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Editorial on the Research Topic

Macrophages Role in Integrating Tissue Signals and Biological Processes in Chronic 
Inflammation and Fibrosis

Macrophages comprehend a population with wide range phenotypes and roles in homeostasis main-
tenance and diseases. Technology improvements enable researchers to track different macrophage 
populations in different tissues and situations and hypothesize on their role in promoting inflam-
mation or maintaining tissue homeostasis. In the present editorial, we present a concise series of 
discussions on the role of these cells, its response to the microenvironment, and effects on other cells 
during tissue injury and repair. We also discuss the themes proposed by the authors on macrophage 
plasticity during fibrotic processes in the context of the topic subject. M1 macrophages are consid-
ered foe cells for the pro-fibrotic process once they are associated with pro-inflammatory functions 
(Braga et al.), and an exacerbation of tissue inflammation initiates the pro-fibrotic process (1). On the 
other hand, M2 macrophages have anti-inflammatory properties due to its ability to secrete IL-10, 
arginase, and TGF-β (2). However, when the insult is persistent, excessive M2 macrophage activation 
leads to continuous TGF-β production, promoting increased extracellular matrix deposition (3).  
In this scenario, despite its friendly behavior against the exacerbated fibrosis development, M2 
becomes foe cells in the tissue repairing. Macrophages are also able to influence innate lymphoid 
cells (ILCs) during the fibrotic process (Hams et al.). Repetitive cycles of epithelial damage and repair 
are able to generate fibrosis through the release DAMPs and alarmins by epithelium (4). Among the 
alarmins, IL25, IL33, and TSLP are able to polarize ILCs to the ILC2 phenotype. ILC2 can enhance 
Th2 responses and collagen deposition (5, 6), either indirectly via IL13-mediated dendritic cell prim-
ing or directly through CD4-T cells interaction (via MHCII-CD4) (7, 8). In addition, ILC2 produces 
IL4 and IL5 and induces tissue collagen deposition in pulmonary and hepatic models of fibrotic 
diseases (9, 10). In turn, deficiency of IL25 and IL33 or their receptors, IL17RB and ST2, respectively, 
leads to decreased collagen deposition (5, 9). However, the apparent redundancy of these alarmins 
may be due to different ligand and receptor expression at different anatomical sites (11).

ILC2s interact with macrophages on the improvement of obesity-induced insulin resistance 
(Castoldi et al.). Different subtypes of macrophages are related to the maintenance of adipose tissue 
(AT) homeostasis during the lean state, obesity, and insulin resistance (Castoldi et al.). It has been 
known that the microenvironment in a lean AT is composed of macrophages subtypes in a ratio of 
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4:1 M2:M1 (12). To maintain AT homeostasis in this lipid-rich 
microenvironment, macrophages present increased adiposity (13) 
and increased expression of fatty acids transporters (13). However, 
obesity status triggers the accumulation of M1 macrophages, 
although it was reported that the secretion of pro-inflammatory 
cytokines in AT is dependent on peroxisome proliferator-activated 
receptor gamma (PPAR-γ), an M2 marker (14). Inflammatory fac-
tors present in obesity context lead to insulin resistance, character-
ized by decreased phosphorylation of insulin receptor substrate-1 
and -2, decreased phosphorylation of Akt (15, 16) and activation 
of the mammalian target of rapamycin signaling pathway (17), a 
sensor of nutrients able to alter the cellular metabolism. In obesity, 
nutrient sensing by mTOR regulates the switch of ATMs from 
M2 to M1 (18). However, obesity can be controlled through the 
production of large amounts of anti-inflammatory cytokines and 
the induction of uncoupling protein 1 expression in AT, a process 
called “beiging” or “browning” (19). In line with the relationship 
between AT and inflammation, it has been reported high levels 
of inflammatory mediators in the context of cachexia (de Matos-
Neto et al.), a health problem present especially in cancer patients 
(20). Weight loss, the most visible feature of cachexia, is accom-
panied by increased production of CCL2, CCL3, TNFα, and IL1β 
and reduced relative numbers of M2 macrophages in the tumor 
environment (de Matos-Neto et al.).

Macrophages directly influence the metabolic status of the 
organism (21). Different sterile inflammation, in special type 1 dia-
betes (T1D) can be triggered by leukotriene B4 (LTB4) (Filgueiras 
et al.). Filgueiras et al. wonder if LTB4 could be targeted in new 
therapy strategies for treating T1D once LTB4 could either increase 
pro-IL1β expression or potentiate the IL1R activation by modulat-
ing MYD88. Previously, the same group has demonstrated that low 
insulin concentrations are able to induce LTB4 production, which 
triggers systemic inflammation through MyD88 and its transcrip-
tional effector STAT-1 (signal transducer and activator of tran-
scription 1) (22). On the other hand, insulin-treated mice showed 
less LTB4 in the blood and reduced Myd88 and Stat1 expression in 
macrophages. In addition, diabetic mice lacking 5-lipoxygenase or 
the receptor for LTB4 produced less pro-inflammatory cytokines 
(22). Mitochondrial DNA (mDNA) derived from diabetic mice is 
also implicated in the activation of NLRP3 and IL1β in the context 
of T1D (Carlos et al.). It has been known that NLRP3 deficiency 
plays a protective role against T1D (23) and that polymorphisms in 
NLRP3 are associated with T1D (24), however, the precise mecha-
nisms by which NLRP3 is triggered in the context of T1D was 
poorly explored. Besides demonstrating the importance of NLRP3 
for the development of T1D, Carlos et al. also took advantage of a 
sub dosage model of disease that is not able to induce T1D, unless 
mDNA was given concomitantly with streptozotocin. However, 
it is still puzzling the fact that only mDNA from diabetic mice 
activates the NLRP3 inflammasome.

Besides homeostasis-altering compounds, exogenous mol-
ecules can also alter the macrophage status of activation (25). 
Crystalline silica reduces the activation of macrophages by reduc-
ing TLR2 expression (Beamer et al.). Previous studies established 
that the scavenger receptor CD204 is important for the binding/
uptake of silica (26, 27). It has been also demonstrated that 
silica crystals activate NLRP3 inflammasome and induce IL1β 

production (28), a mechanism dependent of the first signal 
triggered by the TLR4 agonist, LPS. Beamer et al. demonstrated, 
on the other hand, that silica crystals leads to less IL1β produc-
tion after Pam3CSK4 and Pam2CSK4 stimulus, lipopeptides 
recognized by the TLR2/1 and TLR2/6 heterodimer, respectively 
(Beamer et al.). Tissue-resident intestinal macrophages can also 
contribute to the gut homeostasis by eliminating invading patho-
gens without inducing a robust inflammatory response (Kühl 
et al.). Bone marrow-derived monocytes are the precursor cells 
of tissue-resident intestinal macrophages (29) and in the context 
of ulcerative colitis (UC) and Crohn’s diseases (CD), increased 
numbers of M1 macrophages are observed despite monocyte 
infiltration. In addition, lesions of UC, but not CD, are character-
ized by impaired bacterial clearance, formation of granulomas, 
inflamed mesenteric fat tissue, and pronounced fibrosis.

The prevention of damage that would be caused by mac-
rophage prolonged activation is achieved by changes in their 
transcriptional program (Hamidzadeh and Mosser). ATP and  
adenosine can diminish the production of inflammatory cytokines 
by macrophages (30). In an inflammatory scenario, TLR-stimulated 
macrophages undergo metabolic alterations that result in an 
increase rate of aerobic glycolysis and production of ATP. This 
nucleotide is rapidly hydrolyzed to adenosine on the macrophage 
surface by CD39 and CD73 (30). Following TLR stimulation, 
macrophages dramatically upregulate their expression of recep-
tors for adenosine, in a physiological self-regulating program. In 
addition, it has been demonstrated that IFNγ sustains macrophage 
inflammatory responses, by attenuating their sensitivity to extra-
cellular adenosine (31). This decreased macrophage sensitivity to 
adenosine delays the transition of macrophages to a regulatory 
phenotype, allowing them to sustain macrophage activation for 
the duration of an adaptive immune response. IFNγ-mediated 
adenosine sensitivity signals through STAT1 (31); however, the 
exact mechanism whereby IFNγ affects the macrophage activa-
tion remain to be enlightened. However, when not controlled, 
blood-borne infections change the splenic microenvironment 
and can ultimately lead to splenomegaly (32). Splenic architecture 
and differences among red pulp (RpMΦs), marginal metallophilic 
(MMMΦs), and marginal zone macrophages (MZMΦs) were 
described by Borges da Silva et  al. CD47, a self-molecule ubiq-
uitously expressed on many cell types, function as an inhibitory 
signal for phagocytosis (33) and red blood cells expressing a modi-
fied isoform of CD47 are phagocytized by RpMΦs (34). MZMΦs 
and MMMΦs populate the interface between the bloodstream and 
lymphocyte-rich zones, and for this reason they are candidate cells 
to bridge innate and adaptive immunity. In this collection of arti-
cles, the authors show how macrophages influence chronic inflam-
matory diseases, and how the understanding of their biology can 
contribute to improved scenario for balance the homeostasis. We 
hope this collection can help further studies on the development 
of new therapies and in the better understanding of the biology 
of these cells.
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