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Abstract—Reasoning about floating-point numbers is notori-
ously difficult, owing to the lack of convenient algebraic proper-
ties such as associativity. This poses a substantial challenge for
program analysis and verification tools which rely on precise
floating-point constraint solving. Currently, interval methods
in this domain often exhibit slow convergence even on simple
examples. We present a new theorem supporting efficient
computation of exact bounds of the intersection of a rectangle
with the preimage of an interval under floating-point addition,
in any radix or rounding mode. We thus give an efficient
method of deducing optimal bounds on the components of
an addition, solving the convergence problem.

1. Introduction

Floating-point arithmetic has been the primary way of
performing calculations with fractional values on modern
computers for many years. Though its numerous corner cases
and counter-intuitive behaviors have given it a reputation
for fickleness [1], it is nowadays used even in safety-critical
applications such as avionics control software [2]. Formal
software verification systems are often used in such areas to
verify critical safety requirements. Such systems typically
rely on automatic theorem provers and constraint solvers
to answer logical queries about the program being verified.
However, our understanding of floating-point arithmetic is
somewhat limited, so our ability to verify floating-point
software is also limited.

The main difficulty in working with floating-point num-
bers is that they do not always obey the laws of real number
arithmetic. Although they superficially appear to satisfy such
properties, they are finite and thus cannot represent every real
number. When the exact result of a numerical operation is not
representable as a floating-point number, it must be rounded.
As even basic operations can produce unrepresentable results,
cases of unexpected behavior abound. For instance, it is
always true over the reals that x + 1 > x. However, if
interpreted as a formula of floating-point arithmetic, the
inequality may not hold if x is so large that the gap between
it and the next larger floating-point number is greater than
1. There are many other examples where real and floating-
point arithmetic differ. Hence, directly applying decision
procedures for real arithmetic to floating-point problems
may lead to unsound conclusions.

Interval methods are frequently used in decision pro-
cedures for numerical problems. Floating-point arithmetic
is no exception, and many different procedures based on
interval reasoning have been proposed [3]–[6]. They over-
approximate (as intervals) the sets of feasible values for
the problem variables and use satisfiability-preserving op-
erations to narrow the intervals, thus pruning the search
space. The simplest such operation is directly computing
and propagating the application of a function. For example,
consider the ternary constraint f(x, y) = z and bounding
intervals X , Y and Z for x, y, z, resp. To reduce Z, we could
compute Z ′ = Z ∩ f [X,Y ] and then set Z := �Z ′, where
f [X,Y ] is the image of X × Y under f and �Z ′ denotes
the smallest interval containing Z ′ as a subset. However,
computing f [X,Y ] exactly may be slow, and hence may
need to over-approximate by finding �f [X,Y ] instead. Note
that this is particularly simple if X and Y are closed and f
is non-decreasing in both of its arguments, as it follows that

�f [X,Y ] = [min f [X,Y ],max f [X,Y ]]

= [f(minX,minY ), f(maxX,maxY )] .

Despite being an over-approximation, this can still yield
optimal results in some common cases. If f [X,Y ] ⊆ Z, then
Z ′ = Z ∩ f [X,Y ] = f [X,Y ] and thus �Z ′ = �f [X,Y ].
Generally, �Z ′ = �f [X,Y ] if and only if both the minimum
and maximum of f [X,Y ] are in Z. Otherwise, at least one
endpoint is missing from Z and so there is at least one pair
in X × Y which does not correspond to any element of Z.
This may happen whenever there are multiple constraints on
z, as it is possible that some other constraint has already
reduced Z. We can eliminate the spurious values of X
and Y by considering the preimage f−1[Z]. We could find
W = (X × Y ) ∩ f−1[Z] and set X := X ′ and Y := Y ′

where X ′×Y ′ = �W is the smallest rectangle containing W
as a subset. However, unless f is invertible with a monotone
inverse, finding the exact preimage may be difficult.

In this paper, we first study the computation of exact ex-
tremal bounds on the addends of a floating-point sum. These
bounds are known for binary floating-point arithmetic [7], but
we generalize the known results to arbitrary radices. However,
what we are particularly interested in are exact bounds on
subsets of the preimage. In the case of rounded invertible
unary real functions, Michel [8] gives an optimal solution.



In the most common case of binary floating-point addition
rounded to nearest with ties to even, the recent results of
Gallois-Wong, Boldo and Cuoq [9] give an optimal solution.
Otherwise, we can use the unary result to construct and over-
approximation. But in many instances, this approximation
can be very far from the optimal result, as we will see now.
Example 1. Consider IEEE 754 double-precision binary

floating-point numbers. Let F denote the set of floating-
point numbers (including infinities), and let ⊕ denote
floating-point addition. In this example, we assume that
rounding is upward. Consider the floating-point addition
constraint x ⊕ y = z. Suppose the initial bounds on
the floating-point variables x and y are X0 = Y0 =
[−100, 100] ∩ F, and assume that z is restricted to the
singleton set Z0 = {2−} where a− is the greatest floating-
point number strictly less than a. As X0 ⊕ Y0 ⊇ Z0, we
cannot narrow the bounds on z using the current bounds
on x and y. However, there are many values in X0 and
Y0 which do not sum to 2−. For instance, all values in
X0 ⊕−100 = −100⊕ Y0 are strictly less than 2−, and
thus −100 can be safely removed. The preimage bounds
of Michel [8] give us a way of accelerating this process.
To obtain a tighter lower bound on x, we find the least
floating-point w such that w⊕maxX0 ≥ minZ0. This is
given by w = RD(2− − 100)+ = −98 where RD(x) is
the downward rounding of x and a+ is the least floating-
point number greater than a. The corresponding upper
bound is given by RD(2− + 100) = 102− and thus we
have

X1 = X0 ∩ [−98, 102−] = [−98, 100] ∩ F ,
Y1 = Y0 ∩ [−98, 100−] = [−98, 100−] ∩ F .

After this point, however, convergence slows down
drastically. If we perform the process again, we obtain

X2 = X1 ∩ [RD(2− − 100−)+,RD(2− + 98)]

= [−(98−), 100−] ∩ F ,
Y2 = Y1 ∩ [RD(2− − 100−)+,RD(2− − 100−)]

= [−(98−), 100−−] ∩ F .

From this point, every iteration will narrow the bounds
on x and y by exactly one floating-point number on
each side. The optimal solution in this case is X∞ =
Y∞ = [−(2−), 4−] ∩ F and in fact −(2−) + 4− = 2−

exactly. However, as there are quadrillions of floating-
point numbers between -98 and -2; finding this solution
will take an enormous amount of time.

With the results of this paper, we can calculate the tightest
bounds on the addends using only a fixed small number of
floating-point operations, regardless of choice of base or
rounding mode. Thus, the main contributions of this paper
are the following:

• A simpler proof of a result [7] concerning extremal
bounds for binary floating-point addition.

• A generalization of this result to floating-point addi-
tion in arbitrary bases.

• A stronger variant of a well-known result of Sterbenz
on exact floating-point subtractions [10].

• A set of results that allows for the constant-time
computation of optimal bounds on the addends of a
floating-point addition, given initial bounds on the
addends and the sum.

In the next section we introduce necessary notation and
preliminary results. In Section 3 we prove a generalized
form of Marre and Michel’s result [7] on universal preimage
bounds for addition. In Section 4 we use the bounds to
develop a stronger version of Sterbenz’s lemma. In Section 5
we show how to perform optimal floating-point addition
bounds tightening in constant time. We conclude in Section 6.

2. Preliminaries
We assume the reader has some familiarity with standard

representations of floating-point numbers. Nevertheless, we
now recall some basics, mainly to fix our notation.

A finite floating-point number is generally written
±d1.d2d3 · · · dp × βe, where each digit di is an integer in
[0, β − 1]. The ±d1.d2d3 · · · dp part is the significand, its
length p is the precision, β is the base (commonly 2 or 10),
and e is the exponent. For example, with precision p = 4
and base β = 2, we can represent the real number 0.40625
(here written in decimal) as 1.101× 2−2, assuming e = −2
is an allowed exponent, that is, one that can be represented
given the number of bits allocated for this. Under the same
parameters, the real number 0.1 (again in decimal) has no
exact finite representation.

To avoid multiple representations for the same real
number, floating-point numbers are usually normalized, that
is, the digit d1 before the radix point is precluded from being
0. Special patterns are used to represent non-standard floats:
(positive and negative) zero, (positive and negative) infinity,
and NaN (“not a number”).

While the IEEE 754 standard assumes normalized
floating-point numbers, it makes an important exception
for numbers close to 0: when the exponent is the smallest
allowed exponent (emin), the significand does not need to be
normalized. This exception leads to a number of advantages;
most importantly, it guarantees that for any finite x and y,
x	 y = 0 if and only if x = y—one of the rare cases where
a useful law carries over from the reals.

We now formalize these concepts. Following convention,
we denote the integers by Z, the reals by R, and the (affinely)
extended reals by R = R∪{+∞,−∞}. We denote the image
of a set X under the function g by g[X], and the preimage
of X under g by g−1[X]. To simplify exposition, we will
denote the images of X × Y and X × {y} under a binary
operator ◦ simply by X ◦ Y and X ◦ y, respectively.

A floating-point format is a quadruple of integers
(β, p, emin, emax) where β ≥ 2 is the base, p ≥ 1 is the
precision, and emin < emax are the minimum and maximum
exponents, respectively. The set of finite nonzero floating-
point numbers is defined as

F∗ =

{
M · βe−p+1

∣∣∣∣ M, e ∈ Z, 0 < |M | < βp,
emin ≤ e ≤ emax

}



We extend the set F∗ as follows:

F = {0} ∪ F∗ , F = F ∪ {−∞,+∞} .

So F is the set of all floating-point numbers (for a given
floating-point format). For convenience, we also define the set
of nonzero floating-point numbers with unbounded exponent:

F∗∞ = {M · βq |M, q ∈ Z, 0 < |M | < βp} .

Note that F∗∞ is always a superset of F∗ regardless of the
choice of emin and emax.

A finite nonzero floating-point number f ∈ F∗ is normal
iff |f | ≥ βemin . Otherwise, it is subnormal. Zero is neither
normal nor subnormal (we have no need to consider signed
zero in this paper).

The exponent of f is defined as e =
⌊
logβ |f |

⌋
if f is normal, or e = emin otherwise. Equivalently,
e = max

{⌊
logβ |f |

⌋
, emin

}
. The quantum exponent of f is

q = e− p+ 1. The (quantum) exponent of zero is undefined.
We denote the minimum and maximum quantum exponents
by qmin = emin−p+1 and qmax = emax−p+1, respectively.

The significand of f is given by m = f/βe, and the
integral significand of f is M = mβp−1. Note that M is an
integer and that f = mβe = Mβq . The (integral) significand
of zero is zero.

The predecessor x− and successor x+ of a floating-point
number x are defined as the greatest floating-point number
less than x and the least floating-point number greater than
x, respectively. Note that the quantum exponent q satisfies
|x|+ = |x|+ βq iff 0 < |x| < maxF.

We denote by fl : R → F an arbitrary nondecreasing,
faithful rounding function. A rounding function is faithful
if and only if it is equal to the identity function for all
floating-point numbers and otherwise returns one of the two
floating-point values on either side of its input. Note that
a faithful rounding function is therefore idempotent and
surjective. The five standard IEEE rounding modes are all
nondecreasing and faithful. A real number x can be rounded
up (to RU(x)), down (to RD(x)), away from zero, to the
nearest floating-point with ties to even (RNE(x)), or to the
nearest with ties away from zero. That is, RU(x) is the
least floating-point number no less than x, and RD(x) is
the greatest floating-point number no greater than x. Note
that for any x, RD(x) ≤ x and RU(x) ≥ x, with equality
attained if and only if x is a floating-point number.

The rounded addition operator ⊕ is defined whenever x
and y are not infinities of opposite sign as x⊕ y = fl(x+ y).
Similarly, the rounded subtraction operator 	 is defined
whenever x and y are not infinities of like sign as x	 y =
fl(x− y).

For the sake of completeness, we will now list some
elementary properties of floating-point arithmetic that will
(silently) be used throughout the paper.
Lemma 1. Let x, y ∈ F∗, and let ex and ey be the exponents

of x and y, respectively. If |x| ≥ |y|, then ex ≥ ey.

Lemma 2. Let x ∈ R. If fl(x) is finite, then |fl(x)−x| < βq

where q is the quantum exponent of fl(x) or qmin if
fl(x) = 0.

Lemma 3. Let x, y ∈ F∗ with quantum exponents qx and
qy , respectively. Let My be the integral significand of y.
If |x| > |y| and |My| = βp − 1, then qx > qy.

Lemma 4. Let x ∈ F∗∞. If βemin ≤ |x| ≤ maxF, then x ∈ F.

Lemma 5. Let x, y ∈ F. If x and y are subnormal, then
x± y ∈ F.

3. Universal Bounds on Addends

We now establish the floating-point addition property
of Marre and Michel [7], and generalize it to arbitrary
radices. Given a fixed nonzero floating-point number z, the
property gives the minimum and maximum values of x and
y that satisfy the equation x ⊕ y = z in binary floating-
point arithmetic. As we will see, these bounds are in fact
guaranteed to sum exactly to z, immediately giving optimal
solutions in cases where the initial bounds are too wide, as
in our earlier example. The proof of our generalization is
elementary and requires only basic number theory.

To begin, we will need some preliminary results. The
following lemma gives a necessary condition for the sum of
two floating-point numbers to be exact.
Lemma 6. Let qx, qy, qz ∈ Z and let Mz ∈ Z. Then there

exist integers x and y such that βqxx+βqyy = Mzβ
qz if

and only if min{qx, qy} ≤ qz +k where k is the greatest
integer such that βk divides Mz .

Proof: Let n = min{qx, qy, qz} and let a = βqx−n,
b = βqy−n and c = Mzβ

qz−n. As the exponents are
nonnegative, a, b and c are integers. Thus by Bézout’s lemma,
ax + by = c has a solution in x, y ∈ Z if and only if c is
a multiple of gcd(a, b). Hence satisfying x and y exist if
and only if Mzβ

qz−n = Mzβ
−k · βqz+k−n is divisible by

gcd(a, b) = βmin{qx,qy}−n. Since Mzβ
−k is not divisible by

β, this is equivalent to min{qx, qy} ≤ qz + k.
From Lemma 6 it follows that, for every nonzero floating-

point z, there is an upper bound (independent of emin and
emax) on the magnitude of floating-point values that can sum
to exactly to z. This leads us to the following definition:
Definition 1. The universal upper and lower bounds on exact

floating-point addition U,L : F∗∞ → F∗∞ are defined by

U(z) = max {x ∈ F∗∞ | ∃y ∈ F∗∞(x+ y = z)} ,
L(z) = z − U(z) .

Note that these bounds extend naturally to subtraction, as
we have x 	 y = x ⊕ −y, and x + y = −z if and only if
(−x) + (−y) = z. Hence they are duals: L(−z) = −U(z)
and U(−z) = −L(z). We now show that the universal
bounds on exact addition are also the universal bounds on
rounded addition.
Lemma 7. Let z ∈ F∗ and let u, v ∈ F. If u⊕ v = z, then

u, v ∈ [L(z), U(z)].

Proof: Let x = L(z) and y = U(z). As −z ∈ F∗
and z + (−z) = 0 ∈ F, we have x ≤ −|z| < 0 and hence
−x = |x| ≥ |z| and y = |y| ≥ |z| > 0. Suppose to the



contrary that u⊕v = z but u and v are not both in [x, y]. Then
the absolute rounding error ε = |u+v−z| = |u−x+v−y|
must be strictly less than βqz where qz is the quantum
exponent of z. Without loss of generality, we will assume
that u ≤ v. Suppose to the contrary that u < x. Then
|u| > |x| and hence there is some integer Nu < 0 such
that u− x = Nuβ

qx where qx is the quantum exponent of
x. As |x| ≥ |z|, the exponent of x is no less than that of
z, and so u − x ≤ −βqx ≤ −βqz < −ε. Hence v must be
greater than y, and so there is some integer Nv > 0 such that
v−y = Nvβ

qy where qy is the quantum exponent of y. Since
|y| ≥ |z| and therefore qy ≥ qz , we have ε = |K|βqz where
K = Nuβ

qx−qz + Nvβ
qy−qz is an integer. As ε < βqz , it

must be that K = 0 and thus ε = 0. However, x is the least
value for which the addition can be exact and u is strictly less
than x, so this is a contradiction. Suppose instead that u ≥ x.
Since u ≤ v and at least one of u or v must be outside of
[x, y], we must have v > y. Hence there is some integer
Nv > 0 such that v − y = Nvβ

qy . However, u − x ≥ 0
and thus ε = u − x + v − y ≥ v − y ≥ βqz , which is a
contradiction. Thus u and v must be in [x, y].

With these results in hand, we are very nearly done.
However, though have shown that L(z) and U(z) give
universal bounds on rounded addition, we still do not have
an efficient construction. We now use Lemma 6 to obtain a
more concise proof of the property of Marre and Michel [7],
which gives an easy way of calculating L(z) and U(z) when
β = 2. We will then generalize their result to higher bases.
In the proof below, we will retain the use of the symbol β
in order to highlight its most essential aspects.
Theorem 1 (Marre and Michel [7]). Let z ∈ F∗ with integral

significand Mz > 0 and quantum exponent qz , and let
k be the greatest integer such that βk divides Mz . Let
x = −(βp−1) ·βqx where qx = qz+k and let y = z−x.
If β = 2, L(z) = x and U(z) = y.

Proof: Note that z − x = Mzβ
qx−k + (βp − 1) ·

βqx = (Mzβ
−k+βp−1)βqx . Suppose β = 2. Since Mzβ

−k

and βp − 1 are both positive, odd, and less than βp, their
sum is a positive multiple of β less than 2βp. Thus My =
β−1(Mzβ

−k + βp − 1) is an integral significand and so
y = z − x ∈ F∗∞. Hence L(z) ≤ x. Suppose to the contrary
that L(z) < x. Then there is some x′ ∈ F∗∞ less than
x such that y′ = z − x′ ∈ F∗∞. Since |Mx| is maximal,
the quantum exponent qx′ of x′ must be greater than qx.
However, by Lemma 6, if x′+ y′ = z, then min{qx′ , qy′} =
qx′ ≤ qz + k = qx where qy′ is the quantum exponent of
y′, which is a contradiction. Therefore L(z) = x and hence
U(z) = z − x by definition.

The key insight from the previous proof is that we need
an integral significand Mx such that Mx + Mzβ

−k is a
multiple of β. Equivalently, the last digit of Mx+Mzβ

−k in
base β is 0. For β = 2, it suffices that Mx is odd, as Mzβ

−k

must itself be odd. We now reuse Lemma 6 to generalize
Theorem 1 to arbitrary bases.
Theorem 2. Let z ∈ F∗ with integral significand Mz > 0 and

quantum exponent qz , and let k be the greatest integer
such that βk divides Mz . Let r be the remainder of the

division of Mzβ
−k by β. Let x = −(βp−r) ·βqx where

qx = qz + k and let y = z − x. Then L(z) = x and
U(z) = y.

Proof: We will first show that the subtraction z − x
is exactly representable in F∗∞:

z − x = Mzβ
qz + (βp − r) · βqx

= Mzβ
−kβqz+k + (βp − r) · βqz+k

= (Mzβ
−k − r + βp) · βqz+k

= ((Mzβ
−k − r)β−1 + βp−1) · βqz+k+1 .

Since Mzβ
−k− r is nonnegative, divisible by β, and strictly

less than βp, the first factor is a positive integer strictly less
than βp and therefore an integral significand. As qz + k + 1
is an integer, z − x is hence exactly representable in F∗∞,
and therefore L(z) ≤ x.

Suppose to the contrary that L(z) < x. Then there is
some w ∈ F∗∞ less than x such that y′ = z − w ∈ F∗∞.
Let Mw and qw be the integral significand and quantum
exponent of w, respectively. As w < x, we have qw ≥ qx,
and either Mw < −(βp − r) or qw > qx. By Lemma 6,
min{qw, qy′} = qw ≤ qz +k = qx where qy′ is the quantum
exponent of y′. Hence qw = qx. Therefore there must be
some integer d such that Mw = −(βp−d) where 1 ≤ d < r.
As z − w = (Mzβ

−k −Mw) · βqz+k and Mzβ
−k −Mw is

greater than βp, the result is exactly representable only if
Mzβ

−k −Mw = Mzβ
−k − d+ βp is divisible by β. Since

Mzβ
−k − r is a multiple of β and 1 ≤ d < r < β, that is

impossible. Thus L(z) = x and hence U(z) = z− x = y.

4. Solutions of Addition Inside the Bounds

Although Lemma 7 gives a useful necessary condition
for x⊕ y = z to hold, it says nothing about what solutions
exist between L(z) and U(z). It is well-known that if two
floating-point values are within a factor of two of each other,
their difference is exactly representable:
Lemma 8 (Sterbenz [10]). Let x, y ∈ F. If x and y have the

same sign and

|y|
2
≤ |x| ≤ 2|y| ,

then x− y ∈ F.

However, there are many other cases where subtractions are
exact. For example, consider U(x)− δ and L(x) + δ with
δ > 0. If x is positive, the exponent of U(x) is no less than
that of L(x). Intuitively, if we reduce the upper bound by a
single “step” to the next highest value—its predecessor—we
can perfectly mirror that movement on the lower bound by
increasing it by βn steps, where n is the difference between
their exponents. This changes the bounds by the same amount
in opposite directions, so they still sum exactly to x. As we
can repeat this process until we completely reduce the lower
bound to zero, the upper bound attains every floating-point
value between x and U(x). We formalize this intuition in
the following lemma.



Lemma 9. Let x, y ∈ F∗. If x and y have the same sign and
|y| < |x| ≤ U(|y|), then x− y ∈ F∗.

Proof: Suppose x and y have the same sign. Let
Mx,My be the integral significands and qx, qy be the
quantum exponents of x and y respectively. Then,

x− y = Mxβ
qx −Myβ

qy

= βqx(Mx −Myβ
qy−qx) .

Let k be the greatest integer such that βk divides My and
suppose qx ≤ qy + k. Then Myβ

qy−qx is an integer. As x
and y have the same sign, so do Mx and My . Therefore, as
qy ≤ qx and |My| ≤ βp−1, it follows that Mx−Myβ

qy−qx

is an integral significand. Since qmin ≤ qx ≤ qmax, we
have x − y ∈ F∗. Suppose qx > qy + k instead. Then by
Theorem 2, |x| ≤ U(|y|) implies that qx = qy +k+ 1. Since
x and y have the same sign,

|x− y| = |x| − |y|
≤ U(|y|)− |y| = −L(|y|)
≤ (βp − 1)βqy+k .

Dividing by βqy+k, we obtain |Mxβ −Myβ
−k| ≤ βp − 1

and hence Mxβ − Myβ
−k is an integral significand. As

qmin ≤ qy ≤ qy + k < qx ≤ qmax, x− y ∈ F∗.
Combining the previous result and Sterbenz’s lemma, we

immediately obtain the following theorem.
Theorem 3. Let x, y ∈ F. If x and y have the same sign and

|y|
2
≤ |x| ≤ U(|y|) ,

then x− y ∈ F.

The above result is, in essence, a substantially stronger
version of Sterbenz’s lemma, as it provides a precise upper
bound on x for subtraction to be exact.

Note that x+y = z requires that one of x or y is no less
than z/2 and the other no greater than z/2, and therefore at
least one satisfies Theorem 3. We therefore obtain a complete
characterization of the exact solutions of x+ y = z in x and
y over the floating-point numbers: if z = 0, then x+ y = z
if and only if x = −y; if z > 0, then x+y = z if and only if
z/2 ≤ max{x, y} ≤ U(z) and min{x, y} = z	max{x, y};
if z < 0, then x+ y = z if and only if L(z) ≤ min{x, y} ≤
z/2 and max{x, y} = z 	min{x, y}.

4.1. Inexact Solutions

Although we now have a precise characterization of the
set of solutions to the exact addition, what we are ultimately
interested in are the solutions of x ⊕ y = z. Let R =
fl−1[{z}]− z. Then x⊕ y = z if and only if x+ y = z + r
for some r ∈ R. As R is necessarily an interval and z+R =
fl−1[{z}] ⊆ (z−, z+), we see that every inexact solution pair
corresponds to a floating-point interval containing at least one
exact solution. However, the solution space is not guaranteed
to be connected unless the gap between exact solutions is
strictly narrower than R. Otherwise, there may be holes in

the solution space if the spacing between points is too wide
or when R is an open interval (e.g. if the rounding mode is
RNE and the integral significand of z is odd).

5. The Interval Case

Having developed the previous results, we now proceed to
solve our initial problem: finding optimal interval bounds on
the components of a floating-point addition using a constant
number of operations. We will do this by showing that
applying the bounds of Lemma 7 and Theorem 2 guarantees
that bounds from the unary preimage will converge to the
optimal bounds in no more than two iterations.

In the following, we consider a nonempty floating-point
interval Z ⊆ F, and arbitrary l, u ∈ F between minL[Z]
and maxU [Z] inclusive. Note that, for simplicity’s sake, we
only consider finite floating-point numbers. Since x⊕±∞ ∈
Z if and only if ±∞ ∈ Z, infinities among the addends
themselves are easily handled.

We define the criteria for optimality as follows:
Definition 2. We say that x ∈ F is feasible if and only if

there is some y ∈ F such that x⊕ y ∈ Z. Otherwise, we
say that x is infeasible. The pair (x, y) ∈ F2 is satisfying
if and only if x ⊕ y ∈ Z where x ≥ l and y ≤ u.
The optimal lower bound, denoted ΛZ(l, u), is the least
x ∈ F such that (x, y) is satisfying for some y ∈ F, or
+∞ if none exists. Similarly, the optimal upper bound,
denoted ΥZ(l, u), is the greatest y ∈ F such that (x, y)
is satisfying for some x ∈ F, or −∞ if none exists.

Although these functions are parametric in Z, we will
henceforth simply refer to them as Λ and Υ as we do not
vary the parameter. It is easy to show that, although in our
original problem we are concerned with a problem involving
two pairs of bounds (one for each variable), we need only
consider two bounds at a time:
Lemma 10. Let X and Y be intervals over F. Let

X ′ = {x ∈ X | ∃y ∈ Y (x⊕ y ∈ Z)} ,
Y ′ = {y ∈ Y | ∃x ∈ X (x⊕ y ∈ Z)} .

Then,

�X ′ = [Λ(minX,maxY ),Υ(minY,maxX)] ,

�Y ′ = [Λ(minY,maxX),Υ(minX,maxY )] .

In the remainder of this section, we will show how to
calculate Λ and Υ in constant time.

The following functions give lower and upper bounds on
the set of feasible floating-point numbers. They are defined in
nearly the same manner as the unary inverses of Michel [8]
and will form the base of our approach.
Definition 3. Define ΦZ : F → F ∪ {+∞} and ΨZ : F →

F ∪ {−∞} by

ΦZ(x) = min RU[fl−1[Z]− x] ,

ΨZ(x) = max RD[fl−1[Z]− x] .



As with Λ and Υ, we do not vary the parameter and so we
will henceforth refer to these functions simply as Φ and Ψ.
Note that, since −∞ < RU(x) and RD(x) < +∞ for finite
x, we have −∞ < Φ(x) and Ψ(x) < +∞.
Example 2. Suppose the rounding mode is RD. Then fl =

RD, and hence fl−1[{z}] = [z, z+). Thus fl−1[Z] =
[minZ, (maxZ)+). As RD−1[Z] is closed on the left,

Φ(x) = min RU[RD−1[Z]− x]

= RU(min [minZ, (maxZ)+)− x)

= RU(minZ − x) .

As RD−1[Z] is open on the right, we have to take some
additional care with Ψ, as we cannot take the maximum
of a right-open interval:

Ψ(x) = max RD[RD−1[Z]− x]

= max RD[[minZ, (maxZ)+)− x]

= RU((maxZ)+ − x)− .

We now show that Φ and Ψ satisfy some expected
relations. First, that Φ and Ψ are indeed lower and upper
bounds, respectively.
Lemma 11. Let x, y ∈ F. If x⊕ y ∈ Z, then x ≥ Φ(y) and

y ≤ Ψ(x).

Proof: Suppose x⊕ y ∈ Z. Then x+ y = t for some
t ∈ fl−1[Z]. Therefore,

RU(x) = RU(t− y) ≥ min RU[fl−1[Z]− y] = Φ(y)

and similarly RD(y) = RD(t−x) ≤ Ψ(x). As x, y ∈ F, we
have RU(x) = x and RD(y) = y, and hence the result.

We now show that Φ and Ψ are nonincreasing functions.
Lemma 12. Let x, y ∈ F. If x ≤ y, then Φ(x) ≥ Φ(y) and

Ψ(x) ≥ Ψ(y).

Proof: Suppose x ≤ y and let t ∈ fl−1[Z]. Then
t−x ≥ t−y. By the monotonicity of rounding, RU(t−x) ≥
RU(t−y) and RD(t−x) ≥ RD(t−y). If we choose t to min-
imize RU(t−x), we obtain RU(t−x) = min RU[fl−1[Z]−
x] = Φ(x) and RU(t − y) ≥ min RU[fl−1[Z] − y] = Φ(y)
and therefore Φ(x) ≥ Φ(y). Similarly, if we instead choose
t to maximize RD(t− y), we obtain Ψ(x) ≥ Ψ(y).

We now show that if the lower bound from Φ is infinite,
then there are no finite solutions, and therefore, no finite
optimal lower bound exists. The proof for the case of the
upper bound from Ψ is the same, mutatis mutandis.
Lemma 13. Let x, y ∈ F. If x ⊕ y ∈ Z and y ≤ u, then

Φ(u) is finite.

Proof: Suppose x ⊕ y ∈ Z and y ≤ u. Then by
Lemmas 11 and 12, Φ(u) ≤ Φ(y) ≤ x < +∞. Since
Φ(u) 6= −∞ by definition, we obtain the result.
Lemma 14. Let x, y ∈ F. If x⊕ y ∈ Z and x ≥ l, then Ψ(l)

is finite.

The following lemma gives a pair of necessary conditions
for the bounds to be feasible. As before, the proof of the
subsequent lemma is almost identical and hence omitted.

Lemma 15. Let x, y ∈ F. If x⊕ y ∈ Z where y ≤ u, then
x ≥ Φ(u) and y ≤ Ψ(Φ(u)).

Proof: Suppose x ⊕ y ∈ Z and y ≤ u. Then by
Lemmas 11 and 12, x ≥ Φ(y) ≥ Φ(u). Applying Lemmas 11
and 12 again, we obtain y ≤ Ψ(x) ≤ Ψ(Φ(u)).
Lemma 16. Let x, y ∈ F. If x ⊕ y ∈ Z where x ≥ l, then

x ≥ Φ(Ψ(l)) and y ≤ Ψ(l).

An immediate corollary of the previous two lemmas is that
Φ never overestimates the optimal lower bound, and Ψ never
underestimates the optimal upper bound.

The properties we have established here will be used
frequently throughout the remainder of this section. We will
now show how to find solutions to x ⊕ y ∈ Z such that
x ≥ l and y ≤ u. This will be divided into two parts: the
easy case of either l or u being feasible, and the hard case
of them being infeasible.

5.1. Feasible Bounds

If our initial lower and upper bounds l and u are feasible,
then finding the optimal bounds happens to be very simple.
If l ⊕ u lands below minZ, then if u is feasible, Φ(u) is
the least lower bound which sums with u to something in Z.
Similarly, if l ⊕ u > maxZ, then if l is feasible, then Ψ(l)
is the greatest value summing with l to any value in Z.

We first prove that Φ never underestimates the optimal
lower bound for a fixed addition.
Lemma 17. For all x ∈ F, Φ(x)⊕ x ≥ minZ.

Proof: Let x ∈ F, and let t ∈ fl−1[Z] such that
Φ(x) = RU(t − x). Then Φ(x) + x = RU(t − x) + x ≥
t − x + x = t and therefore Φ(x) ⊕ x ≥ fl(t) ∈ Z. Since
fl(t) ≥ minZ, the result follows.

We now show that Φ(x) “overshoots” Z if and only if
x is infeasible.
Lemma 18. For all x ∈ F, Φ(x)⊕ x ≤ maxZ if and only

if x is feasible.

Proof: Let x ∈ F. By Lemma 17, minZ ≤ Φ(x)⊕
x. Thus, as Z is an interval, if Φ(x) ⊕ x ≤ maxZ, then
Φ(x)⊕ x ∈ Z and so x is feasible.

Suppose x is feasible. Then there is some y ∈ F such
that x ⊕ y ∈ Z. By Lemma 11, Φ(x) ≤ y, and therefore
Φ(x)⊕ x ≤ y ⊕ x ≤ maxZ by monotonicity.

Putting together the two lemmas above, we immediately
obtain the following result:
Lemma 19. Let x ∈ F. If x is feasible, then Φ(x)⊕ x ∈ Z.

We now see that a feasible upper bound gives an optimal
lower bound:
Lemma 20. If l ⊕ u < minZ and u is feasible, then Φ(u)

is the optimal lower bound and u is the optimal upper
bound.

Proof: Suppose l ⊕ u < minZ and u is feasible.
Then by Lemma 19, Φ(u)⊕ u ∈ Z and hence Φ(u) > l by
monotonicity. Therefore u is the optimal upper bound, and
by Lemma 15, Φ(u) is the optimal lower bound.



The corresponding lemmas for Ψ and the optimal upper
bound can be proved in the same way as Lemmas 17 to 20:
Lemma 21. For all x ∈ F, x⊕Ψ(x) ≤ maxZ.

Lemma 22. For all x ∈ F, x ⊕ Ψ(x) ≥ minZ if and only
if x is feasible.

Lemma 23. Let x ∈ F. If x is feasible, then x⊕Ψ(x) ∈ Z.

Lemma 24. If l⊕ u > maxZ and l is feasible, then l is the
optimal lower, and Ψ(l) the optimal upper, bound.

The easy case solved, we can proceed to the more difficult
scenario of our suboptimal bound of interest being infeasible.

5.2. Infeasible Bounds

To find an answer when the bound is infeasible, we will
first need some auxiliary technical results. We shall begin by
eliminating the possibility of Z containing zero in this case.
Lemma 25. If 0 ∈ Z, then all x ∈ F are feasible.

Proof: For any x ∈ F, we have −x ∈ F. Thus if
0 ∈ Z, we then have x⊕−x = 0 ∈ Z.

As Z is an interval by assumption, a further consequence
of the above lemma is that all members of Z have the
same sign. Therefore, we can use what we know about the
structure of the solution space from Section 4 and Theorem 3
to eliminate many possibilities.
Lemma 26. Let x ∈ F. If there is a z ∈ Z with the same sign

as x such that |z|/2 ≤ |x| ≤ U(|z|), then x is feasible.

Proof: Suppose there is such a z. Then by Theorem 3,
z − x ∈ F. As x⊕ (z − x) = z ∈ Z, the result follows.

We now show that the union of the intervals where
Theorem 3 applies is itself an interval.
Lemma 27. Let I be an interval over F such that x > 0 for all

x ∈ I . Then
⋃
x∈I [x/2, U(x)] = [min I/2,maxU [I]].

Proof: Let x ∈ I . As x/2 ≤ x− < x < U(x),
[x/2, U(x)] contains x− and also x+ if it is finite, and thus
overlaps with the intervals surrounding them, if any. Hence⋃
x∈I [x/2, U(x)] is a union of overlapping intervals and thus

itself an interval. And the least value x/2 attains is min I/2,
while the greatest value U(x) attains is maxU [I].

The negative case easily follows from Lemma 27:
Lemma 28. Let I be an interval over F such that x < 0 for all

x ∈ I . Then
⋃
x∈I [L(x), x/2] = [minL[I],max I/2].

With the above lemmas, we significantly shrink the space
of infeasible values:
Lemma 29. Let x ∈ F and suppose all z ∈ Z have the same

sign as x. Let Z ′ = {|z| | z ∈ Z}. If minZ ′/2 ≤ |x| ≤
maxU [Z ′], then x is feasible.

The following result is perhaps unsurprising, but it is
vital to the proof of the lemma ahead.
Lemma 30. For any x ∈ F, RD(x/2) + RU(x/2) = x.

Proof: Let x ∈ F, and let M and q be its inte-
gral significand and quantum exponent, respectively. Then
RD(x/2) = bM ′cβq′ with some quantum exponent q′ and

integral significand M ′ = 1
2Mβq−q

′
where q′ ≤ q. If M ′

is an integer, then x/2 is exactly representable and hence
the result follows. Suppose M ′ is a half-integer instead.
Then RU(x/2) = RD(x/2)+ and bM ′c = M ′− 1

2 . Without
loss of generality, we will assume x is positive. Then
RD(x/2)+ = (bM ′c + 1)βq

′
= (M ′ + 1

2 )βq
′

and hence
RD(x/2) + RU(x/2) = 2M ′βq

′
= Mβq = x.

We now proceed to the main lemma of this subsection.
Given infeasible u, the next lemma provides an optimal
lower bound if and only if it exists.

Lemma 31. If u is infeasible and Φ(u) is finite, then Φ(u)
is feasible.

Proof: Suppose u is infeasible and Φ(u) is finite.
Then by Lemma 25, 0 /∈ Z, and as Z is an interval, all of
its elements have the same sign.

Suppose all z ∈ Z are positive. Then if u is non-
positive, u < minZ/2. If u is instead positive, then by
Lemma 29, either u < minZ/2 or u > maxU [Z]. By
assumption, the latter is false, and thus u < minZ/2.
Since u is infeasible, Φ(u) + u > minZ and hence
Φ(u) > minZ − u > minZ/2 > 0. Let z ∈ Z such that
L(z) = minL[Z]. Then,

Φ(u) = min RU[fl−1[Z]− u]

≤ RU(z − u)

≤ RU(z −minL[Z])

= RU(z − L(z))

= RU(U(z)) .

If RU(U(z)) = +∞, then maxU [Z] ≥ U(z) > maxF ≥
Φ(u). Otherwise maxU [Z] ≥ U(z) = RU(U(z)) ≥ Φ(u).
Therefore, as 0 < minZ/2 ≤ Φ(u) ≤ maxU [Z], by
Lemma 29, Φ(u) is feasible.

Suppose instead that all z ∈ Z are negative. If u is
nonnegative, then u > maxZ/2. If u is negative, then by
Lemma 29 we have either u < minL[Z] or u > maxZ/2.
As u ≥ minL[Z] by assumption, u > maxZ/2. Since u
is infeasible, Φ(u) + u > maxZ. Let z′ ∈ Z such that
U(z′) = maxU [Z]. Then Φ(u) > maxZ − u ≥ z′ − u ≥
z′ −maxU [Z] = z′ − U(z) = L(z′) ≥ minL[Z]. Thus,

Φ(u) = min RU[fl−1[Z]− u]

≤ RU(maxZ − u)

≤ RU(maxZ/2) .

By Lemma 30, RD(maxZ/2) ⊕ RU(maxZ/2) = maxZ
and hence RU(maxZ/2) is feasible. Suppose Φ(u) <
RU(maxZ/2). Then Φ(u) ≤ RD(maxZ/2) ≤ maxZ/2.
Therefore, as minL[Z] ≤ Φ(u) ≤ maxZ/2 < 0, by
Lemma 29, Φ(u) is feasible.

As we know that feasible bounds always have an optimal
counterpart, this leads straight to a solution. The variant of
Lemma 31 for Ψ can be proved similarly, mutatis mutandis.

Lemma 32. If l is infeasible and Ψ(l) is finite, then Ψ(l) is
feasible.



Lemma 33. If l⊕u < minZ and u is infeasible and Φ(u) is
finite, then Φ(u) is the optimal lower bound and Ψ(Φ(u))
is the optimal upper bound.

Proof: Suppose the conditions hold. Then by
Lemma 18, Φ(u) ⊕ u > maxZ and hence Φ(u) > l by
monotonicity. By Lemma 31, Φ(u) is feasible. Therefore, by
Lemma 23, Φ(u)⊕Ψ(Φ(u)) ∈ Z and hence Ψ(Φ(u)) < u
by monotonicity. Hence Lemmas 15 and 16 imply Φ(u) is
the optimal lower bound and Ψ(Φ(u)) is the optimal upper
bound.

In the corresponding case of an infeasible lower bound,
we have the following result:
Lemma 34. If l ⊕ u > maxZ and l is infeasible and Ψ(l)

is finite, then Φ(Ψ(l)) is the optimal lower bound and
Ψ(l) is the optimal upper bound.

With the case of infeasible bounds now also handled, we
can finish finding optimal bounds in the general case.

5.3. Synthesis

Putting everything together, we now state our two main
theorems. The first is a concise description of the optimal
bounds Λ(l, u) and Υ(l, u):
Theorem 4. Λ and Υ satisfy the following:

Λ(l, u) =


l l ⊕ u ∈ Z
Φ(u) l ⊕ u < minZ

Φ(Ψ(l)) l ⊕ u > maxZ and Ψ(l) > −∞
+∞ otherwise

and

Υ(l, u) =


u l ⊕ u ∈ Z
Ψ(Φ(u)) l ⊕ u < minZ and Φ(u) < +∞
Ψ(l) l ⊕ u > maxZ

−∞ otherwise

Finally, from Lemma 10 and Theorem 4, we conclude
that the optimal bounds can be found in constant time under
mild conditions:
Theorem 5. Let X and Y be intervals over F. Let

X ′ = {x ∈ X | ∃y ∈ Y (x⊕ y ∈ Z)} ,
Y ′ = {y ∈ Y | ∃x ∈ X (x⊕ y ∈ Z)} .

If floating-point operations, L, U , Φ and Ψ can be
computed in constant time, then �X ′ and �Y ′ can also
be computed in constant time.

Although the specifics of computing Φ and Ψ depend
on the definition of fl, the work of Michel [8] provides
a way of computing Φ and Ψ for any of the standard
IEEE rounding modes using a constant number of floating-
point operations. Thus, for the overwhelming majority of
architectures, Theorem 4 gives us a way of computing an
optimal answer in constant time.

6. Conclusion

Correct reasoning about floating-point operations is
notoriously difficult, and at the same time of the utmost
importance. For applications such as program analysis and
program verification, performing precise reasoning without
at the same time jeopardizing soundness is a considerable
challenge.

In this paper we have generalized a result by Marre
and Michel and established a number of other results about
floating-point addition and subtraction. Based on these results
we suggest an optimal interval bounds adjustment algorithm
for floating-point constraints of form x ⊕ y = z. The
algorithm would run in constant time, in the sense that
it would use a constant number of floating-point operations.
This has practical applications for non-bit-blasting floating-
point constraint solvers.
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