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ABSTRACT This paper proposes analytical approaches to extend the capacity of existing networks of
electric vehicles (EVs) by placement of additional charging stations (CSs) as well as determining the sizes
of existing and new CSs in order to handle future expansions of EVs. The EV flow at CSs is modeled by
a graph where nodes are potential locations for CSs and edges are uncertain parameters representing the
variable EV flow at CSs. The required extra CS locations are explored by transforming the CS placement
problem into a controllability framework addressed by maximum matching principle (MMP). To find the
sizes of each CS, the graph of CS network is partitioned featuring only one CS in each subgraph. The size of
CS in each subgraph is then determined by transforming the problem into the problem of robust stability of
a system with uncertain parameters where each parameter is associated with an edge of subgraph. The zero
exclusion principle is then tested for the related Kharitonov rectangles and polygonal polynomials of closed
loop system with selected feedback gain as CS capacity. The proposed analytical approach is tested on the
existing Tesla CS Network of Sydney. The locations of extra required CSs as well as the sizes of existing
and new CSs are determined to maintain the waiting times at all stations below the threshold level.

INDEX TERMS Electric vehicle, charging station, placement, sizing, fast charging, graph theory.

I. INTRODUCTION
A esponse to the greenhouse gases emissions, the internal
combustion vehicles have been replacing rapidly by electri-
cally powered vehicles. As such, the charging infrastructures,
mainly charging stations (CSs), have always been expanded
in order to supply the ever increasing demand of new EVs
added to the network.

The optimization techniques are the focal point of method-
ologies related to EV problems (for example see [1], [13]).
Some of the most frequently used optimization techniques
in literature addressing various EV related problems include
Monte Carlo simulation [3], [4], Grasshooper optimization
algorithm [5], particle swarm optimization (PSO) [6], [7],
CPLEX [8], [9], genetic algorithm [10], active-set algo-
rithm [11], and K-means cluster [12]. TheMarkov andMonte
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Carlo simulation are used in [3] and [4] to model the urban
driving cycle and to simulate the EV travel patterns and
charging demand, respectively. Grasshopper optimization is
used in [5] to address the sizing of CSs while the optimal
placement of distributed generations and shunt capacitors
are also investigated. In [6], a multi-objective PSO and geo-
graphic information system are used for the planning of CSs
with a focus on the underlying economic impacts. PSO is also
used in [7] for dynamic economic emission dispatchwith load
demand management where a large penetration during crest-
and-valley is considered. The CPLEX solver is used in [8]
to construct an integer linear program in order to address the
EV salesman problem constrained to a predefined windows
of waiting times. CPLEX is also implemented in [9] to attain a
mixed-integer linear programmodel for stochastic scheduling
of plug-in electric vehicles (PEVs) aggregator in day-ahead
and reserve market. A review on energy management and
optimization of EVs based on genetic algorithm is presented
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in [10]. Using active-set algorithm in [11], a framework is
proposed to optimally deploy various types of CSs where a
heuristic algorithm is implemented for solving the model.
The EV network of China is divided into 31 provinces by
k-means cluster [12] to investigate the impact of EVs on the
greenhouse gas emissions.

One of the main focus of studies related to EV networks
during the last few years has been the Optimal placement and
sizing of CSs in order to maintain the waiting time below
a threshold level ( [5]- [6], and [12]- [14]) where a sort of
optimization technique is used in almost all of the proposed
approach. The optimization techniques implemented for EV
problems usually suffer from computational issues such as
complexity and intractable solution [13]. On the other hand,
almost all (if not all) previous studies have addressed the CS
placement problems for regions where there are no existing
CSs. However, as the EV networks are rapidly growing, there
is a need for placement and sizing of new stations while also
the existing CSs must be re-sized.

A novel approach to CS placement and sizing is proposed
in [14] which, unlike the majority of current approaches
based on optimization techniques, relies on graph theoretic
properties of the graph of EV networks. It transforms the
CS placement to the problem of finding the set of required
driver nodes for CN controllability using the exact control-
lability method (ECM). Similarly, the CS sizing problem
is transformed to the problem of finding a linear quadratic
regulator (LQR) for each partition of EV network. However,
there are some limitations for this approach. It lacks the
consideration of dynamic traffic flow during the day and only
relies on 17 instances of traffic flow. Moreover, the proposed
CS placement approach can not be applied for networks
where there are some pre-existing CSs.

To address the above challenges, we have developed the
control framework first introduced in [14] in order to address
the CS placement and sizing for a network with existing
CSs and variable flow of EVs. Firstly, the mathematical
model of the underlying graph of EV network is improved by
separating the traffic flow at individual node from the trafic
flow between nodes. The proposed approach then transforms
the placement and sizing problems to controllability and
feedback gain design problems where the system states are
the waiting times at CSs and control inputs are the charging
capacity supplied via driver nodes acting as CSs. A model of
underlying EV network is constructed using a graph where
nodes are the potential locations of CSs and edges link two
nearby nodes where the weights of edges represent the num-
ber of EVs in the area. The ECM implemented in [14] is
not applicable for CS placements in networks with existing
CSs. Thus we use another graph theoretic property, known
as maximum matching principle, by modifying it to a case
where there are some pre-set unmatched nodes, and then the
locations of newCSs are determined by finding the remaining
unmatched nodes on the graph of CS network. Moreover,
the proposed approach in [14] determines the locations and
sizes of CSs according to a static EV flow corresponding

to few traffic instances during the day, while in this paper,
the control framework and the graph theoretic approach
of [14] are adapted to a more general and practical case that
considers variable traffic flow. Throughout the paper, the term
‘‘traffic flow’’ refers to the flow of EVs at the charging
stations. It is represented by uncertain parameters with known
maximum and minimum values assigned to the weight of
each edge.

To locate the number and locations of additional CSs,
we determine the driver nodes for the associated graph of
EV network based on the maximummatching principal while
considering the weights of edges as an interval uncertain
parameter. To address the sizing problem of existing and new
CSs, we first partition the graph of EV network featuring
only one CS (from the set of CSs located from the solution
of CS placement) in each subgraph. Then, we use the Khari-
tanov theorem and zero exclusion condition [15] to transform
the CS sizing problem to zero exclusion of the Kharitonov
rectangles or polygonal polynomials of the closed loop sys-
tem attained from the sub-graphs (or the problem of robust
stability of plants with uncertain parameters [16]). Detailed
simulations and analyses of the Tesla CS network of Sydney
verify that the proposed approach has significant impact on
reducing the waiting times at CSs in Year 2025 assuming
500% increase in EV traffic [19]. The main contributions of
this paper (in general and compared to [14]) are:

1) Unlike the usual optimization methods, the proposed
approaches are analytic, computationally effective, and
rely on established concepts from graph/control theo-
ries.

2) The mathematical model of the EV network proposed
in [14] is improved by separating the impacts of traffic
flows at nodes and between nodes.

3) We consider the CS placement and sizing for expanding
EV networks with existing CSs. As the best of authors’
knowledge, there is no analytic approach to placement
of new CSs for an expanding network considering the
future traffic.

4) The ECM method used in [14] is not applicable to CS
placement for expanding networks. Here, we modify
the MMP so that it can be used for placement of CSs
when there are some pre-existing CSs.

5) We consider and model the dynamic of traffic flow
using interval uncertain parameters.

6) The proposed approach is able to maintain the waiting
times at CSs below a threshold level in the presence of
variable traffic.

7) The proposed approach in this paper can be easily
implemented to any EV network with variable traffic.
The only required data is the model of the underly-
ing graph and the maximum/minimum number of EVs
arriving at CSs during operation.

The rest of the paper is organized as follows. Section II
develops an EV network model based on graph theory fol-
lowed by new approaches for robust CS placement and sizing
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of existing and new CSs. Section IV presents and analyzes
comprehensive simulation results for the existing Tesla CS
network of Sydney, Australia, followed by conclusions.

II. CS PLACEMENT AND SIZING FOR EXPANDING EV
NETWORKS WITH VARIABLE TRAFFIC FLOW AT CSs
In this section, the modeling of the CS network based on
graph theory is explained followed by a new approach for the
placement and sizing of existing and new CSs that considers
the variable traffic flows of the EV network.

A. GRAPH-THEORETIC MODELING OF EV NETWORK
Graph theory [17] is one of the bases of the mathematical
analysis in this study. Here, the terms graph or network are
reserved for the abstract mathematical model of the compo-
sition of nodes and edges of CS network where nodes are
the potential locations of CSs and edges are the traffic flow
between nearby nodes. The weights of edges represent the
traffic or the number of vehicles. A graph is defined as the
pair G = (V ,E) where V and E are the finite set of nodes
and edges of the graph, respectively.

The worldwide locations and sizes of the existing charging
stations are accessible through various CS networks andmaps
such as the Tesla CS, Plug In America, Go Electric Stations,
Open ChargeMap, Plug Surfing, EVChargerMaps, LEMnet,
POP Point, Sun Country Highway and PlugShare. For the
molding, formulation, simulations and analyses of this paper,
we use the Tesla CSMap of Sydney, Australia [18]. Assuming
500% increase in Sydney EV traffic by Year 2025 [19], this
model is augmented by adding some virtual candidate loca-
tions (nodes) for additional CSs at various spots across the
map to construct the graph of the whole network. Although,
the simulation is performed for this specific network, it can be
easily implemented to all EV networks with variable traffic.

Considering the waiting times at all potential and existing
locations of CSs as the states of system and assuming that
there is an online tool presenting the instance waiting times
to the drivers and the majority of drivers prefer a CS with a
low waiting time in nearby area, the dynamic equation

Ti = Ti0 +
∫ t

0
WchTchqii(t)dt +

n∑
j=1

qijaijTj, i = 1, . . . , n

(1)

governs the dynamics of waiting times at all nodes. In 1, Ti
is the state of ith node, Ti0 is the initial state of node i,Wch is
the ratio of charge to full charge, Tch is the full charging time,
qii(t) is the uncertain flow of EVs at node i, qij is the uncertain
flow of EVs between nodes i and j, aij is the outer coupling
matrix in which aij = 1 if there is an edge between nodes i
and j but aij = 0 otherwise, Tj represents the adjacent nodes
to node i, and n is the number of nodes. Given

∫ t
0 qii(t)dt =

Qii(t), we can write

Ṫi = WchTchQiidt +
n∑
j=1

qijaijTj, i = 1, . . . , n

Q̇ii = qii. (2)

Equation 2 governs the dynamics of waiting times Ti at all
nodes since when the drivers are consciously choose a target
CS, then all states Ti, i = 1, 2, . . . , n, incrementally converge
to nearly equal final states. Equation (2) simulates the waiting
times when no CS exists and thus the waiting times increase
constantly. To maintain all waiting times reasonably below
a threshold level, a controlling term must be added to (2)
which pins a few nodes to act as CSs in order to inject the
control signal (charging supply) to the network. Considering
the sizes of CSs as the values of control inputs of the system,
the governing equation of CS network can be written as

Ṫi = Ti +
n∑
j=1

qijaijHTj − δBui, i = 1, . . . , n (3)

where ui is the control signal or charging supply injected
through the CS at node i, B is the input matrix, and δi = 1 if
node i is selected as a CS and [δi] = 0 otherwise. Equation (3)
facilitates transforming the CS sizing problem to a control
framework in which finding the control signal is equivalent
to finding the charging capacity required to maintain the state
of system (3) or waiting times below a threshold level.

B. GRAPH-THEORETIC CS PLACEMENT IN EV NETWORKS
WITH EXISTING CSs AND VARIABLE TRAFFIC
As verified in [14], the problem of CS placement can be
transformed to the problem of finding the required driver
nodes for the underlying graph of EV network where nodes
are the potential places for CSs and edges represent the traffic
flow (the flow of EVs at CSs) between two nearby nodes.
System states are also defined as the waiting times Ti at
each node i. The set of driver nodes are located in [14]
by the exact controllability method which is based on the
maximum geometric multiplicity of all eigenvalues of the
system matrix. However, this method is not applicable here
as a set of predetermined CSs are already placed. We use and
modify an alternative method, known as maximum matching
principle, to find the set of required driver nodes. Throughout
the paper, the terms driver node, charging station, and CS
have been used interchangeably, but they convey the same
meaning.
Definition 1: For a graph G(V ,E), a matching M in G

is a set of pairwise non-adjacent edges, none of which are
loops, that is, there is no shared endpoints for none of edges
or, equivalently, no two edges share a common node. A node
is matched if it is an endpoint of one of the matching set,
otherwise, it is unmatched. Maximum matching Mmax of the
graph G is a matching of maximum size among all matchings
in the graph.

The relation between maximum matching and controlla-
bility is first revealed in [22] where the Controllability of
complex networks is attributed to the number of required
driver nodes. Once the maximum set of matched nodes are
identified, all unmatched nodes are considered as the set of
driver nodes [22] needed to completely control the entire
network. Considering (3) as a complex network with a set

VOLUME 8, 2020 118595



H. Parastvand et al.: Robust Placement and Sizing of CSs From a Novel Graph Theoretic Perspective

of pre-existing CSs, the objective is to place a set of extra
CSs to address future network expansion. Thus, here, the EV
network is called ‘‘controllable’’ if we can drive the the states
(waiting times) of (3) below a threshold level using a set of
pre-existing and extra CSs. We first set the existing CSs as
unmatched nodes and then attain the number and locations
of extra CSs for (3) by modifying the maximum matching
principle as summarized in proposition below.
Proposition 2: A given expanded graph G of a CS network

with V nodes and existing set of driver nodes S0CS is control-
lable if the set of driver nodes is

SCS = {V | (V ∈ S0CS ) ∪ (V ∈ SESC )} (4)

where

SESC = {V | (V 6∈ Mmax) & (V 6∈ S0CS )}. (5)
Proof: The proof is a straightforward result of comput-

ing the extra set of nodes SESC using the maximum matching
principle on the graph assuming that the set of nodes in S0CS
are reserved as unmatched. �
Using the above proposition and the control framework

of placement problem, the set of extra CSs can be found.
Example below clarifies the implementation of the modified
MMP for EV network.
Example 3: Figure 1 illustrates the implementation of the

modified MMP on a subgraph of an EV network. It repre-
sent an existing CS at node 3 in Figure 1.a which is set
as an unmatched node. The modified MMP has resulted
in two matched edges indicated by red lines and one
unmatched node (node 5) indicated by the red location sym-
bol in Figure 1.b. Thus, the subgraph will have two CSs, one
pre-existing and one added.

In Section III, the placement of required extra CSs for
the expanded Tesla CS network of Sydney, Australia is per-
formed using this method.

C. GRAPH-THEORETIC SIZING OF NEW AND EXISTING
CSs IN EV NETWORKS WITH VARIABLE TRAFFIC
To find the sizes of all CSs, first, we partition the CS graph
into ND subgraphs where there is only one CS (from the set
of CSs attained from the solution of CS placement) in each
subgraph. The partitioning algorithm decomposes the graph
intoND subgraphs which will be refined later by aiming at the
final decomposition with as fewer interconnections as possi-
ble (see [20] for further details on the partitioning approach).
Once the graph is partitioned, the corresponding dynamic of
each subgraph similar to (3) is calculated in which B has only
one non-zero entry corresponding to a node where a CS is
placed. The state space representation of each subgraph can
then be written as:

Ṫ = LT+ Bu , y = CT (6)

where L = D −
∑ns

j=1(Ti − Tj), i = 1, . . . , ns, ns is the
number of nodes within the subgraph,D is the degree matrix,
and C = 1. The state space representation of the subgraph

FIGURE 1. (a) A subgraph of EV network with an existing CS at node
3 and, (b) the implementation of the modified MMP which has resulted
to two matched edges indicated by red lines and one added CS at node 5.

FIGURE 2. A graph with three uncertain edges and one CS.

in (6) can then be written as the transfer function

G(s) = C(SI − L)−1B (7)

which is the Laplacian form of system (6).
The dynamic equation (7) for each subgraph is a trans-

fer function G(s) = N (s)
D(s) where both N (s) and D(s) are

affine-linear uncertain polynomials. This is clarified by the
following example.
Example 4: Consider the simple graph of Figure 2 with

three nodes and one CS at node 2. The number of vehicles on
the three edges are defined as 1 ≤ q1 ≤ 10, 1 ≤ q2 ≤ 15,
and 1 ≤ q3 ≤ 20. Let qii = 0 and qij = qji for i = 1, 2, 3.
The Laplacian matrix of this network can be written as:

L =

 2 −q1 −q3
−q1 2 −q2
−q3 −q2 2

 , C = 1, B = [0 1 0]T

The closed loop transfer function (7) with fixed controller k
can then be written as

H (s) =
k.N (s)

D(s)+ k.N (s)

where N (s) = s2 + (−4− q1 − q2)s+ 4+ 2q1 + q22 − q
2
3 +

2q2 + q1q3 and

D(s)+ k.N (s)

= s3 + (−6− kq1 − 4k − kq2)s2 + s(4− q21
− q22 + 2kq1 + kq22 + 4k − kq23 + 2kq2 + kq1q3)+ 2q21
+ 4q22 − 8+ 2kq1 + kq22 + 4k − kq23 + 2kq2 + kq1q3.

The uncertainties of this non-linear polynomial can be
over-bounded to construct an affine-linear uncertain poly-
nomial. By defining new variables Q1 = kq1, Q2 = kq2,
Q3 = q21, Q4 = q22, Q5 = kq22, Q6 = kq23 and Q7 = kq1q3,
the over-bounding polynomial can be written as

D(s)+ k.N (s)

= s3 + (−6− Q1 − 4k − Q− 2)s2
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+ s(4− Q3 − Q4 + 2Q1 + Q5 + 4k − Q6 + 2Q2 + Q7)

+ 2Q3 + 4Q4 − 8+ 2q1 + Q5 + 4k − Q6 + 2Q2 + Q7

which has an affine-linear uncertainty structure with uncer-
tainty bounds k ≤ Q1 ≤ 10k, k ≤ Q2 ≤ 15k, 1 ≤ Q3 ≤ 100,
1 ≤ Q4 ≤ 225, k ≤ Q5 ≤ 225k, k ≤ Q6 ≤ 400k, and
k ≤ Q7 ≤ 150k.

As explained, the subsequent subgraphs of the CS net-
work have affine-linear uncertain polynomials in the nomi-
nator and denominator of the related transfer functions. Each
subgraph with an associated CS can be seen as a control
system with unity feedback and a fixed compensator k that
represents the charging capacity. The closed loop polynomial
with fixed k can thus be seen as an affine-linear uncertain
polynomial with interval uncertainty. The proposed control
framework of this study facilitates implementing the con-
troller design theories to find the appropriate feedback gain
that can guarantee reaching to the desired system states.
This can be translated as finding the sizes of CSs that
can keep the waiting time (system state) below a threshold
level.

A few definitions and preliminary results are reviewed first
to demonstrate the transforming of EV sizing problem to
the problem of analysing the robust stability of an interval
uncertain polynomial. The Kharitanov theorem is the bedrock
of the analysis in this paper. It deals with the robust stability
of interval uncertain polynomials. Two solutions will be pre-
sented for CS sizing based on i) zero exclusion condition for
Kharitonov polynomials, and 2) zero exclusion condition for
a polytop of closed loop polynomials.
Definition 5: A family of uncertain polynomials given by

P = {p(., q) : q ∈ Q} is said to have invariant degree if for
any q1, q2 ∈ Q it follows that deg p(s, q1) = deg p(s, q2).
Definition 6: A set C ⊆ Rk is convex if the line joining any

two points it contains the whole line segment joining them.
Mathematically, for any given c1, c2 ∈ C and λ ∈ [0, 1] we
have λC1+(1−λ)c2 ∈ C. The convex hull of a shape denoted
by conv{.} is the smallest convex set that contains it.
Definition 7: A family of polynomials P = {p(., q) : q ∈

Q} is an interval polynomial family if p has an independent
uncertainty structure, meaning that each coefficient of p con-
tinuously depends on q and Q is a convex box.
Definition 8: Given a family of polynomialsP = {p(., q) :

q ∈ Q}, the value set at z ∈ C is the image of Q under p(z, .)
and is given by p(z,Q) = {p(z, q) : q ∈ Q}.
Theorem 9: [15] For the interval polynomial family P =
{p(., q) : q ∈ Q} with p(s, q) where its coefficients continu-
ously depend on q, there exists a second interval polynomial
family P̃ = {p̃(., q̃) : q̃ ∈ Q̃} with p̃(., q̃) in the form of
p̃(., q̃) =

∑n
i=0 q̃is

i and, moreover, P̃ = P .
Using the above theorem, known as lumping theorem,

the uncertain polynomial can be written as p(s, q) =∑n
i=0 qis

i and subsequently, the interval family can be
described by p(s, q) =

∑n
i=0[q

−

i , q
+

i ]s
i where q−i and q+i

denote the extreme points of the bound of uncertainty qi.

Definition 10 [15]: The four Kharitonov polynomi-
als associated with the interval polynomial p(s, q) =∑n

i=0[q
−

i , q
+

i ]s
i are the four fixed polynomials

K1(s) = q−0 + q
−

1 s+ q
+

2 s
2
+ q+3 s

3
+ q−4 s

4
+ q−5 s

5
+ q+6 s

6
+ . . .

K2(s) = q+0 + q
+

1 s+ q
−

2 s
2
+ q−3 s

3
+ q+4 s

4
+ q+5 s

5
+ q−6 s

6
+ . . .

K3(s) = q+0 + q
−

1 s+ q
−

2 s
2
+ q+3 s

3
+ q+4 s

4
+ q−5 s

5
+ q−6 s

6
+ . . .

K4(s) = q−0 + q
+

1 s+ q
+

2 s
2
+ q−3 s

3
+ q−4 s

4
+ q+5 s

5
+ q+6 s

6
+ . . . .

Now, we present the Kharitonov Theorem on robustness of
interval polynomials.
Theorem 11 [15]: An interval polynomial family P with

invariant degree is robustly stable if and only if its four
Kharitonov polynomials, or Kharitonov rectangles, are sta-
ble.

The above theorem can be graphically tested using the zero
exclusion condition as stated below.
Lemma 12: Given an interval family P = {p(., q) : q ∈

Q} with invariant degree and at least one stable member
p(s, q0), P is robustly stable if and only if z = 0 is excluded
from the kharitonov rectangle at all non-negative frequen-
cies; i.e., 0 6∈ p(jω,Q) for all frequencies ω ≥ 0.

The calculation of the value set for the whole range of
frequencies is computationally inefficient. However, there is
a cutoff frequency ωc > 0 such that 0 6∈ p(jω,Q) for all
ω ≥ ωc. This means that the computation of the value set can
be terminated at ωc. The existance of ωc is established in [15]
using the invariant degree condition. It follows that the cutoff
frequency can be calculated from

ωc = 1+
max{q+0 , q

+

1 , . . . , q
+

n−1}

q−n
(8)

Theorem 11 and Lemma 12 can be used to find the solution of
CS sizing problem. As indicated in example 2, the closed loop
polynomial of each subgraph of the CS network is an interval
uncertain polynomial which can be over-bounded to attain an
affine-linear uncertain polynomial. Proposition below sum-
marize the result using the Kharitonov rectangle and zero
exclusion condition.
Proposition 13: (First Proposed Solution to CS Sizing).

For a given subgraph Si attained from partitioning of the CS
network featuring only one CS with capacity k, the states T of
the associated transfer function computed from (7) can reach
the desired waiting time in finite time if z = 0 is excluded from
the the kharitonov rectangles of the affine-linear polynamial
D(s)+ k.N (s) with invariant degree for 0 ≤ ω ≤ ωc.

Proof: The proof simply follows from the results of
Theorem 11 and lemma 12 with the closed loop poynomial
of the subgraph attained from D(s)+ k.N (s). �

The proposition above is tested for the Tesla CS network
of Sydney, Australia and satisfactory results are attained in
Section III. Now, we proceed with the second solution to CS
sizing using a more general form of uncertainty.
Definition 14: A set X ⊆ Rk is said to be pathwise con-

nected if for any two points x0, x1 ∈ X, there is a continuous
function8 : [0, 1]→ X such that8(0) = x0 and8(1) = x1.
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FIGURE 3. Tesla CS map of Sydney, Australia [18] used for simulations. The black, red, and blue location icons correspond to the nodes with existing CSs,
new CSs (determined in this paper), and the potential CS locations, respectively.

Every convex set of uncertainty is thus pathwise connected.
Obviously, the uncertainty in the traffic map is also pathwise
connected as it is a convex set.
Theorem 15 [15]: Let the family of invariant degree poly-

nomials P = {p(., q) : q ∈ Q} with cutoff frequency
ωc and uncertainty bounding set Q, which is pathwise con-
nected, have continuous coefficient functions ai(q) for i =
0, 1, 2, . . . , n and at least one stable member p(s, q0). Then
P is robustly stable if and only if the origin z = 0 is excluded
from the value set p(jω,Q) at all frequencies ω ≥ 0; i.e., P is
robustly stable if and only if 0 6∈ p(jω,Q) for all frequencies
ω ≥ 0.

Now the value sets for a polytop of polynomials can be
defined. It is argued in [15] that the related value sets are
polygons in the complex plane. A polygonal property of value
sets for a plytop of polynomials is presented below which
facilitates testing the zero exclusion condition.
Lemma 16 [15]: Given a polytop of polynomials P =
{p(., q) : q ∈ Q}with uncertainty bounding set Q = conv{qi},

for fixed z ∈ C, the value set p(z,Q) is a polygon with gener-
ating set {p(z, qi)} or p(z,Q) = conv{p(z, qi)}. In addition, all
edges of the polygon p(z,Q) are obtained from the edges of Q
so that if z0 is a point on an edge of p(z,Q), then z0 = p(z, q0)
for some q0 is on an edge of Q.

The second solution to EV sizing problem is summarized
in the proposition below.
Lemma 17: (Second Proposed Solution to CS Sizing) For

a given subgraph Si of the graph of CS network with capacity
k, the states T of the associated transfer function computed
from (7) can reach to the desired waiting time in finite time if
z = 0 is excluded from the value set D(jω,Q) + k.N (jω,Q)
for all frequencies ω ≥ 0.

Proof: The proof is a straightforward result of theo-
rem 15 and lemma 16 with the closed loop polynomial of the
subgraph attained from D(s)+ k.N (s). �
The above proposition gives a solution to the sizing of each

CS in each subgraph. A clear cut solution to the CS placement
and sizing is presented in Algorithm 1.
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FIGURE 4. The Kharitonov rectangles for the subgraph shown in Figure 3.

Algorithm 1 The Proposed Graph-Based Solutions to the
Robust CS Placement and Sizing Problem in EV Networks
Input: Themaximum andminimum number of EVs arriving

at each CS during its operation.
Output: The locations of extra required CSs and sizes of all

(existing and new) CSs.
1: while maximum iteration is not met do
2: Calculate SCS from (4).
3: Apply partitioning algorithm to EV network to drive

ND subgraphs featuring one driver node per partition.
4: for i = 1 to ND do
5: Compute the cutoff frequency ωic from (8).
6: Investigate the zero exclusion condition of

Lemma 12 for 0 ≤ ω ≤ ωic and a fixed k using one
of the Proposition 13 or Lemma 17.

7: if the zero exclusion condition is satisfied then
the size of CS is k .

8: else
Increase k and go to step 6.

9: end if
10: end for
11: end while

III. IMPLEMENTATION OF PROPOSED CS PLACEMENT
AND SIZING STRATEGY IN TESLA CS NETWORK OF
SYDNEY
The proposed approaches of this paper (summarized in Algo-
rithm 1) are applied on the Tesla CS network of Sydney [18]
illustrated in Figure 3. The 48 existing Tesla charging sta-
tions are demonstrated in Figure 3 with black location icons.

TABLE 1. Number of connectors NC , the size of each existing CS |SSC |i in
kW, and the size of each CS in kW after expansion |SSC |i of Tesla CS
network of Sydney.

All CSs are equipped with the standard DC fast chargers
with the service time of 10 − 15 minutes. According to
Energeia Analysis, with current uptake rate of EVs, the num-
ber of EVs in Sydney by the year 2025 will be increased by
about %500 [19]. The graph of this network is augmented
in Figure 3 considering the variable traffic flow in 2025.

The number of connectors and sizes of existing CSs are
indicated in Table 1. The extra required CSs (SCS ) are
calculated by following the modified maximum matching
(Lemma 2) principle as explained in Lemma 17. Since the
result of maximum matching is a set of unmatched nodes
that must be considered as CSs, we have performed it on
a modified map where the nodes are selected in locations
where it is practical to construct CS infrastructure. This has
led to a set of 12 unmatched nodes (indicated by red location
symbol in Figure 3) in addition to 48 existing CSs which
are pre-set as unmatched. The resulted extra CSs are illus-
trated in Figure 3. Having the set SCS , we can proceed with
computing the size of each CS after constructing the graph
of CS network and partitioning it into |SCS | subgraphs. Due
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FIGURE 5. The zero exclusion condition for the polygonal polynomials of
subgraph shown in Figure 3 for (a) k = 65, (b) k = 75, (c) and k = 85.

FIGURE 6. The zero exclusion condition for the polygonal polynomials of
subgraph shown in Figure 3 for k = 95.

to space limitation, here the simulation results for only one
of the subgraphs (the area separated with a dashed rectangle
in Figure 3) are presented. The weights on the edges of this
subgraph represent the variable traffic flow qi between two
nodes. The system has 16 nodes and 20 edges. The number
of nodes and edges indicate the order of subgraph and the
number of uncertainties, respectively. The order of system is
16 and as such, it is a big transfer function with very long

FIGURE 7. (a) The traffic flow of the existing network with 48 CSs
(represented by black icons in Figure 3), (b) the corresponding waiting
time of the existing 48 CSs, (c) The traffic flow of the expanded network
(in year 2025), and (d) The corresponding waiting times of 48 pre-existing
and 12 extra added CSs (represented by red icons in Figure 3).

coefficients ai(q) depending on Q. Here, only the state space
representation of the subgraph is presented. The adjacency
matrix A for the subgraph is the equation can be derived, as
shown at the bottom of next page.

where the zeros are represented with dots for clarity. The
input matrix is B = . . . 1 . . . . . . . . .T and C = 1. By com-
puting the transfer function of this subgraph and constructing
D(s) + k.N (s), the two proposed methods for calculating
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qii q1 . . . . . . . . . . . . . .

q1 qii q2 . . . . . . . . . . . . .

. q2 qii q3 . . . . . . . . . . . .

. . q3 qii q4 . q9 . . q11 q12 . . . . .

. . . q4 qii q5 . . . . . . . . . .

. . . . q5 qii q6 . . . . . . . . .

. . . q9 . q6 qii q7 . . . . . . . .

. . . . . . q7 qii q8 q10 . . . . . .

. . . . . . . q8 qii . . . . . . .

. . . q11 . . . q10 . qii . q13 . . . .

. . . q12 . . . . . . qii q14 q15 q18 . .

. . . . . . . . . q13 q14 qii q16 . . .

. . . . . . . . . . q15 q16 qii . q17 .

. . . . . . . . . . q18 . . .qii q20 q19

. . . . . . . . . . . . q17 q20 qii .

. . . . . . . . . . . . . q19 . qii



the size of the CS at node 4 are implemented by graphi-
cal examining of zero exclusion condition (Figures 4-7 and
Table 1). Note that node 19 in the subgraph is re-numbered as
node 4.

The cutoff frequency for this subgraph is calculated
using (8) as ωc = 2.5. The zero exclusion condition for
k = 95 and 0 ≤ ω ≤ 2.5 is investigated in MATLAB
and the result is demonstrated in Figure 4 for 125 equally
spaced frequencies. Clearly, the origin of the complex plane
is excluded from the rectangles of Kharitonov and, as such,
the associated CS can handle the demand by increasing its
capacity to 95kW.

Proceeding with Lemma 17 will lead to the similar results
as Kharitanov rectangles. To this end, we have examined
the zero exclusion condition of Lemma 17 for three values
of k less than 95. The results are shown in Figures 5.(a)-
(c). As indicated in these figures, the origin of complex
plane is included in the polygons for all three values of k .
The subgraph is re-examined with k = 95 and, as shown
in Figure 6, zero is excluded from the polygons. There are
20 uncertainties but the attained polygons are not 20-sided
as most of extreme points fall inside the convex hull of the
polynomial for extreme points. The capacity of the rest of
CSs are computed in a same way and the results are presented
in Table 1. Finally, the waiting time of node 19 is calculated in
MATLAB for the variable traffic during 24 hours (as shown
in Figure 7.(a)) and the result indicated in Figure 7.(b) shows
that the waiting time is maintained near or lower than the 15
minutes threshold at all times.

IV. CONCLUSION
This study proposes novel graph theoretic solutions from the
lens of control theories to address the CS placement and
sizing in EV networks with dynamic traffic flow. The new
CS placement approach considers the placement of required
extra CSs for an expanding EVnetworkwith existing stations.
It is accomplished by modifying the maximum matching

principle to find the set of extra required CSs. Subsequently,
the CS sizing is addressed by resizing the existing stations
in addition to the sizing of new required CSs. The sizing is
performed by transforming the problem of CSs sizing for
a network with dynamic traffic to the problem of robust
stability of a family of polynomials with affine-linear interval
uncertainties where each uncertain parameter represents an
uncertain interval number of EVs in the zone between two
nearby nodes. In addition to dynamic traffic flow consider-
ation, the approach is unique as it relies on more analytical
methodologies compared with the conventional solutions to
CS placement and sizing problem that often suffer from com-
putational issues such as conservative responses or intractable
solutions. On the other hand, the fast growing of electric
vehicles (EVs) deployment necessitates expanding the cur-
rent charging stations (CSs) networks. Nearly all previous
studies on CS placement and sizing are focused on the plan-
ning and design of EV networks with no existing stations.
The proposed approach of this study, however, addresses the
placement of new and extra required CSs as well as re-sizing
of existing CSs for expanded network.

The proposed graph theoretic approaches are implemented
and verified on the existing Tesla CS Network of Sydney,
Australia assuming an increase of 500% in EV traffic by year
2025. Detailed simulation results indicate that the average
waiting times during peak hours at CSs are kept near 15 min-
utes for upgraded EV network with +500% increase in EV
traffic, 60 CSs, and total charging capacity of 5.025 MW.
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