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Abstract—This paper investigates the impacts of installing regu-
lated wind and electricity storage, by a state-owned (government)
entity, on average price and price volatility in electricity markets. A
stochastic bi-level optimization model is developed which computes
the optimal sizing of new wind and battery capacities by minimizing
a weighted sum of the average market price and price volatility.
A fixed budget is allocated on wind and battery capacities in the
upper level problem. The operation of strategic/regulated generation,
storage and transmission players is simulated in the lower level
problem using a stochastic (Bayesian) Cournot-based game model.
The Australia’s National Electricity Market (NEM), which is expe-
riencing occasional price peaks, is considered as the case study. Our
simulation results quantitatively illustrate that the regulated wind
is more efficient than storage in reducing the average price, while
the regulated storage more effectively reduces the price volatility.
According to our numerical results, the storage-only solution reduces
the average price at most by 9.4%, and the wind-only solution
reduces the square root of price volatility at most by 39.3%. However,
an optimal mixture of wind and storage can reduce the mean price
by 17.6% and the square root of price volatility by 48.1%. It also
increases the consumer surplus by 1.52%. Moreover, the optimal
mixture of wind and storage is a profitable solution unlike the
storage-only solution.

Index Terms—Electricity market, Bi-level optimization model,
Average price, Price volatility, Regulated wind-storage firm.

I. INTRODUCTION

H IGH levels of market power is one of the main reasons
behind high electricity prices in highly concentrated elec-

tricity markets, such as Australias National Electricity Market
(NEM) [1], [2]. For example, the electricity prices have increased
in average by 200% in NEM during 2015-2018 mainly due
to exercise of market power by strategic power plants. High
price volatility and mean price levels have negative impacts on
all parties involved in the electricity markets, e.g., generators
and consumers. Price volatility imposes large financial risks on
the market participants by increasing the future price prediction
uncertainty [3]. Extreme levels of price volatility may also lead to
market suspension, for example, NEM becomes suspended if the
sum of spot prices during a period is above the Cumulative Price
Threshold. On the other hand, high levels of mean wholesale
electricity prices lead to higher retail prices, i.e., impose high
cost on consumers. For example, average household power bills
increased almost 16 percent after Hazelwood coal plant closure
in Victoria [4].

Recently, limited government intervention has been proposed as
a solution which may pave the way towards more efficient markets
as the private sector is likely to act slowly due to regulatory,
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institutional, or other barriers [5]. For example, in 2017, South
Australia (SA) government took an initiative to improve the SAs
electricity market structure by installing 100 MW (125 MWh)
electricity storage devices manufactured by Tesla. Following the
success of the SA battery project, Victoria has also secured an
agreement to build its own Tesla battery near the town of Stawell
[6].

In such cases, the government may choose to intervene and
install regulated wind and storage capacities, which have short
construction periods, to increase the competition in the market
(which leads to increase in consumer surplus) and reduce the
market power as well as the electricity prices [7]. Note that aver-
age prices and volatility levels after the government intervention
still must allow competing firms to make money.

Our goal in this paper is to find the optimal state-owned
wind and storage capacity balance which, given a limited budget,
minimizes a weighted sum of the mean price and the price
volatility. We note that the market price in an electricity market is
a stochastic process due to the random nature of renewables and
stochastic nature of the electricity demand. Thus, it is desirable
to simultaneously control both the first moment of the price (its
mean) and its second moment (its volatility). Note that minimiz-
ing only the mean price (the volatility) can result in increasing
volatility (mean). Therefore, our approach can be interpreted as
a risk-sensitive solution which aims at minimizing the weighted
sum of the mean price and the price volatility. Although, regulated
storage has other positive effects on the electricity networks, e.g.,
improving the stability, in this paper we only focus on its effect
on the electricity market prices. The model is applied to the five-
state NEM market and is calibrated with realistic data from year
2016.

A. Contributions

This paper studies the optimal allocation of storage and wind
for minimizing a linear combination of the average price and
the square root of price volatility, which have the same scale
of $/MWh in our study. The contributions of this paper are
summarized as follows:
• A bi-level optimization model is proposed to optimally allocate

a fixed budget between regulated wind and storage capacities to
minimize the weighted sum of average price and price volatility,
in a multi-region wholesale electricity market.

• In the upper level problem, the weighted sum of average price
and price volatility is minimized by allocating a fixed budget
on regulated wind and storage capacities in that region.

• In the lower level problem, the non-cooperative market interac-
tion between strategic/regulated generation, storage and trans-
mission players and a regulated wind-storage player is modeled
as a stochastic (Bayesian) Cournot-based game. The existence
of Bayesian Nash Equilibrium (Bayes-NE) [8] is established
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for the lower level problem, which includes nonlinear inverse
demand functions.

• Our bi-level optimization model is converted into an equivalent
single level problem, in which the optimal capacities of wind
and storage are calculated via a line search algorithm.

• The impacts of wind and storage on average price and price
volatility are quantified in an analytical game-theoretic market
model. Our numerical results indicate that the regulated wind
is more efficient than storage in reducing the average price
whereas the regulated storage more effectively reduces the price
volatility.

• The lifetime cost-benefit analysis of investment on wind and
storage, considering a year with hourly resolution, is conducted
in our study. It is observed that when the storage only solution
is not economical, the investment on a mixture of wind and
storage capacities may make profit for the regulated firm.
Besides, the optimal mixture of regulated wind and storage
capacities is more efficient in increasing the consumer surplus
than the storage-only solution.

B. literature Review
The problem of storage allocation in presence of intermittent

renewable energy generation in electricity networks has been
studied in [9]–[14] using cost minimization approaches, and in
[15]–[20] using profit maximization objectives.

Facilitating the integration of renewable resources, the potential
value of energy storage in power systems with renewable gener-
ation is evaluated by minimizing the total operation cost in the
network in [9]. The optimal operation and sizing of the storage
systems is studied by minimizing the cost of the system in [10].
The storage allocation in renewable integrated power systems
is studied in [11] and [12] under deterministic and stochastic
wind models, respectively. To accommodate the integration of
renewable generation, bi-level optimization models are also pro-
posed to determine the optimal allocation and operation of energy
storage systems in [13] and of battery energy storage systems in
[14], in which the upper level problem minimizes the storage
system cost and the lower level problem implements the power
flow in the network. Note that these works are based on cost
minimization models and do not investigate the market interplay
between storage, renewable generators and other firms.

Assuming the storage firms as price takers in the market, the
optimal operation of storage firms in renewable integrated systems
is determined by maximizing the profit from energy arbitrage and
regulation services in [15], by maximizing the energy arbitrage
profit in day-ahead and hour-ahead markets in [16], and by
maximizing their energy and reserve profit in day-ahead and hour-
ahead markets in [17]. Assuming the storage firms as price maker
players in the market, the optimal charge/discharge operation of
the storage devices, and the optimal operation and size of the
storage devices are determined in [18] and [19], respectively,
treating the price bids of market participants other than the storage
players as exogenous inputs. The market operation behavior of
all generation and storage firms are considered endogenously in
a single-region electricity market in [20] using a Cournot-based
electricity market model.

The impact of the optimal storage allocation on price volatility
reduction in a multi-region electricity market model is studied
in [21]. However, studying the joint effect of wind and storage
allocation on market price characteristics is missing in the liter-
ature. As we show in this paper, wind firms are potentially more

efficient than storage firms in reducing the average price and the
results of [21] are not applicable when it is desirable to reduce
the average price in the market. Therefore, different from the
existing work, we consider the problem of managing the average
price and the price volatility by optimal allocation of wind and
storage capacities.

The rest of the paper is organized as follows. Section II
illustrates the system model and the proposed bi-level opti-
mization problem. The solution approach for finding the market
equilibrium is presented in Section III. Section IV provides the
simulation results and Section V presents the concluding remarks.

II. THE PROBLEM AND MARKET MODEL

We consider a regional electricity market including {1, ..., NI}
regions (states). Let N ig

i be the set of intermittent generation
firms located in state i, N sg

i be the set of synchronous generators,
such as coal, gas, and hydro power plants, located in state
i, N s

i be the set of storage firms, such as pump-hydro and
battery, located in state i, and N tr

i be the set of neighboring
states of the state i. Since some parameters such as wind and
solar power availabilities, which affect the electricity generation,
are stochastic, a scenario-based model including NW different
scenarios is developed to model the intermittent power generation
in the electricity network. The strategies of intermittent and
synchronous generators, storage firms, and transmission players
as well as the nodal prices are determined by solving a stochastic
(Bayesian) Cournot-based game.

In this paper, we present a bi-level optimization framework
for optimally allocating a budget on regulated capacities of wind
and storage to minimize the weighted sum of average price
and price volatility in a single state taking into account the
interdependencies to other states in the market. All the market
players, which are allowed to be strategic or regulated, with their
decision variables, operating limits, and objective functions are
introduced in detail in the lower level problem, Section II-B.

Note that the lower level problem in this paper is similar to
the one used in [21] but differs in including a regulated wind and
storage firm in the market.

A. Upper-level Problem

In the upper-level optimization problem, we minimize the
weighted sum of average price and its standard deviation over
the operation horizon {1, ..., NT } and scenario set {1, ..., NW }
at state i∗ ∈ {1, ..., NI} by allocating a fixed budget on regulated
storage and wind generation technologies. The price volatility is
measured by the regional price variance [22], i.e., the variance
of market price is considered as a measure of price volatility.
Market price variance and mean in state i∗ under a set of scenarios
{1, ..., NW }, i.e., Var ({Pi∗tw}w) and E ({Pi∗tw}w), are defined
as:

Var ({Pi∗tw}w) =
∑
w

(Pi∗tw (.))
2

Ψw −

(∑
w

Pi∗tw (.) Ψw

)2

(1a)

E ({Pi∗tw}w) =
∑
w

Pi∗tw (.) Ψw (1b)

where Ψw is the probability of scenario w, and Pi∗tw (.) repre-
sents the market price in state i∗ at time t under the scenario w,
which is a function of the decision variables, i.e., generation,
arbitrage and transmission levels, of all players in the lower
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level problem. Pi∗tw (.) is a probabilistic function because of the
stochastic intermittent generation in our model.

Given that the wind and storage technologies have unequal
lifespans, we compare their equivalent annual unit costs and
consider the equivalent annual budget in our model. Considering
the relation between the unit investment cost, I , and the equivalent
annual unit cost, I , for a technology with lifespan of PL, that is,
I =

∑PL
y=1

I
(1+r)y , the equivalent annual unit costs of wind and

storage technologies, I ig and Is, become as [23]:

I ig =
rI ig

1− (1 + r)
−PLig (2a)

Is =
rIs

1− (1 + r)
−PLs (2b)

where I ig and Is are the unit investment costs, and PLig and PLs

are the life spans of wind and storage technologies, respectively.
The parameter r represents the discount rate.

Based on the equivalent annual unit costs of wind and storage
technologies, I ig and Is, IsQs,reg

i∗ and I igQig,reg
i∗ represent the

investment share from the equivalent annual budget, B, on wind
and storage, respectively.

Given the equations for price volatility and average price (1a-
1b), which are functions of the strategy of all firms, and the
equations for the equivalent annual cost of wind and storage
technologies (2a-2b), we define the upper level optimization
problem as:

min
Qig,reg

i∗ ,Qs,reg
i∗

(1− k)

√
Var ({Pi∗tw}tw) + kE ({Pi∗tw}tw) (3a)

s.t.

IsQs,reg
i∗ + I igQig,reg

i∗ = B$ (3b)

where 0 ≤ k ≤ 1 represents the weighting coefficient, Qig,reg
i∗

is the regulated wind generation capacity and Qs,reg
i∗ is the

regulated storage capacity in state i∗. Var ({Pi∗tw}tw) is the
normalized level of the average of price volatility levels over the
horizon {1, ..., NT }, i.e., normalized level of

∑
t Var({Pi∗tw}w)

NT
,

and E ({Pi∗tw}tw) is the normalized level of the average of
mean prices over the horizon {1, ..., NT }, i.e., normalized level
of

∑
t E({Pi∗tw}w)

NT
. The normalized levels of price volatility and

mean price, which are between zero and one, indicate their ratio
with respect to their base values, i.e., with respect to their amounts
when there is no regulated wind and storage firm in the market.

B. Lower-level Problem

In the lower level problem, the strategies of all market play-
ers and the nodal market prices are obtained by solving a
stochastic Cournot-based game between intermittent generators,
synchronous generators, storage firms, and transmission firms.
Following the standard Cournot game models [24], any player
in our model maximizes its objective function given the decision
variables of other players. Our game model, which considers
different wind and solar power availability scenarios with given
probabilities, is consistent with the Bayesian game definition.
Players maximize their utility functions over a set of scenarios
with a given probability distribution in a Bayesian game [8]. Note
that the decision variables in the upper level problem, Qig,reg

i∗ and
Qs,reg
i∗ , are the wind and storage capacity amounts of a regulated

wind-storage firm in state i∗.

The market price in state i at time t under scenario w is
represented in our model by an exponential inverse demand
function [21]:

Pitw (yitw) = αite
−βityitw (4)

where αit and βit are positive real values representing in the price
function, and yitw is the net electricity demand in state i at time
t under scenario w.

The lower level problem in our bi-level model is developed
based on DC Load Flow equations. The equality between elec-
tricity supply and demand in each state and at any time, i.e., the
the nodal electricity balance, is ensured in our model with the
following equations:

yitw =
∑

m∈N ig
i

qigmitw +
∑
n∈N sg

i

qsgnitw +
∑
b∈N s

i

qsbitw+

∑
j∈N tr

i

qtrijtw ∀i 6= i∗ (5a)

yitw =
∑

m∈N ig
i

qigmitw +
∑
n∈N sg

i

qsgnitw +
∑
b∈N s

i

qsbitw+

∑
j∈N tr

i

qtrijtw + qig,regitw + qs,regitw i = i∗ (5b)

where qigmitw is the generation strategy of the mth intermittent
generator located in state i, qsgnitw is the generation strategy of
the nth synchronous generator located in state i, qsbitw is the
charge/discharge strategy of the storage firm b located in state
i, qtrijtw is the transmission strategy of line between states i and
j, and qig,regitw and qs,regitw are the wind generation strategy and the
storage charge/discharge strategy of the regulated firm in state i∗,
respectively, at time t and under scenario w.

In what follows, we use Pitw (.) to refer to the market price in
(4).

1) Intermittent Generators: The mth intermittent generator
(wind or solar) in state i determines its best response strategy
by solving the following profit maximization problem:

max
{qigmitw}tw�0

NW∑
w=1

Ψw

NT∑
t=1

(
Pitw (.)− cigmi

)
qigmitw (6a)

s.t.

qigmitw ≤ ωitwQ
ig
mi ∀t, w (6b)

Pitw (.) ≤ P cap ∀t, w (6c)

where qigmitw (decision variable) is the generation level of the
intermittent generator m in state i at time t under scenario w, Qig

mi

is its maximum generation capacity, and cigmi is its marginal cost
of generation. The constraint (6b) limits the electricity generation
to the available generation capacity of the firm, considering the
energy availability coefficient ωitw in state i at time t under
scenario w. The availability coefficient ωitw is the source of
stochasticity in our model. The constraint (6c) ensures that the
market price is always less than the cap price P cap.

2) Synchronous Generators: The best response strategy of the
nth synchronous generator in state i is obtained by solving the
following profit maximization problem:

max
{qsgnitw}tw�0

NW∑
w=1

Ψw

NT∑
t=1

(Pitw (.)− csgni) q
sg
nitw (7a)
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s.t.

qsgnitw ≤ Q
sg
ni ∀t, w (7b)

qsgnitw − q
sg
ni(t−1)w ≤ R

up
niQ

sg
ni ∀t, w (7c)

qsgni(t−1)w − q
sg
nitw ≤ R

dn
niQ

sg
ni ∀t, w (7d)∑

t

qsgnitw ≤ Gni ∀w (7e)

Pitw (.) ≤ P cap ∀t, w (7f)
where qsgnitw (decision variable) is the generation level of the
synchronous generator n in state i at time t under scenario w,
Qsg
ni is its generation capacity, and csgni is its marginal cost of

generation. The constraint (7b) considers the maximum capacity
limit and the constraints (7c-7d) consider the ramping up and
down limits, Rup

ni and Rdn
ni , respectively. The constraint (7e)

considers the inter-temporal energy availability Gni, e.g., the
total hydro power generation over a year due to the dam water
availability during that period.

3) Storage Firms: The best response strategy of the bth storage
firm in state i is the solution of the following profit maximization
problem:

max
{qdisbitw,q

ch
bitw}tw�0,

{qsbitw}tw

NW∑
w=1

Ψw

NT∑
t=1

Pitw (.) qsbitw−csbi
(
qdisbitw+qchbitw

)
(8a)

s.t.

qsbitw = ηdisbi q
dis
bitw −

qchbitw
ηchbi

∀t, w (8b)

qdisbitw ≤ ζdisbi Qs
bi ∀t, w (8c)

qchbitw ≤ ζchbi Qs
bi ∀t, w (8d)

0 ≤
t∑

k=1

(
qchbikw − qdisbikw

)
∆ ≤ Qs

bi ∀t, w (8e)

Pitw (.) ≤ P cap ∀t, w (8f)
where qchbitw and qdisbitw (decision variables) are the charge and
discharge levels of the storage firm b in state i at time t under
scenario w, respectively, qsbitw (intermediate decision variable)
is the net charge/discharge level, csbi is the marginal cost of
charge/discharge, and ηchbi and ηdisbi are the charging and discharg-
ing efficiencies, respectively. The equality (8b) indicates the net
outflow or inflow of electricity, the constraints (8c) and (8d) limit
the output/input energy flow of the firm, with coefficients ζdisbi
and ζchbi , respectively. The parameters ζchbi and ζdisbi indicate the
percentage of the storage capacity Qs

bi that can be charged or
discharged during time period ∆, which are considered equal to
10% per hour for pump-hydro and 50% per hour for battery in
our study. The constraint (8e) limits the total stored energy to its
maximum capacity, assuming that the storage devices are initially
fully discharged.

4) Transmission Firms: The best response strategy of the trans-
mission line (interconnector) between states i and j is obtained
by solving the following profit maximization problem:

max
{qtrjitw,qtrijtw}tw

NW∑
w=1

Ψw

NT∑
t=1

(
Pjtw (.) qtrjitw + Pitw (.) qtrijtw

)
(
1− γtrij

)
+ γtrij

(
Pjtw (.)

−βjt
+
Pitw (.)

−βit

)
(9a)

s.t.

qtrijtw = −qtrjitw ∀t, w (9b)

−Qtr
ij ≤ qtrijtw ≤ Qtr

ij ∀t, w (9c)

Pktw (.) ≤ P cap k ∈ {i, j}, ∀t, w (9d)
where qtrijtw (decision variable) is the electricity transmitted from
state j to state i at time t under scenario w, and Qtr

ij is the capacity
of transmission line between states i and j. The transmission firm
between states i and j is a strategic player when γtrij is zero and
is a regulated player when γtrij is one. It is discussed in [21] that
maximizing Pjt (.) qtrjitw + Pitw (.) qtrijtw is equal to maximizing
the profit from electricity transmission between states i and j.
Besides, it can be shown that maximizing Pjtw(.)

−βjt
+ Pitw(.)

−βit
is

equivalent to maximizing the social welfare (the total surplus of
consumers and producers) when the transmission firm between
states i and j is regulated. Note that the electricity markets with
regulated transmission firms are called electricity markets with
transmission constraints in the literature, e.g., [25], [26]. The con-
straint (9b) ensures that electricity does not flow simultaneously
in both directions of the line, and the constraint (9c) limits the
electricity flow between states i and j to the capacity of the line.

5) State-owned Wind-Storage Firm: The best response strategy
of the state-owned wind-storage firm in state i∗, which is a reg-
ulated firm, is determined by solving the following optimization
problem:

max
{qig,regi∗tw }tw�0,

{qdis,regi∗tw
,qch,reg

i∗tw }tw�0,
{qs,regi∗tw}tw

NW∑
w=1

Ψw

NT∑
t=1

Pi∗tw (.)

−βi∗t
− cig,regi∗ qig,regi∗tw

− cs,regi∗

(
qdis,regi∗tw + qch,regi∗tw

)
(10a)

s.t.

qig,regi∗tw ≤ ωi∗twQ
ig,reg
i∗ ∀t, w (10b)

qs,regi∗tw = ηdis,regi∗ qdis,regi∗tw − qch,regi∗tw

ηch,regi∗

∀t, w (10c)

qdis,regi∗tw ≤ ζdis,regi∗ Qs,reg
i∗ ∀t, w (10d)

qch,regi∗tw ≤ ζch,regi∗ Qs,reg
i∗ ∀t, w (10e)

0 ≤
t∑

k=1

(
qch,regi∗kw − q

dis,reg
i∗kw

)
∆ ≤ Qs,reg

i∗ ∀t, w (10f)

Pi∗tw (.) ≤ P cap ∀t, w (10g)

where qig,regi∗tw (decision variable) is the wind (intermittent) genera-
tion level of the regulated firm in state i∗ at time t under scenario
w, Qig,reg

i∗ is its maximum wind generation capacity, and cig,regi∗

is its marginal cost of wind generation. Moreover, qch,regi∗tw ,qdis,regi∗tw

(decision variables), and qs,regi∗tw (intermediate decision variable)
are the charge, discharge and net charge/discharge levels of the
regulated firm in state i∗ at time t under scenario w, respectively.
The constraint (10b) is similar to the constraint in the wind
generation problem (6b), and the constraints (10c)-(10f) are
similar to the constraints in the storage arbitrage problem (8b)-
(8e). It can be shown that maximizing the Pi∗tw(.)

−βi∗t
−cig,regi∗ qig,regi∗tw −

cs,regi∗

(
qdis,regi∗tw + qch,regi∗tw

)
is equivalent to maximizing the social

welfare for the regulated wind-storage firm.
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III. SOLUTION APPROACH

Here, the bi-level storage and wind allocation problem reducing
the average price and price volatility is transformed into a
single-level Mathematical Problem with Equilibrium Constraints
(MPEC).

A. Solution Method for the lower level problem

The regulated wind and storage capacities are the only variables
that couple the scenarios in the lower level problem. Therefore,
for any regulated wind and storage capacity amounts, each
scenario of the lower level problem can be solved autonomously
and the market equilibrium can be obtained by solving the KKT
equations of all firms. The existence of the Bayes-NE solution at
the lower level problem is stated in Proposition 1.

Proposition 1: For any vector of regulated wind and storage
capacity amounts, [Qig,reg

i∗ , Qs,reg
i∗ ], the lower level game admits

a Bayes-NE.
Proof: The objective function of any firm in the game is

continuous and quasi-concave in its strategy, and their strategy
space is non-empty, compact and convex. Therefore, according
to Theorem 1.2 in [27], the lower level game admits a Bayes-
NE.

In the lower level problem, the nodal market prices depend on
the regulated wind and storage capacities through the constraints
(10b) and (10d-10f). This dependency allows us to minimize the
objective function on the upper level problem using the optimal
values of regulated wind and storage capacities.

B. Solution Method for the equivalent single level problem

Imposing the KKT conditions of all firms as constraints in the
optimization problem (3), we can transform our bi-level problem
into the following single-level optimization problem:

min (1− k)

√
Var ({Pi∗tw}tw) + kE ({Pi∗tw}tw) (11a)

s.t.
(3b) (11b)
KKT (6a− 6c) (11c)
KKT (7a− 7f) (11d)
KKT (8a− 8f) (11e)
KKT (9a− 9d) (11f)
KKT (10a− 10g) (11g)

where the optimization variables are the regulated wind and
storage capacities, the bidding strategies of all firms, and the set
of all Lagrangian multipliers. Note that the feasible region is not
necessarily convex or even connected because of the nonlinear
complementary constraints. It is possible to write the equivalent
single level problem (11) as a Mixed-Integer Non-Linear Problem
(MINLP), but the large number of integer variables makes the
problem computationally infeasible.

Considering the equality constraint (3b), there is just one
decision variable on the upper level problem. We perform a
uniform line search on the variable Qig,reg

i∗ , i.e., the single decision
variable of the upper level problem, with N iterations. We
increase the regulated wind capacity by ∆Qig,reg and decrease
the regulated storage capacity by ∆Qs,reg, which is a function
of ∆Qig,reg, and find the Bayes-NE solution of the lower level
game at each iteration. Comparing the average price and price
volatility calculated at different iterations, we find the optimal

regulated wind and storage allocation, as described in Algorithm
1.

Algorithm 1 The line search (N -step) algorithm for finding the
wind-storage allocation.

∆Qig,reg = B
NIig

initial point← Qig,reg = 0, Qs,reg = B
Is

for iteration = 0 : N do
iteration=iteration+1
Qig,reg
i∗ (iteration)←Qig,reg

i∗ (iteration− 1)+∆Qig,reg

Qs,reg
i∗ ← B−IigQig,reg

i∗
Is

q?(iteration)← Lower level problem Bayes−NE
E(iteration),Var(iteration)← (1b, 1a) at Bayes−NE

end for
Qig,reg
i∗

∗
← find

Qig,reg
i∗

(min((1− k)

√
Var

(
Qig,reg
i∗

)
+

kE
(
Qig,reg
i∗

)
))

Qs,reg
i∗

∗ ← B−IigQig,reg
i∗

∗

Is

IV. CASE STUDY AND SIMULATION RESULTS

In this section, we apply our bi-level price management frame-
work to Australia’s National Electricity Market (NEM). NEM
has a regional pricing mechanism, which sets the marginal value
of demand at each state as the regional price, in five states
of South Australia (SA), Queensland (QLD), Tasmania (TAS),
Victoria (VIC) and New South Wales (NSW). The inverse demand
functions in our model are calibrated with historical demand
and price data from the year 2016. Different types of electricity
generation firms, such as coal, gas, hydro, biomass, and wind,
with total generation capacity of 46 GW were active in NEM in
2016 [28]. In our numerical study, we consider 365 scenarios each
representing a 24-hour wind power availability and electricity
demand profiles. The realistic data in different regions of NEM
from the year 2016 is used to generate the scenario set (Source
of data: AEMO). Note that all the prices are in Australian dollar.

A. Impact of Generation Capacity, Gas Price and Transmission
Line on Average Price and Price Volatility in NEM

In this subsection, we first study the average price and price
volatility in the NEM by considering two cases. In our primary
case, the NEM market is simulated based on the available data in
2016. In our secondary case, the Hazelwood coal power plant in
VIC is closed down [29], the gas price in total NEM is increased,
and the Basslink transmission line, between VIC and TAS, which
was under maintenance in 2016, is restarted in comparison to the
primary case. Table I compares the simulated wholesale electricity
prices in five regions of NEM in the primary and secondary
cases. Our simulation results show that the average price of
electricity increases in all regions, about 14.27% in NEM, due to
Hazelwood power plant closure and gas price surge. The highest
rate of price increment belongs to VIC, about 40.33%, where
the coal plant was located, following by its neighboring region
SA with 19.80%. According to our numerical results, restarting
the Basslink interconnector between VIC and TAS reduces the
impacts of coal plant closure and gas price surge on the electricity
price in TAS, which increases just by 3.58% in average.

Our calculation also shows that price volatility increases in
NEM after the coal plant closure and gas price surge. The square
root of price volatility increases by 17.7% in NEM, where VIC
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TABLE I: Wholesale electricity prices ($/MWh) in five-state
NEM market in primary and secondary cases.

SA QLD TAS VIC NSW NEM
Primary Case 108.97 72.32 99.64 57.48 58.81 67.27
Secondary Case 130.55 78.94 103.20 80.66 61.65 76.87
Change% 19.80 9.16 3.58 40.33 4.83 14.27

experiences the highest increase rate of 41.5%. The Basslink
transmission line also suppresses the price volatility in TAS due
to the Hazelwood closure and gas price surge.
B. Managing the Average Price and Price Volatility by Only
Regulated Wind or Only Regulated Storage

In this subsection, we study the impact of installing only
regulated wind or only regulated storage on the average price and
price volatility in VIC, where the coal power plant is closed down.
We start our simulations with the equivalent annual budget of 300
m$, and perform the sensitivity analysis with other amounts of
the equivalent annual budget, between zero and 300 m$, later.
Considering the investment cost of 2400 $/kW and lifespan of
25 years, the equivalent annual unit cost is 96 $/(kW.yr) for
wind generation. Also, with the investment cost of 600 $/kWh
and lifespan of 10 years, the equivalent annual unit cost is 60
$/(kWh.yr) for battery storage. Therefore, the equivalent annual
budget of 300 m$ is almost equivalent to 3125 MW wind capacity
or 5000 MWh battery capacity.

Fig. 1 shows the impact of installing only 3125 MW regulated
wind on the wholesale electricity prices in VIC. The regulated
wind in our model with capacity of 3125 MW generates electricity
with average level of 975 MW, i.e., with capacity factor of 31%,
in VIC. The generation of the regulated wind firm results in
the average peak and off-peak wholesale price reductions of
28 $/MWh and 5 $/MWh, respectively, in VIC. The average
wholesale electricity price in VIC decreases from 80.6 $/MWh
to 62 $/MWh due to the 3125 MW wind capacity addition.
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Fig. 1: Mean (over 365 scenarios) wholesale electricity prices in
VIC before and after addition of only 3125 MW regulated wind
generation capacity (the central marks show the mean levels and
the bottom and top edges of the boxes indicate the 25th and 75th
percentiles of wind generation).

Fig. 2 shows the impact of installing only 5000 MWh regulated
battery on the mean wholesale electricity prices in VIC. Accord-
ing to this figure, the regulated battery in VIC makes profit from

electricity arbitrage, i.e., charges at off-peak times, with average
peak charge level of 1271 MW, and discharges at peak hours, with
average peak discharge level of 1022 MW. The charge/discharge
of the installed battery approximately results in the average peak
price reduction of 47 $/MWh and the average off-peak price
increment of 16 $/MWh in VIC. The average wholesale electricity
price in VIC decreases from 80.6 $/MWh to 72.9 $/MWh due
to the addition of 5000 MWh regulated battery. This observation
confirms that wind power generators are more efficient in average
price reduction than storage firms.
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Fig. 2: Mean (over 365 scenarios) wholesale electricity prices
in VIC before and after addition of only 5000 MWh regulated
battery storage capacity.

Fig. 3a and 3b compare the impact of a regulated wind with
that of a regulated storage on the average price and the price
volatility, respectively, in VIC when the equivalent annual budget
increases from zero to 300 m$. It can be seen that for different
levels of budget, i.e., different levels of capacity, the regulated
storage is more efficient in reducing the price volatility whereas
the regulated wind is more efficient in reducing the average price.
Given the equivalent annual budget of 300 m$, the regulated
storage and the regulated wind reduce the square root of price
volatility in VIC by 71.14 % and 53.55 %, respectively. However,
with the same equivalent annual budget, regularized storage and
wind firms reduce the average price in VIC by 10.04 % and
29.08 %, respectively. This observation quantitatively shows the
effectiveness of storage in price volatility reduction and wind in
average price reduction.

Moreover, in addition to mean price and price volatility reduc-
tion impacts, the cost analysis of the regulated wind and regulated
storage can affect the investment decisions. Fig. 3c indicates the
cost analysis of the regulated wind and regulated storage in VIC
when the equivalent annual budget varies from zero to 300 m$.
The life-time rate of return less than 100 % shows a financially
unprofitable investment [23]. Based on this figure, the regulated
wind is financially profitable in VIC when the equivalent annual
investment cost is less than 300 m$, but the regulated storage
makes profit in VIC when the equivalent annual investment cost is
less than 100 m$. Thus, the (low) life time rate of return of storage
firms further reduces the desirability of storage only solution for
the market intervention. Note that future reduction in battery cost
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makes the large investments on batteries profitable.
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Fig. 3: The mean price, the square root of price volatility, and the
life time rate of return for only regulated wind and only regulated
battery allocation versus the equivalent annual budget in VIC.

C. Managing the Average Price and Price Volatility by Mixture
of Regulated Wind and Storage in VIC

In this subsection, we study the impact of jointly optimal
regulated wind and storage allocation on the mean price and
price volatility. Fig. 4 illustrates the normalized mean wholesale
price as well as the normalized square roof of price volatility
for different mixtures of wind and battery allocation with the
equivalent annual budget of 300 m$ in VIC. The mean wholesale
prices are normalized with base value of 73 $/MWh, which is the
average price in the market before adding regulated wind-storage
capacities, and the square root of price volatilities are normalized
with the base value of 143 $/MWh, which is the square root of
price volatility in the market before adding regulated wind-storage
capacities. According to Fig. 4, the increase of the regulated wind
share, ξ, (or equivalently, the decrease of regulated storage share,
1-ξ) results in comparatively lower average prices but higher
price volatility levels in the market, and vice versa. Therefore,
depending on the importance of average price or price volatility,
i.e., the coefficient k, the total budget can be allocated on a
mixture of regulated wind and battery capacities.

Fig. 5 shows the budget allocation share between regulated
wind (ξ) and regulated battery (1 − ξ) when the weighting
coefficient of price volatility and average price in the upper level
problem (3), k, varies from zero to one. The logistic shape of
the optimal budget share function with respect to the weighting
coefficient k verifies our observations regarding the impacts of
wind and storage firms on the price. The optimal share of
regulated wind is more than that of the regulated storage when
average price reduction is prioritized, i.e., when 0.5 ≤ k ≤ 1.
Similarly, when price volatility reduction is more important, i.e.,
when 0 ≤ k ≤ 0.5, the optimal share of regulated battery is
more than that of the regulated wind. The decision making on
the budget share is highly sensitive with respect to parameter k
when the average price and the price volatility are almost equally
important, i.e., 0.4 ≤ k ≤ 0.6.

Moreover, the annotated data in Fig. 5 is provided to compare
the Life-time Rate of Return (LRR), the change of consumer

Fig. 4: Normalized mean wholesale price and square root of price
volatility for different mixtures of regulated wind and regulated
battery with the equivalent annual budget of 300 m$ in VIC.

surplus or profit (∆cs), the normalized amount of average price
(PMean), and the normalized amount of square root of price
volatility (PSD) when different mixtures of wind and battery are
installed in VIC, given the equivalent annual budget of 300 m$.
Investing all the budget on battery, we can achieve the minimum
square root of price volatility 62.7 $/MWh (43.8 % of its base
value), while investing all the budget on wind, we can get the
minimum average price 57.5 $/MWh (79.2 % of its base value)
and the highest life-time rate of return 122%. Investing the budget
on regulated wind is financially more profitable than on regulated
battery. It is required to allocate at least 60% of the equivalent
annual budget on wind to make the investment on any mixture
of wind-storage financially economical, i.e., having the life-time
rate of return above 100%. Lastly, the consumer surplus (profit)
increases between 0.93% and 1.69% when the regulated wind-
storage firm is considered in the market. It can be seen that
the mixtures of regulated wind and storage capacities are more
effective than storage-only solution in increasing the consumer
surplus.

V. CONCLUSION

Closure of base-load coal power plants, and gas price surge
may increase the average price and price volatility in electricity
markets. Our study presents an optimization framework which
allocates a budget on regulated wind and storage capacities in
order to minimize the weighted sum of the average price and
the price volatility. Based on our numerical results in NEM, the
impacts of regulated wind and storage on average price and price
volatility can be summarized as:
• Both storage and wind affect the average price and price volatil-

ity in electricity markets. Storage technologies can reduce the
price and the price volatility by electricity price arbitrage. Being
spread across the network, wind turbines can also decrease
the price and volatility in electricity markets. In our model, a
single node represents an entire state, and hence, incorporates
diversity of wind generation across a large geographic region
that counteracts natural intermittency of wind generation.

• Given the equivalent annual budget of 300 m$ to invest on
regulated wind-storage capacities in VIC, storage is compar-
atively 47.8% more efficient in price volatility reduction than
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Fig. 5: The budget allocation share between the regulated wind
and the regulated battery as a function of the weighting factor
k with the equivalent annual budget of 300 m$ in VIC. Life-
time Rate of Return (LRR), change of consumer surplus or
profit (∆cs), normalized amount of average price (PMean), and
normalized amount of square root of price volatility (PSD) are
annotated.

wind whereas wind is 13.5% more efficient in average price
reduction. Based on the importance of average price and price
volatility, a mixture of regulated wind and storage capacities
can be allocated in a region to reach the desired level of price
and volatility in the market.

• When investing on only storage is not economical, the regulated
firm can make profit by investing on a mixture of wind and
storage capacities. Minimum 60% budget allocation on wind,
given the equivalent annual budget of 300 m$ in VIC, makes
the investment on any mixture of wind/storage economical.

• The mixtures of regulated wind and storage capacities are
comparatively more efficient, up to 81.7% in VIC given the
equivalent annual budget of 300 m$, than the storage-only
solution in increasing the consumer surplus (profit) in our study.

• Wind turbine, with small or large capacity, is already a com-
petent technology which is able to recover its life time cost in
the market, but storage technology is economical just in small
to medium size. However, the mixture of wind and storage
capacities, which can optimally reduce the average price and
price volatility, may be competent to make profit in the market.
Future technology cost reduction can also make it economical
to install larger batteries in the market.
Updating our solution approach, we intend to modify our model

to decide on the location of wind-storage systems in addition to
their capacities and study the impact of wind-storage allocation
at different regions on regional market prices in our future work.
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