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1 Introduction

The purpose of constructing a quantum fermionic field whose main output is to be neutral

with respect to gauge interactions may indeed be faced as a welcome branch of investigation.

The first approach in this way resulted in a bottom-up formulation leading to a spin 1/2 field

endowed with mass dimension one [1, 2]. Since its first appearance in the literature, these

spinor fields has been explored in many areas, as accelerator physics [3–5], cosmology [6–17]

and mathematically inclined areas as well [18–20].

In the early days of mass dimension one spinors, the theory was presented in such a way

that a breaking Lorentz term taken part in the spin sums. As a net result the associated

quantum field was non-local and a there was preferred axis of symmetry. After all, the

theory was shown to be invariant under SIM(2) and HOM(2) transformations [21], being

then a typical theory carrying the very special relativity symmetries [22]. Quite recently,

important advances the spinor dual theory has opened the possibility of circumvent the

Weinberg no-go theorem, proposing a spinor field of spin 1/2 endowed with mass dimension

one, local, neutral with respect to gauge interactions, and whose theory respect Lorentz

symmetries [23–25]. We should bring back to the scene the canonical Wigner work on

the irreducible representations of the Poincaré group [26]. By Poincaré group, as usual,

it is understood the semi-simple extension of the orthochronous proper Lorentz group

encompassing translations. In investigating the irrep’s for this case, no particle as a fermion

with canonical mass dimension one (i.e. fermions with bosonic traces, in a manner of

speaking) is found.
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The situation is different, however, when discrete symmetries are taken into account, i.

e., when not only the orthochronous proper group is considered. This point was also ana-

lyzed by Wigner, in a less known paper [27]. Interestingly enough, Wigner found fermionic

irrep’s whose behavior under1 C,P and T is exactly what is expected for bosonic (quan-

tum of) fields. For concreteness, while conventional wisdom stay that fermions belonging

to the standard model (quarks and leptons) obey T 2 = −1 ((CPT )2 = −1) and bosons

T 2 = +1 ((CPT )2 = +1), Wigner shown that, in the very realm of full Poincaré sym-

metries, it is possible to have T 2 = +1 for fermions (leading also to (CPT )2 = +1) for

fermions. It turns out that the field taken into account in this work performs a realization

of the (indeed odd) aforementioned fermionic representation, from where we can adduce

its “bosonical character”.

In this work we compute the one-loop effective lagrangian for such a spinor field and

study its cosmological consequences. The idea is to take advantage of the background-field

method developed by DeWitt and Schwinger [28, 29], applying it to a well behaved curved

spacetime by means of the coincidence limit in which momentum space techniques may

be used. By studying the effective lagrangian, a time dependent cosmological constant

can be identified. A cosmological setup as such can be traced back as a quantum field

theory requirement [30–35]. Most relevant to the present discussion is that a dynamical

cosmological constant may provide an adequate framework to seed light on the cosmic

expansion, see for instance [36] (and references therein). Usually, the necessary specific

behavior of the cosmological constant is believed to be a consequence of a given quantum

effect of the universe primordial stages [37–39]. The mechanism presented in this paper is

appropriate to describe the cosmological constant behavior since inflationary stages until its

current value. The finite temperature quantum corrections were also considered at the end,

including a possible cosmological application for recent times, when a smooth evolution of

the background can be supposed.

The paper is organized as follows: the next section is reserved for an overview on

the formalism endowed to built the one-loop correction effective lagrangian. Section III is

devoted to the one-loop corrections. In section IV we explore some interesting cosmological

consequences in two relevant limits. Section V explores the finite temperature effects and

its cosmological consequences. In the last section we conclude.

2 A short review on the effective lagrangian formalism

The method we shall apply to find the mass dimension one fermionic field effective la-

grangian was discussed in many papers over the years [40–44]. In this section we shall

illustrate it by means of a scalar field in a curved spacetime. The lagrangian reads

L = −1

2
φ(� +m2 + ξR)φ, (2.1)

being � the Laplace-Beltrami operator, R the scalar of curvature and ξ = 1
4

(d−2)
(d−1) the

conformal coefficient. In order to evaluate the effective lagrangian, the background-field

1Being C, P and T the usual charge conjugation, parity and time reversal operators, respectively.
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method should be implemented [28]. Therefore, we split the quantum field excitation from

the background (classic) field as

φ→ φ+ h, (2.2)

where h stands for the quantum field fluctuation and φ is the classical background [40]. It

is straightforward to see that eq.(2.1) can be written as

L = −1

2
h(� + α2)h, (2.3)

where α2 ≡ m2 + ξR is the so-called effective mass. Consequently, the lagrangian induced

by one-loop effects, say L(1), is given by the functional integral over the quantum fields

exp

(
i

~

∫
dxL(1)

)
= N

∫
dh exp

(
i

~

∫
dxL

)
, (2.4)

where N is just a normalization factor.

Differentiating both sides of eq.(2.4) with respect to α2, we have

∂L(1)

∂α2
= −1

2

∫
h(x)h(x′) exp[(i/~)

∫
dxL])dh∫

exp[(i/~)
∫
dxL]dh

(2.5)

= lim
x→x′

−1

2
〈h(x)h(x′)〉, (2.6)

and therefore

∂L(1)

∂α2
= lim

x→x′
− ~

2i
G(x− x′), (2.7)

where G(x− x′) is the Green’s function that satisfies the equation

(� + α2)G(x− x′) = (g)−1/2δ(x− x′). (2.8)

Hereupon, the one-loop effective lagrangian is obtained after integrating the propagator

in α2, in the coincidence limit x → x′. Accordingly, this is the recipe that will form

the foundation to compute one-loop correction for mass-dimension-one fermions, to be

developed and presented here.

3 One-loop corrections to mass dimension one fermionic fields

Consider the mass-dimension-one field lagrangian in a curved space-time scenario

L0 =
1

2

√
−g
[
gµν(∇µ

¬
λ ∇νλ)−m2

¬
λ λ− ξR

¬
λ λ
]
, (3.1)

where
¬
λ and λ stands for the adjoint and usual field, respectively [23]. The metric in a

spatially flat, homogeneous and isotropic Friedmann-Lamâıtre-Robertson-Walker (FLRW)

expanding universe is given by

ds2 = dt2 − a2(t)(dx2 + dy2 + dz2), (3.2)

– 3 –
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hereupon

gµν = diag(1,−a2(t),−a2(t),−a2(t)), (3.3)

and

gµν = diag(1,−1/a2(t),−1/a2(t),−1/a2(t)). (3.4)

The covariant derivatives, ∇µ, are defined as∇µ
¬
λ= ∂µ

¬
λ +

¬
λ Γµ and∇µλ = ∂µλ−Γµλ,

where Γµ denotes the spin connection given by Γ0 = 0 and Γj = − ȧ(t)
2 γ0γj , where γj stands

for the Dirac matrices

γ0(t) = γ0, and γj(t) = − 1

a(t)
γj , (3.5)

where γµ stands for the Dirac matrices in Minkowsky spacetime in the Weyl representation.

Towards to execute the background-field method presented in refs. [40, 41], firstly it

is necessary to split the field in its classical background λ and the quantum fluctuation ψ,

λ→ λ+ψ. The one-loop effects, whose net effect here is encoded in L(1), will be governed

by the functional integral over the fields as in eq.(2.4). Thus, the one-loop contribution to

the effective lagrangian is now related to the Green’s function by

∂L(1)

∂α2
= −1

2
〈ψ̄β(x)ψβ(x′)〉 (3.6)

= lim
x→x′

− ~
2i

TrG(x− x′), (3.7)

with the subtlety of taking the trace over the spinor indexes [40].

The appropriate lagrangian for mass dimension one fermionic fields in the curved

space reads

L =
1

2

√
−g
[
gµν(∇µ

¬
λ ∇νλ)−m2

¬
λ λ− ξR

¬
λ λ
]
, (3.8)

where we are ignoring self-coupling terms. The corresponding equation of motion for the

quantum fluctuation field can be written as(
� + 3H(t)∂0 +

2

a2(t)
Γj∂

j + α2

)
ψ = 0, (3.9)

where the effective mass is given by α2 ≡ m2 + ξR− 3
4H

2(t), being H(t) = ȧ/a the Hubble

parameter. Notice the presence of a first derivative term, coming from the spin sums. Even

with a typical scalar field lagrangian, the spinor character of the field at hand shows up

its idiosyncrasies. In order to proceed to the Green function, it is necessary to perform a

Wick rotation, t→ −it, after what we have(
∂2
E + ∂2

j − 3iH(it)∂0 +
2

a2(it)
Γj∂

j + α2
E

)
GE(−it, ~x,−it′, ~x′)

= (−g)−1/2δ(−it, ~x,−it′, ~x′), (3.10)
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where α2
E is the Euclidean effective mass. As stated in [43], this momentum-space rep-

resentation is well-defined only in a local neighborhood of x − x′ = 0 (or better saying

x → x′). However, for the study of ultraviolet divergences in two-point (like Feynman

propagator) or bivector quantities (as the energy-momentum tensor) when the coincidence

limits are taken, or for the study of systems involving low-order quasilocal variations of

the background field (as we present here), results based on the use of the momentum-space

representation technique are be valid. It would not be sufficient for the consideration of

processes involving rapid changes of the background field, as, for example, pair productions

and topological effects due to phase transition. In these situations, the method based in the

Heat-Kernel [45], which is a similar method providing the same net result [43], would be

more profitable since it allows for perturbative treatments of more complicated situations,

e.g., when higher derivative of the background field is included.

Now, we shall take advantage of the coincidence limit (the quasi-local situation) to use

the momentum space quantization toolkit writing

G(p) =

∫
dxeipµ(x−x′)µGE(−it, ~x,−it′, ~x′), (3.11)

leading, then, to

GE(x→ x′) =

∫
d4p

(2π)4

∫ ∞
0

dse
−
(
p2−3iH(it)p0+ 2i

a2(it)
Γjp

j+α2
E

)
s
. (3.12)

Decomposing the momentum usually as pµ = (p0, |p| sin θ cosφ, |p| sinφ sin θ, |p| cos θ),

we have2

GE(x→ x′) =
−i

(2π)4

∫ ∞
0

dse−α
2
Es

∫ ∞
0

dp0e(−p02
+3iH(it)p0)s

∫ 2π

0
dφ

∫ ∞
0

dp|p|2
∫ 2π

0
dθ sin θe

(
−|p|2+

H(it)
a(it)

γ0γjp
j
)
s
. (3.14)

Even being Gaussian integrals, the matrices present in the exponential makes the inte-

gration a bit laborious. The net result can be written in terms of incomplete gamma

functions [46, 47]

GE(x→ x′) =
−i

32π2

∫ ∞
0

ds

s2
e−α

2
Ese−

9
4
H2(it)s

[
1 +

1√
π
γ

(
1

2
;−9

4
H2(it)s

)]
1, (3.15)

where 1 stands for the 4× 4 identity matrix.The Euclidean effective one-loop lagrangian is

obtained by inserting eq.(3.15) into eq.(3.6), after to switch back from the Euclideanized

2As a remark we emphasize that had we working with the first Elko formulation, whose relativist

symmetries are governed by SIM(2) or HOM(2) Lorentz subgroups, then the equivalent momentum space

Green function would be

GE(x− x′) =
1

(2π)4

∫ ∞
0

ds

∫
d4pe

−(p2−3iH(it)p0+ 2i
a2(it)

Γjp
j+α2

E+Mp)s
, (3.13)

where Mp is the momentum space version of a φ-dependent matrix giving rise to a preferred direction.

This matrix can be expressed in terms of fractional derivatives [44] and its explicit form makes, up to our

knowledge, the above integration unviable.

– 5 –
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form, i. e., writing LE → −L and H2(it)→ −H2(t), we have

L(1) =
~

16π2

∫ ∞
0

ds

s3
e−α

2se
9
4
H(t)2s

[
1 +

1√
π
γ

(
1

2
;

9

4
H2(t)s

)]
. (3.16)

In the sequel we expand the exponential as e−Us =
∑∞

l=0 dls
l, where dl ≡

(−1)l (ξR−3H2(t))l

l! and write the incomplete gamma function as a power series [47]

γ(z, x) =

∞∑
n=0

(−1)n

n!

xz+n

(z + n)
. (3.17)

The one-loop lagrangian can thus be written as

L(1) =
~

16π2

∞∑
l=0

dl

∫ ∞
0

dse−m
2ssl−3

+
1√
π

~
16π2

∞∑
l=0

∞∑
n=0

dl
(−1)n

n!

(
9
4H

2(t)
)

(1/2 + n)

1/2+n∫ ∞
0

dse−m
2ssl+n−5/2. (3.18)

Taking advantage of the complete gamma function we can express the effective lagrangian

as follows

L(1) =
~

16π2

[ ∞∑
l=0

dl(m
2)

2−l
Γ(l − 2) (3.19)

+
1√
π

∞∑
l=0

∞∑
n=0

dl
(−1)n

n!

(
9
4H

2(t)
)

(1/2 + n)

1/2+n

(m2)
3/2−l−n

Γ
(
l + n− 3/2

)]
.

Aiming to study the cosmological consequences of such quantum corrections, we propose to

investigate its impacts on an effective cosmological constant and scalar of curvature [37, 38].

Considering the general gravitational action

Sgrav =

∫
d4xLgrav = − 1

16πG

∫
d4x
√
−g(R+ 2Λ), (3.20)

where Λ is the cosmological constant and G is the gravitational constant and expanding

eq.(3.19) in terms of l and n, neglecting terms of orders higher than H2(t), the total effective

lagrangian given by the sum of eqs.(3.1), (3.19) and (3.20), reads

Leff = L0 +

(
m4~(3− 2γ)

64π2
− 3H2(t)m2(1− γ)~

16π2
+

2H(t)m3~
16π2

− 2Λ

16πG

)√
−g

+

(
m2ξ(1− γ)~

16π2
+

1

16πG

)√
−gR+O(R2) , (3.21)

where γ is the Euler-Mascheroni constant. Notice the appearance of the minimal coupling

dependence in the R correction.
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4 Cosmological implications

In order to study some consequences of the above action into a cosmological context,

we derive the FRW equations by means of its Lagrangian formulation, which basically

consists in introducing a lapse function N(t) into the metric (3.2) as ds2 = N2(t)dt2 −
a2(t)(dx2 + dy2 + dz2). The Euler-Lagrange equations obtained by variations of L with

respect to N(t) and a(t) will furnish the two Friedmann equations, and at the end we make

N(t) = 1. We assume that the spinorial field corresponding to the matter content in L0

can be split as λ(x) = φ(t)χ(~x), with χ satisfying the normalization condition
¬
χ χ = 1,

a convenient fact justified in ref. [17]. Moreover, we shall investigate the case in which

the spinor field is homogeneously filling all the universe, so that ∇iχ(~x) = 0, and also the

background evolution is smooth and adiabatic. Such condition is naturally satisfied at late

time evolution of the universe. With these assumptions, the complete Lagrangian in the

presence of the N(t) function is3

Leff = − 1

N

(
3aȧ2

8πG
− 1

2
a3φ̇2 − 3

8
aȧ2φ2 − 3ξ[aȧ2φ2 + 2a2ȧφφ̇] + (1− 2ξ)

3m2(1− γ)~
16π2

aȧ2

)
−Na3

(
1

2
m2φ2 +

Λ

8πG
− m4(3− 2γ)~

64π2

)
+

2m3~
16π2

ȧa2 . (4.1)

The corresponding Friedmann equations are:

H2 =
8πG

3

[
1

2
φ̇2 +

1

2
m2φ2 +

3

8
H2φ2 +

Λ

8πG
− 3ξ[H2φ2 + 2Hφφ̇]

−m
4(3− 2γ)~

64π2
− (1− 2ξ)H2 3m2(1− γ)~

16π2

]
, (4.2)

−2Ḣ − 3H2 = 8πG

[
1

2
φ̇2 − 1

2
m2φ2 − 3

8
H2φ2 − 1

4
Ḣφ2 − 1

2
Hφ̇φ− Λ

8πG

+ξ[3H2φ2 + 4Hφφ̇+ 2Ḣφ2 + 2φ̇2 + 2φφ̈]

+(1− 2ξ)[H2 +
2

3
Ḣ]

3m2(1− γ)~
16π2

]
. (4.3)

Written in this form we recognize the energy density of the field and its quantum

corrections on the right-hand side of (4.2) and the pressure and its quantum corrections

on the right-hand side of (4.3). In the limit ~ → 0 and ξ = 0 we recover the torsion free

equations obtained in [48]. The last term on the right of (4.2) corresponds to the quantum

correction to H2 while the term proportional to m4~ is the correction to the cosmological

constant term. Within the plethora of research possibilities we shall depict two interesting

limits in what follows.

3Tracing back the lapse function presence consequences, it is fairly simple to see that it amounts to be√
−g = N(t)a3(t), ΓµΓµ = − 3

4
ȧ2(t)

N2(t)a2(t)
1 and Γj = − ȧ(t)

2N(t)
γ0γj . We also have R = − 6

N2(t)a(t)

(
ä(t) +

ȧ2(t)

a2(t)
− ȧ(t)Ṅ(t)

N(t)

)
.

– 7 –
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4.1 Limit H ≈ mpl � m � φ

In order to look for possible consequences of the above equations into early universe, where

quantum effects may be relevant, we analyse the first Friedmann equation (4.2) in the limit

H ≈ mpl � m� φ, which corresponds to an universe of about t = H−1 ∼ 10−43s, before

inflation occur. In this limit we have

H2 =
8π

3

[
φ̇2

2m2
pl

+
Λ

8π
− (1− 2ξ)

H2

m2
pl

3m2(1− γ)~
16π2

]
, (4.4)

where we have introduced the Planck mass mpl = 1/
√
G. If the kinetic term is negligible

we see that a positive contribution to the cosmological constant Λ can be obtained if

ξ > 1/2, indicating that even in the absence of a cosmological constant term, i.e. Λ = 0, a

positive contribution proportional to H2 in the last term survives, which can be interpreted

as a cosmological term induced just by quantum effects and could be responsible for the

inflationary phase at early universe stages. As the universe expands and H diminish the

other terms starts to dominate, as the terms proportional to φ.

4.2 Limit φ̇ � Hφ, φ̈ � Hφ̇ and φ ≈ constant

As an application of this spinor field as a candidate to dark energy in late time evolution

of the universe, we suppose it as a nearly constant field (φ ≈ constant) satisfying a slowly

varying condition, φ̇ � Hφ and φ̈ � Hφ̇. Such limit has been studied in a cosmological

context in [48]. The Friedmann equations just reduces to one equation:

H2 =
8π

3m2
pl

Λ(t) , (4.5)

with Λ(t) = A+BH(t)2 and A and B constants given by

A =
m2

pl

8π
Λ +

1

2
m2φ2 − m4(3− 2γ)~

64π2
, B = 3φ2

(
1

8
− ξ
)
− 3(1− 2ξ)

m2(1− γ)~
16π2

. (4.6)

Such behaviour is analogous to models having a time varying cosmological term, which are

motivated by renormalization group to the quantum vacuum energy [49, 50]. Also, analyti-

cal solutions for the Friedmann equation (4.5) have also been obtained for phenomenological

models with time varying cosmic terms [36]. The solution for the scale factor is

a(t) = a0 exp

(
2

3

√
3πA

3m2
pl − 8πB

t

)
, (4.7)

indicating a de Sitter solution for the scale factor, which can indicate an accelerating

solution for late time evolution. By supposing φ and m much smaller than mpl and due to

negative contribution of the quantum correction into A, the net effect in the evolution is

to smooth the growth of the scale factor.

– 8 –
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5 Finite-temperature corrections and its late time cosmological

consequences

The possible extension of the effective lagrangian to encompass finite-temperature effects

can be obtained from the formalism just applied previously. In order to do so, we shall

impose a periodicity condition on the imaginary time y0 in the configuration space Green

function. Then, performing the shift τ → τ + nβ, where β = 1/kBT and kB is the

Boltzmann constant, and summing over n (see [42] and references therein) one is able to

express the propagator as

Gβ(y, y′) =
∞∑

n=−∞
G(x+ nβu, x′), u = (1, 0, 0, 0). (5.1)

Taking advantage of the delta distribution and the Poisson summation formula [42]

∞∑
n−−∞

eip0nβ =
2π

β

∞∑
n=−∞

δ

(
p0 −

2π

β

)
, (5.2)

one obtain as the thermal Green function for the case at hand the expression

G0
β(y, y′) =

−i
8π3/2β

∫ ∞
0

ds
e−α

2
Es

s3/2

∞∑
n=−∞

ep
2
0+3iH(it)p01. (5.3)

Inserting eq.(5.3) into eq.(3.6) we obtain

L(1)
β = − ~

4π3/2β
Γ(−3/2)

∞∑
n=−∞

[
α2 +

(
2πn

β

)2

+ 3H(t)
2πn

β

]3/2

. (5.4)

Aiming to extract some physical information about the correction just presented, we

consider the expression (5.4) at present time. In such a situation the term containing

the Hubble parameter H(t)/β become insignificant when compared to the previous terms.

Therefore we are left with

L(1)
β(0) = − ~

4π3/2β
Γ(−3/2)

∞∑
n=−∞

[
α2 +

(
2πn

β

)2]3/2

, (5.5)

where the subscript (0) denotes the present time context. Looking for a finite quantum

correction, we proceed manipulating the sum using methods of the regularized zeta function

and dimensional regularization. Thus, after some manipulations we are able to write L(1)
β(0)

in terms of zeta function as

L(1)
β(0) =

~
3π2

[
32π4

αβ5
ζ(−3)+

12π2α

β3
ζ(−1)+

α3

β

(
3

4
ζ(0) + 1

)
− 3α5β

32π
ζ(−3)+O(α7β3)

]
, (5.6)

or, in a more direct fashion

L(1)
β(0) =

~
3π2

[
4π4

15αβ5
− π2α

β3
+

5α3

8β
− α5β

1280π
+O(α7β3)

]
, (5.7)

yielding to a finite result.
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In order to maintain the approximation in which the last term of (5.4) is negligible

today, we must impose α ∼ m � H0 ∼ 10−33eV. Also, for recent times, where β0 ≡
1/kBT0 ∼ 104eV−1, with T0 ∼ 2.7K, the first term of (5.7) dominates if α ∼ m �
1/β0 ∼ 10−4eV, which puts an upper limit to the mass of the field in order to have a finite

sum from (5.7). With such approximation, we have the mass of the field constrained to

H0 � m� 1/β0, which corresponds to 10−33eV� m� 10−4eV.

In such limit the quantum correction we are interested is dominated by the first term

of (5.7), which must accompany the potential term of the bare lagrangian, namely the

term m2φ2, which shall corrects the Friedmann equation accordingly. Thus, looking for

the present time slowly varying limit of (4.5), we have the term A corrected to

A′ =
m2

pl

8π
Λ +

1

2
m2φ2 − m4(3− 2γ)~

64π2
+

4π2~
45mβ5

0

. (5.8)

With the upper limit to the mass imposed above and supposing φ ∼ m, the last term

of (5.8) dominates over the second and third one, and additionally A′ � BH2
0 from (4.6),

showing that the quantum correction at finite temperature act exactly like a cosmological

constant term, evolving as

a(t) = a0 exp

(√
32π2~

135m2
plmβ

5
0

t

)
, (5.9)

which could drive the recent phase of acceleration of the universe. The zero temperature

limit corresponds to β0 →∞, which cancels the contribution to accelerated expansion due

to temperature effects. Also, for larger values of the mass m of the field (in the range above)

the expansion is attenuated, showing the effect of the gravitational attraction against the

repulsion. Finally, in order to reproduce the expected value of 10−47GeV−4 for the energy

density of the cosmological constant according to standard ΛCDM model, the mass of the

field must be m ' 10−9eV, in good agreement to the limit range adopted above.

6 Final remarks

In this work we completed the program of deriving the effective lagrangian for a mass-

dimension-one fermionic field in a curved space-time with slowly varying background field

in a quasi-local situation. We also have computed the one-loop corrections in the finite

temperature situation.

More than an academic exercise, we highlight some cosmological applications of the

present study, at least in the cases of smooth and adiabatic background evolution. In the

zero temperature case, we have analyzed two different cases, corresponding to an early

time universe and a late time universe. In the zero temperature limit we have seen that

in the limit H ≈ mpl � m � φ and ξ > 1/2 a positive quantum cosmological term

appears naturally, which may be responsible for the accelerated inflationary expansion

after about t ∼ H−1 ∼ 10−43s, where the quantum effects are to be relevant. For the

late time evolution we studied the limit φ̇ � Hφ, φ̈ � Hφ̇ and φ ≈ constant, which
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corresponds to a model with a time varying cosmological term already studied in [48], but

here with the corresponding quantum correction, whose solution for the scale factor is also

of accelerating type, an exponential growth. A most complete model should, eventually,

also include additional matter components, as radiation and baryonic matter.

In the case of finite temperature corrections, the cosmological scenery studied was

that one corresponding to late time expansion with low temperature limit and also m ∼
φ� H0, leading to an interesting contribution of the temperature correction acting like a

cosmological constant term, and setting a limit to the mass of the field of about 10−9eV in

order to reproduce the value of the standard model. This contribution comes exclusively

from the finite temperature correction.
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