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Abstract

We present here some new identities for generalizations of Fibonacci
and Lucas numbers by combinatorially interpreting these numbers in
terms of numbers of certain tilings of a 1 ×m board. As a consequence,
some new interesting identities involving the ordinaries Fibonacci and Lu-
cas numbers are derived.
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1 Introduction

In [6] the generalized Fibonacci numbers, F (k, n), and generalized Lucas num-
bers, L(k, n), were introduced and it was shown that these numbers satisfy, for
any integers k ≥ 2 and n ≥ 0, the following recurrences:

F (k, n) =

{

n + 1, for n = 0, 1, . . . , k − 1
F (k, n− 1) + F (k, n− k), for n ≥ k

(1)

L(k, n) =

{

L(k, n) = n + 1, for n = 0, 1, . . . , 2k − 1
(k−1)F (k, n−(2k−1))+F (k, n−(k−1)), for n ≥ 2k.

(2)

For n ≥ 0, we have that F (2, n) = Fn, the nth Fibonacci number, and, for
n ≥ 3, L(2, n) = Ln, the nth Lucas number. Table 1 exhibits some values of
F (k, n), L(k, n), Fn, and Ln.

In [6] the numbers F (k, n) and L(k, n) are combinatorially interpreted as
counting k-independent sets of certain finite, undirected, connected, simple
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n 0 1 2 3 4 5 6 7 8 9 10 11

Fn 1 2 3 5 8 13 21 34 55 89 144 233
F (3, n) 1 2 3 4 6 9 13 19 28 41 60 88
F (4, n) 1 2 3 4 5 7 10 14 19 26 36 50
Ln 1 2 3 4 7 11 18 29 47 76 123 199
L(3, n) 1 2 3 4 5 6 10 15 21 31 46 67
L(4, n) 1 2 3 4 5 6 7 8 13 19 26 34

Table 1: Some values of F (k, n), L(k, n), Fn, and Ln

graphs, where a subset A ⊂ V (G) is a k-independent set of the graph G if
for any two vertices u, v ∈ A, dG(u, v) ≥ k. For n ≥ 1, F (k, n) is equal to the
number of k-independent sets in the graph path or order n, Pn, and, for n ≥ 3,
L(k, n) is equal to the number of k-independent sets in the graph cycle on n

vertices, Cn. In [14], the numbers F (k, n) and L(k, n) are interpreted in terms
of the total number of Kp-matching in certain graphs.

Here we combinatorially interpret the numbers F (k, n) and L(k, n) in terms
of numbers of certain tilings of a 1×m board, where m is a positive integer. As
a consequence some new identities are derived for both the generalized and the
ordinaries Fibonacci and Lucas numbers.

Many authors have studied other types of generalizations of the Fibonacci
and Lucas numbers, see for instance [3, 5, 11, 12].

The technique of counting via tilings in different contexts, like in [1, 2, 4,
7, 8, 9, 10]. In [2], for instance, combinatorial interpretations of the Fibonacci
and Lucas numbers in terms of certain tilings are used to obtain combinatorial
proofs for many identities involving these numbers. Due to the relations (1)
and (2), the kind of tilings we employ here are different from the ones seen until
now.

In [13], seven identities involving the numbers F (k, n) and L(k, n) are pre-
sented. From these identities, when one takes k = 2, only known identities
involving ordinaries Fibonacci and Lucas numbers are found. The main focus
of this paper is to exhibit some new identities, expanding the list of identities in
[13], which can be useful for counting k-independent sets in graphs, and provid-
ing, when k = 2, some new interesting identities involving the usual Fibonacci
and Lucas numbers.

2 Combinatorial interpretations of F (k, n) and

L(k, n)

Given integers k ≥ 2 and n ≥ 0, we consider tilings of a 1× (n+ 1) board using
1× 1 white or black squares and 1× k gray rectangles such that there is exactly
one black square that appears in one of the first k positions. Hence, if n < k,
there is exactly one black square and all other positions are occupied by white
squares. Let f(k, n) be the number of such tilings. Figure 1 shows an example
for k = 3 and n = 0, 1, . . . , 6.

It is easy to see that for n < k, f(k, n) = n+1, since there are n+1 places to
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f(3, 0) = 1

f(3, 1) = 2

f(3, 2) = 3

f(3, 3) = 4

f(3, 4) = 6

f(3, 5) = 9

f(3, 6) = 13

Figure 1: The tilings for k = 3 and n = 0, 1, . . . , 6

insert the black square, leaving the remaining n spaces filled with white squares.
If n ≥ k, each tiling counted by f(k, n) ends with either a white square or a
gray rectangle (never a black square). By removing this last piece we are left
with tilings counted either by f(k, n − 1) or by f(k, n − k), according to this
piece being white or gray, respectively. Then, f(k, n) = f(k, n−1)+f(k, n−k).

Therefore, as f(k, n) satisfies the same recurrence as F (k, n) and they share
the same initial conditions, we have the following combinatorial interpretation
for F (k, n):

F (k, n) = f(k, n),

i.e., F (k, n) is the number of tilings of a 1 × (n + 1) board with 1 × 1 black
or white squares and 1 × k gray rectangles such that there is exactly one black
square that appears in one of the first k positions.

As mentioned before, we have F (2, n) = Fn, the nth Fibonacci number.
Hence, when k = 2, we have a combinatorial interpretation for the Fibonacci
numbers.

From (2) and the above interpretation of F (k, n), we can combinatorially
interpret L(k, n) as being the number of tilings of a 1 × (n + 1) board with
1× 1 white or black squares and 1× k gray rectangles such that there is exactly
one black square that appears in one of the first k positions with an additional
condition:

• if k ≤ n < 2k, there are at least n − k + 1 pieces after the black square
and at least n− k of them are white squares.
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• if n ≥ 2k, there are at least k − 1 white squares among the last k pieces.

In fact, if n ≥ 2k, those tilings ending with k − 1 white squares are counted
by F (k, n − (k − 1)) while those whose last k pieces contain exactly one gray
rectangle between two of, or after all, the k − 1 white squares are counted by
(k − 1)F (k, n− k − (k − 1)) = (k − 1)F (k, n− (2k − 1)) since there are (k − 1)
positions to place the gray piece. When n < 2k, it is easy to see that the number
of such tilings is n + 1.

We close this section by pointing out that when k = 2, the combinatorial
interpretation we obtain for the Lucas numbers (L(2, n) = Ln) is quite different
from that one presented in Chapter 2 of [2].

3 Main results

In this section we present new identities that arise from the combinatorial in-
terpretations obtained in Section 2. In what follows, we call type A and type B

the tilings counted by F (k, n) and L(k, n), respectively.

Theorem 1. Let k ≥ 2 and n ≥ k be integers. Then

F (k, n + k) = F (k, n) +

k−1
∑

i=0

F (k, n− i). (3)

Proof. The number of tilings enumerated by F (k, n+ k) ending with k or more
white squares is equal to F (k, n + k − k) = F (k, n). Indeed, removing k of the
last white squares we are left with tilings counted by F (k, n). The remaining
tilings end with i white squares, where 0 ≤ i ≤ k − 1. Removing these i white
squares together with the last rectangle, we see that the number of such tilings
is equal to F (k, n+k−(k+i)) = F (k, n−i). Hence, adding these numbers we
obtain (3).

Adding F (k, n− k) to both sides of (3) we get F (k, n + k) + F (k, n− k) =

F (k, n− k) + F (k, n) +
∑k−1

i=0 F (k, n− i). Now, by taking k = 2, it follows that

Fn+2 + Fn−2 = Fn−2 + Fn + Fn + Fn−1 = 3Fn,

which is Identity 7 of [2].

Theorem 2. Let k ≥ 2 and n ≥ 2k be integers. Then

F (k, n + 1 − k) = k +

n+1−2k
∑

i=0

F (k, n + 1 − 2k − i). (4)

Proof. Among the tilings counted by F (k, n+1−k), there are k of them with no
gray rectangle. We count the remaining tilings according to the position of the
rightmost rectangle. By removing this rectangle and the i white squares to its
right, we are left with tilings counted by F (k, n+1−k−k−i) = F (k, n+1−2k−i).
Summing over all possible values of i (0≤ i≤n+1−2k), we obtain (4).
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Taking k = 2, we have the following interesting identity for the Fibonacci
numbers.

Corollary 3. For n ≥ 4, we have

Fn−1 = 2 + Fn−3 + Fn−4 + · · · + F1 + F0

= 2 +
n−3
∑

i=0

Fi.

Theorem 4. Let k ≥ 2 and n ≥ 2k be integers. Then

F (k, n) = k + k(n + 1 − k) −
k(k − 1)

2

+

n−2k
∑

j=0

n−2k−j
∑

i=0

F (k, n− 2k − i− j).

Proof. It is clear that there are k type A tilings of a 1 × (n + 1) board that do
not have gray rectangles. The number of tilings with only one gray rectangle is

k(n + 1 − k) − k(k−1)
2 . In fact, counting the number of tilings according to the

position, i+1, of the black square, we have
∑k−1

i=0 (n+1−k−i) = k(n+1−k)−k(k−1)
2

such tilings.
Now, we count the remaining type A tilings enumerated by F (k, n) con-

sidering the number of white squares between the last two gray rectangles.
There are F (k, n − 2k − i − j) tilings ending with j white squares and having
i, i = 0, 1, . . . , n − 2k − j, white squares between the last two gray rectangles.
The maximum value of j is n − 2k since there are at least two gray rectangles
and, clearly, the values of i depend on the number j.

Therefore, summing all these numbers we obtain F (k, n), since we have
counted all possible type A tilings of a 1 × (n + 1) board.

When k = 2 we obtain the following identity for the Fibonacci numbers.

Corollary 5. For n ≥ 4, we have

Fn = 2n− 1 + Fn−4 + 2Fn−5 + 3Fn−6 + · · ·

+(n− 4)F1 + (n− 3)F0

= 2n− 1 +

n−4
∑

i=0

(i + 1)Fn−4−i.

We call tail of a type B tiling the last sequence of k pieces, if a gray rectangle
appears, or the last sequence of k− 1 pieces, if the tiling ends with k − 1 white
squares. Figure 2 shows all possible tails when k = 3.

The next result provides an interesting recursion for the generalized Lucas
numbers and, as particular cases, two recursion for the Lucas numbers, one in
terms of Fibonacci numbers and the other involving only Lucas numbers.
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tail of size k − 1: · · · · · ·

tails of size 2k − 1: · · · · · ·

· · · · · ·

...
· · · · · ·

Figure 2: The possible tails for k = 3

Theorem 6. Let k ≥ 2 and n ≥ 3k − 1 be integers. Then

L(k, n) = k2 +

n+1−2k
∑

i=0

F (k, n− 2k + 1 − i)

+
n+1−3k
∑

i=0

(k − 1)F (k, n− 3k + 1 − i).

(5)

Proof. It is easy to see that there are k+ k(k− 1) type B tilings of a 1× (n+ 1)
board that do not have a gray rectangle before the tail: k having tails of size
k− 1 and k(k− 1) having tails of size 2k− 1, since for each position of the black
square we have k − 1 positions to place the gray rectangle in the tail.

In the remaining cases, there is at least one gray rectangle before the tail. We
count the number of such tiling by considering the sequence of i white squares
between the black square and the leftmost rectangle, where i ≤ n+1− (k−1)−
1−k = n−2k+1 if the tail is of size k−1 and i ≤ n+1−(2k−1)−1−k = n−3k+1
if the tail is of size 2k − 1. Hence, by removing this sequence we are left either
with type A tilings of a 1× (n− 2k + 1− i) board, if the tails have size k− 1 or
with type A tilings of a 1 × (n− 3k + 1 − i) board, if the tails have size 2k− 1.
Summing all possible tilings in each case we obtain 5, where the factor (k − 1)
in the left sum is due to the number of possibilities for placing the gray piece in
the tails of size 2k − 1.

Corollary 7. For n ≥ 5, we have

Ln = 4 + Fn−3 + Fn−4 + 2

n−5
∑

i=0

Fn−5−i (6)

and

Ln = 7 + Ln−2 + Ln−3 + · · · + L4 + L3 = 7 +

n−5
∑

i=0

Ln−2−i. (7)

Proof. Equation (6) follows immediately from (5) by taking k = 2. By the
recursive definition of L(k, n) given in 2, we have F (k, n − 2k + 1 − i) + (k −

1)F (k, n−3k+1−i)=F (k, (n−k−i)−(k−1))+F (k, (n−k−i)−(2k−1))=L(k, n−k−i).
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Then, L(k, n)=k+k(k−1)+F (k, 0)+F (k, 1)+· · ·+F (k, k−1)+
n−3k+1
∑

i=0

L(k, n−k−i).

Now, taking k = 2, we obtain (7).

Analogous reasoning produces the following identity relating the generalized
Lucas numbers and the generalized Fibonacci numbers.

Theorem 8. Let k ≥ 2 and n ≥ 4k − 1 be integers. Then

L(k, n) = k2(n+ 4)− 3k3
−

k2(k−1)
2

+
n+1−3k∑

j=0

n+1−3k−j∑

i=0

F (k, n− 3k + 1− i− j)

+
n+1−4k∑

j=0

n+1−4k−j∑

i=0

(k−1)F (k, n−4k+1−i−j).

Proof. We count the number, L(k, n), of type B tilings of a 1 × (n + 1) board,
according to the number of gray rectangles before the tails. Clearly there are
k + k(k− 1) such tilings having no rectangle before the tail: k with tails of size
k − 1 and k(k − 1) with tails of size 2k − 1, since for each k possible positions
for the black square there are k− 1 places for the gray rectangle inside the tail.

Now consider those tilings having one gray rectangle before the tail. If the
tail is of size k − 1, for each position i + 1, i = 0, 1, . . . , k − 1, of the black
square we have n + 1 − (k − 1) − (i + 1) − k + 1 = n − 2k + 2 − i possible
places to insert the gray piece. Hence, the total number of tilings in this case is
∑k−1

i=0 (n−2k+2−i) = k(n−2k+2)− k(k−1)
2 . On the other hand, if the tail is of

size 2k−1, for each position i+1 of the black square we have k−1 for the rectangle
in the tail and we are left with n+1−(2k−1)−(i+1)−k+1 = n−3k+2−i possible
places to insert the gray piece before the tail. The total number of tilings in this

last case is
∑k−1

i=0 (k− 1)(n− 3k + 2− i) = k(k− 1)(n− 3k + 2)− (k− 1)k(k−1)
2 .

Summing all the numbers obtained until now, we have k2(n + 4) − 3k3 −
k2(k−1)

2 type B tilings of a 1 × (n + 1) board having zero or one gray rectangle
before the tail.

For the remaining cases, there are at least two gray rectangles before the
tails. If we denote by i the number of white squares between the last two
gray pieces before the tail and by j the number of white squares between the
rightmost rectangle and the tail, we have two cases:
Case 1: tail of size k−1. In this case, i, j ≤ n+1− (k−1)−1−2k = n−3k+1
and for each i and j fixed the total number of tilings is F (k, n− 3k + 1 − i− j.

Then,
∑n−3k+1

j=0

∑n−3k+1−j

i=0 F (k, n− 3k + 1 − i− j) counts the number of type
B tilings of a 1 × (n + 1) board having tail of size k − 1 and a sequence of a
rectangle, i white squares, a rectangle, and j white squares before the tail.
Case 2: tail of size 2k−1. In this case, i, j ≤ n+1−(2k−1)−1−2k = n−4k+1
and for each i and j fixed the total number of tilings is (k− 1)F (k, n− 4k+ 1−
i − j, since there are k − 1 possible places for the gray piece in the tail. Then,
∑n−4k+1

j=0

∑n−4k+1−j

i=0 (k − 1)F (k, n− 4k + 1 − i− j) counts the number of type

7



B tilings of a 1 × (n + 1) board having tail of size 2k − 1 and a sequence of a
rectangle, i white squares, a rectangle, and j white squares before the tail.

Now, by taking k = 2, we have the following interesting identity involving
the Lucas and Fibonacci numbers.

Corollary 9. For n ≥ 7, we have

Ln = 4n− 10 + Fn−5 + 2Fn−6 + 4Fn−7 + 6Fn−8+
+ · · · + (2n− 12)F1 + (2n− 10)F0

= 4n− 10 + Fn−5 +

n−5
∑

i=1

(2i)Fn−5−i

4 Concluding remarks

All identities in the last section can be proved by induction. However the
combinatorial proofs explicit the ideas that lead to the identities and, we hope,
it can inspire the discovery of new ones.

The identities involving the numbers F (k, n) and L(k, n), presented in [13],
can be easily proved through the combinatorial interpretations given in Section
2.
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