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Background and aims: Non-alcoholic fatty liver disease (NAFLD) is characterized by
the presence of fat in hepatocytes because of decreased β-oxidation and increased
lipogenesis. Prebiotics, probiotics, and synbiotic have modulatory effects on intestinal
microbiota and may influence the gut-liver axis. Our aim was to evaluate the effects of
prebiotic, probiotics, and synbiotic on liver histopathology and gene expression related
to β-oxidation and lipogenesis after hypercholesterolemia.

Methods: Wistar male adult rats (n = 40) were submitted to hypercholesterolemic
conditions (HPC) (60 days). On Day 30 of HPC, rats were subdivided in 5 groups:
negative control (NC): without HPC + Gv (distilled water); positive control (PC): with
HPC + Gv (distilled water); prebiotic (PRE): HPC + Gv with prebiotic (Fiber FOS R©);
probiotic (PRO): HPC + Gv with probiotic strains Gv (Probiatop R©); and synbiotic (SYN):
HPC + Gv with synbiotic (Simbioflora R©). All rats were sacrificed on Day 30 post-
treatment. Blood was collected to verify total serum cholesterol, and liver tissue was
sampled to verify histopathological changes and gene expression. Gene expression
related to ß-oxidation (PPAR-α and CPT-1) and lipogenesis (SREBP-1c, FAS and ME)
was evaluated in liver tissue using RT-qPCR.

Results: PC had higher cholesterol levels when compared to NC. PRE and SYN rats
had lower cholesterol levels than PC. PC rats showed more histopathological changes
than NC rats; PRE and SYN rats showed fewer alterations than PC rats. PPAR-α was
expressed at higher levels in SYN and PC rats compared with PRE and PRO rats. CPT-1
expression was similar in all groups. SREBP-1c was expressed at higher levels in PC
rats compared with NC rats; levels were lower in SYN rats compared with PRO rats;
levels were lower in PRE rats compared with PC and PRO rats. FAS was expressed at
lower levels in PRE rats compared with SYN rats. ME expression was lower in PC rats
compared with NC rats.

Conclusion: Prebiotic and synbiotic supplementation improve hepatic alterations
related to hypercholesterolemia. These changes appear to be mediated by altered
expression of genes related to β-oxidation and lipogenesis.
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INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) can be understood
as the excessive accumulation of fat in hepatocytes, without
alcohol abuse (Buzzetti et al., 2016). Currently, NAFLD is a
major cause of chronic liver disease in Western countries,
and its prevalence has increased in other countries because
of globalization, which increases the consumption of highly
processed and refined foods (Younossi et al., 2016). NAFLD
is associated with metabolic disorders such as obesity, type 2
diabetes mellitus, and dyslipidemia (Lonardo et al., 2015).

Clinically, the treatment of NAFLD is very difficult to achieve
for most patients. In this regard, to search genetic biomarkers
closely involved to NAFLD etiopathogenesis is important for
better understanding the disease (Reddy, 2001; Ahmed and
Byrne, 2007). Hepatic steatosis in NAFLD results from hepatic
lipid accumulation due to decreased β-oxidation of fatty acids
and increased free fatty acids in the liver, which contribute
to hepatic lipogenesis (Donnelly et al., 2005). The triggering
of β-oxidation involves coordinated gene expression regulated
by nuclear receptors, such as peroxisome-proliferator activated
receptors (PPARs). In particular, PPAR-α is expressed primarily
in tissues rich in mitochondria, such as liver. It is considered
an important factor regulating the β-oxidation of fatty acids
(Reddy, 2001) that prevents the excessive storage of liver fat
(Stienstra et al., 2007). One of the limiting factors in β-oxidation
is the presence of carnitine palmitoyl transferase enzyme 1
(CPT-1), which determines the intensity of hepatic mitochondrial
β-oxidation (Donnelly et al., 2005).

Cholesterol and fatty acids levels are regulated through
distinct pathways, but these different patterns of regulation
are controlled by a common family of transcription factors
denominated sterol regulatory element-binding proteins
(SREBPs). They regulate hepatic cholesterol homeostasis.
SREBP-1c is the main modulator of hepatic metabolism of
glucose and triglycerides; this activity may be involved in lipid
accumulation in NAFLD. It operates in the activation of lipogenic
genes such as fatty acid synthase (FAS) and malic enzyme (ME)
(Ahmed and Byrne, 2007).

There is a functional link between the gut and liver
called gut-liver axis. Factors as intestinal microbiota, barrier
function and immune responses play an important role in
gut-liver axis (Minemura and Shimizu, 2015). Altered gut
microbiota (dysbiosis) may contribute to many diseases in
local and remote organ systems. Intestinal and extra-intestinal
diseases, including liver disease, impacts the normal function
of microbiota enhancing the permeability and endotoxin
translocation (Fukui, 2015; Minemura and Shimizu, 2015; Seki
and Schwabe, 2017).The intestinal microbiota has a symbiotic
interaction with all human body functions (Minemura and
Shimizu, 2015). Thus, nutritional interventions may be useful to
corroborate with the treatment of liver disease by modulating
gut microbiota. Prebiotics are non-digestible carbohydrates such
as fructooligosaccharides (Leung et al., 2016). When fermented
by colonic bacteria, prebiotics stimulate the proliferation or
activity of probiotic bacteria that support the function of the
host intestine and prevent the proliferation of pathogenic bacteria

(Guarner et al., 2012). Probiotics are live microorganisms such
as lactobacilli and bifidobacteria; when consumed by humans in
sufficient amounts, these microorganisms confer a health benefit
on the host (FAO and WHO, 2017). The combination of prebiotic
fiber with probiotic bacteria results in a synergistic compound
known as “synbiotic” (Guarner et al., 2012).

Accumulating evidence suggests that probiotics, prebiotics,
and synbiotic may support intestinal microbiota, improve lipid
metabolism, and contribute to the treatment of liver disease
by influencing the intestine-liver axis (Shibolet et al., 2002;
Esposito et al., 2009; Kok et al., 2017). It is important to
know, in NAFLD, which histological effects and molecular
mechanisms may be altered by the use of biotics. The aim of our
experimental study was to evaluate, in hypercholesterolemic rats,
the effects of prebiotic, probiotic, and synbiotic supplementation
on histopathology and gene expression related to β-oxidation and
lipogenesis in liver tissue.

MATERIALS AND METHODS

All experiments protocols involving animals conformed to the
procedures described in the Guiding Principles for the Use of
Laboratory Animals. The study protocol was approved by the
Animal Committee of Federal University of São Paulo, UNIFESP,
SP, Brazil (Protocol number 1265/10).

Experimental Design
A total of 40 male Wistar rats, weighing approximately 350 g,
were obtained from the Centro de Desenvolvimento de Modelos
Experimentais (CEDEME), Federal University of São Paulo, SP,
Brazil. They were maintained under controlled conditions of
temperature (24 ± 2◦C) under 12 h light-12 h dark cycles, with
free access to water and commercial diet (Nuvital, Paraná, Brazil).
All animals were acclimatized for 10 days before the experiment
and provided with ad libitum access to standard pellet chow and
fresh water.

Hypercholesterolemic Condition
After acclimatization, all rats (except for the negative
control group [NC]) were fed a cholesterol-enriched diet
for 60 days to induce hypercholesterolemia. The NC group
received standard oral rat chow (23% protein, 11% lipid, 66%
carbohydrate) (Nuvilab R© Nuvital Ltda, Paraná, Brazil). To induce
hypercholesterolemia, animals received the same standard chow
added 1% (w/w) cholesterol (C8503; Sigma Chemical Company,
St Louis, MO, United States) and 0.35% (w/w) cholic acid
(C1254; Sigma Chemical Company) (Manzoni et al., 2005).

Nutritional Supplementation
On Day 30 of the hypercholesterolemic condition (HPC), rats
(N = 40) were subdivided in 5 groups. Each group received a
special diet by gavage (Gv). NC rats (n= 5) received only distilled
water. Positive control (PC) (n = 5) received HPC and distilled
water by Gv. Prebiotic (PRE) (n = 10) rats received 3 g/day of
fructooligosaccharide (Fiber Fos R© Invictus Farmanutrição, FQM,
São Paulo/Brazil), diluted in distilled water, by Gv. Probiotic
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(PRO) (n = 10) rats received 109 CFU of each probiotic
strain (Lactobacillus paracasei Lpc-37 R© SD 5275 R©, Lactobacillus
rhamnosus HN001 R© SD 5675 R©, Lactobacillus acidophilus NCFM R©

SD 5221 R©, Bifidobacterium lactis HN019 R© SD 5674 R©; Probiatop R©

Invictus Farmanutrição, FQM, São Paulo/Brazil) diluted in
distilled water and administered by Gv. Synbiotic (SYN) (n= 10)
rats received 3 g/day of fructooligosaccharide + 109 CFU
of each probiotic strain (Lactobacillus paracasei Lpc-37 R© SD
5275 R©, Lactobacillus rhamnosus HN001 R© SD 5675 R©, Lactobacillus
acidophilus NCFM R© SD 5221 R©, Bifidobacterium lactis HN019 R©

SD 5674 R©; Simbioflora R© Invictus Farmanutrição, FQM, São
Paulo, Brazil), diluted in distilled water and administered by
Gv. All supplements were diluted in the same amount of
distilled water (1.5 mL) and prepared fresh twice a day. All
were administered twice a day by gavage. Food and water intake
were verified three times a week throughout the experimental
period.

Oral Gavage Technique
The oral gavage procedure was performed twice a day. A feeding
needle (3-mm diameter) was attached to the syringe (5 mL)
and placed into the right lateral side of the oral cavity. The
needle was gently inserted into the back of the oral cavity and
slipped down into the esophagus. The solution containing the
different products (prebiotic, probiotic, or synbiotic solution or
distilled water) was injected slowly, to prevent esophageal reflux
into the oral cavity or rupture of the esophagus. The needle
was then gently removed, and the animal was returned to its
cage.

Body Weight during Nutritional Supplementation
Body weight was verified three times a week during the period of
nutritional supplementation (30 days). Body weight was verified
and recorded based on the initial (first day of supplementation
period) and final (day of sacrifice) for each experimental group.

Liver Sampling
At the end of the supplementation period, rats were sacrificed
with 0.4% sodium pentobarbital (1 ml/kg, intraperitoneal).
Liver samples were longitudinally bisected for morphological
examination, promptly identified, quickly fixed in 10% buffered
formalin (Merck, Darmstadt, Germany), and embedded in
paraffin blocks.

Measurement of Cholesterol Levels
At sacrifice, blood was collected by heart puncture for
measurement of total plasma cholesterol. Measurements were
obtained with the fast-color method using reagents from
the Sera Pak-Ames-Analyzer (RZXT-Technicon, Ames, IA,
United States).

Tissue Processing
After euthanasia, liver was removed from all animals. The tissues
were fixed in 10% buffered formalin (MerckTM, Darmstadt,
Germany), embedded in paraffin blocks and stained with
hematoxylin and eosin (H&E., MerckTM, Darmstadt, Germany)
for evaluating histopathological analysis.

Histopathological Analysis
Histopathological analysis was evaluated by light microscopy
in a blind manner for two experienced observers (OA and
DAR). For this purpose, it was observed the presence or
absence of inflammatory cells, tissue degeneration, and necrosis,
per animal. Digital images were taken from three to four
H&E-stained sections derived from five fields per animal
using An Olympus BX50 bright field microscope and a DP71
camera (Melville, NY, United States) with a 40x objective.
A semi-quantitative method was used for evaluating the
histopathological alterations as described in Table 1 according to
Zhang et al. (2006).

Total RNA Isolation and cDNA Synthesis
Total RNA was obtained from liver tissues using TRIzol R© Reagent
(Life Technologies R©, Carlsbad, CA, United States), according
to the manufactures instructions. Samples were treated with
DNA se (Life Technologies R©, Carlsbad, CA, United States) to
avoid contamination with genomic DNA. RNA concentrations
were measured with a NanoDrop ND-1000 spectrophotometer
(NanoDrop Technologies, Wilmington, DE, United States).

Reverse transcription of 1 µg total RNA to cDNA was
performed in a VeritiTM PCR Thermal Cycler (Applied
Biosystems, Foster City, CA, United States) using a High-
Capacity cDNA Reverse Transcription Kit (Applied Biosystems,
Foster City, CA, United States).

Real-Time Quantitative Polymerase Chain Reaction
(RT-qPCR)
RT-qPCR amplification was performed in an Applied Biosystems
7500 FAST Real Time PCR system (Applied Biosystems, Foster
City, CA, United States) thermal cycler using TaqManTMGene
Expression Master Mix and Assays (Applied Biosystems,
Foster City, CA, United States).The following TaqManTM

assays were purchased and used: PPAR-α (Rn 00566193_m1),
CPT-1 (Rn 00580702_m1), SREBP-1 (Rn 01495769_m1), FAS
(Rn 01463550_m1), ME (Rn 00667869_m1), and GAPDH
(Rn 01775763_g1; endogenous control).The following thermal
cycling conditions were used: 50◦C for 2 min (activation step),
95◦C for 10 min (polymerase activation step), followed by forty
cycles of 95◦C for 15 s (denaturation) and 60◦C for 1 min
(annealing/extension). Relative amounts of target mRNA were
calculated using the comparative cycle threshold (Ct) method
described by Pfaffl (2001).

TABLE 1 | Scoring system for histopathological alterations (Zhang et al., 2006).

Score Steatosis area (%) Inflammation

0 0 0

1 <30 Watering degeneration and some small
necrosis

2 30–50 Ballooning degeneration, more small necrosis,
Mallory body and local PMN infiltration

3 >50 Severe degeneration, necrosis, and bridging
necrosis

PMN, polymorphonuclear leukocyte.
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Statistical Methods
Statistical analysis for body weight, total cholesterol and
RT-qPCR values was performed with one-way ANOVA followed
by Tukey’s test. Histopathological scores were assessed with the
Fisher test, using the SPSS software package (version 1.0; SPSS
Institute, Chicago, IL, United States). P < 0.05 was considered
statistically significant.

RESULTS

Clinical Findings
Use of the oral gavage technique resulted in only one death
(SYN group), on Day 10 of the supplementation period. For
all experimental groups evaluated, there were no differences
between initial and final body weight during the nutritional
supplementation period (P > 0.05; Table 2).

Rats in the PC group fed a cholesterol-enriched diet had
elevated serum cholesterol compared with NC rats. PRE and SYN
rats had lower cholesterol levels than PC rats (P < 0.05; Table 2).

Histopathological changes in liver tissues varied among
experimental groups. None of these changes resulted in a severe
score following microscopic evaluation. Liver tissue from the
PC group presented more hepatic degeneration and increased
steatosis (Figure 1B) than observed in samples from the NC
group (Figure 1A). Rats that received prebiotic and synbiotic
supplementation had decreased steatosis (Figures 1C,E)
compared with PC animals. No statistical difference in liver
steatosis was observed when the PRO group (Figure 1D) was
compared with the PC group (Table 3).

Gene Expression Analysis
To investigate the β-oxidation process, we measured PPAR-α and
CPT-1 gene expression (Figure 2). PPAR-α gene expression was
higher in PC and SYN groups than in PRE and PRO groups
(P < 0.004). CPT-1 levels in liver were similar in all experimental
groups (P > 0.05).

Lipogenesis was evaluated by measuring gene expression levels
of SREBP-1c, FAS and ME (Figure 2). SREBP-1c expression was
higher in the PC group than in the NC group (P = 0.009). Levels
were significantly lower in the SYN group compared with the
PRO group (P = 0.002). SREBP-1c expression was lower in the

TABLE 2 | Body weight and total plasma cholesterol levels.

Group Initial body Final body Plasma total

(N) weight (g) weight (g) cholesterol (ng/L)

NC (5) 356.60 ± 41.73 419.60 ± 37.29 90.80 ± 12.47

PC (5) 350.20 ± 39.66 400.00 ± 38.88 132.85 ± 29.29∗

PRE (10) 352.10 ± 29.14 395.80 ± 40.37 88.11 ± 8.39#

PRO (10) 348.67 ± 44.31 396.89 ± 35.65 119.55 ± 24.45

SYN (9) 344.22 ± 47.93 394.33 ± 39.17 99.05 ± 13.71#

NC, negative control; PC, positive control; PRE, prebiotic group; PRO, probiotic
group; SYN, synbiotic group. Initial body weight - first day of supplementation
period. Final body weight - day of sacrifice. Plasma Total cholesterol: ∗PC > NC
(P = 0.009); #PRE and SYN < PC (P < 0.001).

PRE group compared with the PC and PRO groups (P < 0.01). To
investigate lipogenesis, we measured FAS mRNA gene expression;
levels were lower in the PRE group compared with the SYN group
(P = 0.043). ME gene expression was lower in the PC group than
in the NC group (P = 0.026).

DISCUSSION

Non-alcoholic fatty liver disease is increasingly prevalent and
represents a challenge for prevention and treatment; the
condition’s pathogenesis remains poorly understood. The goal of
the present study was to evaluate the effects of prebiotic, probiotic
and synbiotic treatment in rats submitted to HPCs. We evaluated
the effects of treatment on serum cholesterol, histopathological
changes in the liver, and gene expression related to ß-oxidation
(PPAR-α, CPT-1) and lipogenesis (SREBP-1c, FAS, ME). To the
best of our knowledge, the approach has not been addressed
so far.

Previous experimental studies induced steatosis by increasing
the level of saturated lipid in the diet (de Wit et al., 2012) or by
altering the composition of dietary fat (i.e., providing high levels
of unsaturated fat, lard or corn oil) (Nanji, 2004; Lieber et al.,
2004; Esposito et al., 2009; Tipoe et al., 2009; Kok et al., 2017).
In our experimental model, steatosis was obtained by providing
a chow diet containing 1% cholesterol with 0.25% cholic acid
supplementation, for 60 days (Rossi et al., 2000).

In rats, dyslipidemia may be prevented by mechanisms
that reduce the synthesis of cholesterol and increase bile
acid excretion, reducing the increase in serum cholesterol
levels after ingestion of a diet rich in cholesterol (Lin and
Connor, 1980). However, the addition of cholic acid to the
diet favors the intestinal absorption of cholesterol and increases
serum cholesterol (Guerra et al., 2007). In our experiment, PC
animals fed a cholesterol-enriched diet showed a significant
increase in serum cholesterol (46%) when compared to NC rats
fed a standard oral chow diet. Under HPCs, rats developed
characteristics of NAFLD, including increased serum cholesterol
and histopathological changes in the liver.

Animal and human studies have confirmed a relationship
between the gut microbiota and the pathogenesis of NAFLD
(Tremaroli and Bäckhed, 2012; Moschen et al., 2013). The
consumption of obesogenic foods such as fructose and lipid
leads to changes in the gut microbiota and intestinal barrier,
contributing to metabolic endotoxemia and inflammation (Cani
et al., 2007). Germ-free mice are resistant to the development
of obesity, steatosis, and insulin resistance (Bäckhed et al., 2007;
Rabot et al., 2010).

The microbiota is essential for the better gut barrier function
that controls the access of their products to the portal circulation
and the liver (Minemura and Shimizu, 2015). Understanding the
gut-liver axis it can lead to attempts to manipulate the microbiota.
Probiotics, prebiotics and synbiotic may exert a role in the
treatment and prevention on liver disease by reverting dysbiosis
(Leung et al., 2016).

Although few studies have investigated the effects of gut
microbiota on NAFLD, the data published to date suggest that
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FIGURE 1 | Liver histopathological analysis in rats after exposure to hypercholesterolemic conditions and prebiotic, probiotic, and/or synbiotic supplementation.
(A) NC showing ordinary appearance; (B) PC (hypercholesterolemic diet) showing severe stetatosis in rat hepatocytes (Circle); (C) Prebiotic group showing the
presence of mild steatosis in some rat hepatocytes (circle) and the presence of inflammatory cells (arrow); (D) Probiotic group showing severe steatosis in rat
hepatocytes (circle); (E) Synbiotic group showing mild stetatosis in some rat hepatocytes (Circle) and the presence of inflammatory cells (arrow). Hematoxylin and
eosin stain, 40×.

pre-, pro- and synbiotic treatments are effective in modifying the
intestinal microbiota and may be used as a therapeutic approach
in NAFLD (Kirpich et al., 2015).

Our results showed that supplementation with prebiotics or
synbiotics reduced serum cholesterol levels and histopathological
changes when compared to control treatment. Arjmandi et al.
(1992) previously found that rats fed fiber pectin (prebiotic fiber)
had decreased levels of plasma cholesterol compared with the
PC group. These results indicate a potential beneficial effect of
fiber prebiotic intake on the regulation of blood cholesterol levels
(Arjmandi et al., 1992).

TABLE 3 | Number of animals according to the degree of histopathological
change in liver tissue, according Zhang et al. (2006).

Groups Scores

0 1 2 3

NC 5 0 0 0

PC 0 3 2 0

PRE 6 2 0 0

PRO 5 2 1 0

SYN 5 3 0 0

NC, negative control; PC, positive control; PRE, prebiotic group; PRO, probiotic
group; SYN, synbiotic group.

Eslamparast et al. (2014) evaluated the effects of synbiotic
supplementation on lifestyle in NAFLD patients. The synbiotic
used contained 200 million CFU of 7 bacterial strains
(Lactobacillus casei, Lactobacillus rhamnosus, Streptococcus
thermophilus, Bifidobacterium breve, Lactobacillus acidophilus,
Bifidobacterium longum, Lactobacillus bulgaricus) in
combination with prebiotic fructooligosaccharide (20–30 g/day).
The endpoint was improvement of hepatic inflammation and
other liver functions. The results obtained after 28 days of
synbiotic supplementation with lifestyle modification were
superior to those obtained with lifestyle modification alone. This
trend indicates the potential utilitiy of synbiotics in NAFLD
treatment (Eslamparast et al., 2014).

In another experimental study, a specific multistrain cocktail
(VSL#3) composed of Streptococcus thermophilus and several
species of Lactobacillus and Bifidobacteria was administered to
rats fed a high-fat diet (HFD). Serum cholesterol and triglyceride
concentrations were higher in the rats fed a HFD as compared
to those fed a standard diet. When VSL#3 was administered,
cholesterol and triglyceride concentrations were lower in rats fed
the HFD than in counterparts fed a standard diet (Esposito et al.,
2009).

In our study, histopathological examination of the liver
revealed that cholesterol-treated rats (PC) displayed extensive
steatosis, liver degeneration with inflammatory cells, and
necrosis, when compared to NC animals. Concomitant

Frontiers in Microbiology | www.frontiersin.org 5 October 2017 | Volume 8 | Article 2010

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-08-02010 October 14, 2017 Time: 14:1 # 6

Alves et al. Effect of Prebiotic and Symbiotic in Hypercholesterolemia

FIGURE 2 | Gene expression indicating levels of ß-oxidation (PPAR-α, CPT-1) and lipogenesis (SREBP-1c, FAS, ME). Values expressed as arbitrary units (AU). All
data expressed as means ± SED.

supplementation with a prebiotic and synbiotic was able
to decrease the steatosis features induced by cholesterol,
indicating a protective effect on the liver. We speculate that this
effect occurred in PRE and SYN groups by mechanisms that
connect gut microbiota and NAFLD such as: 1- fermentation
of polysaccharides by microbiota into monosaccharides and
short chain fatty acids (SCFAs), such as acetate, propionate,
butyrate and ethanol SCFA serve as an energy source to host
intestinal epithelium. Butyrate is the preferred energy substrate
for colonocytes and its metabolism provides key substrates in cell
metabolism. (Polyzos et al., 2009); 2- SCFA has been shown to
reduce the permeability of tight junctions and/or the increased
intestinal permeability may also direct SCFAs to access and
modulate liver functions (Polyzos et al., 2017); 3- Decreased
choline metabolism leading to decreased VLDL export from the
liver (Polyzos et al., 2017); 4- Modulation of bile acid synthesis,
which are crucial for fat absorption, but also affect metabolism
of glucose and lipoproteins by linking farsenoid X receptor
(FXR) (Verdelho Machado and Cortez-Pinto, 2017). Also, we
emphasize that the better results in SYN group may be directed
to prebiotic fiber (fructooligosaccharide) and not to probiotic
strains containing in synbiotic product. Although Esposito et al.
(2009) have documented positive effects for probiotic strains,
our study failed to demonstrate this finding. Probably, these
discrepancies could be explained by differing in experimental
design. Further studies are welcomed to elucidate the issue,
specially to clarify the role of symbioses on the activity of
probiotic strains in living organisms.

Several factors may be involved in the pathogenesis of NAFLD
genesis; the nutritional component is the main environmental

factor linked with intestinal microbiota (Buzzetti et al., 2016).
Nonetheless, few studies have been conducted to explain the
interaction of NAFLD with intestinal microbiota and the
intestine-liver axis being very difficult to establish deeper
discussion on this matter (Kirpich et al., 2015).

Prebiotics and probiotics have numerous beneficial effects on
body tissues and systems (Ulisse et al., 2001; Mach, 2006). Such
effects may be mediated by mechanisms such as the modulation
of local microbiota, epithelial barrier function, and the immune
system (O’Hara and Shanahan, 2007). Because the modulatory
effects on gut microbiota may influence the intestine-liver axis,
the proliferation of non-pathogenic microorganisms could be
used as adjunctive therapy in some cases of liver disease (Lirussi
et al., 2007).

Lipid metabolism is a complex process that involves the
coordinated expression of numerous genes. PPARs play a central
role in the modulation of fatty acid oxidation and inflammation.
PPAR-α is mainly expressed in tissues rich in mitochondria
(e.g., liver) and is considered the primary factor regulating the
β-oxidation of fatty acids (Reddy and Hashimoto, 2001), which
limits the storage of liver fat (Stienstra et al., 2007). In our study,
we found that PPAR-α expression was higher in the PC and
synbiotic groups compared to rats that received supplementation
with prebiotics and probiotics. The elevated levels of PPAR-α
observed in the synbiotic group compared to the prebiotic and
probiotic groups suggests that the simultaneous administration
of probiotic and prebiotic (synbiotic) treatment may be more
effective in increasing hepatic lipid oxidation. One reason for the
lower levels of PPAR-α observed in the PC group may be that
these animals were trying to metabolize the excessive amount of
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dietary fat, which required greater activation of this oxidation
process. Esposito et al. (2009) found lower PPAR-α expression
in rats fed a HFD compared with rats fed standard chow. The
authors reported that PPAR-α expression was higher in rats
treated with VSL#3 (a preparation composed of multi strain
probiotics) compared with rats fed a HFD.

Carnitine palmitoyl transferase enzyme 1 is one of the
activators of PPAR-α expressed in muscle and liver. CPT-1
promotes the uptake of fat and mitochondrial fatty acid oxidation
(Kersten et al., 1999). This PPAR-α agonist increases oxidation
and the amount of fatty acids available for triglyceride synthesis
(Bocher et al., 2002). However, our data did not show differences
in the expression of CPT-1. This finding suggests that ß-oxidation
may be modulated in a PPAR-α–independent manner (Louet
et al., 2001).

SREBP is involved in hepatic cholesterol homeostasis. In
the liver, three isoforms (SREBP-1a, SREBP-1c, and SREBP-2)
regulate lipoproteins and bile synthesis. They are also involved
in the expression of over 30 genes that regulate the synthesis and
use of cholesterol, fatty acids, triglycerides, and phospholipids
(Kojima and Degawa, 2006; Reddy and Rao, 2006; Ahmed
and Byrne, 2007).SREBP-1c is directly associated with lipid
accumulation in NAFLD (Ahmed and Byrne, 2007; Duvnjak
et al., 2007) and stimulates the translation of lipogenic
genes such as those coding for FAS, ME, and glucose
6-phosphate dehydrogenase (G6PDH). Increased SREBP-1c
expression increases triglyceride concentrations in the liver,
leading to the development of NAFLD (Horton et al.,
1998).

In our study, SREBP-1c expression was higher in the PC
group compared to the NC group. This finding was expected,
as PC animals received higher amounts of fat (cholesterol)
in the diet. The data showed lower protein expression in the
prebiotic supplementation group compared with the PC and
probiotic groups. This finding indicates that supplementation
with a prebiotic can modulate and reduce SREBP-1c expression
in lipogenesis. The synbiotic group that showed lower gene
expression than the probiotic group, indicating a potential
limiting effect on the accumulation of lipid.

SREBP-1c and PPAR-α play important roles in the
pathogenesis of NAFLD and the modulation of lipogenic
and β-oxidation processes, respectively. Both compounds may
contribute to the nutritional management of NAFLD. Studies
have shown that PPAR-α activation can suppress the activation
of SREBP-1c (Cherkaoui-Malki et al., 2001; Reddy, 2001).
Those data support the results presented here: higher PPAR-α
expression and lower SREBP-1c gene expression in SYN rats.

Few experiments using the NAFLD model have evaluated
gene expression in liver tissue after prebiotic, probiotic, and
synbiotic supplementation. This fact makes it difficult to compare
our results with previously published studies on the effects of
prebiotic and probiotic strains. NAFLD is a complex disease
related to nutritional factors that alter the gut microbiota and
intestinal barrier. Interactions among dietetic factors could
modulate NAFLD pathogenesis and steatosis.

CONCLUSION

Prebiotic and synbiotic supplementation improve hepatic
alterations related to hypercholesterolemia through
transcriptional changes that affect β-oxidation and lipogenesis.
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