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Abstract—Fruit flies are of huge biological and economic
importance for the farming of different countries in the World,
especially for Brazil. Brazil is the third largest fruit producer
in the world with 44 million tons in 2016. The direct and
indirect losses caused by fruit flies can exceed USD 2 billion,
putting these pests as one of the biggest problems of the world
agriculture. In Brazil, it is estimated that the economic losses
directly related to production, the cost of pest control and in the
loss of export markets, are between USD 120 and 200 million/year.
The species of the genus Anastrepha are among the fruit flies
economically important in the America tropics and subtropics
with approximately 300 known species, of which 120 are recorded
in Brazil. However, few species are economically important in
Brazil and are considered pests of quarantine significance by
regulatory agencies. In this sense, the development of automatic
and semi-automatic tools for fruit fly species identification of
the genus Anastrepha can assist the few existing specialists
to reduce the insect analysis time and the economic losses
related to these agricultural pests. We propose to apply mid-
level image representations based on local descriptors for fruit
fly identification tasks of three species of the genus Anastrepha.
In our experiments, several local image descriptors based on
keypoints and machine learning techniques have been studied
for the target task. Furthermore, the proposed approaches have
achieved excellent effectiveness results when compared with a
state-of-art technique.

I. INTRODUCTION

The fruit flies belong to the Tephritidae family, which
comprises approximately 5,000 species. They are distributed
all over the world and several species are important agri-
cultural pests. The damages are caused by the larvae that
feed inside the fruit, making them unfit for consumption and
commercialization. In addition to direct damage to fruit, some
species of fruit flies are of quarantine importance, that is, they
hamper the international market for fresh fruit. The country
where the quarantine pest does not occur imposes customs
barriers for the importation of commodities from the country,
in which the pest is present.

There are few studies on economic losses caused by fruit
flies. For example, it was estimated that economic loss caused
by the Mediterranean fruit fly, Ceratitis capitata (Wiedemann),
an invasive species, was estimated at USD 242 million/year
in Brazil [1]. Although economic losses caused by species of

Anastrepha, fruit flies native in Brazil, are also high, there are
no economic analysis on these losses.

Among the economically important fruit flies in the Amer-
icas are the species of the Anastrepha. This genus is the most
diverse in America tropics and subtropics with approximately
300 known species, of which 120 are recorded in Brazil [2].
However, few species are economically important in Brazil
namely the South American fruit fly Anastrepha fraterculus
(Wiedemann), the West India fruit fly Anastrepha obliqua
(Macquart), and the guava fruit fly Anastrepha striata Schiner.
These three species are considered pests of quarantine signif-
icance by many regulatory agencies.

Identification of species is a crucial step for the development
studies on biology such as distribution, damage, quarantine,
and control. The identification of Anastrepha species are based
on wing pattern, and mostly on the aculeus (the piercing part
of the female ovipositor). However, the species boundaries
of some fruit fly complexes are difficult to be delimited.
Anastrepha fraterculus is the most emblematic case of a
cryptic species complex in the Americas, because it is a major
pest only in some areas of its occurrence, which ranges from
Mexico to northern Argentina [3]. Thus, misidentifications can
be of serious problem for the implementation of quarantine
restrictions, integrated pest management, and other control
programs [4].

New procedures of insect identification have been used
such as morphometric and molecular analyses to an accurate
identification of fruit flies of the genus Anastrepha [5], [6].
However, Martineau et al. [7] showed that few works in the
literature have been proposed to identify genus Anastrepha
through image processing and machine learning techniques.
Maybe this fact is related to the high similarity between
species belonging that genus Anastrepha.

In this sense, this work aims to propose the use of mid-
level representations based on local image descriptors for fruit
fly identification. Furthermore, it compares the effectiveness
results of different machine learning techniques using those
representations to support the development of a real-time
system for fruit fly identification of the genus Anastrepha.
This system can be a good solution for a quick and precise



identification, reducing time and costs in performing and as-
sisting the scarce number of experts in their tasks. Finally, the
proposed approaches can be incorporated into other systems
already existing in the literature.

The contributions of this work are:
• A comparative study among five feature detectors, eight

local image descriptors based on keypoints and nine
learning techniques;

• An improvement for two well-known local image descrip-
tors based on keypoints (SIFT and SURF descriptors);

• The use of a mid-level representation approach based on
BossaNova for fruit fly identification task of the genus
Anastrepha;

• An effectiveness analysis among our proposal based on
local image descriptors and the state-of-art approach
existing in the literature;

The remainder of this paper is organized as follows. Sec-
tion II presents works related to insect identification ap-
proaches existing in the literature. Section III describes differ-
ent feature extraction techniques used in this works for insect
identification task. Section IV shows the experimental protocol
we devised to validate the work while Section V discusses the
results. Finally, Section VI concludes the paper and points out
future research directions.

II. RELATED WORK

Many works have been proposed to identify the most
varied species of insects through image processing and ma-
chine learning techniques. Among proposed works, a semi-
automated classification system called Digital Automated
Identification SYstem (DAISY) classifies spiders, pollen grain,
and butterfly through principal component analysis (PCA) [8].
In [9], SPIDA-web (SPecies IDentified Automatically) iden-
tifies Australian spiders to distinguish 121 species using
Daubechies 4 wavelet function [10]. In another work, the
ABIS (Automatic Bee Identification System) recognizes bee
species of genus Bombus, Colletes, and Andrena by use
of support vector machine (SVM) and kernel discriminate
analysis techniques [11], [12]. In [13], an automated system
to identify insects based on wing outlines (DAIIS) combines
Elliptic Fourier coefficients and SVMs to classify a sample
of 120 owlflies (Neuroptera: Ascalaphidae) [14]. The goal
in [15] is to develop an insect recognition system through
multiple-task sparse representation and multiple-kernel learn-
ing (MKL) techniques [16]. It combines various kind of visual
properties such as color, texture, shape, scale-invariant feature
transform (SIFT) and histogram of oriented gradients (HOG)
features [17], [18].

Despite the biological and economic importance of the
Tephritidae family (fruit fly), only two papers have been
found in the literature [19], [20]. The first one adopted a
successful framework of classifier selection and fusion [19],
which combines several global image descriptors and machine
learning techniques for a multimodal classification approach,
using image of wings and aculei of three species of the frater-
culus group: A. fraterculus (Wied.), A. obliqua (Macquart) and

A. sororcula Zucchi [20]. In the second work, the authors
proposed a sparse representation using SIFT features densely
sampled as input for two different machine learning techniques
(multi-layer Max-pooling ScSPM [21] and linear SVM [11]).
It has performed experiments with three unreported genus and
twenty species [22].

III. MATERIALS AND METHODS

The typical image classification pipeline is composed of the
three following steps: (i) local visual feature extraction, which
extracts information directly from the image pixels, (ii) mid-
level feature extraction, which makes the representation more
general, aggregating abstraction to the model, and (iii) super-
vised classification, a machine learning technique allowing the
extraction of a general model from the data.

A. Local Feature Extraction

Feature extraction is the first crucial step of image analysis
procedures, aiming at extracting visual properties from certain
regions of the image via pixel-level operations. According to
the relative area of those regions, the extracted features can be
roughly classified into global (one feature vector for the entire
image) or local (several feature vectors per image, computed
over relatively small regions of the image).

Local feature extraction usually includes two distinct
steps [23]: feature detection and feature description. Feature
detection consists in finding a set of interest points, or salient
regions in the image that are invariant to a range of image
transformations. Feature description consists in obtaining ro-
bust local descriptors from the detected features. In the follow-
ing, we briefly introduce the detectors/descriptors evaluated in
this work.

1) Scale-Invariant Feature Transform (SIFT): Proposed by
Lowe [18], this is the most well-known and widely used local
descriptor for visual recognition tasks. SIFT is both a feature
detector (based upon Differences-of-Gaussians, or DoG), and
a feature descriptor. As a descriptor, it computes a histogram
of gradient (HoG) locations and orientations. The resulting
descriptor is 128-dimensional feature vector, which is invariant
to scale, rotation, affine transformations, and partially invariant
to illumination changes.

2) Speeded Up Robust Features (SURF): It was proposed
by Bay et al. [24] as an accelerated version of SIFT. SURF is
also both a detector (based upon the determinant of the Hessian
matrix, also known as Fast-Hessian feature detector) and
descriptor. As a descriptor, it describes a distribution of Haar-
wavelet responses within the interest point neighborhood. The
SURF descriptor is based on similar properties of localized
information and gradient distribution as SIFT, with a complex-
ity stripped down even further. Only 64 dimensions are used,
reducing the time for feature computation and matching, and
increasing simultaneously the robustness.

3) Binary Robust Independent Elementary Features
(BRIEF): Presented in 2010 by Calonder et al. [25], BRIEF
was the first binary descriptor published. It consists mainly
of generating binary strings from simple pixel intensity value



comparisons over an image patch smoothed using a Gaussian
kernel. The patches are usually obtained with the Fast-Hessian
detector, but it is not limited only to the use of this feature
detector. We employed the STAR detector, derived from
CenSurE (Center Surround Extremas) detector [26] and FAST
(Features from Accelerated Segment Test) detector [27]. The
bit-length of the BRIEF descriptor are 128, 256 (default),
or 512 and due to their correspondence in bytes they can
also be referred as BRIEF-16, BRIEF-32 and BRIEF-644,
respectively.

4) Oriented FAST and Rotated BRIEF (ORB): As the name
itself suggest, ORB [28] combines and extends on the concepts
of FAST and BRIEF, reducing sensitivity to noise and having
rotational invariance. The ORB detector is essentially a multi-
scale FAST with orientation, while the ORB descriptor uses
a learning process to determine the spatial arrangement of
binary tests, decorrelating BRIEF features under rotational
invariance. This makes the nearest neighbor search during
matching less error-prone. The learning algorithm search for a
set of 256 uncorrelated tests, which produce a 256 bit string,
the ORB descriptor size.

5) Binary Robust Invariant Scalable Keypoints (BRISK):
Proposed by Leutenegger et al. [29], BRISK is a fast descriptor
which uses symmetric sampling pattern (composed out of
concentric rings) for intensity tests. The BRISK detector is
based on the AGAST (Adaptive and Generic Accelerated
Segment Test) detector [30], which is an extension of a
faster performance version of the FAST detector. To describe
the features, pairs of pixels around the interest point are
separated into two subsets: short-distance and long-distance
pairs. BRISK uses the long-distance pairs to estimate the
patch orientation and the short-distance pairs to construct the
descriptor itself through pixel intensity comparisons. BRISK
descriptor is composed of a bit-string of length 512, i.e., a
64-dimensional feature vector.

6) Fast Retina Keypoint (FREAK): Inspired by the human
visual system, FREAK [31] uses a retinal sampled pattern
for intensity tests. Similar to BRISK, FREAK applies the
same AGAST feature detector. The FREAK descriptor is
constructed by evaluating 43 weighted Gaussians at locations
around the interest point, leading to 903 possible pairs. A
learning algorithm similar to ORB is applied to finding the
512 most relevant pairs and build the FREAK bit string.

B. Mid-level Feature Extraction through BossaNova Approach

Mid-level feature extraction aims at transforming local
descriptors into a global and richer image representation of
intermediate complexity [32]. The standard pipeline to get
mid-level features can be broken into two steps: coding
and pooling. The coding step quantifies the local descriptors
according to a visual dictionary of k visual words, which is
usually built by clustering a set of local descriptors (e.g., k-
means clustering algorithm). The pooling step aggregates the
codes obtained into a single feature vector.

In the Bag of Visual Words (BoVW) [33], [34], the most
popular mid-level image representation, the coding step asso-

ciates the local descriptors to the closest element in the visual
dictionary (called hard-assignment coding), and the pooling
takes the average of those codes (called average pooling).
Since the pooling operation compacts all the information
contained in the individually encoded local descriptors into
a single feature vector, that step is critical for BoVW-based
representations. In general, the objective of pooling is to
summarize the information contained in the individually en-
coded descriptors into a single feature vector, thus preserving
important information and discarding irrelevant details [35].

Over the years, BoVW representation has been extended
to both steps of coding [36]–[38] and pooling [39]–[41].
Avila et al. [40] introduced the BossaNova mid-level image
representation. It extends upon the BoVW method by using a
density-based pooling function, which computes a histogram
of distances between the local descriptors found in the image
and each visual word, keeping more information than the
BoVW during the pooling. In this work, we have adopted
BossaNova as the basis of our framework since it has shown
excellent results that overcome the state-of-the-art for image
recognition tasks [42]–[44]. This is the first time that it is
applied to fruit fly identification.

BossaNova brings several novelties for the mid-level image
representation, a density function-based pooling strategy, a
local soft coding schema, and also normalizations of the final
feature vector (see [40] for more details). In our experiments,
we kept the default BossaNova parameter values the same as
in [40].

Figure 1 shows the main pipeline using BossaNova on insect
identification task.

IV. EXPERIMENTAL SETTINGS

We now discuss the experimental setup, including the
dataset and details on the image acquisition.

A. Dataset

1) Fruit Flies Samples: According to Martineau et al. [7],
the systems of insect identification might be divided in three
different categories based on image acquisition: (1) Lab-
based samples, which entomologists bring to laboratory the
target insects and manage the image acquisition system in a
more controlled environment; (2) Field-based samples, which
experts might capture the images directly in outdoor environ-
ments (cultivated fields), without any particular constraints and
therefore a very more difficult scenario for computer vision
approaches; and (3) Multi-individuals samples, which there
are more than one single insect in the same image. In our
experiments, we have used lab-based samples of the specimens
A. fraterculus, A. obliqua and A. sororcula from the collection
of the Instituto Biológico of São Paulo (e.g., Figures 2(a-c)).
Specimens have been collected through McPhail-type traps
(Figure 2b) and reared flies from fruit as well.

2) Image Acquisition: Figure 3 shows the employed three-
step process for treatment and acquisition of wing image: (a)
The right wing of each specimen is dissected; (b) It is mounted
on a microscope slide with Euparal; (c) The slide is covered
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Fig. 1. The main pipeline of BossaNova. Local Feature Extraction: robust local descriptors (e.g., SIFT, SURF, BRIEF, ORB) are obtained from the detected
features. Mid-Level Feature Extraction: BossaNova descriptors creates the feature vectors for the images using a visual dictionary (k-means with Euclidean
distance is run over a sample local features, the final centroids are used as visual words). Decision Model Training: During the training-phase, the BossaNova
vectors of annotated images are employed to train a decision model using a machine learning method. Decision Model Prediction: The trained model employs
the BossaNova feature vectors of an image to predict on the positive or negative classes.

(a) (b) (c)
Fig. 2. (a) A fruit fly example (drawing) [45]; (b) a McPhail-type trap; and (c) a fruit fly laying eggs. Extracted from [20].

with a glass coverslip. The slides have been photographed with
a Nikon DS-Fi1 camera (resolution 2560× 1920) attached to
a Nikon SMZ 1500 stereomicroscope (1.5X objective) [20].

The dataset used in this work is composed of 301 images
and divided into three different categories: A. fraterculus (100),
A. obliqua (101), and A. sororcula (100). It consists of pictures
of specimens reared from samples of fruit trees in experi-
mental and commercial orchards in the state of São Paulo,
Brazil, stored in the Department of Entomology and Acarology
ESALQ, Piracicaba, SP, Brazil and in the Biological Institute,
Campinas, SP, Brazil.

B. Machine Learning Techniques

We have used nine different machine learning techniques:
Multiple Layer Perceptron (MLP), Naı̈ve Bayes (NB), Deci-

sion Tree (DT), Naı̈ve Bayes Tree (NBT), k-Nearest Neighbor
(kNN) with k = {1, 3, 5}, Simple Logistic (SL), and Support
Vector Machine (SVM) using polynomial kernel.

The implementation of the machine learning techniques are
available in the WEKA1 data mining library. All machine
learning techniques were used with default parameters which
means we did not optimize them whatsoever.

V. RESULTS AND DISCUSSION

We have performed three different experiments with objec-
tive to support a system for fruit fly identification. In the first
experiment, an analysis among five feature detection methods
implemented in the OpenCV library [46] has been performed.

1http://www.cs.waikato.ac.nz/∼ml/weka (As of July, 2017).

http://www.cs.waikato.ac.nz/~ml/weka


Fig. 3. The image acquisition process of wings. Extracted from [20].

A. fraterculus A. obliqua A. sororcula

Fig. 4. Example of wings of each specie studied. Extracted from [20].

In the second experiment, a comparative study among six
different local descriptors and nine learning techniques has
been showed. Finally, in the third, a comparison among
the best tuple (descriptor/learning technique) against the best
image descriptor from the literature [47]. For all effectiveness
experiments, the mean accuracies in the 5-fold cross-validation
protocol have been computed.

A. Feature Detector Analysis

According to Francoy et al. [48], a classic technique used by
specialists for insect identification (taxonomic classification),
in the literature, is an approach based on geometric morphome-
tric analysis. This approach computes the (x, y) coordinates
average of the landmarks recorded on the insect wing vein
intersections to obtain called reference configuration or tangent
configuration [49]. This reference configuration is computed
for all known species and used to classify new wing images.

In this sense, we believe that the quality of keypoint
detection might be extremely important to the success of
our proposed approach. Therefore, in this experiment, we
have compared five different feature detectors, FAST [27],
ORB [28], DoG (SIFT detector) [18], STAR [26], and Fast-
Hessian (SURF detector) [50]. This experiment aims to verify
the sensitivity of the feature detectors for the target dataset
image. Recall that the implementation of the feature detectors
is available in the OpenCV library.

Figure 5 shows an original image (see Figure 5-(a)) from
the dataset and five examples of detected keypoints (dots in
blue), one per each feature detector used in this work (See
Figure 5-(b)–(e)).

As can be observed, in the Figure 5-(b), the FAST detector
have detected many more keypoints than all feature detectors
performed in this work. Accordingly, this detector has been
adopted for our next experiments.

B. Effectiveness Analysis

In this section, we have performed two different experi-
ments: (1) Comparative study among eight local descriptors
based on keypoints (BRIEF, BRISK, FREAK, ORB, F-SIFT,
F-SURF, SIFT, and SURF); and (2) Comparative study among
nine learning techniques (MLP, NB, DT, NBT, kNN1, kNN3,
kNN5, SL, and SVM).

Table I shows effectiveness results for all local descriptors
and learning techniques. Taking into account the findings of
the previous experiment, the BRIEF, BRISK, FREAK, ORB,
F-SIFT and F-SURF local descriptors have been performed
with FAST feature detector. SIFT and SURF descriptor used
the original implementation, described in the Section III-A.

In the first experiment, we can observe that BRIEF and F-
SIFT descriptors have achieved four of the best effectiveness
results among nine released learning techniques (in blue).
FREAK descriptor has achieved one best result using sim-
ple logistic (SL). Furthermore, we can observe that BRIEF



(a) Original image (b) FAST

(c) ORB (d) DoG

(d) STAR (e) Fast-Hessian
Fig. 5. Examples of keypoints detected by each feature detector for an original image from the dataset.

TABLE I
EFFECTIVENESS RESULTS (IN %) AMONG EIGHT LOCAL DESCRIPTORS AND NINE MACHINE LEARNING TECHNIQUES FOR A 5-FOLD CROSS-VALIDATION

PROTOCOL. IN BLUE ARE THE BEST IMAGE DESCRIPTORS FOR EACH MACHINE LEARNING TECHNIQUE. IN GRAY CELL ARE THE BEST MACHINE
LEARNING TECHNIQUES FOR EACH IMAGE DESCRIPTOR.

Descriptor Machine Learning Techniques Average CI
MLP NB DT NBT kNN1 kNN3 kNN5 SL SVM

BRIEF [25] 92.0 73.5 79.8 78.8 86.4 90.0 88.1 82.7 90.7 84.7 4.4
BRISK [29] 87.4 51.5 74.4 69.1 78.4 74.4 71.4 79.7 87.0 74.8 7.5
FREAK [31] 88.4 55.8 67.8 70.4 76.7 75.1 73.7 84.0 85.0 75.2 7.0

ORB [28] 90.0 61.8 75.1 74.4 86.7 84.4 82.4 82.1 90.4 80.8 6.3
SIFT [18] 84.7 53.8 62.5 61.8 67.2 68.4 68.5 75.1 84.4 69.6 7.1
SURF [24] 89.4 63.5 62.5 70.1 77.4 78.7 79.7 66.8 87.4 75.0 6.9

F-SIFT 94.7 62.1 76.7 82.1 87.4 85.1 84.4 82.4 93.7 83.2 6.7
F-SURF 84.7 49.2 65.8 66.1 76.1 74.1 72.1 80.4 83.4 72.4 7.7
Average 88.9 58.9 70.6 71.6 79.5 78.8 77.5 79.2 87.7

CI 2.4 5.5 4.7 4.57 4.8 5.0 4.9 4.0 2.5



descriptor achieved the best average accuracy (84.7%) with
lower confidence interval (4.4).

In the second experiment, it possible to note that multilayer
perceptron (MLP) technique has achieved seven of the best
effectiveness results among eight local descriptors (in gray
cell) released in this work. SVM technique has achieved one
better effectiveness result with 90.4% of mean accuracy using
ORB descriptor. In addition, MLP technique using F-SIFT
descriptor was the best tuple (descriptor+learning technique)
performed in this work with 94.7% of mean accuracy (in blue
text and gray cell). Finally, we can verify that MLP and SVM
techniques were the best learning techniques with average
accuracy of 88.9% and 87.7%, respectively.

C. The Best Approaches
We also compared the best learning techniques with

each local descriptor (rows in the Table I), BRIEF+MLP,
BRISK+MLP, FREAK+MLP, ORB+SVM, SIFT+MLP,
SURF+MLP, F-SIFT+MLP, and F-SURF+MLP. Further-
more, the baseline technique LCH+SVM proposed in [20]
has been added in this experiment.

Figure 6 shows the effectiveness results among the best
tuples (descriptor+learning technique) and the best baseline
existing in the literature. Although F-SIFT+MLP (in blue)
has achieved the best mean accuracy, when we compute
the confidence interval with significance level of 0.05, it is
possible to observe that there is no statistically significant
difference among our seven approaches and the baseline from
the literature LCH+SVM (in red). However, it is very impor-
tant to note that the baseline achieved excellent effectiveness
results by extracting color features from enhanced image (e.g.,
segmentation and dilation operations) [20]. Our approaches
have been applied on the original images from the dataset.
Therefore, our approaches might be used in real-time systems
for insect identification tasks with no the use of any image
enhancement operation.
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Fig. 6. Effectiveness results for each local image descriptor with 95%
confidence interval (CI), i.e, a significance level of 0.05. In blue is MLP
using BRIEF descriptor that has achieved the best mean accuracy.

VI. CONCLUSION

Fruit flies are of extreme importance for the world agricul-
ture, especially in Brazil. Economic losses caused by some
pests of the genus Anastrepha can exceed USD 2 billion,
and in Brazil it is estimated between USD 120 and 200
million/year [51]. The species of the genus Anastrepha are the
fruit flies economically important in the America tropics and
subtropics with approximately 300 known species, which 120
are recorded in Brazil. However, few species are considered
pests of quarantine significance by many regulatory agencies.

In this work, we proposed the use of a mid-level image rep-
resentation approach for insect identification of three species
of the genus Anastrepha using different local descriptors based
on keypoints. Furthermore, we performed three robust analyses
to support the development of a real-time system for fruit fly
identification.

In the first, we performed an experimental analysis of the
quality of keypoints detected through feature detectors. In this
experiment, we analyzed the sensitivity of the detectors in the
wing images. As findings of the experiment, we observed that
the FAST detector achieved to detect many more keypoints
on the image regions considered very important by specialists
(wing vein intersections).

In the second, an effectiveness analysis among eight local
descriptors and nine learning techniques was performed to
verify the behavior of the tuples (descriptor+learning tech-
nique) in the fruit fly identification task. In this experiment,
we observed that BRIEF and F-SIFT achieved the best results
of mean accuracy among all of released local descriptors.
Moreover, MLP and SVM techniques achieved to be the best
learning techniques with higher average accuracy values and
lower confidence interval.

Finally, in the third experiment, we compared the best
learning techniques using each local descriptor to the best
state-of-the-art baseline from the literature. In this experiment,
we verified that even though there are statistical differences
among our approach based on mid-level image representation
and baseline, our approach might be directly applied on the
original images with no require any enhancement operation.
Therefore, we conclude that this work will support the devel-
opment of a real-time system for fruit fly specie identification
of the genus Anastrepha.

As future work, we intend to perform experiments with
other local image descriptors, species, and learning techniques
as classifier ensemble and deep learning approaches. Further-
more, a mobile system should be developed to assist the few
experts from the biology area on their field works.
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