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The relationship between seizure frequency and cell death has been a subject of

controversy. To tackle this issue, we determined the frequency of seizures and the total
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number of hippocampal cells throughout the life of rats with epilepsy using the pilocarpine

model. Seizure frequency varied in animals with epilepsy according to which period of life

they were in, with a progressive increase in the number of seizures until 180 days (sixth

months) of epileptic life followed by a decrease (330 days-eleventh month) and subse-

quently stabilization of seizures. Cell counts by means of isotropic fractionation showed a

reduction in the number of hippocampal neuronal cells following 30, 90, 180 and 360 days

of spontaneous recurrent seizures (SRS) in rats compared to their controls (about 25%–30%

of neuronal cell reduction). In addition, animals with 360 days of SRS showed a reduction

in the number of neuronal cells when compared with animals with 90 and 180 days of

seizures. The total number of hippocampal non-neuronal cells was reduced in rats with

epilepsy after 30 days of SRS, but no significant alteration was observed on the 90th, 180th

and 360th days. The total number of neuronal cells was negatively correlated with seizure

frequency, indicating an association between occurrence of epileptic seizures throughout
5
erved.
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life and neuronal loss. In sum, our results add novel data to the literature concerning the

time-course of SRS and hippocampal cell number throughout epileptic life.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Temporal lobe epilepsy (TLE) is a neurological disorder that

involves disruption of the brain’s normal activity due to neuro-

nal hyperexcitability in temporal lobe regions (Schwartzkroin,

1986). Histopathological analyses of surgically removed tissue

from refractory TLE patients have pointed to hippocampal

sclerosis as the most common finding. Hippocampal sclerosis

is the combination of atrophy and astrogliosis of the hippocam-

pus, amygdala, parahippocampal gyrus and entorhinal cortex;

often characterized by decreased pyramidal and hilar neurons,

and losses in other extratemporal regions (Cendes et al., 1993;

Thom et al., 2009). Animal models for seizures and epilepsy

induction have been widely used to understand the physiologi-

cal and behavioral changes associated with human epilepsy

(Kharatishvili et al., 2006; Pitkanen and McIntosh, 2006; Arida

et al., 2007). The pilocarpine model of epilepsy is probably the

most commonly studied model for TLE, since it reproduces the

main features of human TLE in rats and mice (Cavalheiro, 1995).

Pilocarpine-induced status epilepticus (SE) leads to cell loss in

several hippocampal and extrahippocampal structures and

spontaneous recurrent seizures (SRS) (Turski et al., 1983; Leite

et al., 1990).
Studies have investigated the progression of neuronal

damage after pilocarpine induction over time (Fujikawa,

1996; Sankar et al., 1998) and findings regarding hippocampal

cell loss after SE and during the chronic phase of the model

have been inconsistent. For instance, a study conducted by

Liu et al. (1994) did not observe progressive neuronal loss in

CA1 and CA3 hippocampal regions three, six and twelve

weeks after pilocarpine injection during which animals pre-

sented spontaneous seizures. Chen et al. (2013) observed that

one hour of pilocarpine-induced SE in mice evolved to SRS

but did not cause neuronal death. In another study, cell loss

after pilocarpine-SE induction did not increase over time,

even with SRS stability (Bertram et al., 1990). Conversely,

Cavarsan et al. (2013) observed a lower density of neurons in

aged animals with epilepsy (20 months). The divergence of

the experimental findings could be related to variables

utilized by the different authors, such as the pilocarpine

dosage, time elapsed between SE-induction and anatomical

evaluation, different histological methodologies and time

window during the phase of spontaneous recurrent seizures

in which the pathological observation was performed. There-

fore, it is not clear whether the cell loss is progressive

throughout life and whether there is a correlation between

hippocampal cell loss and seizure frequency. Accordingly, the

present study was designed to examine the time-course of

epileptic seizures at different ages (30, 90, 180 and 360 days

after the first spontaneous seizure) of adult animals and its

relationship with cell quantification (neuronal and non-
neuronal) in the hippocampal formation, using an isotropic
fractionation method (Herculano-Houzel and Lent, 2005).
2. Results

2.1. Behavioral analysis

The behavioral manifestation of pilocarpine-induced seizures
in rats was similar to that reported previously (Turski et al.,
1983; Cavalheiro et al., 1987). Briefly, pilocarpine injection
sequentially induced behavioral changes such as akinesia,
facial automatisms, and limbic seizures consisting of fore-
limb clonus with rearing, salivation, masticatory jaw move-
ments and falling. This type of behavior built up
progressively into motor limbic seizures that recurred repeat-
edly and rapidly evolved to SE. The mean latency to reach SE
(time in minutes between the pilocarpine injection and the
beginning of SE) was 29.4 710.2 min. The duration of the
latent period (time in days between the SE-induction and the
occurrence of the first spontaneous seizure) was 22.178.9
days (mean7SD, n¼37).

All animals that developed SE evolved to the chronic
phase of the model with SRS. After the first spontaneous
seizure, the number of subsequent seizures increased pro-
gressively peaking at 180 days. However, it is important to
point out that increasing in seizure frequency was not
statistically different among every month during this period,
i.e., until 180 days. Significant differences were found
between first month (5.6 seizures/month) and fourth month
(mean value: 10.7 seizures/month), corresponding to about
91% of increase; and also between second month (6.9 sei-
zures/month) and fourth month, corresponding to about 55%
of increase. Besides, a significant increase in seizure fre-
quency between first month and sixth month (11.6 seizures/
month), corresponding to about 107% of increase; and also
between second month and sixth month, corresponding to
about 68% of increase were observed. After peaking, the
number of SRSs decreased again to reach a plateau around
300–360 days (Fig. 1).

Repeated measures one-way ANOVA revealed difference
between periods of 30 days (F(11, 99)¼7.551; po0.001). As
observed in Fig. 1, a significant increase of seizure number
was noted at 120 and 180 days when compared to the 30
(p¼0.001 and p¼0.006, respectively), 60 (p¼0.006 and
p¼0.005, respectively) and 330 (p¼0.012 and p¼0.002, respec-
tively) days after the first spontaneous seizure, possibly
attributable to the progressive nature of epileptogenesis in
this epilepsy model. Although our analysis has been predo-
minantly made via behavioral video confirmation of the
seizures, we observed that the overall aspect of the seizures
was not significantly modified during the whole study, i.e.



Fig. 1 – Number of seizures in animals submitted to 360 days
of behavioral observation after the first spontaneous seizure.
*Significative difference from respective control groups: 30
(p¼0.001, p¼0.006 respectively), 60 (p¼0.006, p¼0.005
respectively) and 330 (p¼0.012, p¼0.002 respectively) days.
Results are presented as mean7standard deviation.

Fig. 2 – Pattern of distribution of spontaneous recurrent
seizures (2195 seizures) recorded for 37 animals during 365
days of observation during the light:dark cycle. The
frequency of seizures over the diurnal period (07:00–18:59 h)
were significantly higher (po0.001) when compared to the
nocturnal period (19:00–06:59 h).

Fig. 3 – Number of neuronal cells in the hippocampal
formation at different ages. *different from control groups
(po0.05); #different from 90 and 180 days epilepsy groups
(po0.05). Results presented as mean7standard deviation.

Fig. 4 – Number of non-neuronal cells in the hippocampal
formation at different ages. Results represent both sides of
hippocampus. *different from control group (po0.05).
Results presented as mean7standard deviation.
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most of the seizures could be classified as stages 4–5 of
Racine with approximate duration of 60–90 sec. Concerning
the light/dark cycle, our results showed that the number of
seizures occurring in the light period of the cycle (7:00 am–

6:59 pm) was significantly higher in comparison with the
number of seizures observed in the dark period of the cycle
(7:00 pm–6:59 am) (F(1, 23)¼36.206; po0.001) (Fig. 2).

2.2. Number of hippocampal neuronal cells

Numbers of cortical and hippocampal cells were assessed by
the isotropic fractionator method, an unbiased technique
designed to determine the absolute cellular composition of
different brain regions (Herculano-Houzel and Lent, 2005).
Two-way ANOVA demonstrated a significant effect of group
(F(1, 74)¼80.442; po0.001), age (F(3, 74)¼4.911; p¼0.004), but not
interaction between groups and age (F(1, 74)¼1.177; p¼0.325)
in the number of hippocampal neuronal cells. No difference
in the number of hippocampal neuronal cells was observed
throughout the life of control rats (maximum mean value in
control group 180 days – 4.494.932 neurons; minimum mean
value in control group 30 days – 3.849.773 neurons (p¼0.226).

The mean neuronal cell number for control group 90 days

was 4.251.946 neurons, and for control group 360 days was

3.902.168 neurons) (p¼1.000). Rats with epilepsy, however,

presented a reduction in the total number of hippocampal

neuronal cells, as evidenced in the counting undertaken at 30

(mean value: 2.835.262 neurons; about 26% of reduction

compared to control group 30 days), 90 (3.092.023 neurons;

about 27% of reduction compared to control group 90 days),

180 (3.009.610 neurons; about 33% of reduction compared to

control group 180 days) and 360 (2.172.441 neurons; about 44%

of reduction compared to control group 360 days) days after

the occurrence of the first spontaneous seizure (po0.001

when to compared to control rats) (Fig. 3). The group of

animals with 360 days of SRS also showed a reduction in the

number of neuronal cells when compared with animals with

90 (p¼0.017; about 30% of reduction) and 180 (p¼0.037; about

28% of reduction) days of seizures. All the mean values

presented are referred to cell count in both hippocampal

sides together.



Fig. 5 – (A) Correlation between seizures and neuronal cells
number. A medium negative correlation (r¼�0.49;
p¼0.002). (B) Correlation between seizures and non-
neuronal cells number. A weak negative correlation
(r¼�0.36; p¼0.029). Results represent both sides of
hippocampus.
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2.3. Number of hippocampal non-neuronal cells

Two-way ANOVA demonstrated a significant effect of group
(F(1, 74)¼7.941; p¼0.006), but not of age (F(3, 74)¼2.460; p¼0.070)
and interaction between group and age (F(1, 74)¼0.865;
p¼0.464) in the number of hippocampal non-neuronal cells.
Rats with 30 days of SRS presented a reduction in the total
number of non-neuronal cells (mean value: 947.625 non-
neuronal cells; about 14% of reduction) (p¼0.016) when
compared with the corresponding control animals (Fig. 4).
No difference in the number of hippocampal non-neuronal
cells was observed between control and epilepsy groups in all
other periods of study.

2.4. Correlation between seizures and cell number

Considering all animals with epilepsy, a medium negative
correlation was observed (Fig. 5A) between the number of
neuronal cells and number of seizures (r¼�0.49; p¼0.002). A
weak negative correlation was observed between the number
of non-neuronal cells and number of seizures (r¼�0.36;
p¼0.029) (Fig. 5B).
3. Discussion

The present study reports on the long-term observation of
seizure frequency in the pilocarpine model of epilepsy in
adult Wistar rats, the absolute number of neuronal and non-
neuronal cells in the hippocampal formation at different time
points of the observation period and estimates the possible
relationship between these two findings. Most of the litera-
ture related to experimental epilepsy is devoted to observing
seizure frequency and epileptogenesis-related brain changes
for short periods of time. To our knowledge, this is the first
study to investigate the time course of SRS and its relation-
ship with the number of neuronal and non-neuronal cells in
the hippocampal formation of adult Wistar rats for periods as
long as 360 days after the establishment of the epileptic state.
In a previous study by our group, the course of untreated
seizures in the pilocarpine model of epilepsy was analyzed
for 135 days (4.5 months) after the observation of the first
spontaneous seizure (Arida et al., 1999). In that study, we
observed a significant increase in the number of seizures
during the initial period of the chronic phase of the model
(Arida et al., 1999), a finding that reproduces the classic study
of the long-term effects of pilocarpine in rats conducted by
Cavalheiro et al. (1991) which also described the initial
increase in the number of SRS. This finding was also reported
by Bertram and Cornett (1994) using a different model of
experimental epilepsy via continuous electrical stimulation
of the hippocampus. Our data are in line with these previous
experimental studies suggesting a maturation process in the
early phases of epilepsy.

We would like to point out that several investigations that
analyzed the temporal evolution of seizures used short
observational periods of seizure monitoring to detect seizure
frequency, that is, the periodic video monitoring was not
detailed (Pitkanen et al., 2002; Cavarsan et al., 2013), or varied
between studies [(2 h/day, (Sharma, 2007 #49); 3 h/day, (Liu
et al., 1994); 8 h/day, (Furtado et al., 2011); 12 h/day, (Polli
et al., 2014); 8 h/week, (Hattiangady and Shetty, 2010)]. In
addition, although several experimental epilepsy studies
have monitored behavior (by video or mutual video–electro-
encephalography recording) to detect spontaneous seizures
(Cavalheiro et al., 1991; Quigg et al., 1998; Hellier and Dudek,
1999), this analysis has not been performed either for long
periods or continually. In our work, we carefully monitored
the animals continuously over 24 h/day until 360 days after
the first detected spontaneous seizure. Assessment of seizure
rates is very important for behavioral analysis in epilepsy
models because short-termmonitoring may lead to an under-
or overestimation in the observation of seizure frequency.

The assessment of seizure occurrence over the light/dark
cycle has been extensively reported (Arida et al., 1999; Hellier
and Dudek, 1999; Raedt et al., 2009; Bajorat et al., 2011). Both
in clinical seizures and experimental models of epilepsy the
daily periodicity is more frequent during rest periods (Shouse
et al., 1996; Quigg et al., 1998; Hellier and Dudek, 1999). Similar
to findings reported in the literature, we observed that
seizure occurrence obeyed a well-defined circadian pattern,
reinforcing the hypothesis that seizures are more prominent
in periods of inactivity or sleep.

The association between seizures and neuronal loss has
long been recognized. However, several researchers have
debated whether seizures are the cause or effect of neuronal
death. A number of investigations by several laboratories
have postulated that repeated seizures can induce neuronal
loss (Turski et al., 1983; Cavalheiro et al., 1991; Mello et al.,
1993; Pollard et al., 1994). In humans, the relationship
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between seizures and hippocampal atrophy or volume loss is
better defined. Histopathological analysis of patients with
refractory epilepsy suggests that initial precipitating injury as
well as SRS may lead to a progressive process of neuronal
damage (Mathern et al., 1995). This issue has also been
addressed in magnetic resonance imaging (MRI) studies.
MRI investigations have demonstrated hippocampal asym-
metry in patients with increased seizure number (Kalviainen
and Salmenpera, 2002) or seizures with longer duration
(Fuerst et al., 2001). Although studies have reported that
hippocampal damage is associated with lifetime and number
of seizures (Van Paesschen et al., 1997), contrasting findings
have also been reported. For instance, Thom et al. (2005) did
not observe a correlation between seizures and hippocampal
neuronal loss.

Investigations with animal models of epilepsy have
assessed the different time points after SE onset; however,
few studies have evaluated the cell loss process in animals
with epilepsy over long periods of spontaneous seizures
(Cavalheiro et al., 1991; Obenaus et al., 1993; Liu et al., 1994;
Buckmaster and Dudek, 1997). In our study, animals with
epilepsy from all groups presented a reduction in neuronal
cell number throughout life. In addition, a reduction in the
number of neuronal cells was noted in animals euthanized
360 days after the first spontaneous seizure compared with
those at 90 and 180 days. The medium negative correlation
between the number of neuronal cells and seizures, evalu-
ated by Spearman’s correlation coefficient in our study,
allows us to say that over time the occurrence of SRS causes
loss of neuronal cells. Some experimental studies have
shown that, following SE, further seizures may induce pro-
gressive neuronal loss, whereas others have not found this
progressive decrease in neurons number. Extensive data in
literature have shown that repeated seizures induced by
kindling led to neuronal loss (Bengzon et al., 1997; Zhang
et al., 1998; Kotloski et al., 2002). ). For instance, a progressive
neuronal loss in different regions of the hippocampal forma-
tion is reported after three (neuronal loss between 17% and
24%), 30 (neuronal loss between 17% and 39%), or 150
(neuronal loss between 16% and 49%) kindled generalized
tonic-clonic seizures (Cavazos et al., 1994). Other groups have
also reported that repeated seizures induced by kindling led
to apoptotic neuronal death in the hippocampal area
(Bengzon et al., 1997; Zhang et al., 1998), suggesting that
seizures induce neuronal loss. Compared with other experi-
mental models, such as electrically induced SE, Pitkanen
et al. (2002) did not find fluoro-Jade B (which is a fluoro-
chrome used for detecting neuronal degeneration) (Schmued
et al., 1997) positive cells in the hilus of the dentate gyrus six
months after SE. Using the same SE model, Gorter et al. (2003)
reported that neuronal death was related to SE, rather than to
the frequency of spontaneous seizures. Thus, neuron loss
does not appear to occur in the hippocampus of sponta-
neously epileptic EL mice (Drage et al., 2002). Therefore, the
divergence of experimental findings may be due to the
different animal models employed to induce SE.

Detection of neuronal loss using the available cell count-
ing methods also has a large variability in the pilocarpine
model (Guillery and August, 2002; West, 2002). In the study by
Liu et al. (1994), using stereological estimates with cresyl
violet staining, no progressive neuronal loss in the hippo-
campus was noted at three, six and 12 weeks after sponta-
neous seizures. A recent study reported a reduction of NeuN
positive cells in the hilus of the dentate gyrus (DG) only in
animals with long epileptic life (Cavarsan et al., 2013). How-
ever, few studies have investigated cell loss in the later life of
animals with epilepsy. The scarcity of studies of aged ani-
mals is due to intensifying infirmity and their high cost. From
this limited information, Liang et al. (2007) demonstrated a
decrease in CA1 and CA3 cells in 18–19 month old rats, seven
days after the kainate injection. In a study that investigated
the morphometric changes in young adult, middle-aged, and
aged rats after unilateral intracerebroventricular kainic acid
injection showed more prominent loss in hilar neurons in 24-
month-old (aged) rats than four-month-old (young adult) rats
(Shetty and Turner, 1999). Although in our work a reduced
number of neuronal cells in the hippocampal formation
occurred at all ages of animals with epilepsy compared with
their respective controls, this loss was more evident at 12
months (360 days) after the first spontaneous seizure, sug-
gesting that the vulnerability of neuronal loss is more
prominent in later life epilepsy.

We also aimed to examine changes in non-neuronal cells
in animals with epilepsy throughout life. Several studies have
reported the number of non-neuronal cells (for instance, glial
cells) in chronic epileptic animals. However, our study is the
first to investigate this subject in different time points and
over long periods of spontaneous seizures. We observed a
reduction in the number of non-neuronal cells in the group of
rats with 30 days of spontaneous seizures compared with
their controls. On the other hand, no difference was observed
between animals with epilepsy and their controls at all other
periods. Glial cells influence neuronal function by their role in
extracellular ion homeostasis, brain metabolism, blood–
brain-barrier and immune function (Middeldorp and Hol,
2011) dysregulation of glial functions can induce hyperexcit-
ability. Reactive gliosis is a marked feature of temporal lobe
epilepsy in humans and in several animal models. This
alteration can be found by examining the expression of glial
fibrillary acidic protein (GFAP), an indicator of reactive astro-
gliosis. Astrogliosis has been extensively analyzed after SE
induction or in the early phase of SRS (Babb et al., 1996;
Schmidt-Kastner and Ingvar, 1996; Foresti et al., 2011), which
is in contrast to the current study which evaluated all non-
neuronal cells over a long period of the epileptic state. Kang
et al. (2006) reported neuronal degeneration in the hilus
seven days after SE and reduced GFAP positive astrocytes in
the dentate gyrus 14 days after SE. Similarly, Kim et al. (2008)
found astroglial loss in the CA1 region and entorhinal cortex
four weeks after SE. The reduced number of non-neuronal
cells found in our study 30 days after the first spontaneous
seizure is in agreement with the above findings which
reported reduced astrocytes in the initial periods after
pilocarpine-induced SE. We would like to point out that the
cell quantification method used in our study (isotropic frac-
tionator technique) is limited to identifying the total number
of non-neuronal cells. Nuclei cellular staining with DAPI does
not distinguish specific non-neuronal cells. One limitation of
our work is concerned with EEG analysis. We could not
perform continuous EEG, i.e., EEG for animals monitored for



b r a i n r e s e a r c h 1 6 3 4 ( 2 0 1 6 ) 1 7 9 – 1 8 6184
360 days because the device to EEG records (implanted
electrodes) cannot be fixed for long periods for the same
animal. There is a high risk of losing or damaging the
implanted electrodes and local infection in the implanted
area (losing the animal or altering the cell counting) when the
device remains for long periods in the animals’ head.

It is also important to remark that seizure-induced
damage is not restricted to the hippocampus. Morphological
changes in extrahippocampal limbic regions as a result of
repeated seizures may lead to cell damage and structural
reorganization. We must also take into account that altered
cell proliferation in the DG co-exists with cell loss. In animal
models, increased neurogenesis is observed in the initial
phase of SE (Parent et al., 1997; Scharfman and Gray, 2007)
and reduced neurogenesis is noted in the chronic period of
TLE (Hattiangady et al., 2004; Hattiangady and Shetty, 2008).
This issue is outside the scope of this work (for a detailed
review see Hattiangady and Shetty, 2010).

In sum, our results add novel data to the literature
concerning the time-course of SRS and cell quantification in
the hippocampal formation throughout epileptic life. Here,
we demonstrate that seizure frequency varies in animals
with epilepsy according to the period of life, with a progres-
sive increase of seizures in initial periods followed by a
decrease and later stabilization of seizures. We also provide
evidence that repeated spontaneous seizures induce neuro-
nal loss. Accurate long-term analyses may be required in
animal models of chronic epilepsy to reinforce our findings.
4. Methods

4.1. Induction of epilepsy

One hundred and seventeen male Wistar rats (280730 g; 60-
days-old) were used in this study. All experimental protocols
described below were approved by the ethics committee of
the Universidade Federal de São Paulo (protocol #203573/13)
and all efforts were made to minimize animal suffering in
accordance with the guidelines for animal research of the
Society for Neuroscience. The colony room was maintained at
2172 1C with a 12 h light/dark schedule, and food and water
ad libitum throughout the experiments. Rats were randomly
divided into control and epilepsy groups. The latter group
was submitted to temporal lobe epilepsy induced by a single
administration of pilocarpine hydrochloride (350 mg/kg i.p.;
Sigma, Lot#MKBS0848V) (Turski et al., 1984). Scopolamine
methylnitrate (1 mg/kg s.c.; Sigma, Lot#BCBG3138V) was
administered 30 minutes before pilocarpine injection to limit
peripheral cholinergic effects (Turski et al., 1984). The sys-
temic administration of the muscarinic agonist pilocarpine in
rats promotes sequential behavioral and electrographic
changes that build up progressively into a limbic SE which
lasts 24 h. In order to end or limit behavioral seizures induced
by pilocarpine, Diazepam (10 mg/kg, sc; Teuto, Lot2493046)
was administered 4 h after the onset of SE. Following this
acute period of the epilepsy model, the surviving animals (37
from 80) were continuously monitored over 24 h per day for
detection of spontaneous recurrent seizures (SRS), using a
video system (Intelbras VT 4 S 120). Seizure number was
monitored for 30 days (n¼9); 90 days (n¼9); 180 days (n¼9)
and 360 days (n¼10) after the first spontaneous seizure.

4.2. Quantification of hippocampal cells

The total number of neuronal and non-neuronal cells in the
hippocampal formation of experimental animals was inves-
tigated at 30 (n¼9), 90 (n¼9), 180 (n¼9), and 360 (n¼10) days
after the observation of the first spontaneous seizure. For
each animal with epilepsy, the same number of age-matched
animal was used as control. Total number of cells was
estimated as described previously using the isotropic fractio-
nator method (Herculano-Houzel and Lent, 2005), a simple,
fast and low-cost technique which estimates the total num-
ber of cells in determined tissue (whole brain or any dis-
sectible structure). This technique does not require specific
software for use but follows the same principles employed in
stereology analysis (Herculano-Houzel et. al., 2015). Since the
isotropic fractionator revealed about 100% of the numbers
produced by unbiased stereology, this technique was vali-
dated to determine the absolute number of neuronal and
non-neuronal cells in the brain (Bahney and von Bartheld,
2014).

Briefly, the rats were deeply anesthetized (Tionembutal,
50 mg-kg, i.p.) and perfused transcardially with a solution of
0.01 M phosphate-buffered saline (PBS), followed by a solu-
tion containing 4% formaldehyde in 0.1 M phosphate-
buffered (PB), pH 7.4. After perfusion, the rat brains were
removed immediately from the skull and postfixed in 4%
paraformaldehyde in PB for 24 h. Then, the hippocampal
formation was dissected and mechanically dissociated in a
saline solution with 1% Triton X-100 and turned into an
isotropic suspension of isolated nuclei, kept homogeneous by
agitation. The total number of cells was estimated by deter-
mining the number of nuclei in small aliquots stained with
the fluorescent DNA marker 40-6-diamidino-2-phenylindole
dihydrochloride (DAPI; 1:1000; Novus Biological; Lot
033M4064V ) utilizing a Zeiss Axiovert 100 microscope with
a 40x objective, using a hemocytometer for quantification
(Neubauer chamber, Loptik Labor). To determine neuronal
and non-neuronal cell number, the samples were then
incubated with the primary antibody against the neuron-
specific nuclear protein (NeuN; 1:100; Novus Biological, Lot
121712-APC) at 4 1C overnight and, subsequently, with sec-
ondary antibody conjugated to AlexaFluors594 (Molecular
Probes; Lot 982384) diluted in PBS (1:200) and 10% normal goat
serum for 2 h. The neuronal fraction in each sample was
estimated by counting NeuN-labeled nuclei in at least 500
DAPI-stained nuclei and the number of non-neuronal nuclei
was obtained by subtraction.

4.3. Statistical analysis

Longitudinal seizure number was compared by analysis of
variance for repeated measures and the number of neuronal
and non-neuronal cells for the different groups was com-
pared using two-way ANOVA, both followed by Bonferroni
post hoc test. The relationship between non-neuronal/neuro-
nal cell numbers and seizures was verified by Spearman’s
correlation coefficient. All results were presented as means
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and standard deviation (M7SD) and significance was estab-
lished at po0.05 level. All analyses were performed using an
IBM SPSS version 20.0 (IBM, Chicago, Armonk, NY, USA).
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Gorter, J.A., Gonçalves Pereira, P.M., van Vliet, E.A., Aronica, E.,

Lopes da Silva, F.H., Lucassen, P.J., 2003. Neuronal cell death in

a rat model for mesial temporal lobe epilepsy is induced by

the initial status epilepticus and not by later repeated spon-

taneous seizures. Epilepsia 44, 647–658.
Guillery, R.W., August, B.K., 2002. Doubt and certainty in counting.

Prog. Brain Res. 135, 25–42.
Hattiangady, B., Shetty, A.K., 2008. Implications of decreased

hippocampal neurogenesis in chronic temporal lobe epilepsy.

Epilepsia 49, 26–41.
Hattiangady, B., Shetty, A.K., 2010. Decreased neuronal differen-

tiation of newly generated cells underlies reduced hippo-

campal neurogenesis in chronic temporal lobe epilepsy.

Hippocampus 20, 97–112.
Hattiangady, B., Rao, M.S., Shetty, A.K., 2004. Chronic temporal

lobe epilepsy is associated with severely declined dentate

neurogenesis in the adult hippocampus. Neurobiol. Dis. 17,

473–490.
Hellier, J.L., Dudek, F.E., 1999. Spontaneous motor seizures of rats

with kainate-induced epilepsy: effect of time of day and

activity state. Epilepsy Res. 35, 47–57.
Herculano-Houzel, S., Lent, R., 2005. Isotropic fractionator: a

simple, rapid method for the quantification of total cell and

neuron numbers in the brain. J. Neurosci. 25, 2518–2521.
Herculano-Houzel, S., von Bartheld, C.S., Miller, D.J., Kaas, J.H.,

2015. How to count cells: the advantages and disadvantages of

the isotropic fractionator compared with stereology. Cell.

Tissue Res. 360, 29–42.

http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref1
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref1
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref1
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref2
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref2
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref2
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref2
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref3
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref3
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref3
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref3
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref4
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref4
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref4
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref4
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref5
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref5
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref5
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref6
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref6
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref6
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref6
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref7
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref7
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref8
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref8
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref8
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref9
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref9
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref9
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref10
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref10
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref11
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref11
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref11
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref11
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref12
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref12
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref12
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref12
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref13
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref13
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref13
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref13
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref14
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref14
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref14
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref14
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref15
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref15
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref15
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref15
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref15
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref15
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref16
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref16
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref16
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref16
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref16
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref17
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref17
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref17
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref18
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref18
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref18
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref19
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref19
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref19
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref19
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref20
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref20
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref20
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref21
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref21
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref21
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref21
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref21
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref22
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref22
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref22
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref22
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref22
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref23
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref23
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref24
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref24
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref24
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref25
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref25
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref25
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref25
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref26
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref26
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref26
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref26
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref27
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref27
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref27
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref28
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref28
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref28
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref29
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref29
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref29
http://refhub.elsevier.com/S0006-8993(15)00994-4/sbref29


b r a i n r e s e a r c h 1 6 3 4 ( 2 0 1 6 ) 1 7 9 – 1 8 6186
Kalviainen, R., Salmenpera, T., 2002. Do recurrent seizures cause
neuronal damage? A series of studies with MRI volumetry in
adults with partial epilepsy. Prog. Brain Res. 135, 279–295.

Kang, T.C., Kim, D.S., Kwak, S.E., Kim, J.E., Won, M.H., Kim, D.W.,
Choi, S.Y., Kwon, O.S., 2006. Epileptogenic roles of astroglial
death and regeneration in the dentate gyrus of experimental
temporal lobe epilepsy. Glia 54, 258–271.

Kharatishvili, I., Nissinenm, J.P., McIntosh, T.K., Pitkanen, A.,
2006. A model of posttraumatic epilepsy induced by lateral
fluid-percussion brain injury in rats. Neuroscience 140,
685–697.

Kim, D.S., Kim, J.E., Kwak, S.E., Choi, K.C., Kim, D.W., Kwon, O.S.,
Choi, S.Y., Kang, T.C., 2008. Spatiotemporal characteristics of
astroglial death in the rat hippocampo-entorhinal complex
following pilocarpine-induced status epilepticus. J. Comp.
Neurol. 511, 581–598.

Kotloski, R., Lynch, M., Lauersdorf, S., Sutula, T., 2002. Repeated
brief seizures induce progressive hippocampal neuron loss
and memory deficits. Prog. Brain Res. 135, 95–110.

Leite, J.P., Bortolotto, Z.A., Cavalheiro, E.A., 1990. Spontaneous
recurrent seizures in rats: an experimental model of partial
epilepsy. Neurosci. Biobehav. Rev. 14, 511–517.

Liang, L.P., Beaudoin, M.E., Fritz, M.J., Fulton, R., Patel, M., 2007.
Kainate-induced seizures, oxidative stress and neuronal loss
in aging rats. Neuroscience 147, 1114–1118.

Liu, Z., Nagao, T., Desjardins, G.C., Gloor, P., Avoli, M., 1994.
Quantitative evaluation of neuronal loss in the dorsal hippo-
campus in rats with long-term pilocarpine seizures. Epilepsy
Res. 17, 237–247.

Mathern, G.W., Pretorius, J.K., Babb, T.L., 1995. Influence of the
type of initial precipitating injury and at what age it occurs on
course and outcome in patients with temporal lobe seizures. J.
Neurosurg. 82, 220–227.

Mello, L.E., Cavalheiro, E.A., Tan, A.M., Kupfer, W.R., Pretorius, J.K.,
Babb, T.L., Finch, D.M., 1993. Circuit mechanisms of seizures in
the pilocarpine model of chronic epilepsy: cell loss and mossy
fiber sprouting. Epilepsia 34, 985–995.

Middeldorp, J., Hol, E.M., 2011. GFAP in health and disease. Prog.
Neurobiol. 93, 421–443.

Obenaus, A., Esclapez, M., Houser, C.R., 1993. Loss of glutamate
decarboxylase mRNA-containing neurons in the rat dentate
gyrus following pilocarpine-induced seizures. J. Neurosci. 13,
4470–4485.

Parent, J.M., Yu, T., Leibowitz, R.T., Geschwind, D.H., Sloviter, R.S.,
Lowenstein, D.H., 1997. Dentate granule cell neurogenesis is
increased by seizures and contributes to aberrant network
reorganization in the adult rat hippocampus. J. Neurosci. 17,
3727–3738.

Pitkanen, A., McIntosh, T.K., 2006. Animal models of post-
traumatic epilepsy. J. Neurotrauma 23, 241–261.

Pitkanen, A., Nissinen, J., Nairismaqi, J., Lukasiuk, K., Grohn, O.H.,
Miettinen, R., Kauppinen, R., 2002. Progression of neuronal
damage after status epilepticus and during spontaneous
seizures in a rat model of temporal lobe epilepsy. Prog. Brain
Res. 135, 67–83.

Pollard, H., Charriaut-Marlanque, C., Cantagrel, S., Represa, A.,
Robain, O., Moreau, J., Ben-Ari, Y., 1994. Kainate-induced
apoptotic cell death in hippocampal neurons. Neuroscience
63, 7–18.

Polli, R.S., Malheiros, J.M., dos Santos, R., Hamani, C., Longo, B.M.,
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