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ABSTRACT
Tryptophan is the only precursor of serotonin and mediates serotonergic activity in the brain. Previous 
studies have shown that the administration of tryptophan or tryptophan depletion significantly alters 
cognition, mood and anxiety. Nevertheless, the neurobiological alterations that follow these changes have 
not yet been fully investigated. The aim of this study was to verify the effects of a tryptophan-enriched 
diet on immunoreactivity to Fos-protein in the rat brain. Sixteen male Wistar rats were distributed into two 
groups that either received standard chow diet or a tryptophan-enriched diet for a period of thirty days. On 
the morning of the 31st day, animals were euthanized and subsequently analyzed for Fos-immunoreactivity 
(Fos-ir) in the dorsal and median raphe nuclei and in regions that receive serotonin innervation from 
these two brain areas. Treatment with a tryptophan-enriched diet increased Fos-ir in the prefrontal cortex, 
nucleus accumbens, paraventricular hypothalamus, arcuate and ventromedial hypothalamus, dorsolateral 
and dorsomedial periaqueductal grey and dorsal and median raphe nucleus. These observations suggest 
that the physiological and behavioral alterations that follow the administration of tryptophan are associated 
with the activation of brain regions that regulate cognition and mood/anxiety-related responses.
Key words: Fos protein, Immunoreactivity, Serotonin, Tryptophan.

Correspondence to: Isabel Cristina Céspedes 
E-mail: isabel.cespedes@unifesp.br

INTRODUCTION

Serotonin is a monoamine that functions as a neu-
rotransmitter and neuromodulator. Serotonin-pro-
ducing neurons, located in the raphe nuclei, show 
widespread projections to different brain regions, 
and are involved in several neurobiological pro-
cesses, i.e. food intake, sexual and social behavior, 
cognition and decision making, locomotor activity, 

aggression, circadian rhythms, and neuroendocrine 
function, among others (Lam et al. 2010, Wurtman 
and Wurtman 1986, Maniam and Morris 2012, Kis-
er et al. 2012, Homberg 2012, Clissold et al. 2013, 
Jacobs and Fornal 1999).

Altered serotonin activity has also been recog-
nized as an important factor in pathological condi-
tions, such as anxiety and mood disorders (Deakin 
and Graeff 1991, Hale et al. 2012). In fact, first op-
tion pharmacological treatment for these psycho-
pathologies are antidepressants, which act through 
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facilitation of monoamine neurotransmission, in 
particular of serotonin, as is the case of drugs such 
as fluoxetine and sertraline, which selectively in-
hibit serotonin reuptake (Den Boer et al. 2000, 
Bandelow et al. 2007, 2012, Stein and Lopez 2011, 
Andrisano et al. 2013).

Tryptophan is the only precursor of serotonin 
(Fernstrom 1983) and mediates serotonergic 
activity in the brain. The consumption of tryptophan 
can increase the concentration of serotonin in the 
Central Nervous System and change the metabolism 
and activity of the serotonergic system (Lieberman 
et al. 1985). Tryptophan is converted to serotonin 
through a biochemical pathway composed of two 
enzymes: tryptophan hydroxylase and amino acid 
decarboxylase. Tryptophan hydroxylase is the 
rate-limiting enzyme that converts tryptophan into 
serotonin and it is not normally saturated with 
tryptophan. It has been shown that the administration 
of 3 g of tryptophan increases up to twofold the 
synthesis of serotonin (Young and Gauthier 1981, 
Young 1996). Previous studies have also shown 
that this increase in serotonin levels significantly 
modulates mood and cognition (Attenburrow et 
al. 2003, Cunliffe et al. 1998, Marsh et al. 2002, 
Markus et al. 2008, Richard et al. 2009, Silber 
and Schmitt 2010). Additionally, it has also been 
shown that tryptophan depletion increases anxiety 
and panic, both in healthy volunteers (Klaassen et 
al. 1998) and in panic disorder patients (Miller et 
al. 2000).

Nevertheless, the neurobiological alterations 
that follow these changes have not yet been fully 
investigated. It has been shown, however, that 
tryptophan overloading, apart from increasing 
serotonin release (as measured by in vivo 
microdialysis), decreases the number of Fos-
immunoreactive cells activated by light in the 
supraquiasmatic nucleus of male Syrian hamsters 

(Glass et al. 1995). This alteration seems to be 
related to changes in the sleep/wake cycle regulated 
by serotonin neurotransmission.

Taking the above into account, the aim of this 
study was to investigate the effect of a tryptophan-
enriched diet on Fos protein immunoreativity 
(Fos-ir) in the dorsal and median raphe and in 
brain areas innervated by serotonin neurons and 
related to cognition, mood and anxiety. As formerly 
noted, the product of the immediate-early gene 
c-fos is expressed throughout the brain in response 
to a variety of tasks, thus making it a powerful 
instrument to study intracellular responses of 
neurons to different stimuli (Hale et al. 2006).

MATERIALS AND METHODS

SUBJECTS

Sixteen male Wistar rats in the Centre for 
Development of Experimental Models for Medicine 
and Biology of the Federal University of São 
Paulo were kept under controlled environmental 
conditions (21 ± 1 ° C, light / dark cycle of 12 h, free 
access to water and feed) in the Animal Facility of 
the Department of Biosciences - Federal University 
of São Paulo-Santos. The study was approved 
by the Ethical Committee for Animal Research 
of the Federal University of São Paulo (number 
0247/12) and was performed in compliance with 
the recommendations of the Brazilian Society of 
Neuroscience and Behavior, which are based on 
the conditions stated in the “Guide for the Care 
and Use of Laboratory Animals” (Institute of 
Laboratory Animal Resources on Life Sciences, 
National Research Council, 1996).

DESCRIPTION OF THE DIET

The animals were distributed into two groups that 
received either a standard chow diet (Nuvilab®, 
Brazil) or a tryptophan-enriched diet (Rhoster®, 
Brazil) for thirty days. The monitoring of food 
intake was performed every two days and the 
animals were weighed weekly. The composition of 
the tryptophan-enriched diet is described in Table I.
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FOS PROTEIN IMMUNOREACTIVITY (FOS-IR)

Neurons respond to extracellular stimuli through 
the expression of certain genes, called immediate 
early genes. Fos transcription from the c-fos gene 
is among the first protein transcripts to appear. 
The rapid accumulation of this protein, evidenced 
by immunohistochemical methods, offers the 
possibility of detecting the level of neuronal 
activity. Thus, the study of immunoreactivity to Fos 
protein was used in the present study as a marker of 
neuronal activity (Bullitt 1990, Titze-de-Almeida 
et al. 1994, Céspedes et al. 2010).

On the morning of the 31st day of treatment, 
the animals were weighed and then anesthetized 
with ketamine/xylazine 2:1 (1 ml/kg) and perfused 
with ≈100 ml of 0.9% saline for approximately 1 
min, followed by 500–700 ml of 4% formaldehyde 
(from paraformaldehyde heated to 60–65°C) and 
H2O at 4°C, pH 9.5, for approximately 25 min. The 
brains were post-fixed for 1 h in the same fixative 

solution, and then stored in a solution containing 
20% sucrose for cryoprotection at 4°C. Regularly 
spaced series (5 × 1-in-5) of 30 µm-thick frozen 
sections were cut in the coronal plane, collected 
in ethylene glycol-based cryoprotectant solution 
and stored at −20°C for later determination of Fos-
ir. Fos-ir cells were identified using a polyclonal 
anti-serum raised in rabbits against synthetic 
human Fos (anti-Fos - 1:20,000; Oncogene, 
Cambridge, MA, USA). Immunohistochemistry 
was performed using a conventional avidin–
biotin immunoperoxidase protocol (Hsu and 
Raine 1981) and Vectastain Elite reagents (Vector 
Laboratories®, Burlingame, CA, USA). Tissue was 
pretreated with hydrogen peroxide (0.3%; Sigma®, 
St. Louis, MO, USA) before addition of the primary 
antibody to quench endogenous peroxidase activity 
in the tissue. The reaction with diaminobenzidine 
(DAB) (0.05%; Sigma®) was amplified using 
nickel ammonium sulfate. The sections were then 
mounted on gelatin-coated slides, allowed to dry 
for approximately 18 hours and counterstained 
with 0.25% thionin for identification of the nervous 
tissue cytoarchitecture. We quantified Fos-ir cells 
in sections, under bright-field illumination using 
the Image-Pro Plus software (Media Cybernetics®, 
Silver Spring, MD, USA), and having as reference 
the following AP coordinates (Paxinos and Watson 
2007): prefrontal cortex (PFC) (bregma +2.76 
mm), medial, lateral and basolateral amygdala 
(bregma -2.76 mm), dentate gyrus and CA1, 2 and 
3 regions of the hippocampus (bregma -2.76 mm), 
ventromedial hypothalamus (VMH) (bregma -2.92 
mm), lateral hypothalamus (LH) (bregma -1.80 
mm), paraventricular hypothalamus (Pa) (bregma 
-1,92 mm) and arcuate nucleus (Arc) (bregma -1.80 
mm) of the hypothalamus, nucleus accumbens 
(Acb) (bregma +0.70 mm), dorsomedial (DMPAG) 
and dorsolateral periaqueductal grey (DLPAG) 
(bregma -6.36 mm) and dorsal (DR) and median 
raphe (MnR) (bregma -7.44 mm) nuclei. The 
experimenter performing both the staining and the 
analysis was blind to the experimental conditions.

Table I 
Composition of standard and tryptophan-enriched diets.

Standard chow diet g/kg
Corn starch 579.5
Casein 200.0
Saccharose 100.0
Mix Mineral AIN-93G 35.0
Mix Vitamin AIN-93 10.0
L-Cystine 3.0
Choline 2.5
Butylated hydroxytoluene 0.014
Sunflower oil 70.0

Tryptophan-enriched diet (0.5%)
Saccharose 679.9
Casein 200.0
Gelatin 12.0
Refined peanut oil 50.0
Mix Mineral AIN-93G 40.0
Mix Vitamin AIN-93 6.0
Choline 4.0
L-Methionine 3.0
L-Alanine 0.022
L-Tryptophan 5.0
Vitamin A (Acetate 500.000 UI/g) 0.02
Vitamin D3 (40.000.000 UI/g) 0.00002
Vitamin E (500 UI/g) 0.001
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STATISTICAL ANALYSIS

The weight of the animals was analyzed by 
repeated measures ANOVA, with treatment as 
the independent and the weighing sessions as the 
dependent factor. Fos-ir data was analyzed by 
unpaired Student T-test. A value of P < 0.05 was 
considered significant.

RESULTS

Table II shows the weight of the animals during 
the treatment period. Repeated measures ANOVA 
showed a significant effect of the weighing sessions 
(F(4,56) = 245.8; P < 0.001), but not a significant 
effect of treatment (F(1,14) = 0.010; P = 0.922) 
or of treatment by weighing session interaction 
(F(4,56) = 0.176; P = 0.950).

Table III shows Fos-ir in the different brain 
regions related to cognition, mood and behavior, 
innervated by serotonin. Unpaired Student T-test 
showed that the group that received the diet 
enriched with tryptophan showed a significantly 
greater number of activated cells when compared 
to the group that received the control diet in the 
following regions: PFC (T(7.03) = -2.49; P = 
0.042) (figure 1a), Acb (T(3.30) = - 3.15; P = 
0.045) (figure 1b), Arc (T(4.83) = -3.41; P = 0.020) 
(figure 1c), Pa (T(5.07) = -2.87; P = 0.035) (figure 
1d), VMH (T(11) = 2.70; P =0.021) (figure 1e), 
DLPAG (T(7.36) = -5.09; P = 0.001) (figure 2a), 
DMPAG (T(7.00) = -3.47; P = 0.010) (figure 2b), 
DR (T(3.36) = -2.92; P = 0.05) (figure 2c), and 
MnR (T(7.40) = -3.42; P = 0.010) (figure 2d).

Table II 
Weight (mean ± SEM) of animals fed with a standard chow diet or a tryptophan-enriched diet.

Treatment Day 1 Day 8 Day 15 Day 22 Day 29
Standard diet 286.25 ± 6.92 323.38 ± 7.25 351.75 ± 8.35 372.88 ± 8.05 388.50 ± 12.29
Tryptophan-enriched diet 283.13 ± 6.24 321.88 ± 6.03 350.50 ± 8.42 370.50 ± 9.19 391.13 ± 11.59

Table III 
Fos-immunoreactivity (mean ± SEM) in different brain areas of animals treated with standard or 

tryptophan-enriched diets for 30 days.
Areas Standard Diet Tryptophan-enriched diet
Prefrontal cortex 23.0 ± 7.5 439.4 ± 167.2*
Accumbens 72.6 ± 20.8 372.3 ± 92.7*
Dentate Gyrus 21.9 ± 4.7 15.3 ± 2.8
CA1 2.3 ± 0.8 17.5 ± 8.7
CA2 17.5 ± 8.7 12.8 ± 6.3
CA3 2.3 ± 0.8 4.6 ± 59.1
Basolateral amygdala 27.6 ± 2.2 92.8 ± 59.2
Lateral amygdala 14.3 ± 8.1 30.6 ± 11.2
Medial amygdala 38.3 ± 11.4 56.8 ± 20.9
Lateral hypothalamus 62.4 ± 10.8 58.8 ± 17.7
Ventromedial hypothalamus 141.1 ± 13.5 67.2 ± 25.2*
Paraventricular hypothalamus 43.0 ± 7.8 106.4 ± 20.7*
Arcuate nucleus 23.3 ± 4.6 74.0 ± 14.1*
Dorsomedial periaqueductal grey 1.6 ± 0.6 247.5 ± 70.9*
Dorsolateral periaqueductal grey 6.5 ± 3.8 128.3 ± 23.6*
Median raphe 84.0 ± 16.1 253.6 ± 46.9*
Dorsal raphe 35.0 ± 8.6 141.0 ± 35.3*
CA: Cornus Ammon. P < 0.05, unpaired Student T-test.
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Figure 1 - Photomicrographs of Fos immunoreactive cells (dark spots) in coronal sections through 
brain regions with significant increases in Fos immunoreactivity in the animals that received the diet 
enriched with tryptophan. (a): prefrontal cortex; (b): nucleus accumbens; (c) arcuate nucleus; (d): 
paraventricular hypothalamus; (e) ventromedial hypothalamus. A, B: Magnification, ×100; C, D, E: 
Magnification, ×200. (*) longitudinal fissure of the brain; (**) lateral ventricle; (***) third ventricle.
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No significant differences were found between 
the two groups in the other regions analyzed (P > 
0.05).

DISCUSSION

The results of the present study showed that 
although treatment with a tryptophan-enriched diet 

did not interfere with the weight of the animals, it 
significantly increased Fos-ir in the PFC, Acb, Pa, 
Arc and VMH, DLPAG and DMPAG and DR and 
MnR.

The PFC is densely interconnected with 
numerous cortical and subcortical structures, 
such as the thalamus and the brainstem (Puig and 

Figure 2 - Photomicrographs of Fos immunoreactive cells (dark spots) 
in coronal sections through brain regions with significant increases in Fos 
immunoreactivity in the animals that received the diet enriched with tryptophan. 
(a): dorsolateral periaqueductal grey; (b): dorsomedial periaqueductal grey; (c) 
dorsal raphe; (d): median raphe. Magnification, ×100. (*) cerebral aqueduct.
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Gulledge 2011, Miller and Cohen 2001, Fuster 
1997, 2001). Previous evidence supports the idea 
that the PFC is related to emotional control (Myers-
Schulz and Koenigs 2012), regulating executive 
tasks of higher order, such as learning, memory, 
categorization, inhibitory control and executive 
flexibility, among others (Puig and Gulledge 2011). 
Also the PFC seems to play a pivotal role in the 
regulation of mood and anxiety-related responses 
(Drevets et al. 2008, Fredericks et al. 2006, 
Milad and Rauch 2006, Price and Drevets 2010). 
Serotonergic neurons of the DR and MnR send 
axons to different subregions of the PFC such as 
the cingulate, prelimbic and infralimbic cortices 
(Groenewegen and Uylings 2000). Thus, serotonin 
seems to play an important role in the modulation 
of PFC activity (Puig and Gulledge 2011, Puig et 
al. 2005).

According to in vitro studies performed with 
rat brain slices, PFC pyramidal neurons co-express 
serotonin 1A and 2A receptors (Puig and Gulledge 
2011). It is thus possible that the increases in Fos-
ir in the PFC caused by tryptophan overload are 
related to the activation of serotonin receptors in 
PFC neurons. This may be one of the mechanisms 
by which the supplementation of tryptophan in 
clinical trials alters mood, cognition and behavior 
(Puig and Gulledge 2011, Miller and Cohen 2001, 
Fuster 1997, 2001).

It is also well known that the PFC sends 
important inhibitory projections to the amygdala, 
reducing fear responses and amygdala outputs 
(Akirav and Maroun 2007). It has been shown, 
for instance, that stimulation of the medial PFC 
decreases the firing of central amygdala cells that 
respond to conditioned stimuli when animals are 
recalling extinction of a fear conditioned task 
(Milad and Quirk 2002). Additionally, PFC lesions 
seem to increase the resistance to fear extinction. 

Taking this evidence into account, it has been 
proposed that the connections between the PFC and 
the amygdala allow the modification of emotional 

behavior in the face of environmental changes 
(Akirav and Maroun 2007). The malfunctioning 
of this inhibitory neurocircuitry could therefore 
underlie one’s inability to regulate emotions, i.e. 
fear/anxiety. The activation of the PFC observed 
in the present study might also explain why none 
of the amygdala nuclei investigated (the medial, 
the lateral and the basolateral amygdala) showed 
increased Fos-ir. Another possible explanation, 
however, for the absence of increases in Fos-ir 
in regions related to the regulation of mood and 
stress/anxiety (such as the amygdala and the 
hippocampus) might be related to the fact that in the 
present study the animals were not confronted with 
aversive stimuli or any other kind of behavioral 
challenge.

The Acb also receives projections from the 
PFC (Del Arco and Mora 2008). This circuitry 
seems to regulate in particular the release of 
dopamine in this brain area, and has been proposed 
to function as a pathway through which anhedonia, 
a core symptom of depression, is installed 
(Heller et al. 2009). Previous studies have shown 
that depressed individuals or those with trait-
like anhedonia display a lack of increase in Acb 
activity when presented with pleasurable stimuli 
(Epstein et al. 2006). Also, a magnetic resonance 
imaging study performed with depressed and 
healthy volunteers (Heller et al. 2009) showed 
that: 1) patients presented an inability to sustain 
Acb activity when asked to up-regulate positive 
effects; 2) deficits in sustaining activity in the Acb 
were specific to positive emotions (and not related 
to negative stimuli); 3) patients who failed to 
sustain Acb activity reported less positive emotions 
(in other words, anhedonia); 4) and, importantly, 
difficulties in sustaining Acb were related to 
reduced PFC connectivity. In this sense, it has 
been suggested that PFC neuronal activity could 
be associated with both anxiety and depression, 
depending on the neurocircuitry analyzed. In 
fact, a recent optogenetics study (Vialou et al. 



An Acad Bras Cienc (2017) 89 (1)

280	 LUANA C.A. SILVA et al.

2014) showed that stimulation of corticoamygdala 
projections blocked the anxiogenic-like effects of 
cholecystokinin (CCK) administration into the 
PFC of mice, without altering depression-related 
social defeat behaviors. Conversely, stimulation of 
PFC-Acb projections reversed CCK-induced social 
avoidance and sucrose preference deficits, without 
altering the anxiogenic-like effects induced by 
CCK administration. Together, these results seem to 
suggest that activation of the PFC could be related 
to a decrease in anxiety (by diminishing amygdalar 
activity) and to a decrease in depression-related 
symptoms (by increasing Acb activity).

Another region that showed increases in Fos-
ir in the present study was the periaqueductal grey 
(PAG). This brainstem structure is divided along its 
rostro-caudal axis into four columns: the DMPAG, 
the DLPAG, the lateral and the ventrolateral columns 
(Moreira and Guimarães 2005). The dorsal columns 
of the PAG are particularly involved in fear/panic-
related behaviors. In fact, it has been proposed that 
serotonin plays a panicolytic-like role by activating 
serotonin 1A and 2A receptors in the dorsal PAG 
(Graeff 2002). It is thus interesting that in the present 
study tryptophan overload significantly increased 
the number of neurons activated in the DMPAG 
and DLPAG columns. Since it has been previously 
shown that tryptophan depletion increases anxiety 
and panic, both in volunteers (Klassen et al. 1998) 
and in panic disorder patients (Miller et al. 2000), 
it is possible that tryptophan overload leads to a 
decrease in panic-related symptoms by activating 
serotonin neurons in the dorsal PAG. Nevertheless, 
this proposition needs to be better investigated. 

The DR and the MnR are the main raphe nuclei 
that send serotonergic projections to the regions de-
scribed above (Azmitia 2001). Around two-thirds 
of all neurons in the rat DR are serotonergic (Mol-
liver 1987, Jacobs and Azmitia 1992). In the pres-
ent study, both the DR and the MnR also showed 
increases in Fos-ir after tryptophan overload. This 
effect is probably due to an increase in serotonin 

synthesis. A previous study showed that 50 mg/day 
of tryptophan led to increases in the levels of 5-hy-
droxyindoleacetic acid, a metabolite of serotonin, 
in the rat DR (Hayashi et al. 2006). According to a 
hypothesis proposed by Deakin and Graeff (1991) 
the medial forebrain bundle that originates in the 
DR facilitates avoidance behaviors that occur in re-
sponse to potential or distal threat, by releasing se-
rotonin in forebrain structures, an anxiogenic-like 
effect. On the other hand, and as previously men-
tioned, by acting in the dorsal PAG, serotonin from 
the DR would inhibit panic-related reactions. The 
authors also suggest that the pathway connecting 
the MnR to the hippocampus promotes resistance 
to chronic stress, and in this sense would be impli-
cated in mood modulation, and in particular in the 
pathophysiology of depression (Graeff et al. 1996).

On the other hand, it is also important to point 
out that neurons within the regions analyzed are 
not exclusively involved in cognition and mood/
anxiety, but also in many other physiological 
processes such as thermo- and pain-regulation, 
cardiorespiratory function, locomotor activity and 
food intake (Jacobs and Fornal 1993, Rossi et al. 
1994, Behbehani 1995, Simpson et al. 2008, Hale 
et al. 2012). Therefore, increases in Fos-ir may be 
related to changes in other regulatory mechanisms, 
not necessarily related to the therapeutic effects 
of tryptophan overload in cognition, mood or 
anxiety. For instance, apart from its important role 
in stress regulation (Fekete and Lechan 2014), the 
Pa is also part of a neuronal circuitry that regulates 
food intake. The best-characterized neurochemical 
pathways related to energy consumption and 
food intake are the orexigenic neuropeptide Y/
Agouti-related protein and the anorexigenic pro-
opiomelanocortin/cocaine- and amphetamine-
related transcript neurons in the Arc (Wang et al. 
2015), which also showed increases in Fos-ir in the 
present study. These neurons project from the Arc 
to other key hypothalamic nuclei, such as the Pa 
and the VMH (Kotagale et al. 2014).
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There is an intense projection of serotonergic 
fibers from the raphe nuclei (activated by 
tryptophan supplementation) to the Arc and Pa. 
There is also significant expression of serotonin 
2A receptors in the Pa and serotonin 1B and 
2C receptors in the Arc (Gundlah et al. 1999). 
Activation of serotonin 2C receptors stimulates 
ARC pro-opiomelanocortin neurons that express 
the precursor peptide α-melanocortin stimulating 
hormone (thus reducing food intake). On the other 
hand, activation of serotonin 1B receptors in the 
Arc inhibits neuronal activity of neurons that 
express neuropeptide Y/Agouti-related protein 
(increasing food intake) and reduces post-synaptic 
inhibitory signals on neurons expressing the 
anorexigenic pro-opiomelanocortin (Heisler et 
al. 2002, 2006). This control of the melanocortin 
system may represent an important mechanism 
by which serotonin reduces food intake. Such a 
mechanism may be evidenced by the increased 
activation of these nuclei, suggesting that treatment 
with tryptophan can have a functional impact either 
by the increased production of serotonin or by the 
stimulation of serotonergic receptors in different 
brain regions. Pharmacological experiments also 
show that serotonin stimulates neurons in the VMH 
to promote satiety (Jia et al. 2010). The VMH 
receives projections from Arc neurons that express 
the neuropeptide Y/Agouti-related protein and the 
α-melanocortin stimulating hormone. Serotonin 
modulates this process through its release in the 
core region of the Arc. Therefore, the activation of 
tryptophan in the VMH can also be attributed to 
an increased production and release of serotonin 
promoted by the ingestion of tryptophan.

In summary, our results show, to our knowledge 
for the first time, the effects of tryptophan overload in 
the activation of different brain areas. The increases 
in neuronal activity promoted by tryptophan intake 
in supplemented animals highlight the important 
modulatory role that nutrients can exert on the 
Central Nervous System and emphasize the need 

for further studies to assess the effects of diet 
compositions on specific brain circuits.
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