
A biased random-key genetic algorithm for the

two-stage capacitated facility location problem

Fabŕıcio Lacerda Biajoli

Antônio Augusto Chaves

Luiz Antonio Nogueira Lorena

Univ. Fed. de São Paulo∗, São José dos Campos, SP, Brazil

Abstract

This paper presents a new metaheuristic approach for the two-stage

capacitated facility location problem (TSCFLP), which the objective is to

minimize the operation costs of the underlying two-stage transportation

system, satisfying demand and capacity constraints. In this problem, a

single product must be transported from a set of plants to meet customers

demands passing out by intermediate depots. Since this problem is known

to be NP-hard, approximated methods become an efficient alternative to

solve real-industry problems. As far as we know, the TSCFLP is being

solved in most cases by hybrid approaches supported by an exact method,

and sometimes a commercial solver is used for this purpose. Bearing this

in mind, a BRKGA metaheuristic and a new local search for TSCFLP

are proposed. It is the first time that BRKGA had been applied to this

problem and the computational results show the competitiveness of the

approach developed in terms of quality of the solutions and required com-

putational time when compared with those obtained by state-of-the-art

heuristics. The approach proposed can be easily coupled in intelligent sys-

∗MeMO-2020

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Institucional UNIFESP

https://core.ac.uk/display/328363497?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

tems to help organizations enhance competitiveness by optimally placing

facilities in order to minimize operational costs.

Keywords: Two-stage capacitated facility location, Biased random-key ge-

netic algorithm, Local search, Transportation systems.

1 Introduction

Facility location problems have numerous practical applications and have been

studied extensively in the most active fields in Operations Research. In indus-

trial engineering, the location analysis is one of the most important challenges,

since it deals with the decision of optimally placing facilities in order to mini-

mize operational costs. Decisions about facility location are strategic and belong

to the core of any planning and management process, regardless of the indus-

try involved. These decisions can influence the relation between the industrial

sectors, the supply chain network and their customers.

Although solved in several practical situations by intuitive methods, opti-

mal facility location decisions usually demand more in-depth studies (Fernandes

et al., 2014) due of its importance. Different models have been proposed to solve

the facility location problem in many real-world applications. For example, the

single-stage capacitated facility location problem have been successfully ana-

lyzed, as can be seen in the review publications by Klose and Drexl (2005).

In a classic facility location problem, management decision makers have to

decide which sites should be chosen to establish new facilities from a set of

available candidate sites, while constraints are met in order to minimize the

total cost and to guarantee that the demands of all customers have to be met,

the capacity limits of the suppliers and facilities must be respected, etc. The

cost includes fixed costs to open facilities and variable costs associated with

transportation.

The two-stage capacitated facility location problem (TSCFLP) is a variant of

classic facility location problem and can be defined as follows: a single product

manufactured in plants is delivered to depots, both having limited capacities.

2

Then the products storage in depots are delivered to customers to satisfy their

demands. The use of the plants and depots apply a fixed cost, while transporta-

tion from the plants to the customers through the depots results in a variable

cost, depending on the quantity transported. The objective is identify what

plants and depots to use, as well as the product flows from the plants to the

depots and then to the customers such that the demands are met at a minimum

cost.

TSCFLP has attracted researchers’ attention, since in many situations more

than one type of facilities are considered simultaneously. Due to the intractabil-

ity of the TSCFLP, it is hard to obtain optimal solutions for a large-sized in-

stance. Therefore, some researchers focused on heuristics rather than mathe-

matical modeling in solving the TSCFLP (Guo et al., 2017).

Although the TSCFLP has some variants (e.g. Keskin and Üster, 2007;

Klose, 2000; Tragantalerngsak et al., 2000), this paper will focus on the same

version as presented by Litvinchev and Ozuna (2012), who proposed some La-

grangian relaxations for the problem. The Section 2 describes the mathematical

model of the TSCFLP presented by the authors.

The same version is also considered in Fernandes et al. (2014) and Rabello

et al. (2016). In the first paper a genetic algorithm (GA) was used to deter-

mine which plants and depots should be opened and obtained the flow values

between plants and customers through the depots by solving a minimum cost

flow problem. The authors also proposed two different constructive heuristics,

one of them based on a pure greedy criterion and the other one on rounding

linear relaxations of the problem formulation after iteratively fixing some of its

variables. Rabello et al. (2016) proposed a hybrid method based on Simulated

Annealing (SA) plus Clustering Search (CS) to determine the opened plants

and depots, and a mathematical model to solve the transportation problem.

The exact solver CPLEX v12.6 was used by them to obtain the solution of this

mathematical model.

Recently, Guo et al. (2017) proposed a hybrid evolutionary algorithm frame-

work with extreme machine learning fitness approximation for delivering solu-

3

tions. Genetic operators (i.e selection, crossover and mutation) are adopted

to perform the search process as well as restarting strategy and a local search

is used to refine the best solution found in the population. The authors also

considered the same version as proposed by Litvinchev and Ozuna (2012).

This paper proposes a Biased Random-key Genetic Algorithm (BRKGA) to

solve the TSCFLP. A local search for the transportation flow is also proposed

in order to investigate and improve the best results found out by BRKGA.

Computational results demonstrate that the BRKGA is competitive with state-

of-the-art approaches (Fernandes et al., 2014; Rabello et al., 2016; Guo et al.,

2017), providing better solutions for some instances developed by Fernandes

et al. (2014).

This study contributes to the literature of TSCFLP by presenting an effi-

cient approach to support and guide the process of placing facilities in order to

minimize costs. In addition, it can help researchers, decision makers, developers

of expert systems, and anyone else who requires these type of approaches. The

main contributions are listed below:

• The literature about TSCFLP is limited and most approaches are sup-

ported by exact models that require a solver to execute. The proposed

approach presents an independent and efficient method that can be easily

coupled in expert systems.

• For the first time, the BRKGA is used to solve the TSCFLP. In particular,

a simple and efective decoder is introduced for the problem and used as

part of BRKGA metaheuristic.

• In addition, a new local search for TSCFLP is proposed. This method

can be used to improve a TSCFLP solution generated by any heuristic

approach.

The remainder of this paper is organized as follows. The Section 2 presents

the mathematical formulation for the TSCFLP. In Section 3 the BRKGA al-

gorithm is briefly introduced and in Section 4 the proposed BRKGA to solve

4

TSCFLP is described in detail. The computational experiments are presented in

Section 5 followed by the conclusions and points out future research in Section

6.

2 Mathematical model for TSCFLP

To describe the problem, let I be the index set of potential plants, J the index

set of potential depots and K the index set of customers. Let binary variables yi

(i ∈ I) and zj (j ∈ J) which indicate, respectively, whether a plant or depot is

opened (value equal to 1) or closed (value equal to 0). Let xij be a real variable

which indicate the amount of products transported from plant i ∈ I to depot

j ∈ J . Similarly, let sjk be a real variable which indicate the amount of products

transported from depot j ∈ J to customer k ∈ K. Finally, the parameters of

this problem are defined as follows:

• fi is the fixed cost associated to plant i ∈ I;

• gj is the fixed cost associated to depot j ∈ J ;

• cij is the transportation cost of one unit of the product between plant

i ∈ I and depot j ∈ J ;

• djk is the transportation cost of one unit of the product between depot

j ∈ J and customer k ∈ K;

• qk is the demand of customer k ∈ K;

• bi is the capacity of plant i ∈ I; and

• pj is the capacity of satellite j ∈ J .

Thus, the mathematical model of the TSCFLP can be formulated as:

5

Minimize z =
∑
i∈I

fiyi +
∑
j∈J

gjzj +
∑
i∈I

∑
j∈J

cijxij +
∑
j∈J

∑
k∈K

djksjk (1)

subject to: ∑
j∈J

sjk ≥ qk, ∀k ∈ K (2)

∑
i∈I

xij ≥
∑
k∈K

sjk, ∀j ∈ J (3)

∑
j∈J

xij ≤ biyi, ∀i ∈ I (4)

∑
k∈K

sjk ≤ pjzj , ∀j ∈ J (5)

yi ∈ {0, 1}, ∀i ∈ I (6)

zj ∈ {0, 1}, ∀j ∈ J (7)

xij ∈ R+, ∀i ∈ I,∀j ∈ J (8)

sjk ∈ R+, ∀j ∈ J, ∀k ∈ K (9)

The objective function (1) minimize the total fixed cost associated with

opening plants and depots plus the cost associated with both transportation

stages. Constraints (2) is the demand constraint (for each customer, the demand

must be met), (3) are conservation constraints (the total amount of products

transported from a depot must be at most the total transported to it from the

plants), (4) and (5) represent capacity limits for plants and depots, respectively.

Finally, constraints (6) and (7) are assigned to flow variables, and constraints

(8) and (9) impose binary values for the respective variables.

3 Biased Random-key Genetic Algorithm

A biased random-key genetic algorithm (BRKGA) is a general search meta-

heuristic proposed in Gonçalves and Resende (2011) and based on random-

key genetic algorithm (RKGA), which was first introduced by Bean (1994) for

6

solving combinatorial optimization problems involving sequencing. The chro-

mosomes of a RKGA are represented as vectors of randomly generated real

numbers in the interval [0, 1]. A deterministic algorithm, called decoder, trans-

forms a solution vector in a solution of the combinatorial optimization problem

for which an objective value or fitness can be computed.

In a RKGA the population of random-key vectors is evolved over a number

of iterations (generations). The initial population is made up of p vectors of

random-keys. Each component of the solution vector is generated independently

at random in the real interval [0, 1]. In each generation k, the decoder calculates

the fitness of all individuals. Then the population is partitioned into two groups:

a small group of elite individuals (pe, i.e. those with the best fitness values) and

the remaining set of non-elite individuals (p− pe).

A new generation of individuals is produced by copying all elite individual

of the population of generation k without modification to the population of

generation k + 1. The mutation process of RKGAs is done by introducing

mutants into the population. A mutant is simply a vector of random keys

generated in the same way that an element of the initial population is generated.

At each generation, a small number (pm) of mutants is introduced into the

population. With the pe elite individuals and the pm mutants accounted for in

population k + 1, p − pe − pm additional individuals need to be produced to

complete the p individuals that make up the new population. This is done by

producing p− pe − pm offspring through the process of mating or crossover.

A BRKGA differs from a RKGA in the way parents are selected for mating.

While a RKGA selects two parents at random from the entire population, in

a BRKGA one parent is selected at random from the elite partition in the

current population and one from the non-elite partition. In both algorithms, the

mating is done by parameterized uniform crossover, where an offspring inherits

the vector component of its elite parent with probability ρe > 0.5 and of its

non-elite parent with probability 1− ρe.

When the next population is complete, fitness values are computed by the

decoder for all of the newly created random-key vectors and the population is

7

partitioned into elite and non-elite individuals to start a new generation.

Figure 1: Flowchart of a BRKGA (Source: Gonçalves and Resende, 2011)

Figure 1 shows a flow diagram of the BRKGA framework with a clear sep-

aration between the problem dependent and problem independent components

of the method (Gonçalves and Resende, 2011). To describe a BRKGA for a

specific combinatorial optimization problem, one need only to show how solu-

tions are encoded as vectors of random keys and how these vectors are decoded

to feasible solutions of the optimization problem (problem dependent). In the

next section, the BRKGA applied for TSCFLP is described.

4 BRKGA for the two-stage capacitated facility

location problem

This section shows how solutions are encoded to a vector of random keys and

how they are decoded from a vector of random keys into a TSCFLP solution.

4.1 Encoding a solution to a vector of random keys

A solution is encoded as a vector V = (v1, ..., vn) of size n = |I| + |J | + |K|,

where |I| is the number of plants, |J | is the number of depots, |K| is the number

8

of customers and vx is a random number in the interval [0, 1], for x = 1, ..., n. A

simple example of a solution encoded as a vector is shown in Figure 2, with three

plants (pi, for i = 1, ..., 3), four depots (dj , for j = 1, ..., 4) and five customers

(ck, for k = 1, ..., 5).

Figure 2: Example of a solution encoded as a vector

4.2 Decoding a solution from a vector of random keys

The decoding process of a chromosome into a TSCFLP solution proposed in this

paper consists of four steps: select plants and depots; verify if the customers

demands is met; remove superfluous facilities; and calculate the transportation

flow in two stages (from plants to depots and from depots to customers). Figure

3 illustrates the sequence of steps applied to each chromosome in the decoding

process.

In the first step, the decoder takes as input a chromosome, i.e. the vector

of random keys. A partial solution with plants and depots opened (selected) is

produced by first sorting the vector in descending order to produce a sorted list

of facilities. For each position of the vector, the plants and depots are selected

if the random key value is equal or greater than 0.5. The Figure 4 illustrates an

example in which the plants p3 and p2 as well as depots d3 and d4 are selected

in the vector, respecting the order.

Note that, when the vector is sorted the order of the facilities changes,

producing different solutions for different values of random keys.

The second step verifies if the plants and depots capacities meet the cus-

tomers demands. If the demand is satisfied, then the second step is not exe-

cuted. If the demand is not met, then plants, depots or both will be selected

9

Figure 3: Sequence of steps applied to each chromosome in the decoding process

Figure 4: Example of a random-key vector sorted

until customers’ demand can be met. This selection is not aleatory, it respects

the order of a facility in the random-key vector. For example, for plants, the

algorithm selects the first unselected plant in the vector, analyzes the new total

capacity and stops if the customers demands are met. Otherwise, the next plant

is selected. For depots the process is the same. At the end of this step, a feasible

solution was builded.

The third step of the decoder attempts to remove superfluous plants and

superfluous depots from solution. Basically, if the total capacity of plants is

greater than the customers demands, then maybe it is possible to remove one or

more plants from the solution. While there is some selected plant such that the

10

solution is still feasible, then such plant having the smallest index is removed

from the solution. The process for depots works along the same lines.

The second and third steps of the decoder not only return a feasible selection

of plants and depots, but also modify the vector of random keys V such that

it decodes directly into the same solution with the application of only the first

step. To do this the decoder reset V as follows:

vx = 1− vx

where x is the position of a selected facility in the second step or the position

of a removed facility it the third step.

In the forth and last step the decoder defines the transportation flow from

plants to depots and from depots to customers. For each plant the decoder builds

a list of opened depots sorted by the transportation costs in increasing order.

Then it selects the first depot, transports the maximum quantity and selects

another one until the plant capacity is over or the total customer demand is

met. The same process is performed for the flow from depots to customers. For

each depot the decoder builds a list of customers sorted by the transportation

costs, also in increasing order. Then it selects the first customer, transports the

maximum quantity to customer and selects the next customer from the list. The

process stops when the depot capacity is over or the total customer demand is

met.

4.3 Local search

The best solution generated by BRKGA is not necessarily optimal and often

may be improved by local search heuristics. This paper proposes a local search

for the transportation flow of TSCFLP. This local search is applied in the ten

best solutions with distinct objective functions value generated by BRKGA at

the end of its execution.

The local search performs moves by swapping the quantity transported in

two steps: first from a plant to a depot and second from a depot to a cus-

tomer. These moves are made by taking two plants and one depot from each

11

transportation flow. Then the minimum quantity transported is swapped from

plants. For example, the plant p1 transports 100 units of a product to the depot

d1 and the plant p2 transports 150 units to depot d2. As the result of a move,

the plant p1 transports 100 units to d2 and the plant p2 transports 100 units to

d1 and 50 to d2.

The neighborhood search moves are performed iteratively for each plant and

for each depot in the current solution. Only the best move is made and if

an improving neighbor solution is found, it becomes the new current solution.

Then the local search is restarted from it. The process is repeated until it is

impossible to find a better solution in the neighborhood.

In the second step of the method the same process is performed, however, it

considers the transportation flow from depots to customers.

4.4 Parameter setting

The problem independent module of a BRKGA has parameters that need to be

set, listed as follows:

• n: number of genes in a chromosome;

• p: population size;

• pe: size of elite solution population;

• pm: size of the mutant solution population; and

• ρe: probability that the gene of the offspring inherits the allele of the elite

parent.

In Gonçalves and Resende (2011), the authors define experimentally a range

of values that can be used for these parameters, required for using the frame-

work. However, since it’s a challenging and time consuming task to tune the

appropriate value of the parameters even with a pre-established range, this paper

used the CALIBRA procedure (an automatic tuning procedure by Adenso-Dı́az

12

and Laguna, 2006) to effectively determine the value of the parameters pe, pm

and ρe. The value of the other two parameters (n and p) was fixed.

Table 1 presents the parameter setting used in this paper, which is in compli-

ance with the range defined by the authors of BRKGA (Gonçalves and Resende,

2011), since this range was used as the CALIBRA procedure range. Experimen-

tal results obtained in test instances show that the parameters values tuned by

CALIBRA outperforms those values empirically chosen in the quality of solution

and execution time.

Table 1: Parameter setting of BRKGA

Parameter Description Value

n size of chromosome |I|+ |J |+ |K|

p size of population 4n

pe size of elite population 0.13p

pm size of mutant population 0.17p

ρe elite allele inheritance probability 0.69

4.5 Implementation details

The algorithm described in this paper was implemented using the BRKGA

framework, a C++ framework for BRKGA (Toso and Resende, 2015).

As described in Section 3, a BRKGA consists of a problem dependent phase

(the decoder) and a general-purpose problem independent phase (Figure 1).

Besides that, the BRKGA framework was designed as an object-oriented, mul-

tithreading, general-purpose framework which implements all problem indepen-

dent components and provides a simple way for chromosome decoding. For that

reason, this framework enables seamless interaction with any problem-specific

decoder.

The algorithm proposed uses OpenMP, a multi-platform application pro-

gramming interface (API) for shared-memory parallel programming in C, C++,

and FORTRAN. In the computational experiments, this paper makes use of a

13

parallel processing, setting to use two parallel threads in chromosome decoding.

The algorithm runs for three independent populations, makes use of periodic

exchanges of elite individuals (at every 100 generations the two best individuals

are exchanged) and re-initialization strategy, i.e. restarts the algorithm with

new random keys if it runs 200 generations without improving the best solution.

5 Computational experiments

The objective of this section is to evaluate the performance of BRKGA+LS

(BRKGA + Local Search) proposed in this paper. The algorithm was imple-

mented in C++ and all the computational experiments were carried out in a

computer with an Intel i5 1.7GHz processor and 16GB of RAM under a Win-

dows 10 environment. The following describes the computers used by literature

referenced in the comparisons of this paper. Fernandes et al. (2014) performed

the computational experiments on a Pentium Intel with 2.3GHz processor and

24GB of RAM. In Rabello et al. (2016), the experiments was performed on Intel

i5 2.67GHz processor and 4GB of RAM. Guo et al. (2017) conducted the ex-

periments on a personal computer with an Intel i7 3.6GHz processor and 8GB

of RAM.

A set of instances developed by Fernandes et al. (2014) was used in the

experiments. The benchmark instances consists of two sets with 25 instances

each one. In the first set, the number of plants, depots and customers are 50,

100 and 200, respectively. In the second set, these values are twice as much,

i.e., 100 plants, 200 depots and 400 customers. Like in Fernandes et al. (2014),

the number of plants is used to indicate the size of the considered instances.

For each instance the algorithm was running 10 times, using a different

random number generator seed for each run. The best objective function value

and the average objective value are recorded by the algorithm. Like in Guo

et al. (2017), the performance of each algorithm is measured by the relative

percentage deviation (RPD) defined by the equation

14

RPD(%) = (Z(alg)−Z(LB))×100
Z(LB)

where Z(alg) is the solution value delivered by a specific algorithm and Z(LB)

is the lower bound of the corresponding instance (best solutions obtained by the

exact solver Gurobi v6.5 and presented in Guo et al., 2017).

Table 2 report the computational results for the instances with 50 plants,

obtained by BRKGA+LS and by the state-of-the-art algorithms. Table 3 shows

the same comparison for the instances with 100 plants. In both tables, the

first column refers to the class of problems and the second one indicates the

identification of the instance. The other ones show the lower bound (LB), the

RPD calculated for the average of the solutions (RPDa), the RPD of the best

solution (RPDb) and the average execution time (in seconds) of the algorithms.

The value of RPDb is not presented for Fernandes et al. (2014), because the

authors presented only the average value of their solutions. The average value of

the measures is presented at the end of the tables. The boldface font represents

the best value for the instances.

15

Table 2: Computational results for instances with 50 plants.
GA1 CS+CPLEX2 HEA/FA3 BRKGA+LS

Class Id LB RPDa (%) Time(s) RPDb (%) RPDa (%) Time(s) RPDb (%) RPDa (%) Time(s) RPDb (%) RPDa (%) Time(s)

1 721209.6 0.13 581.41 0.13 0.31 69.92 0.13 0.24 416.17 0.14 0.14 23.33

2 730451.6 0.40 564.71 0.24 0.28 140.93 0.31 0.36 492.78 0.24 0.24 140.00

1 3 731885.3 0.24 578.28 0.22 0.28 108.82 0.22 0.24 316.08 0.22 0.22 47.45

4 721515 0.81 533.44 1.19 1.33 175.91 0.54 0.59 455.55 0.50 0.51 140.44

5 713633.8 0.82 552.90 0.81 0.84 62.16 0.86 0.97 463.69 0.81 0.81 71.37

1 479860.2 2.69 317.05 2.69 2.71 44.54 2.74 2.82 230.84 2.69 2.69 20.34

2 483072.2 2.30 316.55 2.30 2.42 95.77 2.34 2.41 199.11 2.30 2.31 73.16

2 3 486018.5 2.14 330.70 1.87 1.87 35.55 1.87 1.89 167.28 1.87 1.87 141.54

4 482374.6 2.04 312.35 2.02 2.03 115.23 2.07 2.12 162.13 2.02 2.05 71.96

5 474803.3 3.14 276.85 3.12 3.23 75.96 3.12 3.12 170.57 3.12 3.12 13.09

1 2608800 3.07 276.45 3.07 3.07 43.61 3.14 3.30 117.09 3.11 3.11 153.30

2 2616252 3.12 285.95 3.11 3.11 57.57 3.30 3.36 116.67 3.17 3.17 48.62

3 3 2598277 3.11 271.31 3.10 3.10 64.78 3.30 3.39 161.80 3.10 3.10 88.09

4 2612534 3.07 236.55 3.06 3.06 77.92 3.18 3.22 148.86 3.10 3.10 9.96

5 2568856 3.01 242.34 3.01 3.01 37.27 3.17 3.19 158.15 3.13 3.13 48.58

1 525294.1 3.14 303.57 3.14 3.48 115.50 3.36 3.54 216.81 3.14 3.22 70.58

2 526911.7 2.33 307.04 2.43 2.50 107.58 2.74 2.92 199.39 2.43 2.51 97.80

4 3 532592.3 2.66 318.14 2.45 2.45 148.90 2.59 2.62 247.29 2.33 2.42 133.19

4 529372 2.53 279.54 2.36 2.48 156.22 2.63 2.81 261.75 2.44 2.51 90.39

5 521470.1 3.13 264.10 3.13 3.29 89.83 3.18 3.18 182.24 3.14 3.16 47.79

1 2743547 1.20 361.04 1.18 1.19 193.13 1.16 1.20 199.23 1.18 1.22 145.41

2 2752021 1.07 344.12 1.07 1.10 160.30 1.11 1.16 259.72 1.07 1.09 43.13

5 3 2737769 1.10 420.73 1.09 1.09 235.62 1.22 1.28 202.71 1.13 1.15 157.52

4 2748216 1.07 300.55 1.06 1.11 234.59 1.10 1.13 203.32 1.10 1.10 183.09

5 2702350 1.25 318.55 1.23 1.25 62.26 1.31 1.34 182.20 1.26 1.27 89.61

Average 1.98 355.77 1.96 2.02 108.39 2.03 2.10 237.26 1.95 1.97 85.99
1 Fernandes et al. (2014); 2 Rabello et al. (2016); 3 Guo et al. (2017).

16

Table 3: Computational results for instances with 100 plants.
GA1 CS+CPLEX2 HEA/FA3 BRKGA+LS

Class Id LB RPDa (%) Time(s) RPDb (%) RPDa (%) Time(s) RPDb (%) RPDa (%) Time(s) RPDb (%) RPDa (%) Time(s)

1 1475952 0.55 2784.60 0.11 0.18 400.20 0.29 0.33 1341.67 0.10 0.11 320.99

2 1462736 1.01 2745.02 0.37 0.68 655.95 0.27 0.43 1514.37 0.12 0.13 661.34

1 3 1492163 0.34 3001.83 0.70 0.91 523.17 0.23 0.48 1481.83 0.15 0.17 232.45

4 1459076 0.49 2823.39 0.22 0.30 740.68 0.25 0.28 1122.33 0.22 0.23 344.14

5 1490742 0.67 2863.24 0.12 0.42 409.80 0.17 0.24 1501.11 0.12 0.12 622.30

1 970908.5 0.89 1483.25 0.27 0.39 884.59 0.63 0.70 944.83 0.27 0.28 481.18

2 965908.5 0.74 1455.77 0.28 0.46 611.62 0.47 0.56 908.30 0.29 0.29 553.57

2 3 975499.7 1.42 1427.72 0.14 0.20 236.58 0.20 0.25 922.00 0.14 0.15 108.15

4 973019.1 0.56 1444.07 0.28 0.38 715.60 0.56 0.59 1083.61 0.28 0.29 717.48

5 941567 1.12 1419.02 0.60 0.68 427.82 0.86 0.96 1159.33 0.61 0.61 612.25

1 5213566 1.63 1355.38 1.61 1.62 1049.04 1.91 2.03 855.68 1.64 1.65 851.26

2 5191321 1.67 1320.83 1.65 1.65 1217.64 1.96 1.99 1220.48 1.68 1.71 283.62

3 3 5145991 1.58 1311.86 1.58 1.58 989.07 1.78 1.84 1193.12 1.63 1.63 109.46

4 5225601 1.74 1365.90 1.71 1.73 1469.17 1.98 2.01 968.64 1.74 1.75 378.38

5 5163182 1.72 1383.04 1.68 1.69 1404.04 1.99 2.08 942.29 1.72 1.75 495.11

1 1052172 0.82 1269.01 0.60 0.76 807.73 0.91 1.04 878.64 0.64 0.69 528.51

2 1043553 0.93 1230.08 0.68 0.83 462.41 0.82 0.89 672.60 0.68 0.74 600.17

4 3 1050683 1.88 1283.26 0.63 0.80 734.64 1.00 1.29 877.26 0.73 1.04 683.77

4 1044571 0.96 1301.32 0.75 0.85 749.02 1.36 1.62 797.26 0.81 0.88 692.03

5 1053869 0.64 1334.96 0.53 0.73 381.18 0.94 1.06 843.02 0.58 0.61 597.65

1 5486098 0.48 1551.16 0.39 0.40 873.59 0.61 0.62 967.57 0.39 0.41 433.52

2 5461680 0.47 1499.94 0.39 0.42 336.05 0.41 0.44 1017.10 0.41 0.43 604.48

5 3 5425391 0.62 1477.01 0.50 0.52 478.28 0.64 0.73 1371.96 0.42 0.45 671.41

4 5494811 0.52 1513.78 0.41 0.44 436.70 0.58 0.58 1084.43 0.43 0.44 438.47

5 5442621 0.47 1472.05 0.39 0.40 1080.57 0.43 0.47 1162.63 0.39 0.40 607.44

Average 0.96 1625.37 0.66 0.76 723.01 0.85 0.94 1073.28 0.65 0.68 505.17
1 Fernandes et al. (2014); 2 Rabello et al. (2016); 3 Guo et al. (2017).

17

Some conclusions can be derived from the results presented by Table 2

and Table 3. In 29 instances the average results (RPDa) were improved by

BRKGA+LS when compared with GA (Fernandes et al., 2014), especially in

instances with 100 plants. In the other ones, the algorithm gives good so-

lutions in a reasonable computational time. When compared with HEA/FA

(Guo et al., 2017), BRKGA+LS outperformed the best results (RPDb) in 44

instances and achieve the same result in 4 instances. In 10% of instances of

class 3, BRKGA+LS obtained the same solutions than the others algorithms.

The main feature of the instances in class 3 is the large capacity of its plants

and depots, which results in a lesser amount of opened facilities in the optimal

solution (Fernandes et al., 2014).

Tables 2 and 3 also shows the comparison between BRKGA+LS and CS+CPLEX

proposed by Rabello et al. (2016), that used an exact solver as part of the

method. The results presented demonstrate that the proposed approach out-

performed the best results of state-of-the-art CS+CPLEX in 6 instances and

achieved the same RPD in other 20 instances. In some others CS+CPLEX pre-

senting the best known solutions of the literature. Despite this, the solutions

found by the proposed algorithm are competitive due the low difference in RPD

presented in all instances. Moreover, BRKGA+LS outperformed CS+CPLEX

in most instances when compared the average solutions, demonstrating the ro-

bustness of the BRKGA approach.

Box plots illustrating the solution quality and robustness of the proposed

method are shown in Figure 5. The rectangles represent the middle half of the

solutions for each instance, between the lower quartile (25%) and the upper

quartile (75%). The lines go from the minimum to the maximum solutions, and

the middle line represents the median solution. The open circles outside the

lines show the outliers.

The most of the instances presented the same behavior as the box plot (a)

and (d).

Furthermore, BRKGA+LS outperformed the other approaches in average of

RPDa, RPDb and execution time for both sets of instances (see the last line

18

(a) Instance Class 1, Id 4 with 50 plants (b) Instance Class 4, Id 3 with 50 plants

(c) Instance Class 1, Id 1 with 100 plants (d) Instance Class 5, Id 3 with 100 plants

Figure 5: Box plot of some solutions found by BRKGA+LS.

19

presented in the Tables 2 and 3). Remarkably, the BRKGA+LS demands lesser

time do find solutions. For example, Figure 6 illustrates run-time distributions,

or time-to-target (TTT) plot (Aiex et al., 2007), for instance Class 1, Id 4 with

50 plants (see Table 2), which presented the greatest improvement in the set

of tests. The experiment consists in running the BRKGA+LS 100 times. Each

run is independent of the other and stops when a solution with a cost which

is at least as good as a given target value (Rabello et al., 2016) is found. The

probability of BRKGA+LS to find a solution better than the target value in at

most seven seconds is about 50%, in at most eight seconds is about 80% and in

at most nine seconds is about 99%. Table 2 shows that the target value (Rabello

et al., 2016) for the same instance was found in 175.91 seconds (the difference

between the computers used is not significant).

Figure 6: Time in seconds to target distributions of BRKGA+LS for instance

Class 1, Id 4 with 50 plants.

20

6 Conclusion

This paper presents a biased random-key genetic algorithm (BRKGA) which

uses a decoder with four phases for the two-stage capacitated facility location

problem (TSCFLP). A literature review showed that BRKGA had never been

applied to this problem, which has attracted researchers’ attention in last few

years. A local search (LS) that performs exchanges in transportation flow was

also presented.

The performance of the proposed BRKGA+LS was tested and evaluated

on two sets of benchmark instances. The computational experiments showed

that, in general, the approach found good solutions for the TSCFLP in an

acceptable time for all instances. When compared with approaches that did not

use an exact solver, BRKGA improved the solutions in most of the instances.

In the other instances the difference between the RPD of the average solutions

(RPDa) and RPD of the best solutions (RPDb) is minimum. In comparison

with an approach that use an exact solver to performs the transportation flow,

the proposed solution presented best results in 11% of the instances. On the

other hand, the average of the solutions and the computational execution time

are improved in most instances.

Although the approach with BRKGA has some strengths such as flexibil-

ity, simplicity, parallel processing, generic and simple structure that requires

only a specific decoder for a specific problem and a freely-available application

programming interface (API) that can be used as basis for the implementation

(Toso and Resende, 2015), the parameter calibration process required many

tests and hours of preprocessing using the CALIBRA procedure (Adenso-Dı́az

and Laguna, 2006). However, the parameter selection can significantly affect

the quality of the algorithm in terms of solution performance and computa-

tional time, and therefore it is worthwhile to use a method to calibrate the

parameters, even if it requires long computational time once.

After all, BRKGA with the local search proposed demonstrates that it is a

simple but effective approach, capable of returning good solutions very quickly

21

for the TSCFLP. The approach also demonstrates that, with few modifications,

it can be used to solve other facility location problems. In addition, the approach

can be easily coupled in any expert system to generate solutions in accordance

with the inputs. Naturally, its parameters need to be calibrated by the system

according to the inputs and solutions being produced. However, the decision

maker may help the system setting new values for the parameters as necessary.

Further research includes the consideration of a new decoder in association

with a local search in order to investigate solutions beyond the guided solution

generated by the deterministic decoding process. In addition, applying the

proposed local search during the evolutionary process of BRKGA can be done

to explore a larger solution space. The use of another automated methods

to calibrate the parameters of BRKGA can also be studied and tested, such

as the use of an adaptive version of BRKGA that calibrate the parameters

automatically during the evolutionary process.

References

References

Adenso-Dı́az, B., Laguna, M., 2006. Fine-tuning of algorithms using frac-

tional experimental designs and local search. Operations Research 54, 99–114.

doi:10.1287/opre.1050.0243.

Aiex, R., Resende, M., Ribeiro, C., 2007. TTT plots: a perl program to create

time-to-target plots. Optimization Letters 1, 355–366.

Bean, J.C., 1994. Genetic algorithms and random keys for sequencing and

optimization. INFORMS Journal on Computing 6, 154–160.

Fernandes, D.R.M., Rocha, C.T.M., Aloise, D.J., Ribeiro, G.M., Santos, E.M.,

Silva, A., 2014. A simple and effective genetic algorithm for the two-stage

capacitated facility location problem. Computers & Industrial Engineering

75, 200–208.

22

Gonçalves, J.F., Resende, M.G.C., 2011. Biased random-key genetic algorithms

for combinatorial optimization. J. Heuristics 17, 487–525.

Guo, P., Cheng, W., Wang, Y., 2017. Hybrid evolutionary algorithm with

extreme machine learning fitness function evaluation for two-stage capacitated

facility location problems. Expert Systems With Applications 71, 57–68.

doi:10.1016/j.eswa.2016.11.025.

Keskin, B.B., Üster, H., 2007. A scatter search-based heuristic to lo-

cate capacitated transshipment points. Computers & OR 34, 3112–3125.

doi:10.1016/j.cor.2005.11.020.

Klose, A., 2000. A lagrangian relax-and-cut approach for the two-stage capaci-

tated. European Journal of Operational Research 126, 185––198.

Klose, A., Drexl, A., 2005. Facility location models for distribution system

design. European Journal of Operational Research 162, 4–29.

Litvinchev, I., Ozuna, E.L., 2012. Lagrangian bounds and a heuristic for the two-

stage capacitated facility location problem. International Journal of Energy

Optimization and Engineering (IJEOE) 1, 59–71.

Rabello, R.L., Mauri, G., Ribeiro, G.M., 2016. Método heuŕıstico

h́ıbrido para resolućão do problema de localizaćão de facilidades capaci-

tadas em dois ńıveis, in: Anais do XLVIII SBPO - Simpósio Brasileiro

de Pesquisa Operacional, Vitória, ES - Brasil. pp. 2460–2471. URL:

http://www.din.uem.br/sbpo/sbpo2016/pdf/156298.pdf.

Toso, R.F., Resende, M.G.C., 2015. A c++ application programming inter-

face for biased random-key genetic algorithms. Optimization Methods and

Software 30, 81–93.

Tragantalerngsak, S., Holt, J., Ronnqvist, M., 2000. An exact method for the

two-echelon, single-source, capacitated facility location problem. European

Journal of Operational Research 123, 473–489.

23

