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Abstract

Genomic selection has been implemented in several plant and animal breeding
programs and it has proven to improve efficiency and maximize genetic gains.
Phenotypic data of grain yield was measured in 147 maize (Zea mays L.) single-
cross hybrids at 12 environments. Single-cross hybrids genotypes were inferred
based on their parents (inbred lines) via single nucleotide polymorphism (SNP)
markers obtained from genotyping-by-sequencing (GBS). Factor analytic multi-
plicative genomic best linear unbiased prediction (GBLUP) models, in the frame-
work of multienvironment trials, were used to predict grain yield performance
of unobserved tropical maize single-cross hybrids. Predictions were performed
for two situations: untested hybrids (CV1), and hybrids evaluated in some envi-
ronments but missing in others (CV2). Models that borrowed information across
individuals through genomic relationships and within individuals across envi-
ronments presented higher predictive accuracy than those models that ignored it.
For these models, predictive accuracies were up to 0.4 until eight environments
were considered as missing for the validation set, which represents 67% of miss-
ing data for a given hybrid. These results highlight the importance of including
genotype-by-environment interactions and genomic relationship information for
boosting predictions of tropical maize single-cross hybrids for grain yield.

Abbreviations: BLUP, best linear unbiased prediction; CV1, Cross-Validation 1; CV2, Cross-Validation 2; E-BLUE, empirical best linear unbiased
estimation; FA, factor analytic; GBLUP, genomic best linear unbiased prediction; GBS, genotyping-by-sequencing; GE, genotype-by-environment;

GEBV, genomic estimated breeding value; GS, genomic selection; MAF, minor allele frequency; MET, multi-environment trial; SNP, single nucleotide
polymorphism; VCOV, variance-covariance.
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1 | INTRODUCTION

Future prospects of population growth and rising demand
for agriculture products increase even further the role
of releasing stable cultivars worldwide. Phenotyping in
multi-environment trials (METs) plays a major role in
accessing the performance of lines across target breeding
regions (Oakey et al., 2016) and is one of the most resource-
demanding stages in the breeding program (Cobb et al.,
2019; Fritsche-Neto, Gongalves, Vencovsky, & De Souza
Junior, 2010). In METs, it is possible to detect and quan-
tify the differential response of hybrids triggered by differ-
ent environmental factors across environments, which is
known as genotype-by-environment (GE) interaction. For
maize (Zea mays L.) cultivated in the tropics, the evalu-
ation in METs is even more critical for selecting stabil-
ity, especially due to biotic and abiotic stresses frequently
found in those regions inducing GE interaction responses.
Among the many challenges faced by breeders, the rec-
ommendation of stable and adaptable hybrids across envi-
ronments is a key component in breeding (Elias, Robbins,
Doerge, & Tuinstra, 2016). This is especially challenging
due to the difficulties in understanding if the performance
of the hybrid is due to its pure genetics or GE interac-
tion. Groups of environments with high genetic correlation
unleashed by the expression of common genes across envi-
ronments will have fewer crossover interactions, which
can result in few changes in the rank of genotypes across
environments. More significant crossover interactions
are expected in environments displaying low correlation
caused by the variability of physiological factors critical
for plant development, such as water availability, temper-
ature, radiation, and disease pressure, causing reranking
of genotypes across environments (Van Eeuwijk, Bustos-
Korts, & Malosetti, 2016; Yan, 2016). Therefore, GE inter-
action is an important component for hybrid evaluation
and posterior cultivar recommendation in the target breed-
ing region, and its understanding requires models capable
of integrating realistic scenarios observed in breeding pro-
grams in order to facilitate this decision-making process.
The concept of genomic selection (GS) was introduced
by Meuwissen, Hayes, and Goddard (2001) for livestock
and can be defined as a form of marker-assisted selection
in which models using markers covering the whole
genome are used to predict genomic breeding values
(GEBVs) of individuals. The selections are therefore based
on GEBVs. Genomic selection has been implemented in a
range of breeding programs (Jonas & de Koning, 2016) and
has been proven to facilitate the rapid selection of superior
genotypes and to accelerate breeding cycles (Crossa et al.,
2017), becoming an important tool to increase the annual
rate of genetic gains (Heftner, Lorenz, Jannink, & Sorrells,
2010; Hickey, Chiurugwi, Mackay, & Powell, 2017). A

key point for the success of GS is the large availability of
cost-effective high-throughput genotyping technologies
(Crossa et al., 2017), resulting in large-scale genomic
information for most crops (Bernardo, 2008; Krchov &
Bernardo, 2015).

Breeding values can be predicted by linear mixed mod-
els that take into account the relationship between individ-
uals, obtained by known pedigrees (Fisher, 1918; Wright,
1921) that rely on the concept of identity-by-descent (IBD),
or by marker-based relationship estimated by identity-
by-state (IBS) (Powell, Visscher, & Goddard, 2010; Van-
Raden, 2008), resulting in GEBVs. Both methods can be
incorporated into linear mixed models for hybrids predic-
tion, or even combined information from the pedigree and
genomic relationship matrices. When the marker-based
matrix is incorporated, the model is known as genomic
best linear unbiased prediction (GBLUP) (Oakey et al.,
2016). The advantage of using a marker-based matrix is
that it does not require pedigrees, which might have errors
and could not be available, and it captures the Mendelian
sampling under the absence of inbreeding depression and
assortative mating (Burguefio, de los Campos, Weigel, &
Crossa, 2012; Powell et al., 2010).

The GE interaction can also be incorporated into a mixed
model to predict performance of untested genotypes in one
or more target environments (Burguefio et al., 2012; Crossa
et al., 2016; Lopez-Cruz et al., 2015). The first model pro-
posed for prediction of maize single-cross hybrids based on
best linear unbiased prediction (BLUP) was implemented
by Bernardo (1994) with balanced data. After, Bernardo
(1995) used BLUP to predict single-cross hybrids perfor-
mance with unbalanced yield trial data (missing hybrids).
In both studies, a limited number of molecular markers
were available and included in the models. Besides that, at
that time, no effective variance-covariance (VCOV) struc-
tures were available that could take advantage of correlated
environments by including the GE interaction and, at the
same time, handle unbalanced data.

Unbalanced data from METs is routine in plant breed-
ing programs, resulting in challenges for data analysis
(Dawson et al., 2013). The process of selection naturally
discards lines with poor performance, and on the other
hand, new entries are added every year (Piepho, Mdhring,
Melchinger, & Biichse, 2008). Also, some unbalancing
and heterogeneous quality of the data is due to differ-
ent degrees of replication in different trials (e.g., prelimi-
nary or advanced trials; Lado, Barrios, Quincke, Silva, &
Gutiérrez, 2016). Historically, joint analysis of variance and
linear regression models were used in METS to analyze and
quantify GE interactions (Elias et al., 2016). In these tradi-
tional models, genetic effects were assumed to have normal
distribution with a unique genetic variance component
(Dias, Gezan, Guimardes, Nazarian, et al., 2018; Piepho
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et al., 2008; Smith, Cullis, & Thompson, 2001), which is not
realistic assumption.

One strategy to use more realistic models is by includ-
ing GE interaction by modeling the genetic VCOV matrix
across environments (Burguefio et al., 2012). A com-
mon approach is to include the unstructured matrix,
which allows a specific genetic variance for each envi-
ronment and different pairwise covariances between envi-
ronments. However, given the number of parameters to
be estimated, fitting this model became computational
prohibitively and impractical (Kelly, Smith, Eccleston, &
Cullis, 2007). An alternative way to overcome this limita-
tion is by including a factor analytic (FA) structure (Piepho,
1997, 1998; Smith et al., 2001). It requires a reduced num-
ber of parameters to be estimated and has been used in
several breeding programs due its good applicability over
the unstructured VCOV structure (Kelly et al., 2007; Oakey
et al., 2016).

Most previous results of GBLUP models were fitted for
single-environment predictions (Cuevas et al., 2016; Zhang
et al., 2015). However, high levels of predictive accuracies
been found in GS models that incorporate both genomic
information from marker-based matrix and GE interaction
(Acosta-Pech et al., 2017; Jarquin et al., 2014). In this con-
text, the goals of this work were (a) to predict the perfor-
mance of untested tropical maize single-cross hybrids for
grain yield within environments using GBLUP models in
the framework of METs, and (b) to investigate the useful-
ness of genomic relationship information in combination
with different VCOV structures for genetics and residuals
effects, under different levels of unbalanced trials.

2 | MATERIALS AND METHODS

2.1 | Experimental data

The dataset was obtained by the Brazilian Agricultural
Research Corporation (Embrapa) Maize and Sorghum.
Yield data were collected at eight locations in Brazil in
2012 at two conditions: two different crop seasons, “safra-
summer” and “safrinha-winter.” Not all locations meet
both conditions. The combination of locations and crop
seasons were designated as “environment,” giving a total of
12 environments (Supplemental Figure S1). The trait under
consideration is grain yield, in tons per hectare (t ha™'),
adjusted to 13% grain moisture.

In the first crop season (planting data from September to
November, safra-summer), plants have favorable growing
conditions, the result of the increase in temperature and
rainfall, plus a reduced intensity of plant disease and insect
pests. In the second crop season (planting data from Jan-
uary to March, safrinha-winter), these conditions are the

opposite. From the end of January to the following months,
the intensity of rainfall and average temperature decreases,
and field crops have to face the spore load plus pest infes-
tations not efficiently controlled from the first crop season.

The dataset comprises 152 maize hybrids split into three
trials, evaluated side by side in the field, in all environ-
ments. The first two trials (T1 and T2) and the third trial
(T3) contain 60 and 32 hybrids each, respectively. Each
trial was augmented by four common checks (commercial
maize cultivars) and arranged as a balanced lattice square
of eight by eight (T1 and T2) and six by six (T3), with two
replications. The first two trials (T1 and T2) had 120 hybrids
from an intermediate stage of hybrids evaluation, and the
third trial (T3) had 32 hybrids from an advanced stage of
the maize breeding program.

Among the 152 maize hybrids, 149 are single crosses,
two are three-way crosses, one is a double cross, and four
are commercial checks, with only the single crosses being
under consideration for genomic prediction. The single
crosses were obtained from 144 inbred lines, classified as
dent (64 lines) and flint (77 lines) heterotic groups, and also
another group C (three lines), which performs well when
crossed with both dent and flint sources. Four lines were
used as testers from the opposite heterotic group to syn-
thesize the majority of single-cross hybrids.

2.2 | Genotypic data

The inbred lines used as parents were genotyped with
the standard genotyping-by-sequencing (GBS) protocol
(Elshire et al., 2011) by the Genomic Diversity Facility at
Cornell University (Ithaca, NY, USA). Tags were aligned to
the B73 reference genome (AGPv3; Schnable et al., 2009).
Standard quality controls were applied to the data, remov-
ing all non-biallelic markers, and single nucleotide poly-
morphisms (SNPs) were discarded if at least one of the
following was true: minor allele frequency (MAF) < 5%;
>20% missing genotypes; and inbreeding coefficient < 0.8.
The SNPs were called using the GBS pipeline available
in the software TASSEL version 5 (Glaubitz et al., 2014).
After filtering, missing data were imputed using Beagle 4.1
(Browning & Browning, 2016). The number of SNPs per
chromosome ranged from 1,951 (chromosome 10) to 5,024
(chromosome 1), and the final number of SNPs after filter-
ing was 29,515.

For each SNP, the genotypes of the single-cross hybrids
were inferred based on the genotype of their parents
(inbred line) based on Mendelian laws in the software
R version 3.4.3 (R Core Team, 2017). One of the 144
inbred lines used as parents was not genotyped, result-
ing in the availability of genotypic information of 147
single-cross hybrids instead of 149 hybrids. Principal
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components analysis (PCA) of SNP matrix of the 143
inbred lines was performed in the software TASSEL ver-
sion 5 (Glaubitz et al., 2014) to verify the consistency of
heterotic groups.

2.3 | Single-environment trial analyses
The following single-environment trial model was fitted to
estimate genetic parameters, the accuracy of the trial, and
the empirical best linear unbiased estimations (E-BLUES)
of hybrids in each environment:

where y is a n X 1 vector of phenotypes for m hybrids and j
replicates; p is the overall mean; § is a j X 1 vector of fixed
effects of replicates; g is a m X 1 vector of fixed effects of
hybrids; b is a rj X 1 vector of random effects of blocks
within replications, with b ~ N(O, oﬁlrj); andeisanx1
vector of residuals, withe ~ N(O, ogln). X;,X,,and Z are
incidence matrices for their respective effects, with dimen-
sions of n X j, n X m, and n X rj, respectively. I; and I, are
identity matrices of their corresponding dimensions, and
1, is a vector of ones with dimension n X 1.

The generalized measure of heritability was estimated
using H?> =1 - [PEV/ (Zcé)], where PEV (prediction error
variance) is the mean variance of the difference between
two genetic effects and cé is the genetic variance (Cullis,
Smith, & Coombes, 2006). The genetic variance was esti-
mated by assuming hybrids as independently and identi-
cally normal distributed with mean zero and variance cé
in Model 1. The coefficient of variation (CV, %) was esti-
mated based on CV (%) = (o./)) X 100, where o, is the
square root of residual variance component (c2) and u is
the mean of grain yield of each trial within environment.
The significance of variance components was assessed by
the likelihood ratio test (LRT) assuming o = .05.

All statistical models of this section and the section
below were fitted using the package ASReml-R version
3 (Butler, Cullis, Gilmour, & Gogel, 2009) by solving the
mixed-model equations proposed by Henderson (1950).
Variance components were estimated using residual max-
imum likelihood (REML; Patterson & Thompson, 1971).

2.4 | Genomic prediction in
multi-environment trials

In order to predict the performance of single-cross maize
hybrids under METs, we fitted different models formula-
tion differing by their genetic (£,) and residual (Z;) VCOV
structures between environments. The following generic

model was fitted:
y=ul,+Xp+Zb+7Z,g+ ¢ )

where y is a n X 1 vector of phenotypes for m hybrids
across s environments and q trials, with n = X} n;, in
which n; is the number of plots within environment s;
B is a f x 1 vector of fixed effects of environments, tri-
als within environments, replicates within trials within
environments, checks, and checks within environments
(single-cross hybrids without marker information, three-
way and double cross hybrids were considered as checks);
b is a v X 1 vector of random effects of blocks within
replications within trials within environments, whereb ~
MVN(0, ortz)IU); g is a m x 1 vector of random effects of
hybrids within environments, where g ~ MVN(0, Zg);
and € is a n X 1 vector of independent residuals within
environments, where ¢ ~ MVN(0, X,). X, Z;, and Z, are
incidence matrices for their respective effects, with dimen-
sions of n X f, n X v, and n X ms. I, is an identity matrix of
its corresponding dimensions, 1,, is a vector of ones with
dimension n X 1, and MVN stands for multivariate normal
distribution.

The VCOV structures for random effects of hybrids and
residuals within environments were defined as Z, = G ®
Aand X, = I ® R, respectively. In Xy, the additive genomic
matrix A refers to the genetic relatedness between hybrids
(described below). It can also assumes that hybrids are
unrelated, with £, = G® I In addition to the hybrid’s
relatedness, Z, was also modeled for MET, embracing
three different VCOV structures: independent environ-
ments with equal variance (G = I); independent envi-
ronments with unequal variances (G = D); and corre-
lated environments with unequal variances (G = FA). I,
D, and FA stand for identity, diagonal, and factor analytic
VCOV matrices, respectively. The residual VCOV structure
in MET was defined as X, = I ® R, where homogeneous
residual variance (R = I) or heterogeneous residual vari-
ances (R = D) across environments were allowed for all
combinations of genetic effects in Z,.

The additive genomic relationship matrix A was com-
puted based on SNP markers from GBS, following the
methodology described by VanRaden (2008) as

77

A= 2Zp;(1— py) ®)

where Z = M — P, in which M is the incidence matrix
for markers considering two alleles (A and a) for a given
ith marker locus, coded as 0, 1, and 2 for AA, Aa, and aa,
respectively, and P is derived from observed allele frequen-
cies expressed as P = 2p;, where p; is the MAF of locus i.
It was estimated using the package AGHmatrix (Amadeu
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Goodness of fit for models divided into three categories, (a) factor analytic (FA) models without incorporating the genomic

relationship matrix (Models 1-8), (b) FA models with genomic relationship information (Models 9-16), and (c) models assuming no
correlation between environments but including genomic relationship information (Models 17-20)

Model Covariance structure Selection criteria
Number Code =z, =, Nu. Par.’ AIC BIC v
BLUP
1 s FA() ® I IQI 25 4,704.08 4,866.09 482
2 Ira@)1 FAQ)®1 IQI 36 4,673.45 4,904.00 61.7
3 Tonei FAQR)®1 IQI 46 4,669.74 4,962.60 70.8
4 Tpacay1 FA4) Q1 IQI 55 4,682.76 5,031.70 74.7
5 s FAQD) QI IQD 36 4,376.63 4,607.18 51.7
6 Trae) D FAQ)®1 IQD 47 4,340.85 4,639.94 64.2
7 Toosim FAQR)®1 IQD 57 4,327.86 4,689.27 76.0
8 Traarp FA4) Q1 IQD 66 4,333.35 4,750.83 80.4
GBLUP
9 Ara@y FA() ® A IQI 25 5,186.90 5,348.91 95.3
10 B FAQ) ® A IQI 36 5,181.70 5,412.26 97.7
1 Aragy FAG)® A IQI 46 5,174.77 5,467.63 99.9
12 Apay1 FA4) ® A IQI 55 5,275.04 5,623.99 99.9
13 Apaq)p FAQ)® A I®D 36 4,707.40 4,937.96 99.9
14 Ara@yD FAQ)® A I®D 47 4,736.43 5,035.53 99.9
15 Apa@)D FAG)® A I®D 57 4,784.38 5,145.79 99.9
16 Aga@yp FA4) ® A I®D 66 4,782.31 5,199.80 99.9
17 Arg I®A I®I 2 5,494.34 5,513.03 -
18 Arp I®A I®D 13 4,979.53 5,066.77 =
19 Ap D®A I®1I 13 5,509.51 5,596.75 -
20 App D®A I®D 24 4,997.61 5,153.38 =

Note. 1, identity matrix; FA(k), factor analytic matrix of order k; D, diagonal matrix; A, genomic relationship matrix from molecular markers; %, genetic
variance-covariance structure; X, residual variance-covariance structure; BLUP, best linear unbiased predication; GBLUP, genomic best linear unbiased predic-
tion. Genomic predictions in multi-environment trials were performed with models in which both Akaike information criterion (AIC) and Bayesian information

criterion (BIC) values are in bold.
‘Number of variance components estimated for each model.
hPercentage of genetic variance accounted for FA models.

et al., 2016) in the software R version 3.4.3 (R Core Team,
2017).

For FA models in Z,, estimations of genetic variance
(G,) and correlation matrices (C) between environments
were obtained for the by G, = (AA’ + ¥) and C = DGD,
respectively, where A is a s X k matrix of loadings (k) for
all environments (s), ¥ is a s x s diagonal matrix of spe-
cific variances of each environment, and D is a diagonal
matrix of the inverse of the square root of the diagonal val-
ues of G.. k refers to the number of multiplicative terms
or factors of the FA structure (see Section 2.5). For more
specialized literature on the FA VCOV structure, please
check Piepho (1998), Smith et al. (2001), and Smith, Gane-
salingam, Kuchel, and Cullis (2015).

To evaluate the impact of modeling genetics and residu-
als covariance structures, the models were classified based
on their assumptions as follows: Models 1-8 (first cate-
gory) assume unrelated hybrids with unique genetic vari-

ance and correlated environments with heterogeneous
genetic variances; Models 9-16 (second category) assume
related hybrids with unequal genetic variances, based on
the genomic relationship matrix A, and correlated environ-
ments with heterogeneous genetic variances; and Models
17-20 (third category) assume related hybrids with equal or
unequal genetic variances but independent environments.
For residuals within environments, homogeneous residual
variance (R = I) or heterogeneous residual variances (R
= D) across environments for all combinations of genetic
effects were assumed (Table 1).

2.5 | Model selection

Three criteria were used to select the best-fit models: (a)
the goodness of fit via Akaike information criterion (AIC;
Akaike, 1974), (b) Bayesian information criterion (BIC;
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Schwarz, 1978), and for FA models, (c) the overall per-
centage of genetic variance (0) accounted by each k fac-
tor, defined as 0 = 100tr (AA’)/ tr(f\f\, + W), where “tr” is
the trace of the matrix and the other terms were previously
defined (Smith et al., 2015). The FA models were fitted until
U exceeded the ad hoc value of 70%. For the first category
of models (BLUP), the best k order of FA structure was
selected to go forward with genomic predictions. For the
third category of models, regardless the best-fit model, pre-
dictive accuracy was accounted for in all models (Models
17-20) to quantify the influence of modeling VCOV matri-
ces on genomic predictions. To verify the advantage of FA
structure under G, the predictive accuracies of these mod-
els were compared with those of models that did not take
into account information from correlated environments,
hybrids within environments, or both (Table 1).

Models were also compared based on their predic-
tive accuracy, computed via Pearson correlation between
genetic estimated breeding value (GEBVs) and adjusted
means from single-environment trial analysis estimated as
E-BLUESs. Two distinct cross-validation strategies, CV1 and
CV2, were implemented as proposed by Burguefio et al.
(2012). In the first case (CV1), hybrids from validation set
were deleted in all environments and predictions were per-
formed based on the phenotypic information from rela-
tives, through the genomic relationship matrix A. The sec-
ond strategy (CV2) highlights the situation where hybrids
are phenotyped in some environments but missing in oth-
ers. Predictions in this scenario take into account infor-
mation from correlated environments if FA structure is
included in Zg, and also information from relatives evalu-
ated in multiple environments if the genomic relationship
matrix A is also accounted for.

For both CV1 and CV2, a fivefold cross-validation pro-
cedure replicated 10 times was implemented to achieve
the predictive accuracies, in which all single-cross hybrids
with genotype (147) were randomly split into five non-
overlapping groups, with four of them being training sets
(80%) and one being a validation set (20%, around 30
hybrids), considered as not phenotyped. Therefore, all
results are based on 20% missing hybrids within environ-
ment. Permutation of these five groups led to five possi-
ble training and validation datasets. To avoid bias due to
the small sample size of the validation set in some scenar-
ios, the GEBVs were predicted in all folds, and the Pear-
son correlation between observed and predicted values
was estimated at the end of the cross-validation with the
results from all permutations at once (Zhou, Vales, Wang,
& Zhang, 2017).

Predictions in the CV2 scenario were accomplished as
follows: (a) initially, one environment selected at random
was considered as missing data for the validation set and
predictions were performed for this environment based

on the training data sets, as explained above. Then, pre-
dictions were recorded in sequence for each one of the
five permutations between training and validation sets.
Next, the Pearson correlation between the vector of pre-
dictions and adjusted means was calculated. This process
was repeated 10 times. After, (b) two environments selected
at random were considered as missing data for the vali-
dation set (the same group of hybrids considered as miss-
ing within a given environment) and predictions were
performed for these two environments, using the same
approach described for one environment. This procedure
was followed for all levels of missing environments: (a)
one environment considered as missing data for the vali-
dation set, then (b) two environments, (c) three environ-
ments, (d) four environments, up to 11. Given that the data
set has 12 environments, the last level of missing environ-
ments for the validation set in the CV2 scenario is with 11
missing environments at random. When all environments
(12) were considered as missing data for the validation set,
it was called CV1.

2.6 | Hybrid rank

The adjusted means of single-cross hybrids from single-
environment trial analysis were used to access a hybrid’s
rank within each environment. For the top and bottom
20% hybrids, these ranks were compared with the ranks
computed with GEBV for both CV1 and CV2 scenarios to
access the coincidence index between ranks within envi-
ronments. This procedure was also computed with ranks
across environments.

3 | RESULTS

3.1 | Model selection

The AIC criterion for models from first category ranged
from 4,327.86 [Model 7, Ipa3).p] to 4,704.08 [Model 1,
Ipa@ya] and for the second category from 4,707.40 [Model
13, Apa)-p] to 5,275.04 [Model 12, Agp(4).1]. Within each
category, the inclusion of diagonal structure for residuals
effects, allowing heterogeneous variances across environ-
ments, reduced both values of AIC and BIC criteria for the
same k factor of FA models. However, the inclusion of the
A matrix increased the values of both AIC and BIC, regard-
less of residual modeling (Table 1).

The percentage of genetic variance accounted for FA
models (0) ranged from 48.2 to 80.4% for the first cate-
gory of models, and from 95.3 to 99.9% for the second cat-
egory of models. Likewise for the AIC and BIC criteria,
when X, = I ® D, the 0 always increased for the same k



KRAUSE ET AL.

cropscience BB

factor. The inclusion of the A matrix also increased 0. In
the first category of models, the lowest AIC value was for
Model 3, modeled with Z, = FA(B)®I and £, =1Q® D.
The U of this model was 76%, superior to the ad hoc cut-
off value of 70%. For the second category of models, that
included genomic information, both Models 11 and 15, with
%, = FA(3) ® A, explained 99.9% of 0.

The BIC criterion for FA models always selected models
with k =1and X, = I ® D, being not informative to select
FA multiplicative mixed models. Therefore, based on the
AIC criterion and 0 in the first category of models (BLUE),
Models 7 [Ipac3).p] and 3 [Ipa(s).1] were selected to go for-
ward for genomic prediction in METs. From the second
category (GBLUP), although Models 15 [Apa3).p] and 11
[Apa@)-1] with k = 3 do not have the lowest AIC values for
their category, they were selected in order to make a fair
comparison with selected models from the first category
(BLUP) (Table 1).

For the third category of models, which accounts for
genomic information with unrelated environments, Model
18 (AL.p) presented the lowest values for both AIC and BIC
selection criteria. However, regardless of the best-fit model
for this category, all third category models were tested for
genomic prediction in METSs in order to investigate the
influence of modeling genetics and residuals effects in the
predictive accuracy.

3.2 | Estimates of genetic parameters
Based on the likelihood ratio test (LRT), genetic variances
were significantly greater than zero (Gé > 0) for most of
the trials within environments, with exception of T1 within
Environment 5 and T3 within Environments 1 and 4. For
T3 within Environments 1 and 4, the CVs were >13%. The
generalized measure of heritability (H?) ranged from .38
to .90, being zero for trial T3 within Environment 1, where
the genetic variance component was estimated as equal to
zero. Single-environment trial analysis also revealed that,
at the same location, environments in which trials were
sown in the first crop season were more productive than
those sown in the second crop season (Table 2). This is
an expected outcome due to the environmental differences
between crop seasons in tropical areas (safra and safrinha).
Genetic correlations estimated from FA models varied
considerably between pairs of environments. Models 11
[Apa@)-1] and 15 [Apa3).p |, that included the genomic addi-
tive relationship matrix A, presented in general higher cor-
relations than Models 3 [Ipa(3).1] and 7 [Iga(s).p], in which
hybrids were considered nongenetically related to each
other. For example, the lowest value of pairwise correla-
tion between environments for both Models 11 [Apa3).1]
and 15 [Aga(s).p] was 0.21, and for Models 3 [Iga(3).1] and 7

[Trac3)-p] was 0.08 and 0.06, respectively. Residuals model-
ing changed the magnitude of correlations for these mod-
els, being slightly higher for models that allowed homo-
geneous residuals variance across environments (2, = I ®
I). Overall, the estimated genetic and additive correla-
tions between environments were reasonably high, with
an average pairwise correlation of 0.51, 0.47, 0.61, and
0.58 for Models 3 [Ipaz)-1], 7 [Ipaz)-nl> 11 [Apacs)1], and 15
[Apac)-pl, respectively. Based on the average correlation
between a given environment and all the others, Environ-
ments 6, 7, and 11 had the lowest average values, and Envi-
ronments 5 and 9 the greatest averaged values of correla-
tion (Figure 1).

Principal component analysis showed good heterotic
group consistency of the 143 inbred lines used as parents
of the single-cross hybrids (Figure 2). Using SNP mark-
ers information from GBS, the genotypes of the single-
cross hybrids were inferred and, due the good consistency
of inbred lines heterotic groups, most hybrids were not
closely related (Figure 3). The four inbred lines used as
testers produced 48, 38, 23 and 20 single-cross hybrids,
respectively. Within each one of these groups, hybrids are
half-sibs and their expected average coefficient of relation-
ship is 0.25 (Lynch & Walsh, 1998). From the genomic rela-
tionship matrix A, on average, these coefficients were 0.27,
0.29, 0.36, and 0.30, respectively.

3.3 | Predictive accuracy
When hybrids from validation set were considered as miss-
ing in all environments (CV1), models from second and
third categories, that included genomic information, pre-
sented similar results. Models 11 [Apa(3).1], 17 (Ayp), and 19
(Ap.1), with £, = I ® I, had average predictive accuracies
0f0.261, 0.264, and 0.232, respectively. Models 15 [Apa(3).p |
18 (Arp), and 20 (Ap.p), with X, = I ® D, had average pre-
dictive accuracies of 0.273, 0.274, and 0.262, respectively
(Figure 4, Supplemental Tables S1-S4). Hence, for the CV1
scenario, when the validation set was considered as miss-
ing in all environments, models that allowed heteroge-
neous residuals variance across environments performed
slightly better. On the other hand, models from the first cat-
egory were not able to predict in the CV1 scenario. These
models do not borrow information from relatives within
environments through the additive genomic relationship
matrix A, given that Z, = FAGR)Q®I

The accommodation of genetic correlation between
environments through FA almost doubles the predictive
accuracy of the models until five missing environments
at random, independently of residuals modeling. Taking
Model 20 (Ap.p) as the baseline model and from 1 to
11 missing environments at random (all levels of CV2),
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TABLE 2
genetic (o3), block (a7), and residual (67) variance components

Environment Trial GY CV
tha™! %
Env 1 T1 0.82 8.92
T2 11.14 7.08
T3 11.25 13.12
Env 2 T1 3.78 8.99
T2 3.71 11.90
T3 4.18 8.70
Env3 T1 9.47 11.50
T2 9.74 11.10
T3 9.94 10.96
Env 4 T1 8.40 13.50
T2 8.68 10.60
T3 8.92 13.22
Env 5 T1 6.10 14.30
T2 6.57 14.60
T3 7.43 12.01
Env6 T1 7.33 11.60
T2 7.14 16.60
T3 6.21 13.94
Env 7 T1 8.35 12.90
T2 8.30 13.50
T3 7.04 13.11
Env 8 T1 11.84 8.20
T2 10.83 9.73
T3 12.26 7.97
Env 9 T1 8.46 12.30
T2 8.37 12.30
T3 8.11 10.26
Env 10 T1 7.69 12.20
T2 7.32 11.90
T3 8.36 9.60
Env 11 T1 4.57 11.50
T2 4.27 9.17
T3 6.26 10.77
Env12 T1 4.08 9.16
T2 4.00 12.80
T3 7.32 7.51

Results from single-environment trial analysis (Model 1) for grain yield (GY), CV, generalized measure of heritability (A?), and

A & & &2
0.64 0.83 0.00ns* 0.93
0.82 1.43 0.00ns 0.62
0.00 0.00ns 0.04ns 2.14
0.81 0.24 0.00ns 0.12
0.78 0.34 0.00ns 0.20
0.72 0.19 0.02ns 0.13
0.57 0.86 0.19 1.19
0.72 1.53 0.00ns 117
0.64 1.05 0.00ns 1.19
0.44 0.53 0.04ns 1.29
0.75 1.32 0.02ns 0.85
0.35 0.41ns 0.40 1.39
0.32 0.19ns 0.02ns 0.76
0.38 0.30 0.12ns 0.93
0.46 0.34 0.00ns 0.80
0.72 1.05 0.30 0.72
0.51 0.78 0.27 141
0.61 0.68 0.33 0.75
0.78 2.19 0.15ns 116
0.76 197 0.00ns 1.26
0.75 1.37 0.12ns 0.85
0.53 0.56 0.08ns 0.94
0.51 0.60 0.09ns 111
0.53 0.54 0.01ns 0.96
0.72 1.27 0.16 0.89
0.75 1.29 0.14ns 0.82
0.74 1.03 0.00ns 0.74
0.67 0.35 0.06 0.31
0.86 0.86 0.07ns 0.26
0.90 1.56 0.01ns 0.36
0.46 0.40 0.00ns 0.94
0.61 0.49 0.04ns 0.59
0.66 0.75 0.01ns 0.76
0.72 0.20 0.03 0.14
0.62 0.22 0.02ns 0.26
0.73 0.45 0.09ns 0.30

“ns, Variance component statistically equal to zero (cé =0or 0]2) = 0), based in the likelihood ratio test (LRT) with a = .05.

respectively, Models 3 [Iga(3).1] and 7 [Igas).p] had aver-
age predictive accuracies of 70.30, 62.92, 62.38, 61.05, 52.11,
58.66, 40.77, 36.35, 37.78, 12.63, and —19.67% superior or
inferior to the baseline model. Therefore, for first category
models that did not account genomic information, borrow-
ing information from correlated environments increased

the predictive accuracy up to 50% over the baseline model
until six missing environments at random. Six environ-
ments represent a reduction of 50% in phenotyping. For
Models 11 [Apa(3).1] and 15 [Aga(s).p |, from the second cat-
egory, predictive accuracies were 71.38, 70.46, 638.49, 70.87,
53.11, 71.07, 57.15, 50.89, 56.88, 34.13, and 19.53% superior
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Heatmap of genetic and additive correlations between environments for factor analytic (FA) models without incorporating

the genomic relationship matrix, Model 7 [Ips).] and Model 3 [Ipa(3).p]; and for FA models with genomic relationship information, Model 15

[AFA(3)»I] and Model 11 [AFA(3)_D]

to the baseline model, respectively. Hence, for the sec-
ond category models that accounted for genetic correla-
tion between environments and genomic information, pre-
dictions were up to 50% superior to the reference model
until nine missing environments at random, representing
areduction of 75% in phenotyping (Figure 4, Supplemental
Tables S1-S4).

Models from first and second categories had similar
performance from one to five missing environments at
random, and as the number of missing environments
increased, models from the second category that also
explored genomic information performed better. From 6
to 11 missing environments at random, respectively, the
GBLUP Models 11 [Agp(3).1] and 15 [Apa3).p ] had, on aver-
age, superior performance of 7.83, 11.63, 10.66, 13.87, 19.01,
and 48.8%, compared with BLUP Models 3 [Iga(3).] and 7
[Tga3)-nl, from the first category (Figure 4, Supplemental
Tables S1-S4).

Second category Models 11 [Aga(s)1] and 15 [Agac)p]
were able to keep predictions up to 0.4 until eight miss-
ing environments at random, and first category Models 3
[Tga3)-1] and 7 [Tga(s).p | were able to keep predictions up to
0.4 until five missing environments at random. This high-
lights the influence of missing environments for models
that do not accounted genomic information (Figure 4, Sup-
plemental Tables S1-S4).

In general, as the number of missing environments
became larger, the predictive accuracies got smaller for FA
models, mainly for BLUP models that did not accounted
genomic information. Third category models, not mod-
eled with FA structure but with the genomic relation-
ship matrix A, had similar predictive accuracies across all
levels of missing environments, including the CV1 sce-
nario. For these models, heterogeneous residual variances
across environments performed slightly better in all lev-
els of missing environment. For example, in a pairwise
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Scatter plot of two first principal components (PCs) from principal component analysis (PCA), based on 29,515 single nucleotide

polymorphism (SNP) markers for 143 inbred lines used as parents of maize single-cross hybrids. The legend shows Heterotic Groups C (Group

C), D (dent), and F (flint)

comparison between Models 19 (Ap.;) and 20 (Ap_p), the
latter had an advantage of, on average, 14.3% in predic-
tive accuracy. For Models 17 (Ar;) and 18 (Arp), this
advantage decreased to 3.6% for the latter. In this cate-
gory, Model 18 (Arp) had the lowest values of both AIC
and BIC, but in terms of prediction, no differences were
found between this model and Model 20 (Ap.p), which
also allowed for heterogeneous residual variances. Over-
all, Models 17 (A1), 18 (Ar.p), 19 (Ap.), and 20 (Ap_p) had
predictive accuracies ranging from 0.240 to 0.284, 0.258 to
0.280, 0.211 to 0.253, and 0.242 to 0.276, respectively (Fig-
ure 4, Supplemental Tables S1-S4).

The predictive accuracies of models that borrowed
information from correlated environments were superior
within all environments. This superiority was less evident
within Environments 6, 7, and 11. These environments had
the lowest values of average correlation among themselves
and the other environments. On the other hand, Environ-
ments 5 and 9 had the highest values of average correla-
tion, and the differences in predictive accuracy between
models with and without FA structure were more evident
(Figure 5).

3.4 | Changes in hybrid rank

For selection across environments, BLUP Models 3
[Tracz)-1] and 7 [Ipacs).p] had the highest values of coinci-
dence index of all models and levels of CV2, for both the
top and bottom 20% hybrids. For these two models, until
10 missing environments at random, with one exception,
all values of coincidence were >80% in comparison with
the baseline rank obtained from single-environment trial
analysis. The GBLUP Models 11 [Apa(3).1] and 15 [Agas)-p]
from the second category, with the exception of three val-
ues, presented values of coincidence >80% until eight miss-
ing environments at random, also for both the top and bot-
tom 20% hybrids.

In the most challenging scenario where hybrids from
validation set were removed from all environments (CV1),
GBLUP models from the second category modeled with
FA presented coincidence index ranging from 37 to 47%
for both the top and bottom 20% hybrids, when selecting
across environments. On the other hand, GBLUP models
from the third category that did not account for correla-
tion between environments presented, on average, 20 and
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FIGURE 3 Heatmap of genomic relationship matrix A for 147 maize single-cross hybrids ordered by four groups of half-sibs, each group

synthesized by a given tester. From Group 1 to 4, the sample size consists of 48, 38, 23, and 20 single-cross hybrids, with an average relatedness
coefficient of 0.27, 0.29, 0.36, and 0.30, respectively. The remaining hybrids, without label, were synthesized by other testers

16% coincidence index for the top and bottom 20% hybrids,
respectively, across all levels of missing environment (Sup-
plemental Figure S2).

For selections within environments, models from the
first and second categories, modeled with FA and hence
including correlation between environments, also showed
advantage over models that ignored it. When one envi-
ronment was missing at random, in the first level of CV2,
BLUP Models 3 [Iga(s).1] and 7 [Ipac3).p] presented values
of coincidence index >50% up to nine missing environ-
ments at random, for both the top and bottom 20% hybrids.
For second category GBLUP Models 11 [Apas).1] and 15
[Apa)-pl, the coincidence index was >50% up to seven
missing environments at random. The GBLUP from third
category that ignored genetic correlation between environ-
ments had similar performance of coincidence index for
both selections across and within environments (Supple-
mental Figure S3).

4 | DISCUSSION

The inclusion of FA structure in X, resulted in better good-
ness of fit of models, highlighting the importance of taking

into account information from correlated environments.
For biological reasons, some correlation between yield per-
formance of hybrids across environments is expected in
a breeding program, rather than homogeneous variances
and the absence of correlations. On the other hand, models
with a FA structure in G and with homogeneous structure
in R showed increasing values for both AIC and BIC cri-
teria. These results indicate that, in terms of model selec-
tion criteria, modeling G under a FA structure along with
heterogeneous residual variances across environments in
R tends to result in a better representation of VCOV struc-
tures for leveraging GE trends across environments.

The BIC criterion always penalized FA models with high
k order. Factor analytic models can be considered as nested
models—for example, from k = 1 to k = 4 [FA(1), FA(2),
FA(3), FA(4), and so on], as explained by Sorensen and
Gianola (2002). The BIC is a well-defined criterion for non-
nested models. Also, BIC penalizes most models with more
parameters, which can lead to the choice of models that
may underfit. Smith et al. (2015) observed the same pat-
tern of BIC criterion to select FA models. The percent-
age of genetic variance (0) accounted by each k factor, as
expected, increased as k became greater (Table 1). There-
fore, in the GS context for METs using FA multiplicative
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FIGURE 4 Mean predictive accuracies across environments of 10 times fivefold cross-validation, for factor analytic (FA) models with-
out incorporating the genomic relationship matrix (Models 3 [Iga@).1] and 7 [Ipacs).p]), for FA models with genomic relationship information
(Model 11 [Aga3).1] and Model 15 [Apas).p]), and for models assuming no correlation between environments but including genomic relationship
information (Model 17 [A;], Model 18 [A;. |, Model 19 [Ap ], and Model 20 [Ap.p])

mixed models, it is important to consider more than one
criterion to select the best fit model, as also pointed out by
Pastina et al. (2012) and Ferrao, Ferrao, Ferrao, Francisco,
and Garcia (2017).

Considering residual heterogeneous variance resulted in
improvements in the goodness of fit for all models. It is
realistic to assume that each environment presented its
own source of variation that cannot be explained by assum-
ing a common normal distribution due to climate condi-
tions, plant diseases, or any other sources of variation not
considered by the model. However, residual modeling with
homogeneous or heterogeneous variances did not improve
the predictive accuracies for models under FA in G. Similar
results were found by Burguertio et al. (2012), where genetic
effects were more important than residuals effects.

The gain in predictive accuracy obtained in CV2 over
CV1 with FA models is directly related to the ability
of these models to borrow information from correlated
environments. Phenotypic performance is expected to
vary according to the environment due to the GE interac-
tion (Ferrdo, Ferrdo, et al., 2017; Zhang et al., 2015). As a
consequence, the relative performance and rank of geno-
types may vary according to the environment. Our results

showed that models that allow heterogeneous variance
components and genetic correlations across environments
are more realistic and capable of capturing these patterns,
thus improving maize single-cross hybrids prediction in
the framework of METs. Therefore, prediction of newly
lines (yet-to-be phenotyped), a situation created by the CV1
scenario, was more challenging than predicting single-
cross hybrids that were evaluated in some environments
but missing in others (CV2) under FA models.

The magnitude of correlations between environments
is also an important parameter to be considered, which
can directly influence the ability of models to borrow
information from correlated environments. The matri-
ces of genetic and additive correlation across environ-
ments for models with and without genomic informa-
tion (BLUP and GBLUP), respectively, confirmed the high
association between environments. Similar results were
found by Burguerfio et al. (2012), Crossa et al. (2014), and
Lopez-Cruz et al. (2015), where including information
from METs increased the prediction accuracy of models.

Several studies included FA structure to account corre-
lations between environments (Burgueiio, Crossa, Cotes,
Vicente, & Das, 2011; Cullis, Jefferson, Thompson, &
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Smith, 2014; Dias, Gezan, Guimaries, Parentoni, et al.,
2018; Kelly et al., 2007; Smith et al., 2015). Specifically
for genomic prediction and selection, it has been used for
wheat (Triticum aestivum L.; Burguefio et al., 2012; Dawson
et al., 2013; Rutkoski et al., 2015), barley (Hordeum vulgare
L.; Malosetti, Bustos-Korts, Boer, & Van Eeuwijk, 2016;
Oakey et al., 2016), and maize (Dias, Gezan, Guimaraes,
Nazarian, et al., 2018; Schulz-Streeck et al., 2013). Pheno-
typing in an MET is routine in plant breeding programs,
and although the FA structure is an approximation to
the unstructured VCOV matrix, it provides reliable infor-
mation to access the performance of single-cross maize
hybrids within and across environments (Kelly et al., 2007;
Smith et al., 2001). Our results emphasized the great flex-
ibility of FA models to handle low, moderate, and high
levels of missing data in the framework of METs, as also
pointed out by Elias et al. (2016).

Cost reduction and improved selection are examples of
how GS can reshape breeding programs (Hickey et al.,
2017), but its application depends on the ability of models
to predict real situations faced in the breeding programs
(Ferrao, Ferrdo, et al., 2017; Ferrdo, Ortiz, & Garcia, 2017).
Our results emphasized that even in high levels of unbal-
ancing, models that account correlation between environ-
ments and genomic information can be a valuable tool to
predict breeding values. As an example, consider the cost

of GBS genotyping in a sequencing coverage (x) of 2x as
US$25.00 (Gorjanc et al., 2017) per inbred line, and the cost
of one maize yield-trial plot as $13.00 (Tech Services, 2018).
Then, the needed budget for a breeding program with simi-
lar data as presented in this study would be $3,575 for geno-
typing the 143 inbred lines used as parents, and $45,364
for phenotyping the 147 single-cross hybrids in 12 environ-
ments. Using a GBLUP model that embraces the correla-
tion between environments plus genomic information, it
was shown that until eight missing environments at ran-
dom (66% of missing data for the validation set), predic-
tions of untested single-cross hybrids were up 0.40 with
an average coincidence index of at least 80 and 50% for
selections across and within environments, respectively.
Hence, a reduction of breeding costs by 8.33% or $3,822
can be achieved if hybrids were predicted just in one envi-
ronment. This amount is sufficient to cover the costs of
inbred lines genotyping ($3,575). For the following levels
of missing environment, the reduction in the amount of
needed budget is linear. For hybrids predicted in two envi-
ronments, the reduction would be by 16.67% (or $7,644);
for three environments, the reduction would be by 25.00%;
and so on, until a reduction by 66.67% (or $30,576) for pre-
diction at eight environments.

Regardless of the level of missing data for genomic
prediction, any reduction of the total budget of hybrid
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phenotyping could be allocated to optimize the breeding
program. An interesting way to allocate the saved budget
is the development of newly synthetic populations for the
synthesis of novel inbred lines. For example, the cost for
producing a newly synthetic population obtained from 10
inbred lines—including the cost of labor, time demanded,
and nursery space for crosses—is on average $1,200
(Dr. David Benson, personal communication, 2018). Then,
if hybrids were predicted in one environment, the saved
budget could be used to produce three newly synthetic
populations, or to cover the costs of inbred lines genotyp-
ing, as mentioned above. Other possibilities to allocate the
saved budget could be (a) to be used in the evaluation of
more hybrids at the intermediate stage of the breeding pro-
cess, and therefore increase the intensity of selection; (b)
to obtain genotypic data for newly inbred lines and hence
predict the performance of newly developed single-cross
hybrids; or just (c) to reduce costs. It was also noted by
Krchov and Bernardo (2015) that once GS is implemented
in the breeding process, the reduction in the amount of
phenotyping labor leads to a better quality of the field data
collected, enhancing the effectiveness of selection.

Maize is a well-known allogamous species, and single-
cross hybrids express heterosis (Hallauer, Carena, &
Miranda Filho, 2010). This means that it is also worthwhile
to investigate the inclusion of a dominance relationship
matrix into GBLUP models. If the dominance component
is important regarding the observed genetic variation, the
use of both additive plus dominance values could boost
predictions (Oakey et al., 2016). However, results of this
approach showed no improvement in hybrids predictions
or in hybrids ranking (data not shown), although some
exciting results have been reported in the literature (Dias,
Gezan, Guimaries, Nazarian, et al., 2018; dos Santos, Vas-
concellos, Pires, Balestre, & Von Pinho, 2016). Some bottle-
necks associated with this result could be that the estima-
tion of dominance effects requires specific mating designs
(Nazarian & Gezan, 2016), and confounding between addi-
tive and nonadditive genetic components (Lee, Goddard,
Visscher, & Van Der Werf, 2010; Moghaddar & van der
Werf, 2017; Mufioz et al., 2014; Nazarian & Gezan, 2016).
An increase in the number of evaluated hybrids could over-
come this issue. It is also worth mentioning that selection
and assortative mating could result in a low accurate esti-
mation of nonadditive variance components (Hill, God-
dard, & Visscher, 2008).

In summary, we obtained encouraging genomic predic-
tion accuracies of tropical maize single-cross hybrids by
accounting for genetic correlation between environments
and genomic information in GBLUP models. The approach
used in our manuscript can be expanded to other crops
in which METs play an important role in the breeding
process. Future research on the integration of optimized

training sets and crop growth models (Bustos-Korts et al.,
2019; Rincent et al., 2017) that combine ecophysiological
and genetics modeling seems to be a promising way to deal
with unbalanced trials and to better understand and char-
acterize the dynamics of GE in the framework of genomic
predictions.

5 | CONCLUSION

This study demonstrated that (a) the inclusion of FA
structure boosted the predictive accuracy of untested
maize single-cross hybrids in the framework of MET,
regardless residuals modeling; (b) models that included
correlation between environments plus genomic infor-
mation achieved higher predictive accuracy in elevated
levels of missing environments over models that assumed
unrelated hybrids; and (c) high levels of predictive accu-
racy were found with moderated to low levels of missing
environments.
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