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Summary

Data from large surveys are often supplemented with sampling weights that are designed to
reflect unequal probabilities of response and selection inherent in complex survey sampling
methods. We propose two methods for Bayesian estimation of parametric models in a
setting where the survey data and the weights are available, but where information on
how the weights were constructed is unavailable. The first approach is to simply replace
the likelihood with the pseudo likelihood in the formulation of Bayes theorem. This is
proven to lead to a consistent estimator but also leads to credible intervals that suffer from
systematic undercoverage. Our second approach involves using the weights to generate a
representative sample which is integrated with a Markov chain Monte Carlo (MCMC) or
other simulation algorithm designed to estimate the parameters of the model. In extensive
simulation studies, the latter methodology is shown to achieve performance comparable to
the standard frequentist solution of pseudo maximum likelihood, with the added advantage
of being applicable to models that require inference via MCMC. The methodology is
demonstrated further by fitting a mixture of gamma densities to a sample of Australian
household income.
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1. Introduction7

Raw data from surveys seldom come from a simple random sample where selection of8

each individual is equiprobable, but instead from complex survey sampling methods such9

as stratification and multistage sampling that exhibit unequal probabilities of selection and10

non-response. Examples of large surveys with these characteristics are the Panel Study of11

Income Dynamics (PSID), the British Household Panel Survey (BHPS), and the Household12

Income and Labour Dynamics in Australia (HILDA) survey, all of which are increasingly13
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2 BAYESIAN WEIGHTED INFERENCE FROM SURVEYS

used in applied statistical research. For samples that are non-representative in the sense that14

individuals with different characteristics have different probabilities of selection, the standard15

methods of inference and estimation may be biased or inconsistent; this issue is discussed in16

detail by Korinek, Mistiaen & Ravallion (2007), Pfeffermann (1996), Breunig (2001), and17

Wooldridge (1999, 2001, 2007).18

A common way to address the problem is to use sampling weights provided with19

the survey datasets. Sampling weights act as expansion factors that scale and correct the20

representativeness of the sample to the population. They accommodate complex sampling21

designs and may be modified to ensure demographics such as sex, race, and age from22

the weighted sample match known census figures. If a survey respondent comes from a23

demographic group that has a low probability of selection or response, they are allocated24

a higher weight. Because sampling weights must take into account a large number of25

factors, their computation is often complicated (see Gelman et al. 2013; Korinek, Mistiaen26

& Ravallion 2007, and references therein), and detailed information on how they were27

constructed may not be available to researchers. We are concerned with a situation typical28

in much applied work where the only available information is the dataset and the sampling29

weights for each unit in the sample, with little or no information regarding the complex30

sampling design or how the weights were computed. In line with this information set, we31

treat the sampling weights as given and do not focus on their estimation and construction.32

A number of methodologies that exploit survey weights to obtain unbiased and33

consistent estimation and inference have been proposed. One of the earliest approaches for34

estimating the population mean of a random variable is the classical weighted ratio estimator35

(see Horvitz & Thompson 1952). The most popular framework for taking sampling weights36

into account when estimating parametric models is pseudo maximum likelihood; see, for37

example, Godambe & Thompson (1986), Molina & Skinner (1992), Hesketh & Skrondal38

(2006), Skinner & Mason (2012), and references therein. To obtain the pseudo maximum39

likelihood estimator (PMLE), the usual log-likelihood is replaced with an objective function40

that is the sum of each sample weight multiplied by the contribution of its corresponding41

observation to the log likelihood. The resulting estimator is a special case of a general inverse42

probability weighted M-estimator (Wooldridge 1999, 2001, 2007).43

There have also been a number of papers tackling the issue of survey weights from a44

Bayesian perspective. Aitkin (2008) and Rao & Wu (2010) incorporate sampling weights45

into pseudo Bayesian methods for a multinomial empirical likelihood, leading to Dirichlet46

posterior distributions. They provide Bayesian interval estimates for the population mean that47

are asymptotically valid in a frequentist framework. Using poststratification of cells based48

on sampling weights, Si, Pillai & Gelman (2015) developed a multinomial model for cell49

counts and a Bayesian nonparametric regression model for modelling an outcome variable50
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D GUNAWAN, A PANAGIOTELIS, W GRIFFITHS, AND D CHOTIKAPANICH 3

conditional on the weights. More recently, Savitsky & Toth (2016) considered a Bayesian51

pseudo posterior, which is proportional to the product of the pseudo likelihood and a prior52

distribution. Adopting a nonparametric approach, where the true data generating process53

(DGP) is an unknown distribution within a density space, they prove that the pseudo posterior54

is a consistent estimator of the DGP.55

In contrast to these earlier studies, we are concerned with accounting for sampling56

weights using Bayesian inference for the parameters in a parametric model and, as well57

as consistency, we are also concerned with precision as reflected by frequentist coverage58

in repeated samples. A procedure along these lines is useful if the fundamental aim is to59

base inferences on the posterior distributions of parameters, and quantities of interest that60

are functions of those parameters. It is also useful for exploiting numerical methods such61

as Markov chain Monte Carlo (MCMC) for estimating complex statistical models that are62

handled more easily within a Bayesian rather than a likelihood framework, such as mixtures,63

or multinomial and multivariate probit models.64

We consider two approaches for incorporating the information from sampling weights65

into Bayesian inference. The first, which we call the Bayesian Pseudo Posterior Estimator66

(BPPE) simply replaces the likelihood with the pseudo-likelihood in the usual formulation of67

Bayes theorem. This is the approach taken by Savitsky & Toth (2016), but they are concerned68

with consistent estimation of an unknown density; we are concerned with inference for the69

parameters of a potentially complex model. The second approach, which we call the Bayesian70

Weighted Estimator (BWE), is a data-augmentation approach where a pseudo representative71

sample is treated as missing data. We consider two approaches for generating a pseudo72

representative sample; the first is resampling with replacement from the observed data using73

the normalized sampling weights, while the second is an algorithm from Dong, Elliott &74

Raghunathan (2014a), based on the weighted finite population Bayesian Bootstrap. Inference75

about the unknown parameters can be conducted via MCMC as if the pseudo representative76

sample were the data. Since the early work of Tanner & Wong (1987), data augmentation77

has been used extensively for Bayesian estimation of a variety of statistical models. See,78

for example, Chib (1992), Albert & Chib (1993), Geweke & Keane (2007) and Geweke &79

Amisano (2011).80

Replacing the likelihood with some other function of the parameters and data is an idea81

that goes at least as far back as the notion of proper likelihoods introduced by Monahan82

& Boos (1992) and has received significant treatment in the case of Bayesian empirical83

likelihood (see Lazar 1989; Schennach 2005; Rao & Wu 2010). We evaluate the asymptotic84

behavior of our two proposed approaches under an assumption of non-informative priors.85

For the BPPE we are able to derive theoretical results that suggest consistency, but an86

asymptotic variance that leads to undercoverage of credible intervals in repeated sampling.87
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4 BAYESIAN WEIGHTED INFERENCE FROM SURVEYS

These theoretical results are validated in a simulation study. In the case of the BWE, the88

likelihood is replaced with a Monte Carlo estimate of a density that is a discrete mixture over89

all possible pseudo-samples. Although this mixture is difficult to work with theoretically, we90

provide a sound intuitive justification for its use, and show through extensive simulations that91

the Bayesian weighted estimators that we propose can achieve accurate empirical coverage.92

We begin Section 2 with a brief description of the PMLE and its sandwich covariance93

matrix estimator, followed by a discussion of the problems that arise if this approach is94

adopted within a Bayesian framework. The details of our proposal for an alternative Bayesian95

weighted estimator that utilises generation of a representative sample are presented in96

Section 3. In Section 4 we use two simulation studies to illustrate application of the proposed97

estimator and to compare its repeated sampling properties to those of alternative estimators.98

Two quite different models are chosen for these illustrations: estimation of the mean and99

variance of a Gaussian distribution, and estimation of the parameters of a two-component100

mixture of gamma densities. In Section 5 Bayesian weighted and unweighted estimates of an101

Australian income distribution, modelled as a three component mixture of gamma densities,102

are presented. A conclusion is provided in Section 6.103

2. Pseudo likelihood approaches104

Assume we have a random variable Y whose population can be described by the105

density function p(Y |θ), θ being an unknown vector of parameters we wish to estimate.106

We are supplied with a non-representative sample y = (y1, . . . , yn)
> that is based on a107

complex survey design, typically involving several demographic factors. Corresponding to108

each sample observation, we are also supplied with sampling weights w = (w1, . . . , wn)
>,109

0 < wi <∞, but the details of the survey design and how the weights are calculated are110

not available to the investigator. It is assumed that the weights have been constructed such111

that a weight wi is inversely proportional to the probability that the survey design selected112

an observation with the demographic characteristics of observation yi. For estimation,113

observations whose probability of being selected is less than it would be under simple random114

sampling are weighted more heavily than they would be under simple random sampling,115

and vice versa. We assume that the wi have been scaled such that
∑n
i=1 wi = n. In what116

follows we first briefly describe the pseudo maximum likelihood estimator for θ (Section 2.1),117

followed by a Bayesian estimator that uses the pseudo likelihood function (Section 2.2). Our118

proposal for a Bayesian weighted estimator designed to overcome problems with using the119

pseudo likelihood within a Bayesian framework is described in Section 3.120
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2.1. Pseudo maximum likelihood estimator121

A pseudo log likelihood is defined as Lp (θ;y) =
∑n
i=1 wi log p(yi|θ). The PMLE122

θ̂PML satisfies the first order conditions123

∂Lp (θ;y)

∂θ
=

n∑
i=1

wi
∂ log p(yi|θ)

∂θ
= 0 ,

This estimator is consistent but not efficient (Wooldridge 1999, 2001, 2007). Under some124

regularity conditions
√
n
(
θ̂PML − θ0

)
d→ N

(
0,H−1

w VwH
−1
w

)
, where θ0 is the true value125

for θ andHw and Vw are consistently estimated using126

Ĥw =
1

n

n∑
i=1

wi
∂2 log p (yi|θ)

∂θ∂θ>

∣∣∣∣
θ=

ˆθPML
,

and127

V̂w =
1

n

n∑
i=1

w2
i

∂ log p (yi|θ)

∂θ

∂ log p (yi|θ)

∂θ>

∣∣∣∣
θ=

ˆθPML
,

respectively. For making inferences about θ the standard errors are obtained from the128

observed sandwich covariance estimator n−1Ĥ−1
w V̂wĤ

−1
w (White 1980, 1982).129

2.2. Bayesian pseudo posterior estimator130

Given the successful development of the pseudo likelihood sampling theory approach131

to estimating θ, a natural question to ask is whether a Bayesian approach with the usual132

likelihood function replaced by the pseudo likelihood would be suitable. For a given prior133

distribution p(θ), the posterior density obtained using this approach is given by134

p̃ (θ|y,w) ∝ p(θ)

n∏
i=1

p(yi|θ)wi .

Theorem 1. Asymptotic properties of pseudo-posterior. The pseudo posterior p̃ (θ|y,w)135

converges to a normal distribution with mean θ̂ and covariance matrix −nĤ−1
w where θ̂136

is the posterior mode and −nĤ−1
w = n−1

∑n
i=1 wi∂

2 log p(yi|θ̂)/∂θ∂θ> is the weighted137

Hessian.138

Corollary 1. The posterior mode θ̂ is a consistent estimator of θ0 where θ0 is a unique139

solution to the population maximisation problem θ0 = maxθ0∈ΘEY [log p(Y |θ)].140

Proof. See Appendix.141
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6 BAYESIAN WEIGHTED INFERENCE FROM SURVEYS

Since the pseudo posterior distribution converges to a normal distribution with a142

covariance matrix which differs from that of the PMLE, interval estimates derived from143

it will not have the correct frequentist coverage, a property usually regarded as desirable,144

even for Bayesian estimators. This is apendixpparent in our Monte Carlo simulations where145

these intervals suffer from undercoverage of the true parameter. Another disadvantage of this146

approach is that simple algorithms based on conjugate, or at least conditionally conjugate147

priors may not be applicable to the pseudo likelihood necessitating the development of148

entirely new sampling schemes.149

3. Posterior inference based on pseudo representative samples150

We now propose an alternative framework for carrying out posterior inference when

sample weights must be taken into account. We refer to this as Bayesian Weighted Estimation

(BWE). It can be understood as a data augmentation approach where the target posterior

includes both parameters and pseudo representative samples (hereafter PRS), denoted z =

(z1, z2, . . . , zn)′. First, we define a mechanism for simulating z conditional on both the data

and weights. This mechanism is denoted p(z|y,w). Simulation based posterior inference

is then carried out as if the PRS were the data, i.e. it is based on the posterior p(θ|z) ∝
p(z|θ)p(θ), where p(z|θ) is the likelihood of the parametric model of interest. A natural

way to handle randomness in the mechanism for simulating z is to integrate out over z. As

such, the approach can be summarised by

p(θ|y,w) =

∫
z

p(θ, z|y,w)dz

=

∫
z

p(θ|z,y,w)p(z|y,w)dz

=

∫
z

p(θ|z)p(z|y,w)dz .

The implicit assumption here is that y and w provide no further information about θ that is151

not already captured by z. Since this integral cannot be evaluated analytically, the objective152

is to obtain a Monte Carlo sample of (θ>, z>)> from p(θ, z|y,w).153

Ultimately, inference will depend on two choices. The first is the mechanism for154

generating a PRS. The second is the method used to draw from the posterior of the parameters155

given z, which will depend on the parametric model in question. We now discuss each of156

these in turn.157
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3.1. Generating a pseudo representative sample158

One way to generate a PRS is to draw a sample of size n from the (weighted)159

empirical distribution of the data. In our context, that is a discrete distribution with domain160

{y1, y2, . . . , yn} and with probabilities w̃1, w̃2, . . . , w̃n, where w̃i is the normalized weight161

w̃i = wi/n. In the event that all weights are equal this is identical to sampling with162

replacement, a scheme commonly used in bootstrapping. However, this mechanism for163

generating the PRS potentially suffers from a number of shortcomings. First, the empirical164

distribution function is merely an estimate for the process generating a representative sample165

and uncertainty around this estimate is not explicitly taken into account. Second, simply166

drawing from the empirical distribution function does not correct for other issues such as a167

finite population size. The extent to which these factors are a major issue in practice will be168

investigated in a simulated setting.169

To overcome these issues we consider alternatives motivated by the literature on the170

Bayesian bootstrap (Rubin 1981) and more specifically its weighted version (Lo 1993). In171

this literature, a distribution is placed on all possible distributions. The empirical distribution172

function is merely a single realisation from this meta-distribution and equivalent to the173

posterior mode. Simulation algorithms for the Bayesian Bootstrap rely on Polya’s urn174

schemes which in our context provide a framework for generating a PRS. Specifically we175

will adopt the algorithm discussed in Dong, Elliott & Raghunathan (2014a) that builds on176

earlier work by Cohen (1997). This is tailored to the case where survey weights are available177

and where population size N is finite. This algorithm, which we will refer to as the Weighted178

Finite Population Bayesian Bootstrap (WFPBB), is summarised below as Algorithm 1.179

Dong, Elliott & Raghunathan (2014b) provides extensions to this algorithm that180

deal with a wide variety of sampling methodologies including cluster-based and stratified181

sampling. However, to the best of our knowledge these methods have only been applied to182

find the sampling distribution of a simple statistic of the data. We now discuss how these183

algorithms can be integrated, in a modular fashion, with simulation based Bayesian inference184

for a potentially complicated parametric model.185

3.2. Simulation based inference186

Once an algorithm is chosen for simulating z all that remains is to conduct inference187

as if pseudo representative samples were actual data. In some cases it is possible to directly188

draw from p(θ|z) in which case Algorithm 2, described below, can be used.189

Since all draws are independent, these steps can be carried out in a sequential or parallel190

fashion. The class of models for which direct draws from the posterior are possible is limited.191

However, we consider one such case in Simulation 1 of the following section. In the more192

c© 2019 Australian Statistical Publishing Association Inc.
Prepared using anzsauth.cls



8 BAYESIAN WEIGHTED INFERENCE FROM SURVEYS

Algorithm 1 Weighted Finite Population Bayesian Bootstrap Dong, Elliott & Raghunathan
(2014a)
.

1: procedure WFPBB(y, w̃, N, n).
2: li ← 0 ∀i = 1, . . . n;
3: for k = 1 : N − n do
4: Letting N∗ = (N − n)/n, draw y∗k such that y∗k = yi with probability

w̃i − 1 + liN
∗

N − n+ (k − 1)×N∗
,

5: if y∗k = yi then
6: li ← li + 1;
7: end if
8: end for
9: Stack (y1, y2, . . . , yn) and

(
y∗1 , y

∗
2 , . . . , y

∗
N−n

)
to form a pseudo population;

10: Randomly, draw a sample of size n from the pseudo population;
11: end procedure

Algorithm 2 Direct Posterior Draws with PRS.

1: procedure DPD-PRS(y, w̃,M ).
2: for i = 1 : M do . This loop can be done in parallel
3: Draw z[i] from p(z|y,w);
4: Draw θ[i] from p(θ|z[i]);
5: end for
6: end procedure

likely event where posterior inference is only possible via MCMC we consider two possible193

solutions.194

3.2.1. Sequential algorithm195

Consider that the aim is to construct a Markov chain that converges to a target density196

p(θ, z|y,w). Note that the (y>,w>)>, are conditioned on throughout. However, this is197

suppressed for ease of notation. One option is a Metropolis within Gibbs scheme that draws198

from p(θ|z) and p(z|θ). The exact method for drawing p(θ|z) will be context specific but199

can be built up in the usual modular fashion of MCMC. For instance, θ can be partitioned200

into blocks some of which are themselves sampled using a Metropolis Hastings step. Of more201

interest is the proposal for p(z|θ), for which one option is any mechanism for drawing a PRS,202

as described in Section 3. Letting z∗ ∼ p(z) be the proposed value and (z>,θ>)>, be the203

current state of the Markov chain, the usual acceptance probability in the Metropolis Hastings204
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D GUNAWAN, A PANAGIOTELIS, W GRIFFITHS, AND D CHOTIKAPANICH 9

algorithm is given by205

α = min

(
1,
p(z∗|θ)p(z)

p(z|θ)p(z∗)

)
.

For some PRS generating mechanisms, such as the empirical distribution, the density p(z) is

easy to compute. For more complicated mechanisms, such as the finite population Bayesian

bootstrap, it is not so straightforward. In this case, it is instructive to manipulate the

acceptance ratio as follows:

p(z∗|θ)p(z)

p(z|θ)p(z∗)
=
p(z∗,θ)p(θ)p(z)

p(z,θ)p(θ)p(z∗)

=
p(θ|z∗)
p(θ|z)

.

This is equivalent to the ratio of posteriors. Note that although in Bayesian inference the206

normalising constant of the posterior can usually be ignored, that does not apply here since207

the pseudo representative sample (i.e. the data) is different on the numerator and denominator.208

Since both the sequential algorithm and the approach using direct posterior draws are209

limited in their application we propose an alternative that can be used with any mechanism210

for generating a PRS and that exploits the potential of parallel computing.211

3.2.2. Parallel algorithm212

The most flexible algorithm that we propose is one that is well suited to modern213

parallel computing environments. This involves simulating J pseudo representative samples214

z[1], . . . ,z[J]. For each PRS we can independently simulate an MCMC chain, obtaining M215

iterations of θ after a burn-in is discarded and the chain is thinned. This yields a total of216

J ×M iterates of θ. This procedure is summarised as Algorithm 3 below.217

Algorithm 3 Parallel MCMC with PRS.

1: procedure MCMC-PRS(y, w̃,M, J).
2: for i = 1 : J do . This loop can be done in parallel
3: Draw z[j] from p(z|y,w);
4: for i = 1 : M do . This loop must be done sequentially
5: Draw θ[i] from p(θ|z[j]);
6: end for
7: end for
8: end procedure

The usual posterior inference can be carried out on this sample of θ. For instance all218

posterior expectations can be approximated by sample means while credible intervals can be219

obtained by looking at quantiles of the iterates of θ. The choice of J and M can be tuned220
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10 BAYESIAN WEIGHTED INFERENCE FROM SURVEYS

depending on the number of cores available in a parallel computing environment and on221

the mixing performance of the chain. The performance of this approach will be thoroughly222

investigated in the second part of the following simulation study.223

4. Simulation study224

In this section we describe two simulation studies that serve dual purposes – to illustrate225

how the Bayesian weighted estimator is implemented in two specific cases, and to compare226

the sampling-theory performance of a variety of weighted and unweighted Bayesian and227

sampling theory estimators. In the first experiment the response variable Y is assumed228

to follow a normal distribution, while in the second experiment Y is assumed to follow229

a mixture of gamma distributions. To obtain weights we introduce a normally distributed230

selection variable X , where dependence between X and Y is induced via a Gaussian copula.231

The probability that a value of the response variable is observed depends on the selection232

variable via a probit link function. In both cases we assume that the weights derived from233

probabilities computed using the probit function are observed, but realisations of X that are234

used to compute the probabilities and weights are not observed.235

4.1. Simulation 1: normal response236

When both Y andX are marginally Gaussian and bound by a Gaussian copula the values237

have a bivariate normal distribution238 (
Y

X

)
∼ BVN

((
µy

µx

)
,

(
σ2
y ρσxσy

ρσxσy σ2
x

))
.

The variable Y is a response variable; we are interested in estimating its mean µy and variance239

σ2
y . The variable X is a selection variable. When a sample is taken from the population, the240

X-value for a member of the population determines the probability of selecting that member241

of the population into the sample. Specifically, we assume that Ys is selected into the sample242

if and only if Is = 1, where243

Pr (Is = 1|Ys, Xs) = Pr (Is = 1|Xs) = πs = Φ (β0 + β1Xs) ,

with Φ (· ) denoting the cumulative distribution function of a standard normal distribution.244

When a member of the population is selected into the sample, we observe Ys and a weight245

ws assumed to be such that ws ∝ 1/πs, but we do not observe Xs. The selected sample246

is denoted as
(
y>,w>

)>
. Scaling the weights so that they sum to the sample size, we have247
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ws = nπ−1
s /

∑n
t=1 π

−1
t . The normalized sampling weights are given by w̃s = ws/

∑n
t=1 wt.248

The objective is to use
(
y>, w̃>

)>
to estimate µy and σ2

y .249

The simulation setup we used is as follows: N = 100, 000 values of (Ys, Xs) are250

generated as a finite population, with µx = 0, σ2
x = 9, µy = 10, and σ2

y = {4, 16, 100}. A251

sample drawn from this population will be representative, in the sense that each population252

value of Y has an equal chance of being selected, if ρ = 0 or β1 = 0. Thus, for β1 6= 0, the253

value of ρ controls the representativeness of the sample. Three different variances are used254

because the impact of an unrepresentative sample is potentially worse for larger variances.255

With larger variances, extreme values of Y will be systematically omitted from the sample.256

To obtain an observed sample, each population pair (Ys, Xs) is assigned a probability πs257

from the probit function and selected with probability πs. The probit function parameters258

used for this exercise were β0 = {−1.8,−2.7} and β1 = 0.1. For a given β1, the setting for259

β0 controls the sample size; β0 = −1.8 leads to a sample of approximately 4000, and, for260

β0 = −2.7, n ≈ 500.261

In Figure 1 we plot histograms for examples of samples of Y generated with β0 =262

−2.7, β1 = 0.1, σ2
y = 16 and the three values ρ = {0, 0.2, 0.8}. When ρ = 0, the sample is263

“representative” and the histogram is centred close to the true value µy = 10. Increasing ρ to264

0.2 moves the distribution slightly to the right centering it at y = 10.65. A further increase in265

ρ to 0.8 leads to a substantial shift, centering the distribution at y = 12.71.266

Figure 1. Histograms of selected samples of Y . For the left panel (no selection) ρ = 0, y = 10.22,
sy = 4.05, for the middle panel ρ = 0.2, y = 10.65, sy = 3.80, n = 471 and for the right panel
ρ = 0.8, y = 12.71, sy = 3.88, n = 528.

We use 250 Monte Carlo replications to examine the performance of four Bayesian and267

one sampling theory estimators for µy . For each estimator results are reported for:268

1. The average of estimates for µy;269

2. The average of the variance estimates for each estimator for µy – either the relevant270

sampling theory estimator or the posterior variance for µy;271

3. The coverage of 95% interval estimates for µy constructed using the estimates from (2)272

and (3).273
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12 BAYESIAN WEIGHTED INFERENCE FROM SURVEYS

Details of the estimators follow. Derivations are provided in the online supplementary274

material.275

1. Pseudo MLE (PMLE): The closed form solutions are µ̂y,PMLE = (1/n)
∑n
s=1 wsys276

and σ̂2
y,PMLE =

(
1/n2

)∑n
s=1 w

2
s (ys − µ̂y,PMLE)

2.277

2. Unweighted Bayesian (UBE): Using the non-informative joint prior distribution278

p
(
µy, σ

2
y

)
= 1/σ2

y , we obtain the marginal posteriors σ2
y|y ∼ IG

(
v/2, vs̃2/2

)
, and279

µy|y ∼ t
(
y, vs̃2/(v − 2)n

)
, where v = n− 1 and s̃2 = v−1

∑n
i=1 (yi − y)

2. The280

posterior mean y is used as a point estimate for µy , and the posterior variance for µy is281

used as the variance estimate for y. Except for a degrees of freedom correction which is282

inconsequential for the sample sizes considered here, the posterior mean and variance283

are identical to the mean and variance for an unweighted MLE. Thus, the results for284

the UBE are also indicative of those for unweighted MLE.285

3. Bayesian Pseudo Posterior (BPPE): From the joint pseudo posterior den-286

sity µy, σ
2
y|y,w ∼ σ−2

y

∏n
s=1

(
φ
(
ys;µy, σ

2
y

))ws , where φ(y; a, b) is the nor-287

mal density with mean a and variance b, we obtain the marginal dis-288

tributions p̃
(
σ2
y|y,w

)
which is distributed IG

(
v/2, vs̃∗2/2

)
and p̃ (µy|y,w),289

which is distributed t
(
y∗, vs̃∗2/(v − 2)n

)
, where y∗ = n−1

∑n
s=1 wsys and s̃∗2 =290

v−1
∑n
s=1 ws (ys − y∗)2. The posterior mean y∗ is used as a point estimate for µy ,291

and the posterior variance of µy is used as the variance of this estimate.292

4. Bayesian Weighted (BWE): Adapting Algorithm 3 in Section 3.2, the first step293

is to draw PRS z from p (z|y,w) and is discussed in detail in Section 3.1.294

We now discuss the second step, drawing θ(i) conditional on the PRS z(i) from295

p
(
θ|z(i)

)
at the iteration i. First, we compute z(i) = n−1

∑n
s=1 z

(i)
s and s̃2(i) =296

(n− 1)
−1∑n

s=1

(
z

(i)
s − z(i)

)2

. Then, we draw σ
2(i)
y from IG

(
v/2, vs̃2(i)/2

)
, where297

v = n− 1 and µ(i)
y from p

(
µ

(i)
y |σ2(i)

y , z(i)
)

.298

We use BWE-EDF to refer to the algorithm that generates a PRS by drawing a sample299

of size n from the (weighted) empirical distribution of the data and BWE-WFPBB300

for the algorithm that generates a PRS by using Weighted Finite Population Bayesian301

Bootstrap in Algorithm 1. A total of M = 2000 posterior draws were generated. The302

posterior draws were used to estimate posterior means and variances for
(
µy, σ

2
y

)
.303

The
(
µy, σ

2
y

)(1)
, ...,

(
µy, σ

2
y

)(M)
approximate draws from the posterior distribution304

p
(
µy, σ

2
y|y, w̃

)
. For estimates of the posterior mean and variance of µy , we can use305

µ̂y = M−1
∑M
i=1 z

(i) and σ̂2
µ = M−1

∑M
i=1 σ

2(i)
y /n+M−1

∑M
i=1

(
z(i) − µ̂y

)2
.306

The means of the point estimates for µ̂y and its variance σ̂2
µ were calculated over R = 250307

replications for each method. We use µy = (1/R)
∑R
r=1 wrµ̂y,r to denote the average of the308

estimates of µy and σ2
µ = (1/R)

∑R
r=1 wrσ̂

2
µ,r to denote the average of the estimates of the309
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variance of µ̂y where σ̂2
µ,r is the posterior variance of µy under Bayesian frameworks and the310

variance of µ̂y under a frequentist framework.311

In Tables 1 to 5, we report the results for µy and σ2
µ from the various estimators, together312

with the coverage of 95% Bayesian credible intervals and 95% frequentist confidence313

intervals. A coverage less than 95% suggests that the variance of an estimate for µy is314

biased downwards and a coverage greater than 95% suggests the variance estimate is biased315

upwards. Table 1 contains results for the case where Y and X are uncorrelated (ρ = 0).316

Tables 2 and 3 contain results for a large observed sample size, high and low correlation317

(ρ = 0.8, 0.2) and different values for the variance of Y
(
σ2
y = 4, 16, 100

)
. Tables 4 and 5318

contain the corresponding results for a small observed sample size. We observe that:319

1. The estimates for µy from PMLE, BPPE, and both BWE-EDF, and BWE-WFPBB, the320

estimators which utilize the weights, are close to the true value µy = 10, even when321

the observed sample size is only approximately 500, suggesting that any bias in these322

estimators is negligible. The unweighted estimator is biased, however. The amount of323

bias depends on three things: the true variance of Y , the degree of correlation between324

Y and X , and the sample size. The higher the degree of correlation ρ, the larger the325

true variance of Y , or the smaller the observed sample size, the larger the bias of the326

unweighted estimator.327

2. From Table 1 where ρ = 0, the mean of the unweighted estimates for the parameter328

µy is close to the true value suggesting that when Y is not correlated with X ,329

the unweighted estimator is unbiased. The PMLE, BWE-EDF, and BWE-WFPBB330

have higher variance estimates on average compared to UBE, reflecting the effect of331

unnecessary complexity.332

3. The average of the variance estimates over the replications, σ2
µ, is always smaller for333

BPPE compared to PMLE and BWE (Tables 2 to 5). These smaller variance estimates334

for BPPE lead to interval estimate coverage that is smaller than the PMLE, BWE-EDF,335

and BWE-WFPBB. Using BPPE, the variance of the estimates is underestimated since336

the wrong variance matrix is employed. PMLE uses the robust “sandwich estimator” to337

correctly estimate the variance matrix. Both BWE-EDF and BWE-WFPBB estimators338

integrate out across pseudo representative samples z to their posterior distributions.339

4. Increasing the variance σ2
y increases the average variance σ2

µ, but it does not change340

coverage.341

5. In most cases, the coverage of BWE-WFPBB is comparable in magnitude to the342

95% confidence intervals of PMLE. The coverage of BWE-EDF is slightly lower343

than the BWE-WFPBB. The averages of the variances of the estimates are also quite344

comparable for PMLE and both BWE estimators. Thus, the BWE’s posterior variance345
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14 BAYESIAN WEIGHTED INFERENCE FROM SURVEYS

Table 1. Estimates for parameter µy with true values µy = 10, ρ = 0, and n ≈ 4000.

Case UBE PMLE BPPE BWE-EDF BWE-WFPBB

σ2
y = 100

µy 10.0222 10.0143 10.0143 10.0139 10.0147
σ2
µ 0.0235 0.0364 0.0235 0.0470 0.0704

coverage 0.9400 0.9560 0.9000 0.9600 0.9800

Table 2. Estimates for parameter µy with true values µy = 10, ρ = 0.8, and n ≈ 4000.

Case UBE PMLE BPPE BWE-EDF BWE-WFPBB

σ2
y = 100

µy 14.8991 10.0153 10.0153 10.0140 10.0150
σ2
µ 0.0225 0.0494 0.0235 0.0465 0.0693

coverage 0.0000 0.9440 0.8160 0.9440 0.9720

σ2
y = 16

µy 11.9595 10.0059 10.0059 10.0054 10.0059
σ2
µ 0.0036 0.0079 0.0038 0.0075 0.0111

coverage 0.0000 0.9440 0.8160 0.9440 0.9720

σ2
y = 4

µy 10.9795 10.0027 10.0027 10.0024 10.0026
σ2
µ 0.0008 0.0020 0.0009 0.0019 0.0028

coverage 0.0000 0.9440 0.8200 0.9440 0.9720

Table 3. Estimates for parameter µy with true values µy = 10, ρ = 0.2, and n ≈ 4000.

Case UBE PMLE BPPE BWE-EDF BWE-WFPBB

σ2
y = 100

µy 11.2429 10.0159 10.0159 10.0168 10.0171
σ2
µ 0.0235 0.0371 0.0235 0.0466 0.0700

coverage 0.0000 0.9440 0.8840 0.9640 0.9880

σ2
y = 16

µy 10.4977 10.0068 10.0068 10.0072 10.0073
σ2
µ 0.0038 0.0059 0.0038 0.0075 0.0112

coverage 0.0000 0.9440 0.8840 0.9640 0.9880

σ2
y = 4

µy 10.2487 10.0030 10.0030 10.0032 10.0033
σ2
µ 0.0009 0.0015 0.0009 0.0019 0.0028

coverage 0.0000 0.9440 0.8840 0.9640 0.9880

can be thought of as a Bayesian way of correcting the posterior variance when sampling346

weights are taken into account.347
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Table 4. Estimates for parameter µy with true values µy = 10, ρ = 0.8, and n ≈ 500.

Case UBE PMLE BPPE BWE-EDF BWE-WFPBB

σ2
y = 100

µy 16.6339 9.9127 9.9127 9.9115 9.9146
σ2
µ 0.1982 0.8751 0.2096 0.4204 0.6180

coverage 0.0000 0.9440 0.6880 0.8400 0.8960

σ2
y = 16

µy 12.6533 9.9740 9.9740 9.9735 9.9748
σ2
µ 0.0317 0.1380 0.0333 0.0668 0.0983

coverage 0.0000 0.9440 0.7000 0.8480 0.9000

σ2
y = 4

µy 11.3269 9.9822 9.9822 9.9820 9.9825
σ2
µ 0.0079 0.0350 0.0084 0.0168 0.0247

coverage 0.0000 0.9440 0.6920 0.8400 0.8960

Table 5. Estimates for parameter µy with true values µy = 10, ρ = 0.2, and n ≈ 500.

Case UBE PMLE BPPE BWE-EDF BWE-WFPBB

σ2
y = 100

µy 11.6386 9.9927 9.9927 9.9938 9.9966

σ2
µ 0.2058 0.4932 0.2073 0.4144 0.6220

coverage 0.0480 0.9320 0.7720 0.8920 0.9560

σ2
y = 16

µy 10.6557 10.0008 10.0008 10.0012 10.0024

σ2
µ 0.0329 0.0791 0.0332 0.0663 0.0996

coverage 0.0480 0.9360 0.7760 0.8960 0.9600

σ2
y = 4

µy 10.3265 9.9976 9.9976 9.9977 9.9983

σ2
µ 0.0082 0.0197 0.0083 0.0166 0.0249

coverage 0.0480 0.9320 0.7720 0.8960 0.9600

4.2. Simulation 2: finite gamma mixture348

In this section we illustrate how to integrate the Bayesian weighted estimator within an349

MCMC algorithm for estimation of the parameters of a more complex model. We consider350

a finite mixture of gamma densities with two components. The procedure can be readily351

extended to the case of K components. We assume that the population distribution for a352

response variable Y can be described by the density353

p (y|ξ,µ,v) = ξG (y|v1,µ1) + (1− ξ) G (y|v2,µ2) ,

where vk is the shape parameter and µk is the mean of the gamma density354

G (y|vk, µk) =
(vk/µk)

vk

Γ (vk)
yvk−1 exp

(
− vk
µk
y

)
.
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16 BAYESIAN WEIGHTED INFERENCE FROM SURVEYS

The marginal distribution of the selection variable X is assumed to be N
(
µX , σ

2
X

)
as in the355

first simulation and a bivariate Gaussian copula is employed to construct a joint distribution356

between X and Y . Steps to generate a population for (Y,X) are given in Section D of the357

supplementary material. A similar set up to simulation 1 is used to select the sample and358

to compute the sampling weights. For the estimation of (ξ, µ1, µ2, v1, v2)
>, we assume that359

only the sampling weights and the sample observations y are observed.360

The true parameters for the mixture of gamma densities were set as follows: ξ = 0.6,361

µ1 = 208, µ2 = 700, v1 = 3 and v2 = 2. Those for X were µX = 0 and σ2
X = 9. The362

correlation ρ was set to be {0, 0.2, 0.5, 0.8}. The probit function parameters used for this363

exercise were β0 = {−1.2,−1.8} and β1 = 0.1. For a given β1, the setting for β0 controls364

the sample size; β0 = −1.2 leads to a sample of approximately 12% of the whole finite365

population distribution and β0 = −1.8 leads to a sample of approximately 4% of the whole366

finite population distribution. The total number of Monte Carlo replications R was set at 250.367

The MCMC algorithm used to estimate the model combines that suggested by Wiper,368

Insua & Ruggeri (2001), with our proposal for including the weights. We describe it in terms369

of a general model with K components. The priors employed by Wiper, Insua & Ruggeri370

(2001) are a Dirichlet prior for ξ371

p (ξ) ∝ ξϕ1−1
1 ξϕ2−1

2 ...ξϕK−1
K ,

an inverted gamma prior IG (αk, βk) for µk with density,372

p (µk) ∝ (µk)
−(αk+1)

exp

(
−βk
µk

)
,

and an exponential prior for vk373

p (vk) ∝ exp (−λvk) .

Adapting Algorithm 3 in Section 3.2.2, the step to draw PRS z(j) from p (z|y,w) is discussed374

in detail in Section 3.1. We now discuss the second step, drawing θ(i) =
(
ξ(i),v(i),µ(i)

)
375

conditional on the PRS z(j) from p
(
ξ(i),v(i),µ(i)|z(j)

)
at the iteration i, where ξ(i) =376 (

ξ
(i)
1 , ..., ξ

(i)
K

)>

, µ(i) =
(
µ

(i)
1 , ..., µ

(i)
K

)>

, and v(i) =
(
v

(i)
1 , ..., v

(i)
K

)>

. The steps of drawing377

θ(i) for i = 1, ...,M are summarised as378

1. Generate
(
d

(i)
s |ξ(i),v(i),µ(i), z(j)

)
for s = 1, ..., n, where ds = (ds1, ..., dsK), and379

dsk is an indicator variable equal to 1 if the sth observation is identified as coming380
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from the kth component of the mixture according to the probability381

p (dsk = 1|z, ξ,µ,v) =
psk

ps1 + ...+ psK
,

where382

psk = ξk
(vk/µk)

vk

Γ (vk)
zvk−1
s exp

(
− vk
µk
zs

)
.

LetD be the (n×K) matrix of components dsk and nk =
∑n
s=1 wsdsk.383

2. Generate
(
ξ(i)|D(i),µ(i−1),v(i−1), z(j)

)
from the Dirichlet distribution384

ξ|z,D,µ,v ∼ D (ϕ+ n) ,

where n
>

= (n1, ..., nK) and ϕ
>

= (ϕ1, ..., ϕK).385

3. Generate
(
µ

(i)
k |D(i), ξ(i),v(i−1), z(j)

)
for k = 1, ...,K from the inverted gamma386

density387

µk|z,D,v, ξ ∼ IG (αk + nkvk, βk + Skvk) ,

where Sk = wn
s=1dskzs.388

4. Generate
(
v

(i)
k |D(i), ξ(i),µ(i), z(j)

)
, for k = 1, ...,K from389

p (vk|z,D,µ, ξ) ∝
vnkvkk

[Γ (vk)]
nk exp

{
−vk

(
λ+

Sk
µk

+ nk logµk − Pk
)}

,

where Pk =
∑n
s=1 wsdsk log zs. Values are drawn from this density using a Metropolis390

step with a gamma candidate generating function v∗(i)k ∼ G
(
rk, rk/v

(i−1)
k

)
with rk391

chosen by experimentation to obtain a reasonable acceptance rate.392

5. For identification, order the elements according to µ1 < ... < µK .393

We use the abbreviations BWE-EDF and BWE-WFPBB in the same manner as Section 4.1394

but where Algorithm 3 is used. We simulate J = 200 pseudo representative samples (PRS)395

z(1), ...,z(J). For each PRS we independently simulate an MCMC chain, obtaining a total of396

M = 5500 observations on θ =
(
µ>,v>, ξ>

)>
, with the first 500 draws discarded as a burn397

in, a total of 200× 5000 iterates of θ for each replication.398

A total of R = 250 Monte Carlo replications were taken, and for a sample of the399

replications, the observations were plotted to confirm the convergence of the Markov400

chains. Following Wiper, Insua & Ruggeri (2001), relatively noninformative priors were401

used with the parameter settings ϕ1 = ϕ2 = 1, α1 = α2 = 2.2, β1 = 40, β2 = 80, and402

λ1 = λ2 = 0.01. We also impose a priori restriction µ1 < µ2 for identification of the mixture403

components. If the objective is estimation of the overall mixture distribution and not the404
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18 BAYESIAN WEIGHTED INFERENCE FROM SURVEYS

individual parameters, as is the case for our empirical example in the next section, then the405

identification restriction is unnecessary (Geweke 2007).406

In Tables 6 to 9, we report the averages of the posterior means θ, coverage of the 95%407

Bayesian credible intervals, and the averages of the posterior variances σ2
θ from the various408

estimators. Table 6 contains results for the case where Y and X are uncorrelated (ρ = 0).409

Tables 7 to 9 contain results for small and large observed sample sizes, with correlations410

ρ = 0.2, 0.5, and 0.8.411

We observe the following:412

1. From Table 6 where the correlation ρ = 0, the components of θ are close to their413

true counterparts for the UBE and both BWE-EDF and BWE-WFPBB. It suggests414

that when Y is not correlated with X , the unweighted estimator is unbiased. The415

interval estimate of UBE has coverage that is close to the nominal 95%, but the interval416

estimates of the BWE-EDF and BWE-WFPBB have coverage that is higher than the417

nominal 95%. Both BWE-EDF and BWE-WFPBB have higher variance estimates on418

average compared to UBE, reflecting the effect of unnecessary complexity.419

2. From Tables 7 to 9, the components of θ are close to their true counterparts suggesting420

that any bias in BWE-EDF and BWE-WFPBB is negligible for both sample sizes. The421

unweighted estimator is biased, however. The higher the degree of correlation ρ, or the422

smaller the observed sample size, the larger the bias of the unweighted estimator. As423

shown in Figure 2, the true density and the estimated densities using the values θ from424

BWE-EDF and BWE-WFPBB, with ρ = 0.8 and β0 = −1.8, are indistinguishable, but425

the estimated density from UBE is clearly far from the true density.426

3. With the exception of µ2, the averages of the posterior variances are relatively small,427

implying estimation is relatively precise. The BWE-WFPBB estimators have larger428

averages of posterior variances, σ2
θ for all cases compared to BWE-EDF.429

4. Tables 7 to 9 show that the BWE-WFPBB and BWE-EDF coverage of the 95% credible430

intervals for all parameters θ is quite close to 0.95 when ρ = 0.8, but they seem to have431

over coverage for ρ = 0, 0.2, and 0.5.432

Thus, we conclude the BWE algorithms work not only for the simple model described in the433

first simulation, but also for estimating unknown parameters of gamma mixture models. It434

is a very general algorithm that can be easily extended to integrate with the usual MCMC435

algorithms, such as the Metropolis-Hastings, Gibbs sampling, and Metropolis-within-Gibbs436

sampling schemes.437
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Table 6. Simulation 2: Finite gamma mixture with ρ = 0, true values ξ = 0.6, µ1 = 208, µ2 = 700,
v1 = 3 and v2 = 2.

ξ µ1 µ2 v1 v2

True 0.6000 208.0000 700.0000 3.0000 2.0000

β0 = −1.2 UBE θ 0.6060 208.9679 710.6751 3.0114 2.0844

σ2
θ 0.0008 12.5197 1105.60 0.0105 0.0425

coverage 0.9240 0.9160 0.9280 0.9680 0.9360

BWE-EDF θ 0.6074 209.2593 714.2218 3.0200 2.1152

σ2
θ 0.0015 25.4134 2094.10 0.0206 0.0859

coverage 0.9880 0.9880 0.9880 0.9960 0.9960

BWE-WFPBB θ 0.6084 209.4519 716.6443 3.0254 2.1399

σ2
θ 0.0020 36.1222 2860.60 0.0289 0.1219

coverage 1.0000 0.9960 0.9960 1.0000 1.0000

β0 = −1.8 UBE θ 0.6053 209.1985 714.1303 3.0311 2.1306

σ2
θ 0.0019 35.8193 2725.80 0.0305 0.1165

coverage 0.9560 0.9480 0.9600 0.9400 0.9600

BWE-EDF θ 0.6071 209.3585 721.0308 3.0680 2.2223

σ2
θ 0.0034 72.8264 5032.30 0.0639 0.2578

coverage 0.9720 0.9720 0.9720 0.9840 0.9800

BWE-WFPBB θ 0.6096 209.8237 726.6071 3.0797 2.2846

σ2
θ 0.0046 108.0590 7008.30 0.0950 0.3953

coverage 0.9960 0.9880 0.9920 0.9960 0.9920
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Table 7. Simulation 2: Finite gamma mixture with ρ = 0.2, true values ξ = 0.6, µ1 = 208, µ2 = 700,
v1 = 3 and v2 = 2.

ξ µ1 µ2 v1 v2

True 0.6000 208.0000 700.0000 3.0000 2.0000

β0 = −1.2 UBE θ 0.5734 217.0979 740.5767 3.1366 2.1163

σ2
θ 0.0008 14.7498 1071.50 0.0131 0.0401

coverage 0.8240 0.2480 0.7800 0.7680 0.9600

BWE-EDF θ 0.6051 208.7960 711.0733 3.0300 2.0946

σ2
θ 0.0015 25.0760 2053.20 0.0211 0.0815

coverage 0.9880 0.9960 0.9920 0.9880 0.9920

BWE-WFPBB θ 0.6061 208.9918 713.2825 3.0360 2.1180

σ2
θ 0.0020 35.4075 2785.10 0.0298 0.1155

coverage 1.0000 1.0000 1.0000 0.9920 1.0000

β0 = −1.8 UBE θ 0.5621 219.6995 750.2276 3.2051 2.1667

σ2
θ 0.0020 42.2860 2505.00 0.0403 0.1018

coverage 0.8960 0.5320 0.8960 0.8400 0.9680

BWE-EDF θ 0.6039 208.8690 715.4016 3.0921 2.1966

σ2
θ 0.0033 70.7234 4763.30 0.0649 0.2379

coverage 0.9840 0.9960 0.9840 0.9560 0.9840

BWE-WFPBB θ 0.6070 209.4192 721.4411 3.1011 2.2591

σ2
θ 0.0045 104.8445 6689.80 0.0963 0.3660

coverage 0.9960 0.9960 0.9920 0.9920 0.9880
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Table 8. Simulation 2: Finite gamma mixture with ρ = 0.5, true values ξ = 0.6, µ1 = 208, µ2 = 700,
v1 = 3 and v2 = 2.

ξ µ1 µ2 v1 v2

True 0.6000 208.0000 700.0000 3.0000 2.0000

β0 = −1.2 UBE θ 0.5250 230.0632 787.5132 3.3626 2.2097

σ2
θ 0.0007 16.9847 843.9421 0.0167 0.0320

coverage 0.2360 0.0000 0.0520 0.0760 0.7880

BWE-EDF θ 0.6022 208.7241 708.6371 3.0401 2.0910

σ2
θ 0.0014 24.6815 1965.70 0.0217 0.0774

coverage 0.9800 0.9840 0.9800 0.9720 0.9720

BWE-WFPBB θ 0.6033 208.9423 710.8749 3.0459 2.1112

σ2
θ 0.0019 34.9652 2669.80 0.0306 0.1083

coverage 0.9920 0.9960 0.9920 0.9960 0.9920

β0 = −1.8 UBE θ 0.4997 237.0224 815.3224 3.5030 2.2833

σ2
θ 0.0018 55.5087 2121.90 0.0598 0.0882

coverage 0.3600 0.0040 0.0080 0.2480 0.8640

BWE-EDF θ 0.5988 209.1928 711.7804 3.0968 2.1667

σ2
θ 0.0033 71.0910 4704.40 0.0671 0.2268

coverage 0.9680 0.9960 0.9680 0.9520 0.9680

BWE-WFPBB θ 0.6025 209.7359 718.5456 3.1048 2.2317

σ2
θ 0.0045 106.1416 6697.30 0.0996 0.3527

coverage 0.9800 0.9960 0.9800 0.9840 0.9760
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Table 9. Simulation 2: Finite gamma mixture with ρ = 0.8, true values ξ = 0.6, µ1 = 208, µ2 = 700,
v1 = 3 and v2 = 2.

ξ µ1 µ2 v1 v2

True 0.6000 208.0000 700.0000 3.0000 2.0000

β0 = −1.2 UBE θ 0.4793 244.4544 836.5023 3.6288 2.3232

σ2
θ 0.0006 21.0618 757.9739 0.0229 0.0302

coverage 0.0040 0.0000 0.0000 0.0000 0.3880

BWE-EDF θ 0.5988 208.6350 704.0435 3.0556 2.0627

σ2
θ 0.0015 24.2958 1951.80 0.0235 0.0757

coverage 0.9600 0.9760 0.9560 0.9520 0.9480

BWE-WFPBB θ 0.6007 208.8230 707.1057 3.0584 2.0892

σ2
θ 0.0020 34.8552 2721.40 0.0335 0.1081

coverage 0.9720 0.9960 0.9720 0.9760 0.9760

β0 = −1.8 UBE θ 0.4334 253.7392 877.2529 3.9058 2.3765

σ2
θ 0.0016 68.7337 1772.50 0.0957 0.0712

coverage 0.0120 0.0000 0.0000 0.0080 0.6240

BWE-EDF θ 0.5930 208.7730 704.0061 3.1535 2.1104

σ2
θ 0.0032 66.2321 4387.00 0.0747 0.1955

coverage 0.9160 0.9800 0.9200 0.8920 0.9200

BWE-WFPBB θ 0.5957 209.2470 709.4283 3.1644 2.1619

σ2
θ 0.0043 98.3922 6134.70 0.1118 0.2951

coverage 0.9480 0.9960 0.9400 0.9160 0.9360
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Figure 2. A true gamma mixture density and its estimates from the posterior mean of the BWE-EDF,
BWE-WFPBB, and UBE with ρ = 0.8, true values ξ = 0.6, µ1 = 208, µ2 = 700, v1 = 3 and v2 = 2,
and β0 = −1.8.

5. Application to Australian income distribution438

In this section we illustrate our methodology by fitting a mixture of gamma densities439

with 3 components. This distribution and its corresponding Lorenz curve were estimated440

using Canadian income data by Chotikapanich & Griffiths (2008), a study where survey441

weights could not be used. While we use the same mixture of three gamma densities,442

we will use 2009 household disposable income data and survey weights from the HILDA443

survey. This survey is a national longitudinal survey, which began in Australia in 2001 and444

is conducted annually (Wooden, Freidin & Watson 2002). It was initiated and funded by the445

Australian Government through the Department of Families, Housing, Community Services,446

and Indigenous Affairs, and is designed, managed, and maintained by the Melbourne Institute447

of Applied Economic and Social Research, University of Melbourne. The survey is a broad448

economic and social survey that collects key variables concerning family and household449

structure, as well as data on education, income, health, life satisfaction and other measures of450

economic and subjective wellbeing. The households are sampled using a multistage sampling451

design; the sampling weights are provided.452

Results for standard MCMC inference (referred to as UBE) were obtained using an453

MCMC sample of 11000 of which 1000 were discarded as a burn in. Weighted Bayesian454

estimators based on using Algorithm 3 were also obtained using both the empirical455

distribution and the weighted finite population Bayesian bootstrap. In both cases, we generate456

J = 200 pseudo representative samples and for each PRS, we obtain a total of 5500 draws,457

with the first 500 draws discarded as burn in. The results were almost identical with respect458
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to the mechanism used for generating a pseudo representative sample; for brevity, we report459

only the results using the WFPBB here and refer to it simply as the BWE.460

All parameters for both the UBE and BWE showed evidence of convergence. The461

posterior means and standard deviations are reported in Table 10. The posterior means from462

UBE and BWE are similar in magnitude with the exception of µ1 where there is a marked463

difference. The posterior standard deviations for BWE are larger, in line with the results of464

our Monte Carlo experiment. In Figure 3, we plot the weighted histogram, and the density465

estimates at the posterior means of UBE and BWE. One major difference between the two466

density estimates is in their ability to capture the first mode. The weighted gamma mixture467

fits the first mode well, but the unweighted gamma mixture overestimates the height of the468

density at the mode. More generally, relative to the estimates that take weights into account,469

the standard Bayesian estimates overstate the proportion of the population in the lower portion470

of the distribution, and understate the proportion of the population in the upper portion of the471

distribution.472

Table 10. Posterior summary statistics for the parameters of individual disposable income 2009
(posterior standard deviation in brackets).

ζ1 ζ2 µ1 µ2 µ3 v1 v2 v3

BWE 0.0565
(0.0077)

0.9106
(0.0100)

753.1687
(109.1041)

751.0602
(8.9884)

163.4528
(3.0720)

0.2295
(0.0263)

2.7266
(0.1003)

94.9858
(35.8646)

UBE 0.0571
(0.0051)

0.8999
(0.0071)

630.36
(73.7848)

723.43
(6.2133)

164.81
(1.8207)

0.2120
(0.0161)

2.6102
(0.0630)

90.1537
(18.5516)

Table 11. Posterior summary statistics of mean income, Gini, and headcount for 2009 (95% credible
intervals in brackets).

UBE BWE

µ ($′00) 694.09
(681.75,706.93)

731.88
(714.44,750.04)

G 0.3828
(0.3758,0.3905)

0.3751
(0.3643,0.3862)

HC 0.1380
(0.1306,0.1456)

0.1169
(0.1069,0.1268)
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Figure 3. Weighted histogram and unweighted and weighted gamma mixture densities (at posterior
means of parameters) for Australian household disposable income in 2009 ($’00).

The different estimates of the distribution have implications for three important473

summary statistics that are often of interest when estimating income distributions, namely474

mean income µ, the Gini coefficient as a measure of inequality, G, and the proportion475

of the population below a poverty line (the headcount ratio H). Draws from the posterior476

distributions of these quantities can be obtained from the following equations.477

G = −1 +
2

µ

3∑
k=1

3∑
j=1

ξkξjµkFB (xk,j ; νj , νk+1) ,

H = FG(yp) ,

whereFB (xk,j ; νj , νk+1) is the distribution function for a standard beta random variable with478

parameters νj and νk+1 evaluated at xk,j = (µk/νk) / ((µk/νk) + (µj/νj)) and FG(yp) is479

the distribution function for the gamma mixture evaluated at a poverty line of yp =$20000.480

The expression for the Gini coefficient for a mixture of gamma densities has been derived481

by Griffiths and Hajargasht and is available from the corresponding author on request. The482

posterior means and 95% credible intervals for µ, G and H are reported in Table 12. Because483

the distribution that ignores the weights has led to a larger estimate for the proportion of484

the population in the lower portion of the distribution, the unweighted estimate for µ is485

smaller and that forH is larger than their respective estimates from the weighted distribution.486

Moreover, the interval estimates for µ andH do not overlap, implying quite distinct estimates487

for these quantities. The difference in estimates for the Gini coefficient is less pronounced,488

with the unweighted estimate suggesting greater inequality.489
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Table 12. Posterior summary statistics of mean income, Gini, and headcount for 2009 (95% credible
intervals in brackets).

UBE BWE

µ ($′00) 694.09
(681.75,706.93)

730.92
(712.21,749.54)

G 0.3828
(0.3758,0.3905)

0.3759
(0.3650,0.3857)

HC 0.1380
(0.1306,0.1456)

0.1169
(0.1068,0.1278)

6. Conclusions490

Empirical work in model-based inference often ignores sampling weights or makes use491

of the classical pseudo maximum likelihood estimator. In this paper we propose two Bayesian492

alternatives. Both theoretical and empirical results support the use of Bayesian weighted493

estimation based on the generation of a representative sample as a latent variable that can494

be integrated with an MCMC or other simulation algorithm. We compare methods using two495

Monte Carlo simulations, one using a simple Gaussian model and one with a more complex496

mixture of gamma densities. These simulations show that the Bayesian weighted estimator497

has a posterior variance that is comparable to that of the sandwich covariance matrix of498

the pseudo maximum likelihood estimator. This result is particularly pronounced when the499

weighted finite population Bayesian bootstrap is used as a scheme for simulating a pseudo500

representative sample. Also, using the pseudo likelihood within a Bayesian framework can501

lead to a posterior variance that understates the repeated sampling variation of the posterior502

mean, a result in line with the asymptotic theory that we have derived. An additional503

advantage of the Bayesian weighted estimator over the pseudo maximum likelihood estimator504

is that it can easily be applied to a general set of possibly complex models that can be505

estimated by MCMC. In an application to estimation of an Australian income distribution,506

we illustrate how to estimate the parameters of a three component gamma mixture model,507

and how to obtain posterior densities for economic quantities of interest that depend on those508

parameters. We find that inference about the quantities of interest, the mean income, the Gini509

coefficient and the headcount ratio, can be sensitive to exclusion or inclusion of the weights510

in the analysis.511
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Appendix512

Consistency of BPPE513

Under some regularity conditions, Walker (1969) derived the asymptotic behavior of514

proper posterior distributions under unweighted, independent, and identically distributed515

observations. Gelman et al. (2013) and Le Cam & Yang (2012) provide reviews of this area.516

Our results for the pseudo posterior follow a similar approach. For convenience of exposition,517

we assume a scalar θ but the generalisation to vector valued parameters is easily made. Let y518

be an n× 1 random vector of finite population observations. Some aspect of the distribution519

of y depends on a parameter θ contained in a parameter space Θ. Assume that Θ is a closed520

set of points on the real line. Also assume that θ0 is the true parameter and unique solution to521

the population maximization problem θ0 = maxθ0∈ΘEy [log p(y|θ)]. For a random observed522

sample of size n, yi; i = 1, 2, . . . , n we also draw Ii which is a binary indicator variable that523

is equal to 1 if the observation i is used in estimation. The observation yi is observed if and524

only if Ii = 1 The sampling weights are defined as the inverse of probability of inclusion525

wi = 1/πi. Let πi be the probability that unit i is in the sample, conditional on demographic526

characteristicsDi that is, πi = Pr(Ii = 1|D = Di).527

Given the data y = (y1, y2, . . . , yn)
> and the sampling weights w =528

(w1, w2, . . . , wn)
> and provided that the prior density p(θ) is continuous and positive,529

the pseudo posterior distribution can be written as:530

p̃ (θ|y,w) ∝
n∏
i=1

p(yi|θ)Iiwip(θ) .

Taking logs and dividing by n gives531

1

n
log p̃ (θ|y,w) =

1

n

n∑
i=1

Iiwi log p(yi|θ) +
1

n
log p(θ) + Constant .

Let θ̂ be the posterior mode defined as:532

θ̂ = max
θ∈Θ

(
1

n

n∑
i=1

Iiwi log p(yi|θ) +
1

n
log p(θ)

)
.

As n→∞ the influence of the prior diminishes and the pseudo posterior is dominated533

by the influence of the pseudo likelihood. Given the prior p(θ) is non-zero at θ = θ0,534
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n−1 log p(θ)→ 0, and by the usual weak law of large numbers535

1

n

n∑
i=1

Iiwi log p(yi|θ) = E
[
Ii
πi

log p(yi|θ)
]
.

By using the law of iterated expectations we have

Ey

[
Ii
πi

log p(yi|θ)
]

=

∫ ∫ ∫ [
Ii
πi

log p(yi|θ)
]
p(y, I,D)dydIdD

=

∫ ∫ [∫
Iip(I|y,D)dI

πi
log p(yi|θ)

]
p(y,D)dydD

=

∫ ∫ [
πi
πi

log p(yi|θ)
]
p(y,D)dydD

=

∫
log p(yi|θ)p(y)dy

∫
p(D|y)dD

= E log p(yi|θ) .

where the third equality follows from E(Ii|yi,Di) = Pr(Ii = 1|D = Di) = πi. Because θ0536

is assumed to uniquely maximise Ey [log p(yi|θ)] from assumption 1 we have plimn→∞θ̂ =537

θ0538

Asymptotic normality of BPPE539

Let Nθ̂(ε) =
{
θ :
∣∣∣θ − θ̂∣∣∣ < ε/

√
n
}

be a neighbourhood of θ̂ contained in Θ, where

ε > 0 is a given fixed number. Using Taylor’s theorem to expand log p̃ (θ|y,w) around θ

leads to

log p̃ (θ|y,w) ≈ log p̃
(
θ̂|y,w

)
+
(
θ − θ̂

) ∂ log p̃ (θ|y,w)

∂θ

∣∣∣∣
θ=θ̂

+
1

2

(
θ − θ̂

)2 ∂2 log p̃ (θ|y,w)

∂θ2

∣∣∣∣
θ=θ̂

+R ,

where R is of higher order than (θ − θ̂)2 and the term ∂ log p̃(θ|y,w)/∂θ|θ=θ̂ is zero since540

the log posterior density function has zero first derivative at the posterior mode. The first term541

can be treated as constant since it does not involve θ. We can say that as n→∞, any θ in542

Nθ̂(ε) will approach θ̂ in probability. Thus for any small δ > 0543

lim
n→∞

Pr

[
sup

θ∈Nθ̂(ε)

|R| < δ

]
= 1 .
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In the neighbourhood Nθ̂(ε), we can express the pseudo posterior log p̃(θ|y,w) as follows as544

n→∞:545

p̃ (θ|y,w) ∝ exp

{
−n

2

(
θ − θ̂

)2
[
− 1

n

∂2 log p̃ (θ|y,w)

∂θ2

∣∣∣∣
θ=θ̂

]}
.

Now,546

− 1

n

∂2 log p̃ (θ|y,w)

∂θ2

∣∣∣∣
θ=θ̂

= − 1

n

∂2 log p̃ (θ)

∂θ2

∣∣∣∣
θ=θ̂

− 1

n

n∑
i=1

wi
∂2 log p̃ (yi|θ)

∂θ2

∣∣∣∣
θ=θ̂

As n→∞ the first term547

− 1

n

∣∣∣∣∂2 log p(θ)

∂θ2

∣∣∣∣
θ=θ̂

goes to zero and the second term548

− 1

n

n∑
i=1

wi
∂2 log p̃ (yi|θ)

∂θ2

∣∣∣∣
θ=θ̂

,

is the estimated weighted Hessian matrix evaluated at θ = θ̂. Therefore as n→∞, p̃(θ|y,w)549

converges to a normal distribution with mean θ̂ and variance550

σ2
BPPE =

1

n

(
− 1

n

n∑
i=1

wi
∂2 log p (yi|θ)

∂θ2

∣∣∣∣
θ=θ̂

)−1

in the neighbourhood of Nθ̂(ε). The next step is to ensure that θ0 is in the neighbourhood551

of θ̂ which follows from the consistency of θ̂. Also, given the symmetry of the asymptotic552

distribution, the posterior mean will similarly have a large sample variance given by σ2
BPPE .553
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