochemical Processes within a solid oxide fuel cell [6]

The electrochemical processes taking place in the solid oxide fuel cell are as illustrated in Figure 3.1.

As shown in the figure, the potential of the electrons released at the anode is smaller than that of

the electrons taken up by the oxygen at the cathode. The cell delivers net power as electricity. The

maximum theoretical work for a steady-flow open process is given by the change in molar Gibbs

free energy of the process ∆G. The electrical work done by a fuel cell is given by the amount of

charge that flows from the cell multiplied by the driving force that causes it to flow i.e., he potential

difference of the cell [6]. This can be expressed as, Wmax = −∆G = neFE. Here ne is the number

of moles of electrons transferred in the overall reaction. The maximum potential difference given by

open circuit voltage.
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Open Circuit Voltage

Thermodynamic potential or the reversible cell voltage is the maximum voltage attained by solid

oxide fuel cell at thermal equilibrium. It is given by Nernst Equation (including temperature effects)

[1] as below

V0 = N0

[
∆E0 +

∆s

nF
(T − To) +

RTs
2F

log

(
PH2P

0.5
O2

PH2OP
0.5
atm

)]
where N0 is the total number of cells in the stack, ∆E0 is standard cell potential given by ∆E0 =

−∆G0

2F and ∆s is the change in entropy of the reaction. The values for ∆s, ∆G0 are taken from

[20]. In real solid oxide fuel cell operation we experience loss in efficiency due to other effects.

Temperature, pressure, gas composition, conductivity of materials, amount of the current extracted

from SOFC, fuel and reactant utilization influence their performance. These operating variables

affect the magnitude of the irreversible voltage losses. The losses, when expressed in terms of

voltages, are called polarization. There are three main types of polarizations

1 Ohmic Polarization (ηohm).

2 Activation Polarization (ηact).

3 Concentration Polarization (ηcon).

Stack Voltage

In modeling the stack voltage we consider all polarizations mentioned above. The stack voltage is

given by the following equation

Vs = No (V0 − ηohm − ηact − ηcon) (3.11)

Ohmic Polarization

Voltage which is lost due to resistance to flow of ions through electrolyte is known as Ohmic po-

larization. Ohmic Loss is given by [11] Vohm = IR where I is the current (A) and R is the ohmic

resistance (Ω). R is given by

R = 0.2 exp

[
− 2870

(
1

1196.15
− 1

T

)]

Activation Polarization

Activation loss is the extra potential necessary to overcome the energy barrier of the rate determining

step of the reaction to a value such that electrode reaction proceeds at desired reaction rate. We

consider cathode activation loss here as the Anode activation is relatively negligible. Activation

polarization expression is given by [1]

ηact =
2RTs
nF

sinh−1

(
i

2io

)
where io is exchange current density [10].
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Concentration Polarization

The concentration loss is due to limited rate at which reactant concentrations can change, which

limits the rate at which the reactants can be transported to the electrode surfaces. During the fuel

cell operation, there is a slight reduction in the concentration of the reactants in the region of the

electrode, as the reactant is extracted. The extent of this change in concentration will depend on

the current being taken from the fuel cell [20]. The concentration loss is given by

ηconc = −RT
4F

ln

(
1− j

jL

)
where jL is limiting current density.

Figure 3.2: Overall effect of polarization on cell voltage performance [1]

As shown in the figure above at very low current density activation polarization is dominant, at

intermediate current densities Ohmic polarization is dominant, at high current density concentration

polarization is dominant.
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The complete list of parameter values used in the model are given below.

Parameter Value Units
No of cells (No) 384

Anode channel c/s area Aan 0.0025 m2

Cathode channel c/s area Acat 0.0025 m2

Cell Area 0.1 m2

Coefficient of Discharge Cd 0.75
Ambient Pressure Patm 101325 Pa

Cp of stack 470 J/kgK
Temperature(Ts) 1273.15 K

Inlet Fuel flow rate 2 mol/s
Inlet Air flow rate 5 mol/s

Inlet H2 mole fraction in fuel 1
Inlet Temperature 1073.15 oC
Anode Volume(Va) 0.2 m3

Cathode Volume(Vc) 0.2 m3

Molecular Weight of (H2) 2.016 ∗ 10−03 kg/mole
Molecular Weight of (H2O) 18.016 ∗ 10−03 kg/mole
Molecular Weight of (O2) 28.014 ∗ 10−03 kg/mole
Molecular Weight of (H2) 31.998 ∗ 10−03 kg/mole

Exchange Current Density (jo) 1500 A
m2

Limiting Current Density (jL) 10000 A
m2

∆Go −194.2e3 J/mol
∆s −54.9 J/mol

∆Go −194.2e3 J/mol

Table 3.1: Parameter Values. Some of the parameter values are taken from [10].
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Schematic Simulink Model of Isothermal SOFC

The above discussed lumped model of isothermal SOFC with unchoked flow is modeled in MATLAB

Simulink as shown below.
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Figure 3.3: Schematic simulink model of isothermal SOFC

3.1.8 Results

The above lumped model of isothermal SOFC has been simulated in MATLAB Simulink . It can

be observed that V-I curve from the simulation follows same trend as theoretical V-I curve given

by [1]. For a step up in fuel flow rate from 2 to 2.5 mole/sec and step up in current from 400 to

500A, the results obtained are simiar to [10].
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Figure 3.4: V-I Curve for Isothermal SOFC at fuel flow rate is 2 mole/sec, Air flow rate is 5 mole/sec.

Figure 3.3 shows the steady state voltage output from the lumped model at various currents. It
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can be seen that voltage decreases with current density in the simulated range.
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Figure 3.5: Step in fuel flow rate from 2 to 2.5 mole/sec at air flow rate is 5 mole/sec and current

500A.

Figure 3.4 illustrates the dynamics of voltage when there is step up fuel flow rate from 2 mole/sec

to 2.5 mole/sec. Steady state voltage increases because of increase in reactant pressure inside the

fuel cell and it is also observed that the dynamics is very fast.
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Figure 3.6: Step in current from 400 to 500A at fuel flow rate is 2 mole/sec, Air flow rate is

5 mole/sec.

Figure 3.5 shows that the dynamics of voltage when a step up in current from 400 to 500A is

applied. Steady state voltage decreases mainly due to increase in activation loss and ohmic loss.
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3.2 Modeling of Non-isothermal SOFC

In previous section we built the dynamic lumped model of SOFC by assuming that stack temperature

is constant. Practically, as temperature dynamics is very slow temperature will take more time to

reach steady state. Species balance and electrochemical equations for dynamic lumped model of

non-isothermal SOFC are same as mentioned in the above isothermal SOFC model. However, stack

temperature is not constant. For calculating stack temperature dynamics we use the energy balance.

3.2.1 Energy Balance

In the lumped stack modeling, we considered no spatial temperature variation in the fuel cell. All

the components of the cell like electrode, inter connector, and gas inside the channels are at the

same temperature. It is further assumed that the heat capacity of the gases inside the channels are

negligible compared to the solid components of the fuel cell. Then the dynamic model of the cell

temperature can be found by performing energy balance around the entire fuel cell stack . If Hi is

the molar enthalpy of ith species in the fuel and air streams, the energy balance is as below.

msCps
dTs
dt

= Σṅini H
in
i − Σṅouti Hout

i − ṅrH2
∆Ĥ0

r − VsI

where Ts is the stack temperature, ms is mass of stack and Cps is average specific heat of fuel cell

materials excluding gases, ∆Ĥ0
r is the heat of reaction (calculated using NASA polynomials [20]),

Vs is stack voltage and I is current.

Schematic Simulink Model of Non-isothermal SOFC

The above discussed lumped model of non-isothermal SOFC with unchoked flow is modeled in

MATLAB Simulink as
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3.2.2 Results

After simulations of the above lumped model of non-isothermal SOFC in MATLAB Simulink, we

observe that V-I curve from the simulation follows same trend as theoretical V-I curve given by [1].
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Figure 3.7: Voltage of nonisothermal SOFC at fuel flow rate is 2 mole/sec, air flow rate is 5 mole/sec

For a step up in fuel flow rate from 2 to 2.5 mole/sec and step up in current from 400 to 500A then

dynamics of voltage and temperature curves are as expected. Dynamics of ohmic, activation and

concentration polarization curves are presented below Figure 3.6 shows the steady state voltage

output from the lumped model at various currents which is the V-I curve. It can be seen that

voltage decreases with current density in the simulated range. Figure 3.7 illustrates the dynamics

of voltage for non-isothermal SOFC. Initially voltage increases because pressure inside cell increases

and then voltage decreases due to increase in temperature which finally reaches steady state. Figure

3.8 shows the dynamics of temperature for non-isothermal SOFC. temperature increases because

of heat of the reaction. Figure 3.9 will be used to illustrate dynamics of voltage when step up

fuel flow rate from 2 to 2.5 mole/sec. Steady state voltage increase because increase in reactant

pressures inside the fuel cell and also observed that dynamics are slows because of dynamics of

temperature. Figure 3.10 shows the temperature dynamics when step up fuel flow rate from 2 to

2.5 mole/sec. Temperature decreases because of extra reactants flow cools the fuel cell. Figure 3.11

shows the dynamics of voltage when step up in current from 400 to 500A. Voltage decreases because

of increase in activation polarization and ohmic polarization. Figure 3.12 shows the dynamics of

temperature for a step in current from 400 to 500A. Temperature increase due to heat of reaction.

Figure 3.13 shows the dynamics of activation polarization. Voltage loss increases due to increase in

temperature of cell. Figure 3.14 shows the dynamics of ohmic polarization. Voltage loss decreases

due to increase in temperature that decrease resistance offered by electrolyte. Figure 3.15 illustrates

the dynamics of concentration loss. Voltage loss increase due to increase in temperature.
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Figure 3.8: Voltage of non-isothermal SOFC at fuel flow rate is 2 mole/sec, air flow rate is 5 mole/sec
and current is 400A
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Figure 3.9: Temperature of non-isothermal SOFC at fuel flow rate is 2 mole/sec, air flow rate is
5 mole/sec and current is 400A
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Figure 3.10: Voltage curve for step up in fuel flow rate from 2 to 2.5 mole/sec at air flow rate is
5 mole/sec and current is 400A
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Figure 3.11: Temperature curve for step up in fuel flow rate from 2 to 2.5mole/sec at air flow rate
is 5 mole/sec and current is 400A
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Figure 3.12: Voltage curve for step up in current from 400 to 500A,at fuel flow rate is 2 mole/sec,
air flow rate is 5 mole/sec
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Figure 3.13: Temperature curve for step up in current from 400 to 500A,at fuel flow rate is
2 mole/sec, air flow rate is 5 mole/sec
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Figure 3.14: Activation polarization curve at fuel flow rate is 2 mole/sec, air flow rate is 5 mole/sec
and current is 400A
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Figure 3.15: Ohmic polarization curve at fuel flow rate is 2 mole/sec, air flow rate is 5 mole/sec
and current is 400A
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Figure 3.16: Concentration polarization curve at fuel flow rate is 2 mole/sec, air flow rate is
5 mole/sec and current is 400A
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Chapter 4

Linear Controller And Gain

Scheduling Design

The main requirements of the controller are to give faster response in disturbance rejection and set

point tracking. There are three main methods for designing nonlinear controllers

Controller design based on gain scheduling To compute a linear model for the nonlinear

plant, the most common approach is based on Jacobian linearization of the nonlinear model about

an operating point (equilibrium point). Dynamics of linear and nonlinear models are will be similar

close to the operating point, so we can design a controller for the linear model, and use this controller

for the nonlinear plant at that operating point. If we operate nonlinear plant away from operating

point, these linear controllers do not give good performance.

When the nonlinear process needs to be controlled in a wide range of process parameters, gain

scheduling is used. Gain scheduling is based on designing linear controllers at multiple operating

points and switching between them based on process variables.

Controller design based on feedback linearization In this method, we obtain a new trans-

formation that can convert a nonlinear differential equation to linear differential equation. It is

systematic and more accurate but it depends upon complicated design procedures and is not suit-

able to handle constraints in a systematic manner. One of the such systematic nonlinear control

methods is full state feedback linearization.

Optimal controller Optimal control deals with the problem of finding a control law for a given

system such that a certain optimality criterion is achieved. A control problem includes a cost

functional that is a function of state and control variables. An optimal control is a set of differential

equations describing the paths of the control variables that minimize the cost functional. It can

handle the constrains on control variable. Model Predictive Control is an approximation approach

to optimal control [21].
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4.1 Control Design by Approximate Linearlization

Consider the nonlinear system

ẋ = f(x, u); f : x ∈ Rn;u ∈ Rm (4.1)

y = g(x, u); g : x ∈ Rn;u ∈ Rm (4.2)

where f, g, x, u are vectors defined as f = [f1 f2 f3 ....fn], g = [g1 g2 g3 ....gn], x = [x1 x2 x3 ....xn]

and u = [u1 u2 u3 ....um].

The objective is to control this system at the operating point (x0, u0). For suppose that (x0, u0) is

a point such that f(x, u) = 0. In this case, the point (x0, u0) is called an equilibrium point of the

system ẋ = f(x, u). Here f(x, u) is a nonlinear function with multiple variables. Using Taylor series

expansion we can express nonlinear function f(x, u) around the point (x0, u0) is given by

f(x, u) = f(x0, u0) +
∂f

∂x

∣∣∣
(x0,u0)

(x− x0) +
∂f

∂u

∣∣∣
(x0,u0)

(u− u0) +O(x− x0)2 +O(u− u0)2

For (x, u) sufficiently close to (x0, u0), then higher order terms (O(x − x0)2 + O(u − u0)2) will be

very close to zero, so we can neglect them to obtain the approximation

f(x, u) ≈ f(x0, u0) +
∂f

∂x

∣∣∣
(x0,u0)

(x− x0) +
∂f

∂u

∣∣∣
(x0,u0)

(u− u0)

since f(x0, u0) = 0, approximate nonlinear state equation as

ẋ =
∂f

∂x

∣∣∣
(x0,u0)

(x− x0) +
∂f

∂u

∣∣∣
(x0,u0)

(u− u0)

We define ∆x = x+ x0 and ∆u = u+ u0. Here ∆x, ∆u are deviation variables and ẋ = ∆ẋ. Now

we can write nonlinear state equation in terms of deviation variables as

∆ẋ =
∂f

∂x

∣∣∣
(x0,u0)

(∆x) +
∂f

∂u

∣∣∣
(x0,u0)

(∆u)

where matrices A = ∂f
∂x

∣∣∣
(x0,u0)

, B = ∂f
∂u

∣∣∣
(x0,u0)

are Jacobean matrices as

A =



∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

. . . ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

. . . ∂f2
∂xn

. . . . . . .

. . . . . . .

. . . . . . .
∂fn
∂x1

∂fn
∂x2

∂fn
∂x3

. . . ∂fn
∂xn



 

To be continue 
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B =



∂f1
∂u1

∂f1
∂u2

∂f1
∂u3

. . ∂f1
∂um

∂f2
∂u1

∂f2
∂u2

∂f2
∂u3

. . ∂f2
∂um

. . . . . .

. . . . . .

. . . . . .
∂fn
∂u1

∂fn
∂u2

∂fn
∂u3

. . ∂fn
∂um


Final deviation variable of linear state equation for nonlinear state equation is

∆ẋ = A(∆x) +B(∆u) (4.3)

For nonlinear output equation(4.2), we follow the same procedure to get approximate linear output

equation around (x0, u0) and observe similar expression for y = g(x, u) as

y = g(x0, u0) +
∂g

∂x

∣∣∣
(x0,u0)

(x− x0) +
∂g

∂u

∣∣∣
(x0,u0)

(u− u0)

where y0 = g(x0, u0) is output we get at operating point. define ∆y = y − y0. we can write the

linear output equation as

∆y =
∂g

∂x

∣∣∣
(x0,u0)

∆x+
∂g

∂u

∣∣∣
(x0,u0)

∆u

where matrices C = ∂g
∂x

∣∣∣
(x0,u0)

, D = ∂g
∂u

∣∣∣
(x0,u0)

are Jacobean matrices as

C =



∂g1
∂x1

∂g1
∂x2

∂g1
∂x3

. . . ∂g1
∂xn

∂g2
∂x1

∂g2
∂x2

∂g2
∂x3

. . . ∂g2
∂xn

. . . . . . .

. . . . . . .

. . . . . . .
∂gp
∂x1

∂gp
∂x2

∂gp
∂x3

. . .
∂gp
∂xn



D =



∂g1
∂u1

∂g1
∂u2

∂g1
∂u3

. . ∂g1
∂um

∂g2
∂u1

∂g2
∂u2

∂g2
∂u3

. . ∂g2
∂um

. . . . . .

. . . . . .

. . . . . .
∂gp
∂u1

∂gp
∂u2

∂gp
∂u3

. .
∂gp
∂um


Final deviation output of linear state equation for nonlinear output is

∆y = C(∆x) +D(∆u) (4.4)

Design a feedback control for linear state space model (4.3), (4.4), obtained above by approximate

linearization of nonlinear model around (x0, u0). Block diagram as shown in figure (4.1)
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Figure 4.1: Linear feedback control design

Apply the feedback linear control design for linear state space model to nonlinear plant around

operating point (x0, u0). Block diagram as shown in figure (4.2).
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Figure 4.2: Implementation of linear control for nonlinear plant

4.1.1 Approximate Linear Control Design For SOFC

We have done dynamic modeling of isothermal SOFC in chapter (3) and observed that state, output

equations contains highly nonlinear functions. The operating point for isothermal SOFC system is

xop = [4.55e4 5.63e4 1.35e4 9.66e4] at fuel flow rate and current extract from fuel cell, u0 = [2400]

and output is y0 = 240. Linearization of nonlinear isothermal mmodel at operating point (xop, u0)

using above mentioned procedure. we obtain

∆ẋ = A(∆x) +B(∆u)

∆y = C(∆x) +D(∆u)

where x = [PH2 PH2O PO2 PN2 ], u = [uf I], y = V (voltage) and

A =


−44.09 −44.64 0 0

−44.61 −45.23 0 0

0 0 −3.713 −1.536

0 0 −11.1 −13.14


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B =


−105.1 52820

105.1 0

−52.56 0

0 0


C =

[
0.0004112 −0.0004154 0.007797 0

]

D =
[
−0.1734 0

]
We design feedback linear control (PID) for above obtained linear state space model for isothermal

SOFC. Gains are calculate using auto tuning PID in matlab simulink as shown in figure (4.3)
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Figure 4.3: Feedback linear control design

Gains obtained by auto tuning PID are [Kp Ki Kd N ] = [0.0571 0.0971 − 0.0004 3.5]. Apply

design feedback linear control (PID) to nonlinear isothermal SOFC as shown in figure (4.4)
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Figure 4.4: Implement linear control to nonlinear SOFC

4.1.2 Result

After implementation of a linear control to isothermal SOFC we observe that linear control gives

very good performance around the operating point (x0, u0). If we apply this control away from the

operating point then linear control does not give efficient results.
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Figure 4.5: Linear control action at operating point
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Figure 4.6: Linear control action away from operating point
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Figure 4.7: Linear control action away from operating point

Figure 4.5 shows the performance of linear control at operating point and desire output is 240V.

With in 5 seconds it reaches desirable output. Figure 4.6 shows the performance of the linear control

away from the operating point. The desirable output change from 240 to 280V. Control action given

by linear control is slow because of the gains required for new operating point are less than gains

used in applied linear control. Figure 4.7 shows the performance of the linear control away from

the operating point. The desirable output change from 240 to 130V. Control action given by linear

control is fast and getting fluctuation in output because of the gains required for new operating

point are greater than gains used in applied linear control. Above mentioned issues can be solved

using gain scheduling controller.

4.2 Control Design Using Gain Scheduling

Gain scheduling is an approach to control of non-linear systems that uses a family of linear con-

trollers. Each of them provides a satisfactory control for a different operating points of the nonlinear

isothermal SOFC given in chapter (3). Each of which provides satisfactory control for different oper-

ating points of the system. A gain-scheduled controller is a controller whose gains are automatically

adjusted as a function of time, output and operating condition or plant parameters.

Procedure for Design Gain Scheduling Controller

1. Select a set of operating points that adequately covers the operating range of variables on

which the gain depends.

2. Build a collection of linear models describing the linearized plant dynamics at selected design

points.The tabulated gains for each operating point for the SOFC system are :
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Gains With process variable(output)

Voltage Kp Ki Kd N

140 0.0003806 0.000388 -0.00037 1.809

160 0.0011 0.00116 -0.0001 1.8207

200 0.006592 0.00758 -0.00038 1.735

230 0.03763 0.04756 -0.0004 3.35

240 0.0518 0.0971 -0.00041 3.569

245 0.0743 0.124 -0.0004 4.419

250.8 0.08468 0.2033 -0.000045 4.587

260 0.129 0.403 -0.00055 5.94

3. Formulate gains as a function of process variable (voltage), based on gains vs process variable

data. In Matlab Simulink, we can use lookup tables.
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Figure 4.8: Schematic block diagram for implementation of gain scheduling controller

4. Implement gain scheduling controller to a nonlinear plant. For SOFC, a comparison of linear

control and gain scheduling control is presented in next sections.

4.2.1 Results

Gain scheduling control gives very good performance over the operating range. We compared the

results with that of a linear controller described in the previous sections.
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Figure 4.9: Comparison of response of linear controller and gain scheduling controller
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Figure 4.10: Comparison of response of linear controller and gain scheduling controller

It can be observed clearly that gain scheduling control resolved the earlier mentioned problems
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Chapter 5

Nonlinear Controllability And

Observability

5.1 Controllability

Controllability is an important property of a control system, and the controllability property plays

a crucial role in many control problems, such as stabilization of unstable systems by feedback.

Consider the n-dimensional and p-input state equation

ẋ = Ax+Bu (5.1)

Where A and B are constant matrices having dimensions of n × n and n × p respectively. The

control variable u represents the externally applied controls. The state variable x may or may not

be directly measurable and is used to represent then memory of the system. The past history of

system affects its future evolution.

Definition of Controllability The state equation (5.1) is said to be controllable if for any initial

state x0 and any final state x1, there exists an input that transfers x0 to x1 in a finite time. Otherwise

equation (5.1) is said to be uncontrollable.

Controllability For Linear Systems For Linear systems, it has been shown that [14] the con-

trolability condition reduces to the matrix C = [B AB A2B ..... An−1B] being full row rank.

5.1.1 Controllability For Nonlinear System

Consider a nonlinear System given by

dx

dt
= f(x) + Σgi(x)u; i = 1, 2, ....m (5.2)

y = h(x) (5.3)
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we can check the controllability at an operating point, using linearization to get equivalent linear

system. The Controllability rank condition is not valid away from the operating point. By using

differential geometry we can obtain controllability condition which is globally valid.

5.1.2 Controllability of Nonlinear Systems Using Differential Geometry

Consider the nonlinear system introduced above. Note that here f, gi; i = 1, 2, 3, ...m are vector

fields. We first define the concept of a Lie bracket.

Lie Bracket For two vector fields f and g on some domain D ∈ Rn, the Lie bracket [f, g] is a

third vector field denoted by

[f, g] = 〈∂g
∂x
, f〉 − 〈∂f

∂x
, g〉

where ∂g
∂x and ∂f

∂x are Jacobian matrices [4]. We may repeat bracketing of g with f . The following

notation is

ad0
fg(x) = g(x)

ad1
fg(x) = [f, g](x)

ad2
fg(x) = [f, ad1

fg](x)

adkfg(x) = [f, adk−1
f g](x), k ≥ 1

For single input case, the controllability condition is that C = [ad0
fg(x) ad1

fg(x) ad2
fg(x)...... adkfg(x)]

has full row rank, otherwise system is not controllable. In the multiple input case, let Ci be the

controllability matrix for the ith input. The controllability condition is that C = [C1, C2..] has full

row rank.

5.1.3 Controllability of Isothermal SOFC Using Differential Geometry

The Isothermal SOFC state equations after substituting constant parameter are

dx

dt
= f(x) + Σgi(x)u; i = 1, 2, 3 (5.4)

f1(x) = −99.24PH2

√
2(PH2 + PH2O − 101325)

10.58PH2
+ 95.26PH2O

f2(x) = −99.24PH2O

√
2(PH2 + PH2O − 101325)

10.58PH2
+ 95.26PH2O

f3(x) = −99.24PO2

√
2(PO2 + PN2O − 101325)

148.19PO2
+ 169.36PN2

f4(x) = −99.24PN2

√
2(PO2

+ PN2O − 101325)

148.19PO2
+ 169.36PN2

where x, f are defined as x = [PH2
PH2O PO2

PN2
]′, f(x) = [f1(x) f2(x) f3(x) f4(x)]′
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This system has three inputs,

1 Fuel flow rate corresponding g vector field is g1 = [5.29e04 0 0 0]′

2 Air flow rate corresponding g vector field is g2 = [0 0 1.11e04 4.181e04]′

3 Current extracted from fuel cell corresponding g vector field is g3 = [−105.84 105.84 −52.65 0]′

We first calculate matrix C1 (for fuel flow rate input) using above mentioned procedure, here vector

fields are f, g1 and then calculate matrix C2 (for air flow rate input) using f, g2 vector fields and finally

calculate matrix C3 (for current input) using f, g3 vector fields. The over-all matrix C = [C1, C2..]

has been observed to have full row rank (i.e. equal to four). It has been checked that for all x, the

rank of the matrix C is equal to four. Hence, the isothermal SOFC is controllable globally.

5.2 Observability

Observability is an important property of a control system, and the Observability property plays a

crucial role in estimation of states for example using Kalman or Particle Filters..

Definition of Observability Consider system described by (5.3) and (5.4). Two states x0, x1

are said to be distinguishable if there exists an input function u(.) such that

y(., x0, u) 6= y(., x1, u)

where y(., x0, u), i = 1, 2 is the output function of the system (5.3),(5.4) corresponding to input

function u(.) and the initial condition x(0) = xi. The system said to be locally observable at x0 ∈ X
if there exists a neighborhood N of x0 such that every x ∈ N other then x0 is distinguishable from

x0. The system is said to be observable if it is locally observable at each x0 ∈ X [4].

Observability For Linear Systems Consider the linear system given by

dx

dt
= Ax+Bu; (5.5)

y = Cx+Du (5.6)

This system is called observable if the rank of O = [C CA CA2 ..... CAn−1]′ is n [14].

5.2.1 Observability For Nonlinear Systems

Consider the nonlinear system given by equation (5.2), (5.3). we can check the controllability at an

operating point, using linearization to get equivalent linear system. However, such guarantees are

not valid away from the operating point. By using differential geometry we can obtain observability

condition which is globally valid [4].

5.2.2 Obesrevability For Nonlinear System Using Differential Geometry

Consider the nonlinear system introduced above by equations (5.2), (5.3). Note that here f, gi; i =

1, 2, 3, ...m are vector fields and h is smooth function.
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Theorem 1 It is sufficient condition for local observability. Consider the system described by (5.2)

and (5.3), and suppose x0 ∈ X is given. Consider the form

(dLzsLzs−1
.......Lz1hj)(x0), s ≥ 0, zi ∈ {f, g1....gm} (5.7)

evaluated at x0. Suppose there are n linearly independent row vectors in this set. Then the system

is locally observable around x0.

where Lfh Lie derivative of the function h(x) with respect to vector field f defined by Lfh =

〈dh, f〉, where dh is a differential form defined as row vector [ ∂h∂x1
....... ∂h∂xn ]. To find observability

condition we follow a procedure similar to the linear case. First generate O matrix with row vectors

from all combinations of (5.7) and then calculate rank of matrix O. If the rank is n then system

is locally observable at x0. The system is said to be observable it is locally observable at each

x0 ∈ X [4].

5.2.3 Observability For Isothermal SOFC Using Differential Geometry

Consider the isothermal SOFC state equation described above in section (5.1.3). In this model

vector fields are f, g1, g2, g3 and output voltage given in section (3.1.7). The output is a smooth

function h(x) = V . The matrix O is obtained from combinations of dh, dLfh, dLg1h, dLg2h, dLg3h,

dL2
fh, dLfLg1h, dLfLg2h, dLfLg3h... and so on. For all x the rank matrix O is four and hence

SOFC is observable globally. Therefore, we can estimate states of our isothermal SOFC system

using input-output data.
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Chapter 6

Feedback Linearization Controller

Design

Feedback linearization is also known as exact linearization. In approximate linearization we truncate

higher order terms in Taylor expansion thereby losing information while in exact linearization we

transform the nonlinear system into an equivalent linear system. There are two types of feedback

linearization, one is full state feedback linearization and other one is input-output linearization.

SOFC system have state and output equation which are nonlinear. In this chapter we discuss full

state feedback linearization assuming that the states are measured.

6.1 Full-State Feedback Linearizition

We consider nonlinear system given by

ẋ = f(x) + g(x)u (6.1)

The idea in state feedback linearization is to transform the above non-linear equation and design

control variable such that we can get an equivalent linear equation with v as input and z as states.

ż = Acz +Bcv (6.2)

We first transform the nonlinear state equation (6.1) by z = T (x) (T should be a diffeomorphism)

to get

ż = Acz +Bcγ(x)[u− α(x)] (6.3)

where we identify u = α(x)+β(x)v and γ(x) = 1/β(x). The main questions now are 1) whether there

exist a such u, T and 2) how to estimate α(x) , β(x) and T . There exists a systematic procedure [5]

to calculate T, α(x) and β(x).

Procedure: First we write dynamic model state equation in terms of z

ż =
∂T

∂x
ẋ
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substituting ẋ expression given in equation (6.1)

ż =
∂T

∂x
[f(x) + g(x)u] (6.4)

Comparing with the desired equation,

Acz +Bcγ(x)[u− α(x)] =
∂T

∂x
[f(x) + g(x)u]

∂T

∂x
f(x) = Acz −Bcγ(x)α(x)

∂T

∂x
g(x) = Bcγ(x)

(6.5)

These are equivalent to

∂T1

∂x
f(x) = T2(x)

∂T2

∂x
f(x) = T3(x)

...

∂Tn−1

∂x
f(x) = Tn(x)

∂Tn
∂x

f(x) = −γ(x)α(x)

and

∂T1

∂x
g(x) = 0

∂T2

∂x
g(x) = 0

...

∂Tn−1

∂x
g(x) = 0

∂Tn
∂x

g(x) = γ(x)

where T=[T1;T2;T3; .....;Tn]. If we take T1(x) = h(x) we obtain

Ti+1(x) = LfTi(x) = Lifh(x), i = 1, 2, ...., n− 1

set of partial differential equations are

LgL
i−1
f h(x) = 0; i = 1, 2, ...., n− 1 (6.6)

and also satisfy

LgL
i−1
f h(x) 6= 0;

The main question is whether there exists h(x) that satisfies the equation (6.8). The given set

of partial differential equations have a solution if the system is completely integrable. Frobenius
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Theorem states that a distribution is completely integrable if and only if involutive [4].

A distribution 4 is involutive if [f, g] ∈ 4 whenever f, g ∈ 4

Theorem 2 The nonlinear system described by (6.1) is feedback linearizable if and only there is

domain D0 ⊂ D such that

1. The matrix ς(x) = [g(x), adfg(x), . . . . adn−1
f g(x)] has rank n for all x ∈ D0

2. The distribution D = span{g(x), adfg(x), . . . . adn−2
f g(x)} is involutive in D0 [5].

Full state feedback linearization for nonlinear systems

If the given nonlinear system satisfies above theorem we can calculate T , α(x), β(x). Then feedback

linearized control design can be visualized as shown below
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Figure 6.1: Feedback linearization

As v, z are related by the linear system equation given above, control design is straight-forward.

The linear controller can then be used find u from the relation between u and v mentioned above.

6.2 Full state feedback linearization controller design for SOFC

The aim of the current study is to design a full state feedback linearized controller to control pressure

dynamics, whenever there is a change in set point. Fluctuations in pressure dynamics decrease the

life time of cell materials and also lead to variations in output voltage. We use the two input

variables, fuel flow rate and air flow rate to control the partial pressure of water and partial pressure

of oxygen respectively. Applying the procedure mentioned above for anode side and cathode side we

can calculate T , α(x), β(x) for fuel side and air side. The controller for the linear system is designed

using pole placement. Finally, the feedback linearized controller is applied to the nonlinear system.
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Figure 6.2: Feedback linearization controller
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6.3 Results

After implementation of the full state feedback linearization control we observe that output responds

faster to change in set point.
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Figure 6.3: Feedback linearization controller for partial pressure of water set point 4e4 pa.
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Figure 6.4: Feedback linearization controller for partial pressure of water set point 1.2e4 pa.
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6.4 Comparison Between Feedback Linearization And Ap-

proximate Linearization Control Performance

We observe that full state feedback linearization control gives good control performance than control

based on approximate linearization. When we give a step change in the desired output full state

feedback linearization control gives good better performance.

0 5 10 15 20 25 30 35 40 45 50
Time (seconds)

4

4.5

5

5.5

6

6.5

7

P
re
ss
u
re

of
H

2
O

×104
Controller Based On Linearization Vs Controller Based On Feedback Linearization

Controller Based On Linearization
Controller Based On Feedback Linearization

Figure 6.5: Ref. Pressure of H2O is 4e4
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Figure 6.6: Step up in Ref. Pressure of H2O from 4e4 to 4.5e4 pa.
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Figure 6.7: Ref. Pressure of O2 is 1.2e4 pa.
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Figure 6.8: Step up in Ref. Pressure of O2 from 1.2e4 to 2e4 pa.

In the above figures we compare partial pressure dynamics of H2O and O2 of full state feedback
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linearize control and approximate linearization based control. Figure 6.5 shows the responses for

partial pressure dynamics of H2O. The output in the feedback linearization control reaches set point

around 30 seconds faster than the approximate linearization based control. Figure 6.6 shows the

output responses for set point change from 4∗104 to 4.5∗104. Output of feedback linearized control

reaches set point very fast with some overshoot. Figure 6.7 shows the output response for partial

pressure dynamics of O2. Again, the output from the feedback linearization control reaches set point

around 30 seconds faster than approximate linearization based control. Figure 6.8 shows the output

responses for set point change from 1.2 ∗ 104 to 2 ∗ 104. If we use feedback linearization control, the

set point is reached quickly with some overshoot.
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Chapter 7

Conclusions And Future Work

Modeling Of SOFC And Gain Scheduling The results in chapter 3 indicate that proposed

mathematical modeling of general SOFC produces results which are identical to the literature. This

model exhibits traditional trends of all dynamic characteristics of output and state variables.

From the results in chapter 4 we can say that gain scheduling gives good control performance

over the complete range of voltage for all operating points.

Controllability And Observability The results in chapter 5 indicate that if we can check the

controllability and observability conditions we can then design a nonlinear controller and nonlinear

estimator for SOFC.

Feedback Linearization Controller The results in chapter 6 indicates that feedback lineariza-

tion controller gives good output responses than approximate linearization based controller. We

highlight some challenges that need to be addressed.

� As Measuring component partial pressures of the SOFC is difficult, the states need to be

estimated from input and output data?

� Input-output feedback linearization of the SOFC model is a challenging task. However, this

gives the ability to directly control the voltage without requiring state estimators.

� Modification of feedback linearization controller to include noise, most of practical electro-

chemical device have noise.

� Development of a feedback linearization control for non-isothermal SOFC system, as the non-

isothermal system is not of the form ẋ = f(x) + ug(x).
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