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ABSTRACT
The validity of the Boussinesq approximation in the wake

behind a high-pressure turbine blade is explored. We probe the
mathematical assumptions of such a relationship by employing a
least-squares technique. Next, we use an evolutionary algorithm
to modify the anisotropy tensor a priori using highly resolved
LES data. In the latter case we build a non-linear stress-strain
relationship. Results show that the standard eddy-viscosity as-
sumption underpredicts turbulent diffusion and is theoretically
invalid . By increasing the coefficient of the linear term, the far-
wake prediction shows minor improvement. By using additional
non-linear terms in the stress-strain coupling relationship, cre-
ated by the evolutionary algorithm, the near-wake can also be
improved upon. Terms created by the algorithm are scrutinized
and the discussion is closed by suggesting a tentative non-linear
expression for the Reynolds stress, suitable for the wake behind
a high-pressure turbine blade.

NOMENCLATURE
ai j Anisotropy tensor.
k Turbulent kinetic energy.
k′ Normalized turbulent kinetic energy: k/kmax

∗Address all correspondence to this author.

N Population size; number of training data points (context spe-
cific)

M Number of GEP solutions
Pk Turbulent kinetic energy production: τi j∂x jUi

Si j Strain rate: 1
2 (∂x jUi +∂xiU j)

S′i j Deviatoric component of strain rate: Si j − 1
3 δi jSkk.

tI Turbulent time scale: 1/ω .
Ui Time-averaged velocity vector
s Intrinsic coordinate along the wake center line, normalized

by axial chord.
x, y Cartesian coordinates, normalized by axial chord.
β Optimization parameter in least-squares regression.
∂φ Shorthand for ∂

∂φ
. As a differential operator, it acts on ev-

erything to the right within a term.
ε Least squares model error.
µt Eddy-viscosity.
ρ Time-averaged density.
τi j Reynolds stress: ρu′iu

′
j.

ω Specific dissipation rate.
Ωi j Rotation rate tensor: 1

2 (∂x jUi −∂xiU j)

INTRODUCTION
For the design of gas turbines, the primary tools are

Reynolds-Averaged Navier-Stokes (RANS) codes. This is be-
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cause of the excessive computational effort required for Direct
and Large Eddy Simulations (DNS/LES).

In the High-Pressure Turbine (HPT), the large Reynolds
number and transonic regime of the flow are inimical to the pre-
dictions made utilizing such RANS solvers. On the blade itself,
strong favorable pressure gradients act to keep the suction side
boundary layer laminar. The freestream turbulence, inducing by-
pass transition, is therefore a major player in determining aerody-
namic efficiency, loadings and heat transfer [1]. The prohibitive
Reynolds number has delayed high-fidelity simulations until re-
cently. Wheeler et al. [2] published the first DNS of a linear
HPT cascade at transonic conditions. By varying the freestream
turbulence, they showed the suction side flow to be highly un-
steady — with the point of transition varying greatly over time.
Such a sensitivity on and consequently prediction quality of var-
ied freestream turbulence cases has been found lacking in RANS
modeling [3]. This poor predictive capability continues down-
stream; wake loss profiles obtained with RANS exhibit excessive
kurtosis than the fatter tailed reality [4].

For such RANS methods, a large form of model uncertainty
is attributed to the Boussinesq hypothesis,

τi j =
2
3

ρkδi j −2µtS′i j. (1)

This relates the anisotropy of the Reynolds stress to the deviatoric
strain-rate tensor, via a coefficient of proportionality, which in
non-dimensional form is interpreted as a turbulent time scale,

ai j ≡
τi j

2ρk
− 1

3
δi j (2a)

=−tIS′i j (linear) (2b)

= ai j(V
1
i j,V

2
i j, . . . , I1, I2, . . .). (EASM) (2c)

Despite well documented shortfalls [5, 6, for example], Eq. 2b
is by far the most popular choice in industry, due to robustness
and its correct shear stress prediction in thin turbulent boundary
layers [7]. A class of turbulence closures, known as Explicit Al-
gebraic (Reynolds) Stress Models (EASMs) begin from the weak
equilibrium hypothesis [8] to express a tensor basis V k

i j and scalar
invariants Ik for ai j [9]. This basis and set of scalar invariants are
functions of the non-dimensional strain and rotation rate tensors,
denoted si j = tIS′i j and wi j = tIΩi j. For two-dimensional flow,
the basis and invariants are

V 1
i j = si j, V 2

i j = sikwk j −wiksk j,

V 3
i j = siksk j − 1

3 δi jsmnsnm,

I1 = smnsnm, I2 = wmnwnm.

(3)

An EASM closes the system by assuming the functional form
Eq. 2c and writing down algebraic expressions using Eq. 3.
There are many such models found in the literature; for exam-
ples see Refs. [10, 11, 12].

Equation 2 is the focus of our discussion. We begin from
high-fidelity reference data of the flow around an HPT blade [2]
and inspect both models of the forms in Eq. 2b and Eq. 2c.
First, we argue on statistical grounds that linear RANS models
are inappropriate for such a case. Then, by optimizing a linear
model, in an a priori least-squares sense, we show the mod-
est upper bound in predictive performance possible. This pro-
cess modifies the eddy-viscosity to improve turbulent diffusion,
however such optimized linear models are unable to capture this
process in the near-wake. Next, we discuss non-linear models
by regressing EASM closures from the high-fidelity data. Thus,
the approach is to define EASM models specific to HPT cas-
cades. We perform symbolic regression via an Evolutionary Al-
gorithm [13]. Our framework is an extension of Gene Expression
Programming (GEP) [14] and comes as machine learning for tur-
bulence modeling is gaining popularity [15, 16, 17, 18].

Such data-driven frameworks aim to reduce the number of
assumptions made when producing solutions. Our GEP algo-
rithm returns an algebraic tensor equation that can be inserted
into the system (Eq. 2c). As the method is inexpensive and
non-deterministic, we can repeatedly perform this to create many
models and obtain statistical information such as algorithm effi-
cacy and common features amongst solutions [15]. It is this last
aspect of the framework that we focus on in this paper.

We begin, in the next section, with an outline of the HPT
case used throughout. The following section scrutinizes the lin-
ear relationship in the wake on both theoretical and practical
grounds. Then, the final sections describe and apply our evo-
lutionary algorithm to further understand and improve upon the
Boussinesq approximation for the wake behind an HPT blade.
In particular, we ask what non-linear extensions are suitable —
we do not propose a new model per se, rather components that as-
sist in minimizing the error. In this sense, our work is a priori and
is part of the ongoing development of machine learning methods
that produce viable a posteriori turbulence closures [13, 15, 19].

FLOW CONFIGURATION
The reference data used in this paper is part of a wide reach-

ing, high-fidelity study into understanding the physics, particu-
larly the loss mechanisms, in turbomachinery flows subject to a
wide range of operating conditions. The current case is a highly
resolved LES of the flow through a linear HPT cascade, initially
proposed as a computational test case through an extensive ex-
perimental study [1]. The computational setup is similar to a
previous DNS [2], which matched the original experiment. That
is, exit Reynolds and Mach numbers of 5.7×105 and 0.9 respec-
tively with the blade treated as an isothermal, no-slip wall with a
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temperature 3/4 the stagnation temperature.
As part of the wider study, the present flow has an increased

inlet turbulent length scale at 5% axial chord and to accommo-
date this rise, the domain is thrice the DNS at 15% axial chord.
The total number of grid points in the plane and span is approx-
imately 834’000 and 386 respectively. The subgrid-scales were
calculated with the Wall-Adapting Local Eddy-viscosity model
(ubiquitously abbreviated to WALE) [20]. The simulation was
carried out using a hybrid finite difference/spectral code pur-
posely developed for compressible Navier-Stokes calculations on
high-performance computers [21].

AN INSPECTION OF THE LINEAR RELATIONSHIP
Many authors [22,23,24, for example] have utilized a ‘least-

square sense’ optimized value of µt ,

µt

ρ
=−kamnS′mn

S′i jS
′
i j

, (4)

during a priori testing of RANS models. Here, we offer that
Eq. 4 is the result of the scalar projection of ai j into −S′i j, such
that the time-scale (not normed by β ∗ = 0.09),

tI =
1
ω

=
µt

kρ
(5)

is the magnitude of ai j in this tensor space multiplied by
√

S′i jS
′
i j.

We can use this relationship to test the assumption of linearity
implied by Eq. 2b through the definition of a linear model,

ai jS
′
i j =−β

1
ω

S′i jS
′
i j + ε. (6)

β is a free parameter, such that we build an µeff
t = µtβ , and ε

is the model error induced by the projection. For such a lin-
ear relationship to hold (and by extension Eq. 2b), ε must be
normally distributed. This condition will form the bulk of dis-
cussions below. To minimize the error ε , we can define the
cost function,

J(β ) =
1
2

N

∑
n=1

(ε(n))2, (7)

for the N data points in the LES. This cost function describes the
total error at each data point squared and is a classical choice to
solve linear regression problems. The global minima of this cost

function can be found simply, after J is quadratic in β , seen by
inserting Eq. 6 into Eq. 7. Differentiation yields

∂J
∂β

= 0 =
N

∑
n=1

[
S′i j

(
β

ω
S′i j +ai j

)](n)
, (8)

which is a linear equation for the optimal turbulent viscosity for
the considered domain. Rearranging Eq. 8 provides a closed
expression for β ,

β =−
∑

N
n=1

[
S′i jS

′
i j

](n)
∑

N
n=1

[
S′mnS′mn

ω

](n) . (9)

The values for ai j and S′i j are taken directly from the LES,
whilst ω is solved from its RANS transport equation [25],

∂x j ρU jω =
γ

µt
Pk −β

w
ρω

2 +∂x j(µ +σ1µt)∂x j ω+

2(1−F1)
ρσ2

ω
(∂x j k)(∂x j ω), (10)

where the quantities not defined in the nomenclature are the stan-
dard constants and damping functions. Those quantities defined
in the nomenclature are calculated from the LES and held con-
stant, with the exception of µt which depends on ω (Eq. 5). This
freezing [23, 26] of flow quantities obtains the ‘correct’ RANS
specific dissipation rate given the flow state (ρ,Ui,τi j). With ω ,
all variables in Eq. 8 can be defined and thus an effective eddy-
viscosity µeff

t = β µt can be determined.
Four data sets are considered individually for minimizing

Eq. 7. Each is a selection of the wake, depicted in Fig. 1 and
determined by thresholding k′ < k/kmax with k′ = 0.01, 0.03,
0.05 and 0.07. A further constraint x > 1.07 is enforced because,
as shall be discussed, the linear assumption is entirely inadequate
below this value.

Table 1 lists parameters for each regression. The optimized
values µeff

t /µt ≈ 1.8 can explain approximately 90% of the vari-
ance, which is a modest improvement over the regular expres-
sion. A larger µeff

t corresponds to an increase in turbulent diffu-
sion and would likely improve the poor prediction of loss profiles
in the wake. Figure 2 is a plot along the approximate wake cen-
ter line [1] indicated with the dashed line (wrapped through the
periodic boundaries) in Fig. 1. s is the coordinate along this line
(normalized axial chord), with s = 0 being the trailing edge and
s = 5 corresponding to the point (x,y) = (2.38,0.034). The
line ε = 0 , where the model is making no error, is also included
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−

V 1
i j +

V 8
i j p

V 2
i j

×

I1
√

I2

FIGURE 5. EXAMPLE ET.

ments to their parents. Symbols that take no arguments (vari-
ables and constants) therefore exist at the extremities of the tree.
In GEP, such ETs are constructed from ‘chromosomes’. The cur-
rent example consists of two,

-V1+V8p|V2V3V2V4V2V1

*I3Q|I2I1I2I5

one for the scalar field and one for the matrix arguments. These
chromosomes are read left to right, with each representing a tree
in Fig. 5. The “|” denotes a split between the head and tail of
the chromosome and Q is the square root function. The head
may consist of operators, variables and constants, but the tail
may only contain variables and constants. This distinction guar-
antees mathematical syntax [14]. These chromosomes are read
recursively to build the ET of Fig. 5, until the trees are full (all
extremities are filled with terminals). For this example the chro-
mosomes are read up to V2 and I2 , with the remaining code
left unread. This redundancy in the tail is how syntax is guar-
anteed, provided its length is greater than the head’s less one.
The p symbol, known as a plasmid, is the joining point of the
two chromosomes. The introduction of the plasmid symbol [13]
has made it possible to express tensor (or more generally mixed
dimension) expressions naturally.

In order to minimize Eq. 12, an evolutionary analogy is
adopted. A ‘population’ of N randomly created candidate chro-
mosomes are iteratively (each known as a ‘generation’) subject
to natural selection, a process where better models survive to the
next generation based on Eq. 12. Natural selection is mimicked
through tournament selection [27] ; small groups of individu-
als are randomly chosen (with replacement) for N − 1 spaces
in the next generation. The fittest individual of each group —
or tournament — takes one of the N − 1 places. The last spot
in the generation is filled by the fittest individual in the popula-
tion, thereby ensuring its survival (because it may not be cho-

sen for tournament selection). The survivors of each genera-
tion then randomly ‘mutate’ and ‘breed’ — two processes that
change and share portions of chromosomes [14]. Mutation is a
random change in one position of the chromosome, say changing
the + to an I1 in the third position of the above chromosome.
Breeding, known as crossover or recombination [27] , involves
randomly picking two individuals, cutting them at some random
point and then exchanging the portions of their chromosome to
the right. This process therefore shares genetic material between
two parents to produce offspring. The product of natural selec-
tion and genetic variation is a gradual drift towards local minima
of J(agep

i j ). The evolution of the population ceases when a stop-
ping criteria is met; either a sufficiently local minimum has been
found or the maximum number of generations is reached. Note,
we do not claim global minima — GEP searches the space of all
tensor functions, which contain an infinite number of minima2

and as a result is a non-convex surface which is non-trivial to tra-
verse. For a full description of the algorithm see Ref. [13] and
for further information regarding specifics of that outlined above
and implementations of a wide range of evolutionary algorithms,
see Ref. [28].

The data used is the same as the k′ = 0.01 linear optimiza-
tion above, which is 2,711 data points. With a population of 300
individuals lasting 300 generations, a single optimization is on
the order of 10 core minutes. As repetitions of the algorithm pro-
duce different solutions agep

i j , due to the randomness induced by
initial conditions, mutations and the highly convex cost function,
we have run the algorithm M = 100 times. From this class of so-
lutions, formed by taking the best individual from each popula-
tion after 300 generations, statistical information can be obtained
about the process. This is discussed in the next section.

RESULTS FROM THE EVOLUTIONARY ALGORITHM
The distribution of raw fitness values, Eq. 12 , for each of

the trained models agep
i j is displayed in the histogram of Fig. 6.

This fitness value J is a measure of the average component-
wise distance from the actual anisotropy ai j. One can also see
from Fig. 6 that every single agep

i j has a considerably better fitness
than the regular (Eq. 2b) and optimized (µeff

t /µt = 1.736) linear
models. These 100 GEP solutions can be ensemble averaged to
give a model ãgep

i j . This ensemble is the mean prediction of all
models, an example of such a model contributing to this average
is,

agep
i j = ((I2 −2I1 +1)(I2 +0.107)+0.157)(V 1

i j +V 3
i j)+

((I2 −2I1 +10)(I2 +0.107)+0.157)(V 2
i j +V 1

i j)−2V 1
i j. (14)

2In practice this space is truncated by the length of the chromosome, however
the argument being made still holds.
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TABLE 2. SUMMARY OF MEAN SQUARE ERROR IN WAKE
REGION. 

108.05 

-1.736�

101.218 74.62 

One can immediately observe structural similarities between 
the two scalar field expressions. This is a result of the evolution­
ary process re-using and modifying useful 'genetic code,' much 
like regular Darwinism. This behavior allows us to observe use­
ful expressions that have emerged from the algorithm and poten­
tially use them (or variants 01) in non-linear expressions for the 
anisotropy tensor. Some features of the ensembled functional 
form are discussed below, after first advancing the discussion on 
the quantification of prediction capability. 

Table 2 is a a summary of the mean squared error 

N 6 

[. [. [. laij - arjP 
1
2

' (15) 
fl=li=lj�i 

in the training region. This further quantifies the added bonus 
of including trained non-linear terms highlighted in Fig l .  By 
optimizing the parameter /3, one can obtain a 6% improvement 
- but with the optimized EASM, one achieves 32%. This is a
moderate improvement and pleasing considering the reasonable
alignment of stress and strain in the far-wake for the linear mod-
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FIGURE 7. ALIGNMENT OF STRESS ANISOTROPY AND NON­
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els. 
Figure 7 is analogous to Fig. 3 for the ensemble averaged 

prediction, calculated via 

(16) 

Figure 7 also demarks the training data region, within which 
the non-linear models successfully minimize the alignment error. 
In particular, by comparing Fig. 3 with Fig. 7, one can see that 
the non-linear models better reproduce the near-wake emanating 
from the pressure side. This initial alignment drops below 0.75, 
but recovers much quicker than the linear prediction. Crucially, 
this optimized near-wake performance has not come at the cost of 
far-wake modeling. The non-linear corrections marginally out­
perform the original Boussi nesq approximation - which already 
was very good in this region. Note, the yellow stripe of misalign­
ment has not been eradicated, this is because of an almost sym­
metrical velocity distribution in the principal strain direction; at 
maximal velocity deficit dsJ. U

11 
� 0, the basis matrices VS are 

therefore no longer well aligned with aij. This results in a 
poorly aligned model a7jP. This behavior is an innate problem 



of using functions of velocity gradient and is perhaps best seen
in the prediction of anisotropy in a turbulent channel [11].

Outside of the demarcated region, the non-linear alignment
is worse than that obtained using a linear model, most noticeably
in the blade passage. This is an example of overfitting, i.e. the
trained closures are specialist wake models and should only be
trusted in regions sufficiently similar to the training conditions.
Detection functions that activate modifications only in the wake
could help in this regard [29, for example].

In Fig. 6 , there is a clear distribution around the ensembled
fitness J(agep

i j ). Interestingly, it appears bimodal which would
allude to two functional families consistently being found by the
algorithm, but with random variations in each individual. This
has not been explored in the interest of space, but further decom-
posing the ensemble solution would possibly yield two candidate
models. This distribution of fitness comes from spatial variation
in each of the M = 100 model predictions and can be expressed
through the variance in alignment value,

Var(
ai ja

gep
i j√

amnanmagep
pq agep

qp

)(x,y) =

1
M

M

∑
k=1

(
ai ja

gep
ji (k)√

amnanmagep
pq (k)a

gep
qp (k)

−

〈
ai ja

gep
ji√

amnanmagep
pq agep

qp

〉∼)2

(17)

where agep
i j denotes the vector of M = 100 GEP solutions and

(k) is the model index. Note that the second term is the mean of
the alignments, not the alignment of the mean, so as to be consis-
tent with the definition of variance. Equation 17 is therefore the
variance of all the GEP models’ alignment prediction for each
point in space. This quantity is plotted in Fig. 8 for the GEP
solutions. Within the marked training region, there is excellent
consistency in prediction and consequently the majority of the
wake is not shown in Fig. 8 . The largest variation comes in
the very near-wake region (y > −1.5); the flow from each side
of the blade — where the anisotropy is at its strongest — causes
an individual model agep

i j to be on average 0.09 away from the
mean alignment. This is very encouraging considering the high
level of anisotropy in this region, where the flow still ‘remem-
bers’ the attached boundary layer. Outside of the training region,
where the flow is not turbulent, the variance rises sharply. These
regions, where the levels of GEP model anisotropy are very un-
predictable, can cause numerical instabilities when they are used
as turbulence models in CFD codes. For this reason, it is desir-
able to take the ensemble solution to use as a predictive model.
This prevents overfitting the training region at the price of other
parts of the flow.

We now move onto analysis of the functional form itself. Ta-
ble 3 is a summary of the frequency of symbol selection amongst

FIGURE 8. VARIANCE OF THE GEP SOLUTION ALIGNMENT
AS A FUNCTION OF SPACE.

TABLE 3. SUMMARY OF SYMBOL SELECTION FREQUEN-
CIES.

basis: V 1
i j 0.387 invariants: I1 0.514

V 2
i j 0.286 I2 0.486

V 3
i j 0.328

the 100 models. Note, each function has undergone a basic level
of simplification that evaluates and cancels terms. We can see
that the basis V 1

i j is picked more often than random, whilst V 2
i j is

picked less often than random. The variable V 3
i j is picked about

randomly. In terms of the invariants there is a slight tendency to
pick I1, yet this does not seem significant.

The implication is that the algorithm has found gains more
readily by using more expressions in terms of V 1

i j, I1 and I2. There
are less terms involving V 2

i j and approximately one third of the
terms contain V 3

i j. Note, it cannot be argued that terms involving
V 1

i j are more complicated, rather a weaker conclusion that the al-
gorithm has generated and shared fragments containing V 1

i j more
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frequently can be maintained. Whether these terms are complex
or not, it implies that the linear eddy-viscosity component has
proven effective during the optimization.

The coefficients to these basis tensors are functions of I1 and
I2. These coefficients, respectively of −V 1

i j, V 2
i j and V 3

i j, of the
ensemble model agep

i j are provided:

1.334−0.438I1 −2.635I2 −0.0102I2
1 +1.021I2

2−
12.280I1I2 −102.047I1I2

2 , (18a)

0.573−1.096I1 +8.985I2 −1.102I2
1 +2.876I2

2+

90.633I1I2 −0.0949I3
1 +11.020I1I2

2 −0.142I3
2 , (18b)

12.861−25.094I1 +6.449I2 +1.020I2
1−

71.898I1I2
2 +304.979I1I2 −184.519I2

2 +10097.273I3
2

−10204.0816I4
1 +10204.0816I3

1 I2 −255.647I1I3
2 . (18c)

By taking the constants from Eq. 18 , we have a reduced
model

acoeff
i j =−1.334V 1

i j +0.573V 2
i j +12.861V 3

i j. (19)

The addition of the scalar invariant terms in Eq. 18 produces
a model with effective coefficients, that change with I1 and I2 .
This full model is not likely to be a fit-for-purpose stress-strain
relationship. For example , the elaborate nature of Eq. 18c does
not indicate a complex expression in reality, rather the opposite
— the 100 ensemble averaged solutions have not produced a re-
liable, coherent picture in polynomials of I1 and I2. This implies
that each GEP model has a very different V 3

i j coefficient such
that there is no systemic dependence on V 3

i j. The coefficient and
ensemble models have been included in Fig. 6 . Both models
are considerably better than the baseline linear model, and the
coefficient model is only marginally worse than the ensemble.

In Figs. 9-11 the effective coefficients Eqs. 18a-18c are dis-
played for the wake region. The linear part of the ensembled
model is µeff

t = 1.334µt . This is lower than the linear optimiza-
tion above (≈ 1.8). However one can see near the blade tip,
the effect of Eq. 18a, where this coefficient is raised to approxi-
mately 1.65. This is the catharsis to the skew in error and linear-
ity violations observed when assuming a constant β (see Fig. 2
and Fig. 4). Indeed, because of the high alignment of ai j and

FIGURE 9. COEFFICIENT OF -V 1
i j IN THE ENSEMBLED NON-

LINEAR SOLUTION.

−S′i j (Fig. 3) this is a fruitful addition through the assumption of
Eq. 2c.

Of the remaining coefficients, Fig. 10 and Fig. 11 both show
a similar structure, yet very different variation in magnitude. The
V 3

i j coefficient is approximately constant around 12.861, whilst
that of V 2

i j shows more relative variation below the coefficent 0.573
(Eq. 19). Note these coefficients vary by two orders of magni-
tude, a reflection of the basis tensor magnitude. This near con-
stant behavior for V 3

i j, in the training region, confirms the dis-
cussion above — that there appears to be no systemic functional
dependence on V 3

i j (that the algorithm can find.) Rather, this term
has been used, differently in each optimization, to counter mis-
takes and overshoots induced by the use of the other terms. Fur-
ther, despite the lower-than-random selection of V 2

i j, we can see
more meaningful variation. This implies that simpler terms have
been easy to include for modest gains, yet more difficult terms
have been harder to find.

CONCLUSIONS AND IMPLICATIONS FOR MODEL IM-
PROVEMENT

Using highly resolved LES data, we began this discussion by
showing that in the wake of an HPT blade, the standard turbulent
diffusion in the linear model is too low. An a priori optimized
effective coefficient, approximately µeff

t ≈ 1.8µt when including

9



FIGURE 10. COEFFICIENT OF V 2
i j IN THE ENSEMBLED NON-

LINEAR SOLUTION.

the near-wake in the training data, can improve the mean square
error by approximately 6%. This coefficient was dominated by
the near-wake, the inclusion of more or less far-wake data did
not yield much variation in value. Indeed, the assumptions of
least-squares regression were progressively more violated (see
the kurtosis in Table 1). This analysis shows that a linear model
will not able to reproduce the anisotropy for this case and theo-
retically a linear relationship is invalid.

Using the same highly-resolved LES data, we lowered this
error further by the inclusion of non-linear terms. Through the
analysis of ãgep

i j , an ensembled solution consisting of 100 min-
imizations using our GEP framework, we showed that a non-
constant coefficient for the −V 1

i j term was able to adjust to the
near-wake. Coefficients for V 2

i j, V 3
i j appear to vary less tangential

to the flow direction.

This study has been a useful exercise in employing a sym-
bolic regression algorithm in an unusual way. By focussing
largely on the physical equations produced, we have utilized one
of the hidden benefits of a symbolic algorithm — that we can
see ‘under the hood’ and understand the terms that best model
the physics. We also can see some of the downsides; the ensem-
bled model contains terms that are unlikely to provide stable/ro-
bust/accurate predictions in a CFD environment. Consider the

FIGURE 11. COEFFICIENT OF V 3
i j IN THE ENSEMBLED NON-

LINEAR SOLUTION.

fragment in Eq. 18c,

−10204.0816I4
1 +10204.0816I3

1 I2. (20)

This term is likely an anathema to a CFD solver; for this case
I1 ≈ I2 , however in general this is not necessarily true. Such
large coefficients would produce extremely non-realizable and
unstable contributions to the Reynolds stress . Eliminating terms
such as this automatically is the primary obstacle for the produc-
tion of CFD ready anisotropy functions obtained directly from
machine learning frameworks.

Finally, in terms of proposing model changes from this
study, we suggest (tentatively) a stress-strain relationship,

τi j =
2
3

ρkδi j−

2(1.334−0.438I1 −2.635I2 −0.0102I2
1 +1.021I2

2−
12.280I1I2 −102.047I1I2

2 )µtS′i j+

1.142ρkV 2
i j +25.722ρkV 3

i j, (21)

which is the inclusion of Eq. 18a and the constant from Eq. 18b.
One may also start from just the linear term and ignore V 2

i j for
marginal improvements over the optimized linear model. This
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equation is likely requiring limiters, based on the relationship
between Eq. 18a and 0.09, perhaps taking the maximum of these
two quantities. Evident from Fig. 6 , one may also attempt
to use the model Eq. 19 , this model is only quadratic in the
velocity gradient and therefore is more robust than Eq. 21 ,
whilst only sacrificing some accuracy.
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