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Abstract. Silver nanoparticles (AgNPs) are well known potent antimicrobial agents. Similarly, 

the free radical nitric oxide (NO) has important antibacterial activity, and due to its instability, 

the combination of NO and nanomaterials has been applied in several biomedical applications. 

The aim of this work was to synthesize, characterize and evaluate the antibacterial activity of a 

new NO-releasing AgNPs. Herein, AgNPs were synthesized by the reduction of silver ions 

(Ag
+
) by catechin, a natural polyphenol and potent antioxidant agent, derived from green tea 

extract. Catechin acts as a reducing agent and as a capping molecule on the surface of AgNPs, 

minimizing particle agglomeration. The as-synthesized nanoparticles were characterized by 

different techniques. The results showed the formation of AgNPs with average hydrodynamic 

size of 44 nm, polydispersity index of 0.21, and zeta potential of -35.9 mV. X-ray diffraction 

and Fourier transform infrared spectroscopy revealed the presence of the AgNP core and 

cathecin as capping agent. The low molecular weight mercaptosuccinic acid (MSA), which 

contain free thiol group, was added on the surface of catechin-AgNPs, leading to the formation 

of MSA-catechin-AgNPs (the NO precursor nanoparticle). Free thiol groups of MSA-catechin-

AgNPs were nitrosated leading to the formation of S-nitroso-mercaptosuccinic acid (S-nitroso-

MSA), the NO donor. The amount of 342 ± 16 µmol of NO was released per gram of S-

nitroso-MSA-catechin-AgNPs. The antibacterial activities of catechin-AgNPs, MSA-catechin-

AgNPs, and S-nitroso-MSA-catechin-AgNPs were evaluated towards different resistant 

bacterial strains. The results demonstrated an enhanced antibacterial activity of the NO-

releasing AgNP. For instance, the minimal inhibitory concentration values for Pseudomonas 

aeruginosa (ATCC 27853) incubated with AgNPs-catechin, AgNPs-catechin-MSA, and 

AgNPs-catechin-S-nitroso-MSA were found to be 62, 125 and 3 µg/mL, respectively. While in 

the case of Klebsiella pneumoniae (ATCC 700603) the minimum bactericidal concentration 

values for treatments with AgNPs-catechin, AgNPs-catechin-MSA, and AgNPs-catechin-S-

nitroso-MSA were found to be 1000, 500, and 125  µg/mL, respectively. The antibacterial 
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actions of the NO-releasing nanoparticle were superior in comparison with the antibacterial 

effects of AgNPs, in most of the tested antibiotic resistant bacteria strains. These results 

highlight the promising uses of NO-releasing AgNPs against resistant bacteria in several 

biomedical applications. 

1. Introduction

Silver nanoparticles (AgNPs) have been attracted the attention of the scientific community in the last

decades due to their significant antimicrobial properties 1-3. Traditional methods for the synthesis of

AgNPs are based on the chemical route, which uses strong reducing agents, such as sodium

borohydride 4,5. Although chemical synthesis of AgNPs has a consider control over nanoparticle

size distribution, this route involves the presence of toxic chemicals, yielding hazardous byproducts,

leading to the environment contamination. In addition, traditional chemical methods are significant

expensive since they demand high-energy input and manufacturing 6,7. In contrast, “green

chemistry” has been considered an interesting approach to overcome the main limitations to synthesize

several classes of metallic nanoparticles, including AgNPs 8,9.Biogenic synthesis of metallic

nanoparticles, including AgNPs, are considered clean, cost and eco effective route and non-toxic to the

environment 6-9. The biogenic (or green synthesis) of AgNPs can be performed at room temperature

and at ambient conditions.

The use of plant extract and/or compounds derived from plant extracts to obtain metallic 

nanoparticles have been gained considerable attention in recent years 10,11. Catechin is a natural 

polyphenol and potent antioxidant molecule, which belongs to the group of flavanols, and it is the 

main constituent of the green tea extract 12. In biogenic synthesis of AgNPs, catechin acts not only 

as powerful reducing agent of Ag
+
 to Ag° (leading to the formation of AgNPs), but also as a capping 

agent, stabilizing the obtained nanoparticles. In this work, AgNPs were synthesized by green 

chemistry by the action of catechin, leading to the formation of catechin-AgNPs. The obtained 

nanoparticles were characterized by different techniques. The results demonstrated the successfully 

formation of AgNPs. The obtained nanoparticles were stabilized by the presence of catechin as 

capping agent.  

In a further step, mercaptosuccinic acid (MSA), a low molecular weight thiol (SH) containing 

molecule was conjugated on the surface of catechin-AgNPs, leading to the formation of MSA-

catechin-AgNPs. MSA was maintained on the surface of catechin-AgNPs by positive electrostatic 

interactions. The amount of free thiol groups on the surface of MSA-catechin-AgNPs was evaluated. It 

should be noted that the presence of free thiol groups on the surface of a nanoparticle represents a site 

for nanoparticle conjugation with important biological molecules 13.  

Free thiol groups on the surface of MSA-catechin-AgNPs were nitrosated leading to the formation 

of S-nitroso-MSA-catechin-AgNPs, which act as spontaneous nitric oxide (NO)-releasing 

nanoparticle. The aim of this work was to synthesize, characterize and evaluate the antibacterial 

activity of a new NO-releasing AgNPs. NO is an endogenous found free radical that plays several 

physiological and pathophysiological roles, such as the cell defense against microbes 14. The 

amount of NO release from S-nitroso-MSA-catechin-AgNPs was determined. The combination of NO 

and AgNPs might find important applications in the combat of resistant bacteria. In this direction, the 

antibacterial activities of S-nitroso-MSA-catechin-AgNPs, MSA-catechin-AgNPs and catechin-

AgNPs were demonstrated towards different bacterial strains (Pseudomonas aeruginosa (ATCC 

27853), Staphylococcus aureus (ATCC 29213), Klebsiella pneumoniae (ATCC 700603), Salmonella 

enterica (ATCC 14028), and Escherichia coli (ATCC 35218)). The Minimal inhibitory concentration 

(MIC) and minimum bactericidal concentration (MBC) values were obtained. All tested nanoparticles 

demonstrated antibacterial effects, and in most of the cases, the NO-releasing AgNPs (S-nitroso-MSA-

catechin-AgNPs) demonstrated superior antibacterial effects, compared to the other groups.  

Therefore, the results demonstrated the successful biogenic synthesis of AgNPs by the polyphenol 

catechin, the nanoparticle functionalization with NO group and the antibacterial activities of the 
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nanoparticles. To our best knowledge, this is the first report to demonstrate the biogenic synthesis of 

NO-releasing AgNPs and their antibacterial effects. More studies are required for further 

characterization of the antimicrobial activities of the NO-releasing biogenic AgNPs.  

2. Methods

2.1.  Synthesis of AgNPs by catechin  

A volume of 0.5 mL of aqueous solution of catechin (0.1 mol/L) was deposited in the Erlenmeyer, 

followed by the addition of 96.5 mL of deionized water. The final suspension was stirred at 80°C. 

Then, 3 mL of a stock solution (0.1 mol/L) of AgNO3 were added to obtain a final concentration of 3 

mmol/L and the pH was adjusted to 10 with NaOH. Aliquots of 2 mL were removed from the 

Erlenmeyr flaks after 4 h of reaction and their UV-visible spectra were obtained using a 

spectrophotometer (Genesys 10S) at the resolution of 1 nm from 200 to 800 nm for each sample. The 

final mixture was further stirred for 1 h, centrifuged and washed several times with water, followed by 

freezer-dryer. This procedure led to the formation of catechin-AgNPs. 

2.2.  Caracterization of catechin-AgNPs 

Catechin-AgNPs were characterized by   through Fourier transformed infrared (FTIR) spectroscopy 

(CARY 630 FTIR Agilent Technologies) in the range 450-4000 cm
-1

 at a resolution of 4 cm
-1

. X-ray 

diffraction (XRD) measurements were performed in reflection set-up, with a conventional X-ray 

generator, CuKα radiation of 1.5418 Å coupled to a scintillation detector. The morphology the 

nanoparticles was determined by Field-emission scanning electron microscopy (FEI Quanta FEG250, 

STEM) at 30 kV. The nanoparticle size distribution was estimated by using the software SigmaScan 

Pro 5.0. The hydrodynamic diameter and zeta potential were measured at 25°C by dynamic light 

scattering (DLS) using the Zetasizer Nano ZS90 System (Malvern Instruments, Malvern, UK). Prior to 

the DLS measurement, the aqueous suspensions of nanoparticles were passed through a 0.22 μm 

polyvinylidene fluoride (PVDF) membrane.  

2.3.  Functionalization of catechin-AgNPs with MSA leading to MSA-catechin-AgNPs 

Catechin-AgNPs (20 mg) were suspended in 10 mL of deionized water in an ultrasound bath for 10 

mim at room temperature. MSA (200 mg) is dissolved in 10 mL of deionized water. MSA solution 

was added to catechin-AgNPs suspension, and the final suspension was stirred for 14 h at room 

temperature. The MSA-catechin-AgNPs obtained were isolated by centrifugation, washed and dried.  

2.4.  Quantification of free thiol groups (SH) on the surface of MSA-catechin-AgNPs 

The quantification of free thiol groups on the surface of MSA-catechin-AgNPs was performed by 

titration of SH presented in MSA with a thiol reagent 5,50-dithiobis-(2-nitrobenzoic acid) (DTNB).  

13. This quantification is based on the detection of the absorbance at 412 nm, which corresponds to

the 2-nitro-5-thiobenzoate anion (TNB
2–

) generated in the reaction of SH groups with DTNB.

Appropriate amounts of thiolated nanoparticles were added to 3.0 mL of 0.01 mol L
–1

 DTNB in PBS

buffer (pH 7.4) containing 1 mmol L
–1

 of ethylenediaminetetraacetic acid. After 5 min of incubation,

the suspensions were filtered by centrifugal ultrafiltration using a Microcon centrifugal filter device

containing ultrafiltration membranes (MWCO 10-kDa cutoff filter, Millipore). The supernatant was

placed into a quartz cuvette, and the intensity of the absorption band at 412 nm was measured in an

UV–vis spectrophotometer (Agilent 8453). The experiments were performed in triplicate.

2.5 Nitrosation of MSA-catechin-AgNPs leading to the formation of S-nitroso-MSA-catechin-AgNPs 

MSA-catechin-AgNPs (10 mg) were dispersed in 1 mL of deionized water by using an ultrasound 

bath, and the pH of the suspension was adjusted to 4.0.  Aliquot of 200 µL of sodium nitrite (NaNO2), 

60 mmol/L, was added to the MSA-catechin-AgNPs suspension under stirring for 30 min. The 

obtained S-nitroso-MSA-catechin-AgNPs were immediately used.  
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2.6. Quantification of NO release from S-nitroso-MSA-catechin-AgNPs 

The amount of NO released from S-nitroso-MSA-catechin-AgNPs was measured by a NO electrode 

(2.0 mm ISO-NOP) connected to a TBR4100/1025 Free Radical Analyzer (World Precision 

Instruments). Aliquots of 100 μL of aqueous suspension of S-nitroso-MSA-catechin-AgNPs (5. 

mg/mL) were added to the sampling compartment, which contained 10 mL of 10 mL copper(II) 

chloride (CuCl2) (0.1 mol L
−1

). This condition allowed for the detection of free NO released from the

NPs. The experiments were performed in duplicate with the standard error of the mean. Calibration 

curves were obtained with aqueous solutions of freshly prepared S-nitrosoglutathione (1–500 μmol 

L
−1

) (data not shown). 

2.7. Antibacterial activities of the synthesized NPs 

The antibacterial activities of catechin-AgNPs, MSA-catechin-AgNPs and S-nitroso-MSA-catechin-

AgNPs, at different concentrations, were evaluated against Pseudomonas aeruginosa (ATCC 27853), 

Staphylococcus aureus (ATCC 29213), Klebsiella pneumoniae (ATCC 700603), Salmonella enterica 

(ATCC 14028), and Escherichia coli (ATCC 35218), all samples kindly provided by Oswaldo Cruz 

Foundation (Fiocruz, Rio de Janeiro, Brazil). Bacterial strains were incubated with the different 

concentrations of nanoparticles for 24 h. Minimal inhibitory concentration (MIC) and minimum 

bactericidal concentration (MBC) values were obtained, using micro-dilution assays in 96- well plates, 

as previous described 15, and according to the Clinical and Laboratory Standards Institute (CLSI) 

16.

3. Results and Discussion

The main objective of this study was to to synthesize, characterize and evaluate the antibacterial

activity of a new NO-releasing AgNPs. To this end, AgNPs were synthesized by catechin, in a green

synthetic route, followed by the coating of the obtained nanoparticles with S-nitroso-MSA, as a

spontaneous NO releasing molecule. It is expected a superior antimicrobial activity of the NO-

releasing-AgNPs. The following sections describe the obtained results.

3.1.  Synthesis and characterization of catechin-AgNPs 

Uv-visible spectrophotometry is a simple and direct method to confirm the formation of AgNPs from 

AgNO3 17. The reduction of Ag
+
 to Ag° occurs immediately upon the pH adjustment, which is

accompanied by a change in the suspension color from pale yellow to brown, indicating the formation 

of AgNPs. Figure 1A shows the Uv-visible spectra for catechin-AgNPs at different pHs.  

Figure 1. Plasmonic absorbantion bands of catechin-AgNPs at different pHs (A). FTIR spectra 

of catechin and catechin-AgNPs (B).  
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As can be observed, with the increase of the pH, the intensity of the plasmonic band increases, 

band becomes narrower, and the bands shift to lower wavelength values 20. These peaks are due to 

the plasmonic band of AgNO3 18,19.  

Figure 1B shows the FTIR spectra of pure catechin and catechin-AgNPs, as indicated in the 

Figure. Band at 3244 cm
-1

 is associated with O-H stretching vibrations of the phenolic group of 

catechin. Vibrations at 1604 cm
-1

 corresponds to the stretching vibration of C=C present in aromatic 

and aliphatic compounds, while vibrations at 1517 cm
-1

 corresponds to the vibrations of C-O of esters, 

ethers, and phenols, and vibrations at 1456 cm
-1

 correspond to the C-O of ethers 21,22. Upon 

catechin conjugation with AgNPs, there is a decrease in the intensity of the band at 3244 cm
-1

, which 

corresponds to the decrease in the OH. This can be explained since OH groups participate in the 

reduction of Ag
+
 to Ag°. Bands at 1563 and 1456 cm

-1
 correspond to aromatic C=C in the modified 

catechin. 

Figure 2 shows the XRD pattern of catechin-AgNPs. Peak values of around 38.10
o
, 44.47

o
, 

64.63
o
, 77.44

o
, and 81.33

o
 correspond to the XRD pattern of indexed [111], [200], [220], [311], and 

[222] facets of Ag° NPs 2. These results confirm the reduction of Ag
+
 to Ag° by catechin, which acts 

as reducing and capping agent.  

 

 
Figure 2. XDR patter of catechin-AgNPs. 

 

Figure 3A shows the morphology of quasi spherical catechin-AgNPs with the presence of 

agglomerates. Figure 3B shows that the size distribution of the nanoparticles was found to be between 

10 and 40 nm with average size of 23.4 ± 8.4 nm at solid state. The agglomeration observed in Figure 

3A might be due to the drying process prior microscopy analysis.  

DLS measurements revealed that the average hydrodynamic size of catechin-AgNPs was 44 nm, 

with PDI value of 0.21 and zeta potential of – 35.9 mV. The hydrodynamic size of the nanoparticles 

was found to be higher in comparison to the average size of the nanoparticles assayed by STEM. As 

expected, higher hydrodynamic sizes of NPs measured by DLS, compared with the sizes obtained by 

TEM, are attributed to the presence of extra hydrate layers in aqueous environments 23.  The results 

indicate the formation of catechin-AgNPs at the nanosize scale in aqueous suspension, and the PDI 

value indicates that the size distribution is moderate polydispersive. The negative value of zeta 

potential is due to the presence of catechin on the surface of AgNPs, since negative charge is expected 

for polyphenols 10. This result indicates the presence of catechin on nanoparticle surface. Moreover, 

the magnitude of this zeta potential demonstrates the stability of the nanoparticles in aqueous 

suspension, avoiding nanoparticle agglomeration.  
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Figure 3. Field-emission scanning electron microscopy (STEM) of catechin-AgNPs (A) and their 

corresponding size distribution at solid state (B).  

 

3.2.  Functionalization of catechin-AgNPs with MSA leading to MSA-catechin-AgNPs 

MSA, a low molecular weight thiol-containing molecule, was conjugated on the surface of catechin-

AgNPs leading to the formation of MSA-catechin-AgNPs, which contain free thiol (SH) groups on 

their surface (Figure 4).  

 
 

Figure 4. Schematic representation of the functionalization of catechin-AgNPs with mercaptossunic 

acid (MSA), a thiol containing-molecule, leading to the formation of MSA-catechin-AgNPs.  

 

A value of 355 ± 19 µmol of free SH group per gram of MSA-catechin-AgNPs was obtained. MSA 

was conjugated with catechin-AgNPs by positive electrostatic interactions. The quantification of free 

thiol (SH) groups on the surface of MSA-catechin-AgNPs was determined by the reaction with a thiol 
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specific reagent, DTNB, as previous described 10,23. In drug delivery applications, the presence of 

free SH groups on the surface of nanoparticles represents a site for nanoparticle conjugation with 

important therapeutic molecules. In this present work, NO was loaded on MSA-catechin-AgNPs 

through SH groups.  

3.3.  Nitrosation of MSA-catechin-AgNPs leading to the formation of S-nitroso-MSA-catechin-AgNPs 

Free thiol groups (SH) on the surface of MSA-catechin-AgNPs were nitrosated by the addition of 

sodium nitrite (NaNO2) in slight acidified solution 10,23, leading to the formation of S-nitroso-

MSA-catechin-AgNPs, which act as spontaneous NO donor due to the cleavage of S-N bound, as 

represented in Figure 5.  

 

 
Figure 5. Schematic representation of nitrosation of free thiol groups on the surface of MSA-catechin-

AgNPs by sodium nitrite (NaNO2) leading to the formation of S-nitroso-MSA-AgNPs, which act as 

spontaneous NO donor.  

 

 The quantification of NO loading on the surface of S-nitroso-MSA-catechin-AgNPs was evaluated 

by electrochemical analysis with a specific NO sensor. The amount of 342 ± 16 µmol of NO was 

released per gram of S-nitroso-MSA-catechin-AgNP. This amount of NO release from nanoparticles is 

in the same range as reported for S-nitroso-MSA-Fe3O4 magnetic nanoparticles 24. At this 

concentration range, NO is expected to have biological activities such as the antimicrobial effects 25. 

To our best knowledge, this is the first report to describe the synthesis of NO-releasing AgNPs.  

3.4.  Antibacterial activities of the synthesized NPs 

The antibacterial activities of catechin-AgNPs, MSA-catechin-AgNPs and S-nitroso-MSA-AgNPs 

were evaluated against different resistant bacterial strains. Table 1 and 2 show the minimal inhibitory 

concentration (MIC) and MBC values, respectively. As can be observed, the antibacterial effect is 

dependent on the bacteria strain and the nature of the AgNPs. For Pseudomonas aeruginosa, 

Staphylococcus aureus and Klebsiella pneumoniae lower values of MIC were found for the bacteria 

incubation with the NO-releasing nanoparticle (S-nitroso-MSA-catechin-AgNPs). For instance, MIC 

value of 3 µg/mL was observed for Pseudomonas aeruginosa treated  with S-nitroso-MSA-catechin-

AgNPs. In contrast, lower MIC values were found for catechin-AgNPs incubated with Salmonella 

enterica and Escherichia coli.  
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Table 1. MIC values (µg/mL) for different bacterial strains incubated for 24 h with catechin-AgNPs, 

MSA-catechin-AgNPs and S-nitroso-MSA-catechin-AgNPs. 

Bacterial strain Catechin-AgNPs MSA-catechin-AgNPs S-nitroso-MSA-

catechin-AgNPs 

Pseudomonas 

aeruginosa 

62 125 3 

Staphylococcus aureus 500 250 125 

Klebsiella pneumoniae 1000 250 125 

Salmonella enterica 62 250 125 

Escherichia coli 62 250 125 

 

 

Table 2. Minimum bactericidal concentration (MBC) values (µg/mL) for different bacteria strains 

incubated for 24 h with catechin-AgNPs, MSA-catechin-AgNPs and S-nitroso-MSA-catechin-AgNPs. 

Bacterial strain Catechin-AgNPs MSA-catechin-AgNPs S-nitroso-MSA-

catechin-AgNPs 

Pseudomonas 

aeruginosa 

62 250 6 

Staphylococcus aureus 500 500 125 

Klebsiella pneumoniae 1000 500 125 

Salmonella enterica 125 500 125 

Escherichia coli 125 500 125 

 

 Table 2 shows that MBC values depend on bacterial strain and the nanoparticle. In all tested 

bacterial strains, MBC values decreased for S-nitroso-MSA-AgNPs in comparison with catechin-

AgNPs, indicating that the NO releasing nanoparticles are more effective as antibacterial agent. 

Indeed, for Pseudomonas aeruginosa a MBC value of 6 µg/mL was found upon incubation with S-

nitroso-MSA-AgNPs. Taking together the results demonstrated the all tested nanoparticles have 

antibacterial activity towards different bacterial strains. In most of the cases, the presence of NO on 

the nanoparticle surface enhanced the antibacterial effect due to a synergist effect of the NO donor and 

the AgNP.  

4.  Conclusions 
This work describes the successful synthesis of AgNPs by catechin, the main product of green tea 

extract. Catechin acts as efficient reducing agent of Ag
+
 to Ag° leading to the formation of catechin-

AgNPs. Moreover, catechin acts a capping agent on the surface of AgNP, avoiding nanoparticle 

oxidation and/or aggregation. The obtained nanoparticles were characterized by different techniques, 

which indicate the formation of AgNP core coated with catechin. The surface of catechin-AgNPs was 

functionalized with MSA, a low molecular weight thiol containing molecule, leading to the formation 

of MSA-catechin-AgNPs. Free thiol groups on the surface of MSA-catechin-AgNPs were nitrosated 

by the addition of sodium nitrite leading to the formation of S-nitroso-MSA-catechin-AgNPs, which 

act as spontaneous NO donor. The antibacterial activities of catechin-AgNPs, MSA-catechin-AgNPs 

and S-nitroso-MSA-catechin-AgNPs were demonstrated towards different bacterial strains. All tested 

nanoparticles demonstrated antibacterial effects, as assayed by the determination of MIC and MBC 

values. In most of the cases, NO-releasing nanoparticles enhanced the antibacterial effect of catechin-

AgNPs. These results highlight the promising uses of NO-releasing AgNPs against resistant bacteria in 

several biomedical applications. 

 

Acknowledgements: FAPESP (Proc. 2016/10347-6), the Brazilian Network on Nanotoxicology 

(Grant number: 552120/2011-1) (MCTI/CNPq), the Laboratory of Nanostructure Synthesis and 



9

1234567890

Nanosafe  IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 838 (2017) 012031  doi :10.1088/1742-6596/838/1/012031

 

 

 

 

 

 

Biosystem Interactions-NANOBIOSS (MCTI) (Grant number: 402280-2013), FONDECYT (Grant 

number 1130854) and CONICYT REDES (Grant number 140053).  

 

References 

[1] Durán N, Durán M, de Jesus MB, Seabra AB, Fávaro WJ and Nakazato G 2016 Nanomedicine 

12 789 

[2] Durán N, Nakazato G and Seabra AB 2016 Appl. Microbiol. Biotechnol. 100 6555 

[3] Lai CY, Cheong CF, Mandeep JS, Abdullah HB, Amin N, and Lai KW 2014 J. Mater. Eng. 

Perform. 23 3541 

[4] Duan J, Yin H, Wei R, and Wang W 2014 Biosens. Bioelectron. 57 139 

[5] Sung HK, Oh SY, Park C and Kim Y 2013 Langmuir 29 8978 

[6] Terenteva EA, Apyari VV, Dmitrienko SG, and Zolotov YA 2015 Spectrochim. Acta. A. Mol. 

Biomol. Spectrosc. 151 89 

[7] Seabra AB and Durán N 2015 Metals 5 934 

[8] Lima R, Feitosa LO, Ballottin D, Marcato PD, Tasic L and Durán N 2013 JPCS 429 012020 

[9] de Lima R, Seabra AB and Durán N 2012 J. Appl. Toxicol. 32 867 

[10] Silva BSO and Seabra AB 2016 Biointerface Res. Appl. Chem. 6 1280 

[11] Herlekar M, Barve S and Kumar R 2014 J. Nanopart. Res. 140614 

[12] Menendez C, Jimenez R, Moreno L, Galindo P, Cogolludo A, Duarte J, and Perez-Vizcaino F 

2011 Br. J. Nutr. 105 1287 

[13] Seabra AB, Pasquoto T, Ferrarini ACF, Santos MD, Haddad PS and de Lima R 2014 Chem. 

Res. Toxicol. 27 1207 

[14] Seabra AB and Durán N 2010 J. Mater. Chem. 20 1624 

[15] Cardozo VF, Lancheros CA, Narciso AM, Valereto EC, Kobayashi RK, Seabra AB and 

Nakazato G 2014 Int. J. Pharm. 473 20 

[16] CSLI Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. 

Wayne, PA: CLSI; 2003:6th ed 

[17] He Y, Du, Tang, Zheng, Zhang, Zhao, Lv, and Qianfa J 2013 Int. J. Nanomedicine 1809 

[18] Patil RS, Kokate MR, and Kolekar SS 2012 Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 91 

234 

[19] Velmurugan P, Lee S-M, Iydroose M, Lee K-J and Oh B-T 2013 Appl. Microbiol. Biotechnol. 

97 361 

[20] Alqadi MK, O. Noqtah OAA, AlzoubiJ FY and Aljarrah K 2014 Mater. Sci.-Pol. 32 107 

[21] Chen Z, Yu T, Zhou B, Wei J, Fang Y, Lu J, Guo L, Chen W, Liu Z-P and Luo J 2016 

Biomaterials 81 125 

[22] Ramos-Tejada MM, Duran JDG, Ontiveros-Ortega A, Espinosa-Jimenez M, Perea-Carpio R 

and Chibowski E 2002 Colloids Surf. B Biointerfaces 24 297 

[23] Santos MC, Seabra AB, Pelegrino MT and Haddad PS 2016 Appl. Surf. Sci. 367 26 

[24] Molina MM, Seabra AB, de Oliveira MG, Itri R and Haddad PS 2013 Mater. Sci. Eng. C 33 

746. 

[25] Seabra AB, Martins D, Simões MM, da Silva R, Brocchi M and de Oliveira MG 2010 Artif. 

Organs. 34 E204 

 

 

 


